
Preference-grounded Token-level Guidance for
Language Model Fine-tuning

Shentao Yang1, Shujian Zhang1, Congying Xia2, Yihao Feng2,
Caiming Xiong2, Mingyuan Zhou1

1The University of Texas at Austin 2Salesforce Research
shentao.yang@mccombs.utexas.edu, yihao.ac@gmail.com,

mingyuan.zhou@mccombs.utexas.edu

Abstract

Aligning language models (LMs) with preferences is an important problem in
natural language generation. A key challenge is that preferences are typically
provided at the sequence level while LM training and generation both occur at the
token level. There is, therefore, a granularity mismatch between the preference
and the LM training losses, which may complicate the learning problem. In this
paper, we address this issue by developing an alternate training process, where we
iterate between grounding the sequence-level preference into token-level training
guidance, and improving the LM with the learned guidance. For guidance learning,
we design a framework that extends the pairwise-preference learning in imitation
learning to both variable-length LM generation and the utilization of the preference
among multiple generations. For LM training, based on the amount of supervised
data, we present two minimalist learning objectives that utilize the learned guidance.
In experiments, our method performs competitively on two distinct representative
LM tasks — discrete-prompt generation and text summarization. Source codes are
released at https://github.com/Shentao-YANG/Preference_Grounded_Guidance.

1 Introduction

Language models (LMs) have been successfully trained with token-level cross-entropy losses, where
each token position has a corresponding term in the overall training losses [1–11]. Recent studies have
shown that LMs can be further improved by aligning them with preferences from human feedback
[12–15] or automatic evaluation metrics [16–18]. Typically, the preferences are only provided at
the sequence level, e.g., “Which of the two generated text sequences is better?” To align LMs with
sequence-level preferences, there exist a variety of approaches, such as applying external filters to the
training texts [19], performing supervised learning on some curated/improved datasets [20–22], and
optimizing the LMs based on a learned sequence-level (pairwise-) preference predictor [14, 23–25].

While these approaches have contributed to the development of several revolutionary products [e.g.,
18, 15], a mismatch issue has emerged from the perspective of guiding LM fine-tuning. Concretely,
the sequence-level preference is not grounded into the token level, where LM training losses occur.
This means that there is a mismatch in granularity between the feedback and training losses — the
preference is coarse-grained while the training losses are fine-grained. This issue is similar to the
delayed-feedback problem in reinforcement learning (RL) [26–28], where informative feedback is
available only at the end of the trajectory (sequence) and not at any of the intermediate timesteps. Pre-
vious studies have noted that this problem could have a negative impact on the empirical performance
of the resulting LMs [29, 30], as it introduces a more challenging learning problem characterized by
higher gradient variance and lower sample efficiency to achieve the learning goal [31, 32].

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

ar
X

iv
:2

30
6.

00
39

8v
2

 [c
s.C

L]
 9

 O
ct

 2
02

3

https://github.com/Shentao-YANG/Preference_Grounded_Guidance

To address this granularity mismatch, we focus on the following question: How can we effectively
ground sequence-level preference into token-level guidance for LM fine-tuning? We propose an
alternate training process that alternates between two stages: learning preference-grounded token-
level guidance and improving the LM using the learned guidance. This alternate process reduces the
requirement on supervised data and targets the low-data regime, e.g., few/zero-shot learning, where
task-specific supervised (pre-)training is infeasible and initial LMs have weak zero-shot abilities.

To ground the sequence-level preference into token-level guidance, we propose a framework for
learning a token-level “reward” function1, inspired by reward-learning-from-preferences in the
imitation learning (IL) literature [33–35]. Specifically, we train the token-level rewards such that
the corresponding evaluation for a generated text sequence reflects the preference among multiple
alternative generations, where the preference comes from task-specific evaluation. While summation
is classically used in IL to aggregate the learned token-level rewards into the text-sequence evaluation,
LM tasks can be different from classical IL tasks. To cater to LM generations, our guidance-learning
framework can accommodate more careful choices of the aggregation function beyond the classical
summation. For instance, in generating text prompts to steer an LM for text classification, a “key
token” in the prompt may be more effective than several mediocre tokens. Hence, using maximum to
aggregate the token-level rewards may better reflect the text-sequence quality than summation.

To utilize the learned preference-grounded guidance in LM training, we present two minimalist
learning objectives that contain only a minimal number of hyperparameters. These two objectives
respectively target different amounts of supervised data in the specific LM task. We evaluate our
framework on two distinct representative LM tasks: generating discrete text prompts for few-shot text
classification and text summarization. On both tasks, our method exhibits competitive performance.

2 Main Method

Before diving into technical details, we will first establish the notation, provide some background on
classical pairwise-preference learning, and offer an overview of our preference-grounding process.

Notation. In most LM tasks, we are given a dataset D = {(xi, yi)}Ni=1 of N supervised examples,
where x is the input to the LM, which can be a dummy, and y is the target text-sequence. We denote the
LM parameterized by ✓ as ⇡✓. The tth generated token is denoted as at, given by at ⇠ ⇡✓(· | st), where
the context for token generation at step t � 0 is denoted as st, consisting of the LM input x and the
previously generated tokens a<t = (a0, . . . , at�1). Specifically, s0 = x and 8 t > 0, st = (x, a<t).
The full generated text-sequence of length T is denoted as a = (a0, . . . , aT�1). In most LM tasks,
we have a task-specific evaluation metric R(sT , y) 2 R that depends on the final context sT of the
generated sequence and the target sequence y, with sT = (x,a). The objective of LM training is
often to maximize the expected task-specific evaluation, which can be expressed as

max✓ E(x,y)⇠DEa⇠
QT�1

t=0 ⇡✓(at | st) [R(sT = (x,a), y)] .

We model the learned token-level guidance as a bounded (reward) function r�(st, at) 2 [0, 1],
parametrized by �. Unlike the original sequence-level preference or evaluation that is only available
at the final step T , the trained r� can densely guide the token selection at each step t  T .

Pairwise Preference Learning. In reward-learning-from-preferences [e.g., 33–35], a dense reward
function is learned such that the sum-aggregated reward for the entire generation trajectory aligns
with the pairwise preference between two trajectories. In the context of LM generation, suppose we
have two text-generation trajectories ⌧ i and ⌧ j associated with the same LM input and target (x, y),
taking the form ⌧ i = {(si0, a

i
0), . . . , (s

i
T i�1, a

i
T i�1)} with sequence lengths T i and T j , respectively.

Assume that ⌧ i is preferred over ⌧ j , denoted as ⌧ i � ⌧ j . A token-level reward function r�(st, at) is
learned by requiring

PT i�1
t=0 r�(sit, a

i
t) >

PT j�1
t=0 r�(sjt , a

j
t). Following the Bradley-Terry model of

preferences [36], the pairwise-preference loss for reward-function learning is

`(�) = � log
h
exp

⇣PT i�1
t=0 r�(sit, a

i
t)
⌘.P

k2{i,j} exp
⇣PTk�1

t=0 r�(skt , a
k
t)
⌘i

, (1)

which is often interpreted as binary classification in the literature [37–39]. In Eq. (1), summation
P

(·)
is used to aggregate the learned token-level rewards into a parametrized sequence-level evaluation.

1We use the words “guidance” and “reward”, “fine-tuning” and “training” interchangeably, depending on the
specific context.

2

LM !!

Reward "" ##!$%& , %#!$%&Reward ""(#'&, %'&)%'& :	Riding

%#!$%& :	city Reward	Model ""

…

AVG

…
Seq	Eval

(")% , ⋯ , (")&

Preference
)% ≻ ⋯ ≻)&

Loss ℒ -

Guidance ""

)% :	The	place	is	great

…

)& :	Riding	in	a	city

…

Guidance	UtilizationToken-level	Guidance	Learning

Figure 1: Overview of the proposed framework. “AVG” denotes average, which is an example of the aggregation
function f(·) discussed in Section 2.1. “Seq Eval” refers to the parametrized sequence-level evaluations. The
model choice of the reward function and LM depends on the specific task and is discussed in Section 4.

Overview. To ground the sequence-level preference into token-level guidance for LM training and
thereby address the granularity mismatch discussed in Section 1, we present an alternate learning
process that alternately learns the token-level guidance and trains the LM using the learned guidance.

For learning the preference-grounded guidance, in Section 2.1 we propose a framework that learns
a token-level reward function that reflects the preference among multiple generated sequences. To
utilize the learned preference-grounded guidance, based on the amount of supervised data in the
specific task, in Section 2.2 we present two minimalist LM training approaches that require only
minimal tuning. In our framework, we iterate between the above two steps to mitigate the distribution
shift between the text sequences used to train the reward function and the text sequences evaluated by
the reward function during LM training, taking into account that LMs can evolve during the training
process. Our alternate-learning procedure is illustrated in Fig. 1.

2.1 Token-level Guidance Learning for Preference Grounding

Instead of applying the pairwise approach discussed above, we utilize the preference among multiple
generated text sequences to learn the reward function r�(st, at). Intuitively, we use more information
to train the reward function at each optimization step. Therefore, our approach can be more efficient
and effective, especially when the optimization budget is limited.

Concretely, suppose we have K � 2 generated text-sequences (a1, . . . ,aK) for the same LM
input and target (x, y), with the associated generation trajectories (⌧1, . . . , ⌧K) and with possibly
unequal sequence-lengths (T 1, . . . , TK). Assume that there is a preference ordering among these K
sequences, where by “preference” we mean a ranking of text sequences based on some evaluations of
full text-sequences. For description simplicity, let the preference ordering be a1

� · · · � aK
()

⌧1 � · · · � ⌧K . We make no assumption about the source of preference. It may come from human
ranking or some task-specific evaluation metric R on the full text-sequences, e.g., the descending
ordering of the text-sequence evaluations R(s1T 1 , y) > · · · > R(sKTK , y).

For a trajectory ⌧k = {(sk0 , a
k
0), . . . , (s

k
Tk�1, a

k
Tk�1)}, our desired token-level reward function r�

generates a reward for each step as {r�(skt , a
k
t)}

Tk�1
t=0 . A sequence-level evaluation e�(⌧k) for

trajectory ⌧k can be obtained by e�(⌧k) = f({r�(skt , a
k
t)}

Tk�1
t=0), where f(·) is the aggregation

function over all per-step rewards, e.g., the classical summation
P

(·). Our goal is to train r� such that
these parametrized sequence-level evaluations {e�(⌧k)}Kk=1 align with the given preference ordering
⌧1 � · · · � ⌧K . Through this, the sequence-level preference is grounded into token-level rewards r�.

Under the Plackett–Luce choice model [40, 41], the parametrized sequence evaluations {e�(⌧k)}Kk=1
induce a probability distribution over all possible permutations of the integers {1, . . . ,K}. We want
to maximize the likelihood of the given preference ordering ord = (1, . . . ,K), i.e.,

min
�

L(�) =: � logP
�
ord | {e�(⌧k)}Kk=1

�
, P

�
ord | {e�(⌧k)}Kk=1

�
=

KY

k=1

(
exp(e�(⌧k))

� KX

i=k

exp(e�(⌧ i))

)
. (2)

3

Algorithm 1 A learning routine for the preference-grounded token-level reward function r�.

Input: The LM ⇡✓, initialized reward r�, aggregation function f(·), reward-training steps Mrew.
for iter 2 {1, . . . ,Mrew} do

Use ⇡✓ to generate K sequences {ak
}
K
k=1; and get the preference ordering among {ak

}
K
k=1.

With f(·), get sequence evaluations {e�(⌧k)}Kk=1 from r�; and optimize r� by Eq. (2).
end for

When K = 2 and f(·) denotes summation, Eq. (2) reduces to the classical pairwise-preference loss
in Eq. (1). Therefore, our reward-learning loss can be viewed as an extension of the classical pairwise
loss. Further, Eq. (2) extends the ListMLE loss [42] in recommender systems into preference learning
under multiple variable-length trajectories.

Algo. 1 summarizes our reward-learning framework by describing an online-learning routine for
training r�. An offline or hybrid version can be obtained with minor changes.

The Choice of Aggregation Function f(·). In classical IL tasks such as robotics [43], the robots
are trained to stand or walk as long as possible. In this scenario, summation is a natural choice for
the aggregation function f(·). However, in many text generation tasks, such as summarization, the
generation quality may not be directly associated with the length of the generated text sequence. Nev-
ertheless, suppose the token-level rewards are positive (i.e., r� > 0), a longer sequence naturally has
a higher sum of per-step rewards than a shorter one, which can bias r� towards automatically ranking
longer sequences higher. This bias can hinder our reward-learning goal of aligning {e�(⌧k)}Kk=1 with
the given preference ordering. A naïve numeric example is additionally provided in Appendix C.

To mitigate the potential length bias in the classical summation, we discuss three alternative choices
of the aggregation function f(·): average, soft maximum, and soft minimum.

Average. We define the average-aggregated sequence-level evaluation eavg� (⌧k) for trajectory ⌧k as

eavg� (⌧k) = C
Tk

PTk�1
t=0 r�(skt , a

k
t), C = 1

K

PK
k=1 T

k, (3)

where C is the average length of the K sequences. Multiplied by the average length C has the benefit
of scaling eavg� to the scale of esum� , which ensures numerical-scale consistency with esum� and thus
reduces hyperparameter tuning when switching from summation to average aggregation.

Soft Maximum. We define the soft-maximum-aggregated sequence-level evaluation emax
� (⌧k) as

emax
� (⌧k) = C ⇥ � · log

hPTk�1
t=0 exp(r�(skt , a

k
t)/�)

i
, (4)

where C is the average trajectory-length in Eq. (3) and � is the temperature parameter.

Soft Minimum. The soft-minimum-aggregated sequence-level evaluation emin
� (⌧k) follows Eq. (4)

except for changing � to ��.

2.2 LM Training with Preference-grounded Token-level Guidance

Considering the supervised-data availability, we present two minimalist LM training objectives that
utilize the learned preference-grounded guidance: 1) a REINFORCE-style update when there is no
supervised data; 2) reward-weighted MLE when there are sufficient data. Our LM training directly
starts from raw pre-trained checkpoints, without task-specific supervised pre-training. This choice
is to keep the algorithm general and consistent in both situations we consider, since task-specific
pre-training may not be feasible in the setting of few/zero-shot learning.

As shown in Algo. 1, we train the reward function r� by the sequences sampled from LM ⇡✓. Since
task-specific pre-training to ⇡✓ is not assumed, over the course of training, ⇡✓ itself can evolve from a
less-preferred distribution to a highly-preferred one. To mitigate the impact of this distribution shift
and keep r� as accurate guidance for LM training, we periodically re-estimate r� during the first half
of the LM-training process2, motivated by recent works in model-based RL [44–47].

2In our preliminary study, we observed that this choice (“retraining the reward model only during the first half
of the LM-training process”) can save about 25-30% compute without hurting the performance much, compared
to the vanilla reward retraining (“retraining the reward model throughout the entire LM-training process”).

4

Algorithm 2 An alternate-learning process for the reward function r� and the LM ⇡✓.

Input: The dataset D, initialized LM ⇡✓, initialized reward function r�, LM-training steps MLM,
reward-retrain period Mre, all inputs for training the reward function specified in Algo. 1.
Initialize r� by Algo. 1.
for iter 2 {1, . . . ,MLM} do

if iter  MLM/2 and iter % Mre == 0 then
Re-train r� by Algo. 1 without re-initialization.

end if
Optimize ⇡✓ by Eq. (5) or Eq. (6) with D and r�.

end for

Without Supervised Data. When the LM ⇡✓ needs to discover good text generations by itself, the
learned token-level reward r� can be used to provide dense guidance on generating each token, i.e.,
given the generation context st, select the next token at such that r�(st, at) is high. Intuitively, for a
generation trajectory ⌧ , if 8 (st, at) 2 ⌧, r�(st, at) is high, then the corresponding sequence-level
evaluation e�(⌧) = f({r�(st, at)}

T�1
t=0) can be also high, e.g., the average or summation of token-

level rewards. The associated text sequence a will thus be preferable since r� is trained to reflect the
sequence-level preference (Section 2.1). Through r�, the sequence-level preference is grounded into
dense token-level guidance for LM training, without granularity mismatch or feedback delay.

With the learned r�, a minimalist implementation of this LM-training idea is the discrete-variable
optimization problem

max✓ Et⇠Uniform{0,...,T�1}Eat⇠⇡✓(· | st)[r�(st, at)] ,

for each timestep t of which we calculate its gradient by the classical REINFORCE method [48–
50] since it can cope with a large vocabulary size. Here, T denotes a generic sequence length.
Additionally, since we want multiple text generations in typical LM tasks, instead of only one, we
relax the convergence of the REINFORCE method by adding a standard max-entropy gradient, which
can help capture multiple good behavior-modes [51–53]. Thus, the LM ⇡✓ is trained by the gradient

Et⇠Uniform{0,...,T�1}
�
Eat⇠⇡✓(· | st)[r�(st, at) · r✓ log ⇡✓(at | st)] + ↵ · r✓H(⇡✓(· | st))

, (5)

where H(⇡✓(· | st)) is the Shannon entropy of ⇡✓(· | st) and ↵ is a balancing coefficient.

With Supervised Data. With a labelled dataset D = {(xi, yi)}Ni=1 and with the learned preference-
grounded guidance r�, a minimalist enhancement of the classical MLE LM-training is the token-level
weighted-MLE, where the per-token weight is given by the learned reward-function r�. Our intention
is to emphasize the important tokens in the given sequence y and downweight the unimportant ones,
where the token importance given by r� grounds the sequence-level preference. Intuitively, this
weighting scheme can better utilize the LM capacity and the optimization budget, and may thus
improve upon the vanilla supervised loss [54, 16]. Specifically, the LM ⇡✓ is trained by

min✓ �E(x,y)⇠D

hP|y|�1
t=0 wt · log ⇡✓(yt | st)

i
,with st = (x, y<t) and wt = r�(st,yt)P|y|�1

t0=0
r�(st0 ,yt0)

, (6)

where |y| is the length of the target sequence y and wt is the self-normalized token-level reward. The
standard self-normalization is used to reduce the gradient variance among the samples in D.

Algo. 2 sums up the entire alternate-learning process, with the reward-learning routine in Algo. 1.

3 Related Work

Guiding Signals for LM Training. One string of works in LM training directly optimizes the
LMs against the native sequence-level feedback such as the test-time metric [e.g., 3, 55–59, 32]. This
choice, however, may directly suffer from the delayed-feedback issue discussed in Section 1 and the
subsequent high gradient variance and low sample efficiency [31, 32]. In the recent trend of RL-based
LM training, it has been common to incorporate a token-level KL penalty towards the uniform
distribution [31, 60], the initial LM [23, 61], the supervised-fine-tuned model [12, 62–64, 14], or
the base momentum model [65], to add to the delayed/ungrounded feedback. Although that KL
penalty does impact the RL-based LM training at the token level, it is not tailored to the concrete
task or the desired sequence-level feedback. When combined with the delayed-feedback issue, it

5

could distract the LM training from improving the received feedback/evaluation, especially at the
beginning of the text-sequence generation, which can however affect all subsequent token selections.
By contrast, as seen in Eq. (5), even when added a max-entropy gradient, our preference-grounded
token-level guidance can still provide dense, task-specific, and feedback-oriented guidance on the
selection of each token. For a more detailed discussion on the RL formulation of LM generation, the
delayed-feedback issue in RL-based LM training, and delayed feedback with KL penalty, please refer
to Appendix F.

In some relatively “ideal” settings, prior works have attempted to learn task-specific token-level
guidance for LM training. For instance, Shi et al. [66] use inverse RL, Guo et al. [67] propose
a hierarchical approach, and Yang et al. [68] learn LM discriminators; but these methods require
abundant expert data for supervised (pre-)training, making them infeasible for the few/zero-shot
settings we consider. Under the same requirement of sufficient expert data, Lin et al. [69] learn a
sequence-level adversarial-ranking reward and Yu et al. [70] train a GAN structure. They both use
Monte-Carlo rollouts to simulate intermediate rewards, which can be computationally expensive and
have high variance. Le et al. [71] use some values related to the sequence evaluation without explicitly
learning per-token rewards. Pang et al. [72] learn a token-level error predictor for machine translation,
but they rely on expert error-span annotations for each translation, which is highly demanding.

By contrast, we propose a versatile framework for learning task-specific token-level guidance for LM
training that can ground the sequence-level preference. Our approach is not limited to standard LM
tasks and is also suitable for the low-data regime, with few assumptions about expert-data availability
or preference source. In our experiments, we compare our method to recent RL-based approaches
that train LM under delayed/ungrounded feedback with KL penalty. We discuss additional related
works on prompt generation, text summarization, and aligning LMs with preferences in Appendix E.

4 Experiments

We test our framework on two distinct representative text-sequence generation tasks: 1) input-agnostic
discrete text-prompt generation for few-shot text-classification (Section 4.1), 2) the classical text
summarization (Section 4.2). Our LM training directly starts from raw pre-trained checkpoints
from HuggingFace [73], without task-specific supervised pre-training. Depending on the LM ⇡✓

used in the specific task, our reward function r� can be implemented as either a decoder-only or an
encoder-decoder model. Similar to prior works [e.g., 32, 25], given a text sequence a and an LM
input x, the causal mask in transformers enables us to get the learned guidance r�(st, at) at each step
of the sequence in parallel. Source codes have been publicly released.

4.1 Input-agnostic Discrete-prompt Generation

Overview. In discrete text-prompt generation [e.g., 10, 74], we input a discrete text-prompt a and
an observation sequence o to a large pre-trained downstream LM ⇡DLM(· |a, o) to directly classify
text o, without finetuning ⇡DLM. We follow the classical setting [e.g., 75, 60] to perform classification
by selecting tokens corresponding to some predefined class labels. In our input-agnostic setting,
the generated prompt is independent of the observation o. During inference time, only the learned
prompts are used and the LM ⇡✓ is discarded. The initial input x to ⇡✓ is a dummy, and the target y
is the class label. We also adopt the standard few-shot setting [76], where both the training and
validation sets have 16 (o, y)-pairs per class. With a fixed length T , the goal is to find discrete
text-prompts a = (a0, . . . , aT�1) that have high test accuracy. We simulate the sequence-level
preference by the stepwise metric in Deng et al. [60], i.e., the higher value the better prompt. This
choice ensures a fair comparison and avoids a potential overfitting — training and testing the LM on
the same evaluation metric “accuracy”. Appendix D discusses more details about the prompt task.

LM Training, Implementation, and Datasets. Since the prompt-generation task does not as-
sume the availability of supervised data — the ground-truth prompts, the LM ⇡✓ is trained by the
REINFORCE-style update in Section 2.2 to discover highly-accurate prompts by itself. We implement
our framework on the codebase of RLPrompt [60], and adopt the standard datasets and most hyperpa-
rameter settings in it. Reward training is reconducted every 1000 steps during the first 6000 steps of
the LM training process and has early stopping. Reward function is learned with 5 sampled sequences
and the temperature in Eq. (4) is set as � = 2. The coefficient ↵ in Eq. (5) is ↵ = 2�3. Appendix A.2
discusses the choices of these hyperparameters. The length of the generated prompts is fixed at 5. We

6

https://github.com/Shentao-YANG/Preference_Grounded_Guidance

Table 1: Test accuracy on the prompt task. Best overall result is bold and best discrete-prompt result is underlined
if different. The reported results are mean (standard deviation). We denote “BB Tuning-50” for Black-Box
Tuning with mixed discrete and soft prompts that tunes the 50 soft tokens; and “AVG”, “SUM”, “MIN”, “MAX”
for our method with aggregation function average, summation, soft minimum, and soft maximum (Section 2.1).

SST-2 Yelp P. AG News

Finetuning Few-shot Finetuning 80.6 (3.9) 88.7 (4.7) 84.9 (3.6)

Continuous
Prompt

Soft Prompt Tuning [83] 73.8 (10.9) 88.6 (2.1) 82.6 (0.9)
BB Tuning-50 [78] 89.1 (0.9) 93.2 (0.5) 83.5 (0.9)
AutoPrompt [84] 75.0 (7.6) 79.8 (8.3) 65.7 (1.9)

Discrete
Prompt

Manual Prompt [85] 82.8 83.0 76.9
In-Context Demo [10] 85.9 (0.7) 89.6 (0.4) 74.9 (0.8)
Instructions [86] 89.0 84.4 54.8
GrIPS [87] 87.1 (1.5) 88.2 (0.1) 65.4 (9.8)
RLPrompt [60] 90.5 (1.5) 94.2 (0.7) 79.7 (2.1)

Ours (AVG / SUM) 92.6 (1.7) 94.7 (0.6) 82.8 (1.5)
Ours (MIN) 91.9 (1.8) 94.4 (0.8) 82.4 (1.1)
Ours (MAX) 91.2 (2.5) 94.8 (0.5) 83.3 (1.4)

test on three popular few-shot datasets in prior work [e.g., 77, 78]: two sentiment binary-classification
datasets SST-2 [79, 80] and Yelp Polarity [81], and a topic four-way-classification dataset AG News
[81, 82]. Additional details on the experiment and datasets are provided in Appendix B.1.

Results. We compare three variants of our framework with finetuning and with baselines in discrete-
and continuous-prompt generation. Since the generated prompts all have length 5, in this task, the
average aggregation is equivalent to summation. Table 1 shows the test accuracy, where we rerun
the codebase of RLPrompt [60] under the same random seeds and evaluation script as our method.3
Other baseline results are from the literature [60, 88].

On all three tested datasets, our method shows competitive and stable results against the strong
baselines not only in discrete-prompt generation, but also in heavier continuous-prompt tuning and
finetuning the large downstream LM. Based on Section 3, the performance improvement achieved
by our method compared to RLPrompt suggests that utilizing the token-level guidance learned by
our approach, which grounds the task-specific preference, can be more effective than learning under
delayed/ungrounded feedback with KL penalty. Further, on both Yelp P. and AG News, using MAX
aggregation is better than the classical summation. Table 3 in Appendix A shows examples of good
generated prompts and their test accuracy. For instance, high-quality prompts on the AG News dataset
often contain a topic classification keyword, such as “Tags” and “Category”. This aligns with our
intuition that good prompts may be identified by a (few) “key” token(s), as discussed in Sections 1
and 2.1. Thus, the (soft-)maximum aggregation may better reflect prompt quality than summation.

4.2 Text Summarization

Overview. In the summarization task, we follow the standard setting [e.g., 89, 61], where a set of
supervised samples is available. The LM input x is the text to be summarized and the target y is the
given summary. We simulate the sequence-level preference by the classical Meteor score [90] and
report the standard ROUGE scores [91], to avoid overfitting evaluation metrics as in the prompt task.

LM Training, Implementation, and Datasets. Since a supervised dataset D is available in this
task, the LM ⇡✓ can be trained by the weighted-MLE objective in Section 2.2. This objective could be
more stable and computationally efficient than REINFORCE-style methods in tasks of long-sequence
generation. Due to limited computing resources, unless explicitly mentioned, we use the standard
T5-small model [89] for both the LM and reward function. The reward training is simply 1 epoch of
training on randomly sampled 10% of the training set and is repeated every 0.5 epochs during the
first 2 epochs of LM training. Reward function is learned with 3 sampled sequences and again the
temperature � = 2 in Eq. (4). Additional experiment details are in Appendix B.2. We test on the
standard setting of two news summary datasets: CNN/DailyMail (CNN/DM) [92] and XSum [93].

Results. We compare four variants in our framework with the standard supervised fine-tuning and
RL-based methods PPO and NLPO in RL4LMs [61] under the environmental reward Meteor — both

3There are small discrepancies between our reported RLPrompt results and the original paper’s. We have
confirmed our reproduced results both with RLPrompt’s authors and with the recent TEMPERA paper [88].

7

Table 2: Results on text summarization. We bold the best result of each metric on each dataset. The results of
Lead-3 on CNN/DM are from Ramamurthy et al. [61] and on XSum are from Lewis et al. [7]. Other baseline
results are from our reruning RL4LMs’ codebase [61] using T5-small. Number reporting formats follow Table 1.

CNN/DailyMail XSum
ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L

Lead-3 40.10 17.50 36.30 16.30 1.60 11.95
Supervised 38.88 (0.02) 16.22 (0.05) 32.58 (0.04) 31.79 (0.02) 9.68 (0.01) 24.70 (0.03)
PPO 39.16 (0.51) 17.37 (0.33) 33.77 (0.37) 23.18 (0.31) 4.46 (0.19) 16.07 (0.32)
Supervised + PPO 39.17 (0.65) 17.29 (0.44) 33.76 (0.53) 28.24 (0.39) 7.68 (0.13) 20.02 (0.23)
NLPO 38.90 (0.35) 17.22 (0.35) 33.51 (0.42) 22.97 (0.23) 4.53 (0.13) 15.62 (0.35)
Supervised + NLPO 39.27 (0.60) 17.41 (0.36) 33.85 (0.42) 28.08 (0.16) 7.68 (0.20) 19.88 (0.16)

Ours (AVG) 40.94 (0.02) 18.78 (0.03) 38.17 (0.03) 33.62 (0.03) 11.17 (0.02) 26.33 (0.05)
Ours (SUM) 40.70 (0.06) 18.48 (0.05) 37.93 (0.08) 33.27 (0.09) 10.83 (0.07) 25.90 (0.06)
Ours (MIN) 40.78 (0.06) 18.67 (0.03) 38.01 (0.04) 33.57 (0.02) 11.14 (0.02) 26.30 (0.03)
Ours (MAX) 39.98 (0.08) 18.06 (0.03) 37.26 (0.06) 32.50 (0.14) 10.46 (0.12) 25.58 (0.12)

with and without task-specific supervised pre-training. For a fair comparison, the baseline results are
from our rerunning RL4LMs’ codebase with a T5-small model as our method.4 Table 2 shows the
mean and standard deviation of ROUGE-1/2/L score across three random seeds.

On both datasets, our method shows favorable and stable performance against the classical and recent
baselines. The better results of our method over supervised fine-tuning confirm the improvement of
our reward-weighted MLE over the vanilla supervised loss, as discussed in Section 2.2. As in the
prompt task, the gain of our method over RL-based baselines may indicate the benefit of utilizing our
preference-grounded token-level guidance over learning under delayed feedback with KL penalty.
In this task, using average as the aggregation function outperforms the classical summation. This
confirms our idea in Section 2.1 on avoiding the interference of unequal sequence-lengths in training
r�. Using MIN is also suitable for this task, since it is not confounded by individual lengths and
reflects overall text quality. Unlike the prompt task, using MAX is unsuitable, since good summaries
can hardly be identified by a few keywords. Overall, these results show the importance of customizing
the aggregation choice for the specific LM task, a key feature of our guidance-learning framework.

Further, to verify the performance of our method under a larger LM, we change the average variant
of our method in Table 2 from T5-small to using T5-base LM. Fig. 2 (a) – (e) compares our method
on CNN/DM against the baselines, with an additional metric BertScore [94]. The baseline results
are directly cited from RL4LMs [61] and are the per-metric best across their three environmental
rewards.5 Table 4 in Appendix A.1 shows the detailed numbers. It is clear that our method performs
favorably against these strong baseline methods, especially in the ROUGE-L, BERTScore, Meteor,
and ROUGE-2 metrics. To further varify our method, we conducted a human study under the T5-base
LM. The results are in Fig. 2 (f), with detailed setup and numerics in Table 5 of Appendix A.1. It is
clear that this human evaluation on the summarization task supports the improvements in ROUGE,
Meteor, and BertScore by our method. Further scaling-up of our method is left as future work.

4.3 Ablation Study

This section discusses the following three research questions to better understand our framework.

(a): What will be the performance if we switch to using preference-based sequence-level guidance?

To further study the gain of grounding preference into token-level guidance, we change the preference-
based token-level reward in our method to the corresponding sequence-level reward. Fig. 3 shows
the results when applying this change to our best variants in the prompt and summarization tasks in
Sections 4.1 and 4.2, including the T5-base LM in Section 4.2, in comparison to the best corresponding
baselines. For summarization, we plot the average ROUGE scores, i.e., (ROUGE-1 + ROUGE-2 +
ROUGE-L) / 3. Table 6 in Appendix A.1 shows each ROUGE metric with standard deviation.

We see that learning and using preference-based sequence-level guidance does not provide a significant
advantage over those baselines that mostly directly work with the task-specific native sequence-level
feedback — the results are even much worse than the baselines in some datasets. Besides, the results
of our sequence-level variants are generally less stable. These echo the harm of the delayed-feedback
issue discussed in Section 1. Overall, this set of comparisons confirms that the gain of our framework

4We carefully tuned the RL4LMs’ baselines on several hyperparameters, which is detailed in Appendix B.2.
5The “ROUGE-L” here refers to “Rouge-LSum” in RL4LMs and HuggingFace, as detailed in Appendix B.2.

8

Sup PPO Sup+
PPO

NLPO Sup+
NLPO

Ours
40

41

42

43

41.1 41.0

42.6

40.5

42.9 43.1

(a) ROUGE-1

Sup PPO Sup+
PPO

NLPO Sup+
NLPO

Ours
17

18

19

20

17.7

18.2

19.4

18.0

19.4

20.2

(b) ROUGE-2

Sup PPO Sup+
PPO

NLPO Sup+
NLPO

Ours

34

36

38

40

34.3
34.9

36.3

34.4

36.3

40.0

(c) ROUGE-L

Sup PPO Sup+
PPO

NLPO Sup+
NLPO

Ours
28

32

36

30.9
30.1

31.6

29.2

31.9

35.2

(d) Meteor

Sup PPO Sup+
PPO

NLPO Sup+
NLPO

Ours
87

88

89

90

87.6 87.6

88.2

87.5

88.2

89.6

(e) BertScore

Ref Sup Sup+
PPO

Sup+
NLPO

Ours
2.5

3.0

3.5

4.0
3.88

2.92

3.17
3.29

3.61

(f) Human
Figure 2: CNN/DM summarization of our method and baselines under T5-base LM. “Sup” denotes “Supervised”.
“Ref” denotes the ground-truth reference summary. Except for the human study in (f), baseline results are directly
cited from RL4LMs [61] and are the per-metric best across their three environmental rewards.

Best Baseline Ours under Sequence-level Guidance Ours under Token-level Guidance

84 89 94
SST-2

89 92 95
Yelp P.

77 81 85
AG News

31 32 33
CNN

22 23 24
XSum

32 33 34 35
CNN: T5-base

Figure 3: Performance of our method using sequence-level and token-level preference-based guidance. “Best
Baseline” refers to the best result in the baseline discrete-prompt methods for the prompt task, and the best result
over all baseline methods for the summarization task. Error bars show one standard deviation.

mainly comes from our preference-grounding perspective, i.e., learning and using a preference-based
token-level guidance, rather than simply learning and using “a preference-based guidance.”

(b): How does our method perform if we remove the reward-function retraining scheme?

To study the effect of guidance re-estimation, we remove the reward-function retraining scheme from
our best variants in the prompt and summarization tasks in Sections 4.1 and 4.2, including the T5-base
LM in Section 4.2. Fig. 4 compares our methods with the best corresponding baselines. For the
summarization task, we again plot the average ROUGE scores. Table 7 in Appendix A.1 shows each
ROUGE metric with standard deviation. Appendix G discusses more on this re-estimation scheme.

Without guidance re-estimation, our method still performs competitively against the strong baselines,
which corroborates the benefit of our preference-grounded guidance. Fig. 4 also verifies our intuition
in Section 2 that the gain of this scheme depends on the zero-shot ability of the initial LMs. Specifi-
cally, in the prompt task where the initial LM has little zero-shot ability, reward-function retraining is
helpful to both improve performance and reduce variance. In the summarization task where the initial
LM does have some zero-shot ability (as shown in Ramamurthy et al. [61]), guidance re-estimation
indeed helps results not as much, since the distribution-shift issue in Section 2 is less significant in
this case. In this task, both our variants, with and without reward retraining, outperform the baselines.

(c): What if we learn the token-level guidance by a different number of text sequences?

To study how the number of sequences used to learn the reward function impacts our method’s
performance, we vary this number in the AVG variant in Tables 1 and 2. Fig. 5 shows the prompt
results on SST-2 and summarization results on CNN/DM and XSum. For the latter, we again plot the
average ROUGE scores. The scores of each ROUGE metric are in Tables 8 and 9 of Appendix A.1.

Recall that the best baseline result on SST-2 in Table 1 is 90.5, on CNN/DM and XSum in Table 2
is respectively 31.3 and 22.06. Thus, our method is generally robust to the number of sequences

9

Best Baseline Ours without Reward-function Retraining Ours with Reward-function Retraining

SST-2
87

91

95

AG News
77

81

85

CNN

31

32

33

XSum
21

22

23

24

CNN: T5-base
32

33

34

Figure 4: Performance of our method with and without the reward-function retraining scheme. “Best Baseline”
refers to the same as in Fig. 3. Error bars show one standard deviation.

2 3 5 7 9
91.00

92.00

93.00

(a) SST-2
2 3 5 7 9

32.50

32.55

32.60

32.65

(b) CNN/DM
2 3 5 7 9

23.65

23.70

23.75

(c) XSum
Figure 5: Varying the number of sequences to learn the token-level guidance, showing mean over random seeds.

used to learn the guidance. Compared with the classical pairwise-preference learning (Section 2),
our framework has the flexibility in using multiple sequences. As illustrated in Fig. 5, using three or
more sequences to learn the reward function can be generally more beneficial than using only two.

Due to the page limit, we defer additional ablation study to Appendix A.2, where we (1) show that our
framework is generally robust to the hyperparameter � in Eq. (4) and ↵ in Eq. (5); (2) further validate
the harm of the delayed-feedback issue to the relevant LM-training methods on longer text-sequence
generation; (3) show that the efficacy of our framework is not tied to the specific preference sources
considered in this section.

5 Conclusion

To address the granularity mismatch between the sequence-level preference and the token-level LM
training losses, in this paper, we develop an alternate-learning process, where we iterate between
grounding sequence-level preference into token-level training guidance, and training the LM with
the learned guidance. Our method performs competitively on two distinct representative LM tasks.
Future work includes combining our preference-grounded guidance with RL-based LM training, and
applying our method to human preference and/or other tasks such as (task-oriented) dialog systems.

Acknowledgments and Disclosure of Funding

S. Yang, S. Zhang, and M. Zhou acknowledge the support of NSF-IIS 2212418, NIH-R37 CA271186,
the Texas Advanced Computing Center (TACC), and the NSF AI Institute for Foundations of
Machine Learning (IFML). S. Yang acknowledges the support of the University Graduate Continuing
Fellowship from UT Austin.

References
[1] Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A neural probabilistic language model.

Advances in neural information processing systems, 13, 2000.

[2] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[3] Steven J Rennie, Etienne Marcheret, Youssef Mroueh, Jerret Ross, and Vaibhava Goel. Self-
critical sequence training for image captioning. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 7008–7024, 2017.

[4] Alec Radford and Ilya Sutskever. Improving Language Understanding by Generative Pre-
Training. In arxiv, 2018.

10

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[6] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[7] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed,
Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and comprehension. arXiv preprint
arXiv:1910.13461, 2019.

[8] Xinjie Fan, Shujian Zhang, Bo Chen, and Mingyuan Zhou. Bayesian attention modules.
Advances in Neural Information Processing Systems, 33:16362–16376, 2020.

[9] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert
pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

[10] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language
models are few-shot learners. Advances in neural information processing systems, 33:1877–
1901, 2020.

[11] Shujian Zhang, Xinjie Fan, Bo Chen, and Mingyuan Zhou. Bayesian attention belief networks.
In International Conference on Machine Learning, pages 12413–12426. PMLR, 2021.

[12] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F Christiano. Learning to summarize from human feedback.
Advances in Neural Information Processing Systems, 33:3008–3021, 2020.

[13] Jeff Wu, Long Ouyang, Daniel M Ziegler, Nisan Stiennon, Ryan Lowe, Jan Leike, and
Paul Christiano. Recursively summarizing books with human feedback. arXiv preprint
arXiv:2109.10862, 2021.

[14] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models
to follow instructions with human feedback. arXiv preprint arXiv:2203.02155, 2022.

[15] OpenAI. Gpt-4 technical report, 2023.

[16] Govardana Sachithanandam Ramachandran, Kazuma Hashimoto, and Caiming Xiong. Causal-
aware safe policy improvement for task-oriented dialogue. arXiv preprint arXiv:2103.06370,
2021.

[17] Yihao Feng*, Shentao Yang*, Shujian Zhang, Jianguo Zhang, Caiming Xiong, Mingyuan
Zhou, and Huan Wang. Fantastic rewards and how to tame them: A case study on reward
learning for task-oriented dialogue systems. In The Eleventh International Conference on
Learning Representations, 2023.

[18] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy
Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional
ai: Harmlessness from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

[19] Jing Xu, Da Ju, Margaret Li, Y-Lan Boureau, Jason Weston, and Emily Dinan. Recipes for
safety in open-domain chatbots. arXiv preprint arXiv:2010.07079, 2020.

[20] Braden Hancock, Antoine Bordes, Pierre-Emmanuel Mazare, and Jason Weston. Learning
from dialogue after deployment: Feed yourself, chatbot! arXiv preprint arXiv:1901.05415,
2019.

[21] Irene Solaiman and Christy Dennison. Process for adapting language models to society
(PALMS) with values-targeted datasets. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=k-ghaB9VZBw.

11

https://openreview.net/forum?id=k-ghaB9VZBw

[22] Jérémy Scheurer, Jon Ander Campos, Jun Shern Chan, Angelica Chen, Kyunghyun Cho, and
Ethan Perez. Training language models with language feedback, 2022.

[23] Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei,
Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences.
arXiv preprint arXiv:1909.08593, 2019.

[24] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

[25] Jacob Menick, Maja Trebacz, Vladimir Mikulik, John Aslanides, Francis Song, Martin Chad-
wick, Mia Glaese, Susannah Young, Lucy Campbell-Gillingham, Geoffrey Irving, et al. Teach-
ing language models to support answers with verified quotes. arXiv preprint arXiv:2203.11147,
2022.

[26] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welin-
der, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight
experience replay. Advances in neural information processing systems, 30, 2017.

[27] Hao Liu, Alexander Trott, Richard Socher, and Caiming Xiong. Competitive experience replay.
In International Conference on Learning Representations, 2019.

[28] Ishan Durugkar, Mauricio Tec, Scott Niekum, and Peter Stone. Adversarial intrinsic motivation
for reinforcement learning. Advances in Neural Information Processing Systems, 34:8622–
8636, 2021.

[29] Ryuichi Takanobu, Hanlin Zhu, and Minlie Huang. Guided dialog policy learning: Reward
estimation for multi-domain task-oriented dialog. arXiv preprint arXiv:1908.10719, 2019.

[30] Huimin Wang, Baolin Peng, and Kam-Fai Wong. Learning efficient dialogue policy from
demonstrations through shaping. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 6355–6365, 2020.

[31] Han Guo, Bowen Tan, Zhengzhong Liu, Eric Xing, and Zhiting Hu. Efficient (soft) q-learning
for text generation with limited good data. Findings of the Association for Computational
Linguistics: EMNLP 2022, pages 6969–6991, 2022.

[32] Charlie Snell, Ilya Kostrikov, Yi Su, Mengjiao Yang, and Sergey Levine. Offline rl for natural
language generation with implicit language q learning. arXiv preprint arXiv:2206.11871,
2022.

[33] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

[34] Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond
suboptimal demonstrations via inverse reinforcement learning from observations. In Interna-
tional conference on machine learning, pages 783–792. PMLR, 2019.

[35] Daniel S Brown, Wonjoon Goo, and Scott Niekum. Better-than-demonstrator imitation learning
via automatically-ranked demonstrations. In Conference on robot learning, pages 330–359.
PMLR, 2020.

[36] Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the
method of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

[37] Ralf Herbrich, Thore Graepel, and Klaus Obermayer. Support vector learning for ordinal
regression. IET, 1999.

[38] Yoav Freund, Raj Iyer, Robert E Schapire, and Yoram Singer. An efficient boosting algorithm
for combining preferences. Journal of machine learning research, 4(Nov):933–969, 2003.

12

[39] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and Greg
Hullender. Learning to rank using gradient descent. In Proceedings of the 22nd international
conference on Machine learning, pages 89–96, 2005.

[40] Robin L Plackett. The analysis of permutations. Journal of the Royal Statistical Society:
Series C (Applied Statistics), 24(2):193–202, 1975.

[41] R Duncan Luce. Individual choice behavior: A theoretical analysis. Courier Corporation,
2012.

[42] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. Listwise approach to learning
to rank: theory and algorithm. In Proceedings of the 25th international conference on Machine
learning, pages 1192–1199, 2008.

[43] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5026–5033. IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

[44] Benjamin Eysenbach, Alexander Khazatsky, Sergey Levine, and Ruslan Salakhutdinov.
Mismatched No More: Joint Model-Policy Optimization for Model-Based RL. ArXiv,
abs/2110.02758, 2021.

[45] Toru Hishinuma and Kei Senda. Weighted model estimation for offline model-based reinforce-
ment learning. In Advances in neural information processing systems, 2021.

[46] Shentao Yang, Yihao Feng, Shujian Zhang, and Mingyuan Zhou. Regularizing a model-based
policy stationary distribution to stabilize offline reinforcement learning. In International
Conference on Machine Learning, pages 24980–25006. PMLR, 2022.

[47] Shentao Yang, Shujian Zhang, Yihao Feng, and Mingyuan Zhou. A unified framework for
alternating offline model training and policy learning. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems,
2022.

[48] Peter W Glynn. Likelihood ratio gradient estimation for stochastic systems. Communications
of the ACM, 33(10):75–84, 1990.

[49] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine learning, 8(3):229–256, 1992.

[50] Michael C Fu. Gradient estimation. Handbooks in operations research and management
science, 13:575–616, 2006.

[51] Tuomas Haarnoja, Haoran Tang, P. Abbeel, and Sergey Levine. Reinforcement Learning with
Deep Energy-Based Policies. In International Conference on Machine Learning, 2017.

[52] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-
Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. In Jennifer
Dy and Andreas Krause, editors, Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pages 1861–1870. PMLR,
10–15 Jul 2018.

[53] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, G. Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, P. Abbeel, and Sergey Levine. Soft Actor-Critic Algo-
rithms and Applications. ArXiv, abs/1812.05905, 2018.

[54] Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg,
Scott E Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, and Nando
de Freitas. Critic Regularized Regression. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pages 7768–7778. Curran Associates, Inc., 2020.

13

[55] Seonggi Ryang and Takeshi Abekawa. Framework of automatic text summarization using
reinforcement learning. In Proceedings of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning, pages
256–265, Jeju Island, Korea, July 2012. Association for Computational Linguistics. URL
https://aclanthology.org/D12-1024.

[56] Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level
training with recurrent neural networks. arXiv preprint arXiv:1511.06732, 2015.

[57] Romain Paulus, Caiming Xiong, and Richard Socher. A deep reinforced model for abstractive
summarization. arXiv preprint arXiv:1705.04304, 2017.

[58] Raphael Shu, Kang Min Yoo, and Jung-Woo Ha. Reward optimization for neural machine
translation with learned metrics. arXiv preprint arXiv:2104.07541, 2021.

[59] Ximing Lu, Sean Welleck, Liwei Jiang, Jack Hessel, Lianhui Qin, Peter West, Prithviraj
Ammanabrolu, and Yejin Choi. Quark: Controllable text generation with reinforced unlearning.
arXiv preprint arXiv:2205.13636, 2022.

[60] Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu,
Meng Song, Eric P Xing, and Zhiting Hu. Rlprompt: Optimizing discrete text prompts with
reinforcement learning. arXiv preprint arXiv:2205.12548, 2022.

[61] Rajkumar Ramamurthy, Prithviraj Ammanabrolu, Kianté Brantley, Jack Hessel, Rafet Sifa,
Christian Bauckhage, Hannaneh Hajishirzi, and Yejin Choi. Is reinforcement learning (not) for
natural language processing?: Benchmarks, baselines, and building blocks for natural language
policy optimization. arXiv preprint arXiv:2210.01241, 2022.

[62] Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, À. Lapedriza,
Noah J. Jones, S. Gu, and Rosalind W. Picard. Way Off-Policy Batch Deep Reinforcement
Learning of Implicit Human Preferences in Dialog. ArXiv, abs/1907.00456, 2019.

[63] Natasha Jaques, Judy Hanwen Shen, Asma Ghandeharioun, Craig Ferguson, Agata Lapedriza,
Noah Jones, Shixiang Shane Gu, and Rosalind Picard. Human-centric dialog training via
offline reinforcement learning. arXiv preprint arXiv:2010.05848, 2020.

[64] Shujian Zhang, Chengyue Gong, and Xingchao Liu. Passage-mask: A learnable regularization
strategy for retriever-reader models. arXiv preprint arXiv:2211.00915, 2022.

[65] Louis Castricato, Alexander Havrilla, Shahbuland Matiana, Michael Pieler, Anbang Ye, Ian
Yang, Spencer Frazier, and Mark Riedl. Robust preference learning for storytelling via
contrastive reinforcement learning. arXiv preprint arXiv:2210.07792, 2022.

[66] Zhan Shi, Xinchi Chen, Xipeng Qiu, and Xuanjing Huang. Toward diverse text generation
with inverse reinforcement learning. arXiv preprint arXiv:1804.11258, 2018.

[67] Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong Yu, and Jun Wang. Long text generation
via adversarial training with leaked information. In Proceedings of the AAAI conference on
artificial intelligence, volume 32, 2018.

[68] Zichao Yang, Zhiting Hu, Chris Dyer, Eric P Xing, and Taylor Berg-Kirkpatrick. Unsupervised
text style transfer using language models as discriminators. Advances in Neural Information
Processing Systems, 31, 2018.

[69] Kevin Lin, Dianqi Li, Xiaodong He, Zhengyou Zhang, and Ming-Ting Sun. Adversarial
ranking for language generation. Advances in neural information processing systems, 30,
2017.

[70] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial
nets with policy gradient. In Proceedings of the AAAI conference on artificial intelligence,
volume 31, 2017.

[71] Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi.
Coderl: Mastering code generation through pretrained models and deep reinforcement learning.
Advances in Neural Information Processing Systems, 35:21314–21328, 2022.

14

https://aclanthology.org/D12-1024

[72] Yuanzhe Richard Pang, Vishakh Padmakumar, Thibault Sellam, Ankur P Parikh, and He He.
Reward gaming in conditional text generation. arXiv e-prints, pages arXiv–2211, 2022.

[73] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s trans-
formers: State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771,
2019.

[74] Shengnan An, Yifei Li, Zeqi Lin, Qian Liu, Bei Chen, Qiang Fu, Weizhu Chen, Nanning
Zheng, and Jian-Guang Lou. Input-tuning: Adapting unfamiliar inputs to frozen pretrained
models. arXiv preprint arXiv:2203.03131, 2022.

[75] Timo Schick and Hinrich Schütze. It’s not just size that matters: Small language models are
also few-shot learners. arXiv preprint arXiv:2009.07118, 2020.

[76] Ethan Perez, Douwe Kiela, and Kyunghyun Cho. True few-shot learning with language models.
Advances in Neural Information Processing Systems, 34:11054–11070, 2021.

[77] Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better
few-shot learners. arXiv preprint arXiv:2012.15723, 2020.

[78] Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. Black-box tuning
for language-model-as-a-service. arXiv preprint arXiv:2201.03514, 2022.

[79] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a
sentiment treebank. In Proceedings of the 2013 conference on empirical methods in natural
language processing, pages 1631–1642, 2013.

[80] Shujian Zhang, Xinjie Fan, Huangjie Zheng, Korawat Tanwisuth, and Mingyuan Zhou. Align-
ment attention by matching key and query distributions. Advances in Neural Information
Processing Systems, 34:13444–13457, 2021.

[81] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. Advances in neural information processing systems, 28, 2015.

[82] Shujian Zhang, Chengyue Gong, Xingchao Liu, Pengcheng He, Weizhu Chen, and Mingyuan
Zhou. Allsh: Active learning guided by local sensitivity and hardness. arXiv preprint
arXiv:2205.04980, 2022.

[83] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. arXiv preprint arXiv:2104.08691, 2021.

[84] Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh. Auto-
prompt: Eliciting knowledge from language models with automatically generated prompts.
arXiv preprint arXiv:2010.15980, 2020.

[85] Timo Schick and Hinrich Schütze. Exploiting cloze questions for few shot text classification
and natural language inference. arXiv preprint arXiv:2001.07676, 2020.

[86] Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task general-
ization via natural language crowdsourcing instructions. arXiv preprint arXiv:2104.08773,
2021.

[87] Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit Bansal. Grips: Gradient-free, edit-based
instruction search for prompting large language models. arXiv preprint arXiv:2203.07281,
2022.

[88] Tianjun Zhang, Xuezhi Wang, Denny Zhou, Dale Schuurmans, and Joseph E Gonzalez.
Tempera: Test-time prompting via reinforcement learning. arXiv preprint arXiv:2211.11890,
2022.

[89] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, Peter J Liu, et al. Exploring the limits of transfer learning with a unified
text-to-text transformer. J. Mach. Learn. Res., 21(140):1–67, 2020.

15

[90] Satanjeev Banerjee and Alon Lavie. METEOR: An automatic metric for MT evaluation with
improved correlation with human judgments. In Proceedings of the ACL Workshop on Intrinsic
and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, pages
65–72, Ann Arbor, Michigan, June 2005. Association for Computational Linguistics. URL
https://aclanthology.org/W05-0909.

[91] Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain, July 2004. Association for Computational
Linguistics. URL https://aclanthology.org/W04-1013.

[92] Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay,
Mustafa Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. Advances
in neural information processing systems, 28, 2015.

[93] Shashi Narayan, Shay B Cohen, and Mirella Lapata. Don’t give me the details, just the
summary! topic-aware convolutional neural networks for extreme summarization. arXiv
preprint arXiv:1808.08745, 2018.

[94] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore:
Evaluating text generation with bert. arXiv preprint arXiv:1904.09675, 2019.

[95] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In
International Conference on Learning Representations, 2014.

[96] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[97] Victor Sanh, Albert Webson, Colin Raffel, Stephen H Bach, Lintang Sutawika, Zaid Alyafeai,
Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. Multitask prompted
training enables zero-shot task generalization. arXiv preprint arXiv:2110.08207, 2021.

[98] Guanghui Qin and Jason Eisner. Learning how to ask: Querying lms with mixtures of soft
prompts. arXiv preprint arXiv:2104.06599, 2021.

[99] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
arXiv preprint arXiv:2101.00190, 2021.

[100] Karen Hambardzumyan, Hrant Khachatrian, and Jonathan May. Warp: Word-level adversarial
reprogramming. arXiv preprint arXiv:2101.00121, 2021.

[101] Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang.
Gpt understands, too. arXiv preprint arXiv:2103.10385, 2021.

[102] Zexuan Zhong, Dan Friedman, and Danqi Chen. Factual probing is [mask]: Learning vs.
learning to recall. arXiv preprint arXiv:2104.05240, 2021.

[103] Shizhe Diao, Xuechun Li, Yong Lin, Zhichao Huang, and Tong Zhang. Black-box prompt
learning for pre-trained language models. arXiv preprint arXiv:2201.08531, 2022.

[104] Daniel Khashabi, Shane Lyu, Sewon Min, Lianhui Qin, Kyle Richardson, Sameer Singh,
Sean Welleck, Hannaneh Hajishirzi, Tushar Khot, Ashish Sabharwal, et al. Prompt wayward-
ness: The curious case of discretized interpretation of continuous prompts. arXiv preprint
arXiv:2112.08348, 2021.

[105] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing. arXiv preprint arXiv:2107.13586, 2021.

[106] Yusheng Su, Xiaozhi Wang, Yujia Qin, Chi-Min Chan, Yankai Lin, Zhiyuan Liu, Peng Li,
Juanzi Li, Lei Hou, Maosong Sun, et al. On transferability of prompt tuning for natural
language understanding. arXiv preprint arXiv:2111.06719, 2021.

[107] Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter J. Liu. Pegasus: Pre-training with
extracted gap-sentences for abstractive summarization, 2019.

16

https://aclanthology.org/W05-0909
https://aclanthology.org/W04-1013

[108] Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung,
and Yinfei Yang. Longt5: Efficient text-to-text transformer for long sequences. arXiv preprint
arXiv:2112.07916, 2021.

[109] Tahmid Hasan, Abhik Bhattacharjee, Md. Saiful Islam, Kazi Mubasshir, Yuan-Fang Li,
Yong-Bin Kang, M. Sohel Rahman, and Rifat Shahriyar. XL-sum: Large-scale multilin-
gual abstractive summarization for 44 languages. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages 4693–4703, Online, August 2021. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2021.findings-acl.413. URL
https://aclanthology.org/2021.findings-acl.413.

[110] Mohammad Norouzi, Samy Bengio, Navdeep Jaitly, Mike Schuster, Yonghui Wu, Dale
Schuurmans, et al. Reward augmented maximum likelihood for neural structured prediction.
Advances In Neural Information Processing Systems, 29, 2016.

[111] Richard Yuanzhe Pang and He He. Text generation by learning from demonstrations. arXiv
preprint arXiv:2009.07839, 2020.

[112] Sayan Ghosh, Zheng Qi, Snigdha Chaturvedi, and Shashank Srivastava. How helpful is inverse
reinforcement learning for table-to-text generation? In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International Joint Conference
on Natural Language Processing (Volume 2: Short Papers), pages 71–79, 2021.

[113] Marcin Junczys-Dowmunt, Roman Grundkiewicz, Shubha Guha, and Kenneth Heafield. Ap-
proaching neural grammatical error correction as a low-resource machine translation task.
arXiv preprint arXiv:1804.05940, 2018.

[114] Shujian Zhang, Chengyue Gong, and Eunsol Choi. Knowing more about questions can help:
Improving calibration in question answering. arXiv preprint arXiv:2106.01494, 2021.

[115] Shujian Zhang, Chengyue Gong, and Eunsol Choi. Learning with different amounts of
annotation: From zero to many labels. arXiv preprint arXiv:2109.04408, 2021.

[116] Victor Sanh, Albert Webson, Colin Raffel, Stephen Bach, Lintang Sutawika, Zaid Alyafeai,
Antoine Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish
Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal
Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica,
Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala
Neeraj, Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Fevry, Jason Alan Fries,
Ryan Teehan, Teven Le Scao, Stella Biderman, Leo Gao, Thomas Wolf, and Alexander M
Rush. Multitask prompted training enables zero-shot task generalization. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?

id=9Vrb9D0WI4.

[117] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned
language models. arXiv preprint arXiv:2210.11416, 2022.

[118] Muhammad Khalifa, Hady Elsahar, and Marc Dymetman. A distributional approach to
controlled text generation. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=jWkw45-9AbL.

[119] Tomasz Korbak, Hady Elsahar, Germán Kruszewski, and Marc Dymetman. On reinforcement
learning and distribution matching for fine-tuning language models with no catastrophic
forgetting. arXiv preprint arXiv:2206.00761, 2022.

[120] Dongyoung Go, Tomasz Korbak, Germán Kruszewski, Jos Rozen, Nahyeon Ryu, and Marc
Dymetman. Aligning language models with preferences through f-divergence minimization.
arXiv preprint arXiv:2302.08215, 2023.

[121] Tomasz Korbak, Kejian Shi, Angelica Chen, Rasika Bhalerao, Christopher L Buckley, Jason
Phang, Samuel R Bowman, and Ethan Perez. Pretraining language models with human
preferences. arXiv preprint arXiv:2302.08582, 2023.

17

https://aclanthology.org/2021.findings-acl.413
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=jWkw45-9AbL

[122] Changyeon Kim, Jongjin Park, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee.
Preference transformer: Modeling human preferences using transformers for RL. In The
Eleventh International Conference on Learning Representations, 2023. URL https://

openreview.net/forum?id=Peot1SFDX0.

[123] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[124] Shentao Yang, Zhendong Wang, Huangjie Zheng, Yihao Feng, and Mingyuan Zhou. A
regularized implicit policy for offline reinforcement learning. arXiv preprint arXiv:2202.09673,
2022.

18

https://openreview.net/forum?id=Peot1SFDX0
https://openreview.net/forum?id=Peot1SFDX0

Appendix for “Preference-grounded Token-level Guidance for
Language Model Fine-tuning”

Table of Contents

1 Introduction 1

2 Main Method 2
2.1 Token-level Guidance Learning for Preference Grounding 3

2.2 LM Training with Preference-grounded Token-level Guidance 4

3 Related Work 5

4 Experiments 6
4.1 Input-agnostic Discrete-prompt Generation . 6

4.2 Text Summarization . 7

4.3 Ablation Study . 8

5 Conclusion 10

A Additional Experimental Results 20
A.1 Tabular Results . 20

A.2 Further Ablation Study . 22

B Additional Experiment Details 24
B.1 Prompt Generation . 24

B.2 Text Summarization . 25

C A Naïve Numeric Example for the Average Aggregation 26

D Details on the Prompt Generation Task 26

E More Related Work 27

F A Discussion on Applying RL Methods to LM Tasks 28
F.1 LM Generation as a Token-level MDP . 28

F.2 Delayed Feedback in RL-based LM Training . 29

F.3 Sparse Reward with KL Penalty . 29

G Further Discussion on the Guidance Re-estimation Scheme 30

H Potential Negative Societal Impacts 30

I Limitations 31

J Computational Resources 31

19

A Additional Experimental Results

A.1 Tabular Results

Table 3: Examples of the generated discrete input-agnostic text-prompt and their classification accuracy on the
corresponding test set.

SST-2 AG News
Prompt Accuracy Prompt Accuracy

guys filmmaker filmmaker rated Grade 94.18 newsIntroduction Comments Tags Search 85.78
MovieMovieFilm rated Grade 94.18 newsTopic Blog Support Category 85.55
Rated CinemaScoreReporting Grade 94.01 news RecentRecentPhotosIntroduction 84.53
employment theater rated Oscars Grade 93.96 news Recent Brief LatestExample 84.51
scene filmmaking rated comedian Grade 93.85 newsVirtualBlogBlogNet 84.33

Table 4: Detailed results on CNN/DM summarization under T5-base LM for Section 4.2. We bold the best result
of each metric. Baseline results are directly cited from RL4LMs [61]. “Env. Reward” denotes the environmental
reward in RL4LMs. The “ROUGE-L” here refers to “Rouge-LSum” in RL4LMs and in the Hugging Face
interface, which is discussed in details in Appendix B.2. In Section 4.2, we plot the results of our method with
the average aggregation, which is the best variant in Table 2. We report the mean (standard deviation) of our
method over three random seeds.
Algorithm Env. Reward ROUGE-1 ROUGE-2 ROUGE-L Meteor BertScore

Lead-3 40.1 17.5 36.3 33.3 87.4

Supervised 41.1 17.7 34.3 30.9 87.6

PPO
Rouge-1 41.0 18.2 34.9 27.6 87.6
Rouge-Avg 39.6 17.6 33.8 27.0 87.4
Meteor 40.8 17.8 34.2 30.1 87.3

NLPO
Rouge-1 40.4 18.0 34.4 27.5 87.5
Rouge-Avg 40.4 17.7 34.4 27.4 87.4
Meteor 40.5 18.0 34.3 29.2 87.2

Supervised + PPO
Rouge-1 41.7 18.9 35.8 27.8 88.2
Rouge-Avg 42.5 19.4 36.3 29.6 88.2
Meteor 42.6 19.4 36.1 31.6 88.0

Supervised + NLPO
Rouge-1 42.1 19.3 36.1 28.7 88.2
Rouge-Avg 42.4 19.3 36.3 29.5 88.2
Meteor 42.9 19.4 36.1 31.9 88.0

Ours (AVG) 43.09 (0.06) 20.17 (0.04) 39.99 (0.07) 35.23 (0.06) 89.61 (0.12)
Ours (SUM) 42.86 (0.08) 19.92 (0.08) 39.76 (0.11) 34.74 (0.37) 89.24 (0.11)
Ours (MIN) 42.92 (0.14) 20.01 (0.02) 39.84 (0.08) 34.88 (0.13) 89.33 (0.07)
Ours (MAX) 42.38 (0.17) 19.49 (0.02) 39.34 (0.09) 34.13 (0.32) 89.09 (0.19)

Setup and results of the human evaluation. Table 5 below presents the results of our human
evaluation on CNN/DM summarization under the T5-base LM. We generally adopt the protocol in
Stiennon et al. [12] to evaluate the overall summary quality. Our model is compared with the baselines
Supervised, Supervised+PPO, and Supervised+NLPO in RL4LMs [61]. The result of the reference
summaries is also presented, which is intended for sanity check rather than method comparison.
In conducting this evaluation, we randomly picked 100 articles in the test split of CNN/DM and
showed to 20 qualified evaluators the summaries generated from each method, along with the article.
The method names were anonymized. The evaluators were asked to read the article and score each
summary. Summaries are scored on a 5-Point Likert Scale {1, 2, 3, 4, 5}, where score 5 is the highest
and 1 the lowest. From Table 5, it is clear that human evaluation supports the improvements in
ROUGE, Meteor, and BertScore by our method in Table 4.

20

Table 5: Average human ratings on CNN/DM summarization under the T5-base LM. We bold the best result
apart from the ground-truth Reference summary. A detailed description on the setup is in the above text.

Supervised Supervised+PPO Supervised+NLPO Ours Reference

Average Human Rating 2.92 3.17 3.29 3.61 3.88

Table 6: Scores on each ROUGE metric for our method using sequence-level and token-level preference-based
guidance in the summarization tasks in Section 4.3 (a). “Seq.” denotes our method with sequence-level
preference-based guidance, and “Token” denotes our method with token-level preference-based guidance. The
reported numbers are mean (standard deviation) over three random seeds. The row “Average” shows the average
of the three ROUGE scores, i.e., (ROUGE-1 + ROUGE-2 + ROUGE-L) / 3.

CNN/DM XSum CNN/DM (T5-base LM)
Seq. Token Seq. Token Seq. Token

ROUGE-1 40.20 (0.07) 40.94 (0.02) 32.56 (0.08) 33.62 (0.03) 42.10 (0.15) 43.09 (0.06)
ROUGE-2 17.80 (0.08) 18.78 (0.03) 9.98 (0.04) 11.17 (0.02) 19.23 (0.11) 20.17 (0.04)
ROUGE-L 37.08 (0.06) 38.17 (0.03) 25.11 (0.07) 26.33 (0.05) 38.09 (0.14) 39.99 (0.07)

Average 31.69 32.63 22.55 23.71 33.14 34.42

Table 7: Scores on each ROUGE metric for our method with and without the reward-function retraining scheme
in the summarization tasks in Section 4.3 (b). “Without Retrain” denotes our method without reward-function
retraining, and “With Retrain” denotes our method with reward-function retraining. The reported numbers are
mean (standard deviation) over three random seeds. The row “Average” shows the average of the three ROUGE
scores, i.e., (ROUGE-1 + ROUGE-2 + ROUGE-L) / 3.

CNN/DM XSum CNN/DM (T5-base LM)
Without Retrain With Retrain Without Retrain With Retrain Without Retrain With Retrain

ROUGE-1 40.83 (0.10) 40.94 (0.02) 33.45 (0.11) 33.62 (0.03) 42.98 (0.08) 43.09 (0.06)
ROUGE-2 18.70 (0.07) 18.78 (0.03) 11.07 (0.06) 11.17 (0.02) 20.09 (0.06) 20.17 (0.04)
ROUGE-L 38.07 (0.09) 38.17 (0.03) 26.23 (0.10) 26.33 (0.05) 39.87 (0.08) 39.99 (0.07)

Average 32.53 32.63 23.58 23.71 34.31 34.42

Table 8: Scores on each ROUGE metric for the summarization task on CNN/DM in Section 4.3 (c), where we
vary the number of sequences used to learn the token-level guidance. The reported numbers are mean (standard
deviation) over three random seeds. The row “Average” shows the average of the three ROUGE scores, i.e.,
(ROUGE-1 + ROUGE-2 + ROUGE-L) / 3.

Number of Sequences

2 3 5 7 9

ROUGE-1 40.80 (0.06) 40.94 (0.02) 40.87 (0.09) 40.86 (0.08) 40.95 (0.01)
ROUGE-2 18.70 (0.04) 18.78 (0.03) 18.71 (0.02) 18.74 (0.06) 18.78 (0.01)
ROUGE-L 38.05 (0.03) 38.17 (0.03) 38.09 (0.07) 38.08 (0.08) 38.18 (0.02)

Average 32.52 32.63 32.56 32.56 32.64

21

2�2 2�1 20 21 22

90.5

91.0

91.5

92.0

(a) Temperature � (SST-2)

2�2 2�1 20 21 22
32.45

32.48

32.51

(b) Temperature � (CNN/DM)

0.06 0.08 0.1 0.125 0.15 0.2

80

85

90

95

(c) Balancing Coeff. ↵ (SST-2)

Figure 6: Line plots comparing the performance under different values of the hyperparameter � in Eq. (4) and ↵
in Eq. (5). The plotted numbers are mean over three random seeds. Error bars show one standard deviation.

Table 9: Scores on each ROUGE metric for the summarization task on XSum in Section 4.3 (c), where we vary
the number of sequences used to learn the token-level guidance. The reported numbers are mean (standard
deviation) over three random seeds. The row “Average” shows the average of the three ROUGE scores, i.e.,
(ROUGE-1 + ROUGE-2 + ROUGE-L) / 3.

Number of Sequences

2 3 5 7 9

ROUGE-1 33.54 (0.06) 33.62 (0.03) 33.56 (0.08) 33.56 (0.02) 33.63 (0.02)
ROUGE-2 11.12 (0.04) 11.17 (0.02) 11.12 (0.05) 11.19 (0.05) 11.20 (0.03)
ROUGE-L 26.26 (0.06) 26.33 (0.05) 26.28 (0.06) 26.34 (0.06) 26.36 (0.03)

Average 23.64 23.71 23.65 23.70 23.73

A.2 Further Ablation Study

In learning the preference-based sequence-level guidance in Section 4.3, the aggregation function
f(·) in Section 2.1 is removed, since it is inapplicable and unnecessary to the sequence-level reward
function. For the minimalist LM training objectives Eqs. (5) and (6) in Section 2.2, we change them to
the corresponding versions that use sequence-level guidance. Self-normalization in reward-weighted
MLE Eq. (6) is removed, since it is again inapplicable and unnecessary to the sequence-level setting.

In this section, we continue our discussion in the Ablation Study (Section 4.3) by answering the
following additional questions on our method.

(a): Is our method robust to the hyperparameter(s): temperature � and balancing coefficient ↵?

To study the choice of the temperature parameter � in the soft-maximum/minimum aggregation
Eq. (4), we vary the value of � in the MIN variant in Tables 1 and 2 from � = 2. Furthermore,
to study the balancing coefficient ↵ in the REINFORCE-style LM-training approach Eq. (5), we
vary the ↵ parameter in the AVG variant in Table 1 from ↵ = 2�3. Fig. 6 respectively shows the
prompt results on the SST-2 dataset and the summarization results on the CNN/DM dataset. For
summarization, we again plot the average ROUGE scores, with the breakdown scores of the three
ROUGE metrics in Table 10 below.

Recall that the best baseline result on SST-2 in Table 1 is 90.5, and on CNN/DM in Table 2 is 31.3.
We see that our method can achieve competitive results on a relatively wide range of the temperature
�. A too-small value of �, such as 0.25 and 0.5, may incur a harder optimization problem and thus
an inferior performance on both prompt and summarization tasks.

For the choice of the balancing coefficient ↵, we see that our method provides competitive results
in a relatively wide range of ↵ 2 [0.08, 0.15], when compared to the best baseline result of 90.5 in
Table 1. A too-small value of ↵ may not prevent the REINFORCE-style method from pre-mature
convergence. The resulting LM therefore may not sufficiently explore the sampling space or capture
multiple good behavior-modes, resulting in an inferior and highly varying performance. A too-large
value of ↵ distracts the optimization of the LM, and again leads to a worse result.

22

Table 10: Scores on each ROUGE metric for the summarization task on CNN/DM, where we vary the temperature
parameter � in the soft-minimum aggregation Eq. (4). The reported numbers are mean (standard deviation)
over three random seeds. The row “Average” shows the average of the three ROUGE scores, i.e., (ROUGE-1 +
ROUGE-2 + ROUGE-L) / 3.

� = 2�2 � = 2�1 � = 20 � = 21 � = 22

ROUGE-1 40.77 (0.11) 40.74 (0.09) 40.79 (0.11) 40.78 (0.06) 40.80 (0.01)
ROUGE-2 18.67 (0.06) 18.68 (0.05) 18.68 (0.09) 18.67 (0.03) 18.71 (0.04)
ROUGE-L 38.00 (0.10) 37.98 (0.08) 38.03 (0.12) 38.01 (0.04) 38.02 (0.01)

Average 32.48 32.47 32.50 32.49 32.51

(b): How does our method perform in generating longer prompts compared with the baseline?

To further validate the harm of the delayed-feedback issue to the related LM-training methods that
learn under the sparse sequence-level feedback, we compare our method with RLPrompt [60] on
generating prompts with length increased from 5 to 10 and to 20 tokens, on the SST-2 dataset.
Table 11 below shows the results.

Table 11: Test accuracy on the prompt task on the SST-2 dataset, for our method and RLPrompt on generating
prompts with a length of 5, 10, and 20 tokens. We report the mean and standard deviation over three random
seeds.

RLPrompt Ours (AVG) Performance Gap

5 Tokens 90.5 (1.5) 92.6 (1.7) 2.1
10 Tokens 75.8 (7.6) 86.0 (2.9) 10.2
20 Tokens 65.2 (6.0) 80.9 (4.5) 15.7

We see that RLPrompt performs worse than our method on generating longer prompts. In particular,
the performance gap increases as the prompt length (feedback delaying) increases. This comparison
can further demonstrate the harm of the delayed-feedback issue in training text-generation LMs, and
that our framework, in particular our preference-grounded token-level guidance for LM training, is a
viable solution to it.

It is intrigued that the results of both methods deteriorate with the prompt length. After checking
the generated prompts from our method, we find that longer prompts mostly contain many repeated
tokens, as shown by the following example prompt of length 20

PerformanceExceptionMovieMovieMovieMovieMovieMovieMovieVideoVideoVideoVideo\

VideoVideoVideoImageVideoImageImage

which is separated into two lines at the location of “\” due to the page-width limit. In this prompt
example, the tokens Movie and Video are each consecutively repeated seven times, and the bi-
gram ImageVideo is repeated two times. Such prompts with heavy repetitions may confuse the
downstream classifier.6 This aligns with our intuition that a clear and succinct instruction is preferable
than a long but verbose one.

As a side note, in generating Table 11, we use the default hyperparameters for both our method and
RLPrompt. It is possible that RLPrompt requires careful tuning for generating longer prompts, due
to the delayed-feedback issue that we try to address. We leave a thorough tuning of RLPrompt on
long-prompt generation as a future work.

(c): Is the efficacy of our framework tied to the specific preference sources considered in Section 4?

To investigate whether the performance of our framework is tied to the specific preference-sources
considered in the experiment section (Section 4), inspired by RL4LMs [61], we simulate the sequence-
level preference on the summarization task by using another two automatic metrics “Rouge-avg” and
“Rouge-avg2”, rather than the classical Meteor score [90] in Section 4. Table 12 below presents the
ROUGE scores of our method under each of the three preference sources on the CNN/DM dataset
under the T5-base LM. For a more thorough investigation, we provide the results for our method both
with and without the guidance re-estimation scheme. The baseline results in Table 12 below come
from the best baseline method in Table 4 of Appendix A.1.

6A detailed description of the prompt task is deferred to Appendix D.

23

Table 12: Results for our method on CNN/DM summarization under T5-base LM when using different automatic
metrics to simulate the sequence-level preference. We provide the detailed ROUGE scores for our method both
with and without guidance re-estimation. “Baseline” denotes the results of the best baseline method in Table 4
of Appendix A.1. The reported numbers are the mean over three random seeds. The row “Average” shows the
average of the three ROUGE scores, i.e., (ROUGE-1 + ROUGE-2 + ROUGE-L) / 3.

Baseline With Guidance Re-estimation Without Guidance Re-estimation
Rouge-avg Rouge-avg2 Meteor Rouge-avg Rouge-avg2 Meteor

ROUGE-1 42.9 43.14 43.07 43.09 42.96 42.98 42.98
ROUGE-2 19.4 20.18 20.12 20.17 20.07 20.05 20.09
ROUGE-L 36.1 39.93 39.89 39.99 39.80 39.77 39.87

Average 32.8 34.42 34.36 34.42 34.28 34.27 34.31

Concretely, these two new automatic metrics “Rouge-avg” and “Rouge-avg2” are constructed as

Rouge-avg = 0.5 ⇥ ROUGE-1 + 0.5 ⇥ ROUGE-2 + 0.5 ⇥ ROUGE-L ,

Rouge-avg2 = 0.5 ⇥ ROUGE-1 + 0.5 ⇥ 2 ⇥ ROUGE-2 + 0.5 ⇥ ROUGE-L ,

where the “Rouge-avg” metric is exactly the same as that in the RL4LMs [61]. The “Rouge-avg2”
metric is constructed by multiplying ROUGE-2 by 2 to make its numerical value similar to the others.

It is clear that changing the preference source from Meteor to these two alternative metrics does not
significantly alter the performance of our method, especially when compared to the performance
improvement of our method over the best baseline method in Table 4 of Appendix A.1. This set of
comparisons confirms that the efficacy of our framework is generally not tied to a specific preference
source. It could also further corroborate the effectiveness of our preference-grounding perspective on
guiding the LM training.

B Additional Experiment Details

B.1 Prompt Generation

Implementation Details. To ensure a fair comparison, the implementation of our framework is
based on the official codebase of RLPrompt available at https://github.com/mingkaid/rl-prompt, and
the Hugging Face library [73]. We have provided some implementation details in Section 4.1. Here
we continue the discussion.

The LM ⇡✓ is parametrized as a frozen distilGPT-2 model with parameter ✓ being one MLP-layer of
size 2048 inserted right before the output head. The token-level reward function r� is implemented
as a distilGPT-2 with a two-layer projection-MLP of sizes 2048 and 1 on top. The LM ⇡✓ is trained
by a maximum of 12000 steps, with early stopping based on the validation set. The reward training
is reconducted every 1000 steps during the first 6000 steps of the LM training process and is (and
almost always) early stopped. RoBERTa-large is used [9] as the pre-trained downstream LM ⇡DLM.

Datasets. We use the standard datasets provided in the RLPrompt codebase [60]. We test on
three popular few-shot classification datasets in prior work [e.g., 77, 78], i.e., two sentiment binary-
classification datasets SST-2 [79] and Yelp Polarity [81], and the topic four-way-classification dataset
AG News [81]. In keeping with the standard few-shot setting [76], both the training and the validation
sets have 16 examples per class. To mitigate the randomness in the few-shot setting, each dataset is
subsampled into five few-shot training and validation sets, while the test set is standard. We train our
models on each few-shot (sub-)dataset with three random seeds and evaluate three generated prompts
in each case. For all three tested datasets, we report the average test accuracy and standard deviation
across all evaluated prompts in all random seeds and all few-shot (sub-)datasets.

Hyperparameters. Apart from the hyperparameters discussed in the ablation study (Section 4.3
and Appendix A.2), most other hyperparameters as well as the training and evaluation procedures of
our framework follow RLPrompt. Additionally, we list the important hyperparameters for training
our reward model in Table 13, and important hyperparameters for training our LM in Table 14. The
generated prompts have a fixed length of 5. The same hyperparameters are used in all tested datasets.

Baselines. For the baseline results in Table 1, we rerun the codebase of RLPrompt under the same
random seeds and evaluation script as our method. Other baseline results are from the literature

24

https://github.com/mingkaid/rl-prompt

[60, 88]. We note that our reported RLPrompt results have some small discrepancies compared to
the original paper’s results. We have confirmed our reproduced results with RLPrompt’s authors and
with Table 2 of the recent TEMPERA paper [88].

Table 13: Hyperparameters for training our reward
model in the prompt-generation task.

Hyperparameter Value

Gradient clipping norm 5.0
Max train steps 10000
Steps per epoch 100
Number of epochs 100
Learning rate 5e-5
Batch size 64
Learning-rate decay 0.8
Learning-rate scheduler ReduceLROnPlateau

Scheduler patience 2
Early-stop count 7
Optimizer Adam [95]
Backbone distilGPT-2

Table 14: Hyperparameters for training our LM in the
prompt-generation task.

Hyperparameter Value

Gradient clipping norm 5.0
Max train steps 12000
Steps per epoch 500
Number of epochs 24
Learning rate 5e-5
Batch size 32
Learning-rate decay 0.8
Learning-rate scheduler ReduceLROnPlateau

Scheduler patience 2
Early-stop count 7
Optimizer Adam
Backbone distilGPT-2
Reward retrain period 1000 steps

B.2 Text Summarization

Implementation Details and Hyperparameters. The implementation of our framework is based
on the Hugging Face library [73]. We have provided some implementation details in Section 4.2. The
discussion is continued here.

Due to our limited computational resources, unless explicitly mentioned, we use the standard T5-small
model [89] for the LM. Similar to the prompt tasks, the token-level reward function is implemented
also as a T5-small model, with a two-layer projection-MLP on top with sizes 2048 and 1. The LM ⇡✓

is trained for a standard 5 epochs. Apart from the hyperparameters discussed in the ablation study
(Section 4.3 and Appendix A.2), most other hyperparameters as well as the training and evaluation
procedure of our framework follow the standard setting of using a T5 model for text summarization
on the Hugging Face library. Additionally, we list the important hyperparameters for training our
reward model in Table 15, and important hyperparameters for training our LM in Table 16. The same
hyperparameters are used in both the CNN/DailyMail and the XSum datasets.

We note that the ROUGE-L metric we report is technically the rougeLsum metric from the Hugging
Face interface and in the RL4LMs’ codebase [61]. This one matches the result scales in prior work
especially on texts with newlines (“\n”), as reported in this GitHub issue.

Baselines. For the baseline methods’ results in Table 2, we rerun the codebase of RL4LMs [61] with
a T5-small model as our method. We have carefully tuned the (supervised+) PPO/NLPO in RL4LMs
on several hyperparameters, such as learning_rate, kl_div:coeff, kl_div:target_kl, and so
on. Furthermore, we ran these baseline methods on the same random seeds as our method and we
provide error bars. Since we use the T5-small model and the same random seeds for both our method
and the baselines, our reported results are therefore (more) fair comparisons.

25

https://github.com/huggingface/datasets/issues/617#issuecomment-691615081

Table 15: Hyperparameters for training our reward
model in the text-summarization task.

Hyperparameter Value

Gradient clipping norm 5.0
Number of epochs 1
Amount of training data 10% of training set
Learning rate 5e-5
Batch size 32
Optimizer Adam
Backbone T5-small

Table 16: Hyperparameters for training our LM
in the text-summarization task.

Hyperparameter Value

Gradient clipping norm 5.0
Number of epochs 5
Learning rate 5e-5
Batch size 32
Optimizer AdamW [96]
Weight decay 0.0
Backbone T5-small
Reward retrain period 0.5 epoch

C A Naïve Numeric Example for the Average Aggregation

This section provides a naïve numeric comparison that the average aggregation in Section 2.1 will
not automatically favor longer sequences, while the classical summation will.

Suppose we have K = 2 sequences ⌧1 and ⌧2 for preference learning, respectively having length
T 1 = 5 and T 2 = 15. For simplicity, assume that all tokens in ⌧1 and ⌧2 are the same and all have
reward 1, i.e., r�(skt , a

k
t) = 1, 8 k, t. The average sequence length C is then C = (1/2)⇥ (5+15) =

10. For the first sequence ⌧1, the average-aggregated sequence-level evaluation eavg� (⌧1) = (10/5)⇥
P4

t=0 1 = (10/5) ⇥ 5 = 10. And for the second sequence ⌧2, eavg� (⌧2) = (10/15) ⇥
P14

t=0 1 =
(10/15) ⇥ 15 = 10. Therefore, no sequence will be automatically preferred based only on the length.

By contrast, when using the classical summation as the aggregation function, ⌧1 will be evaluated asP4
t=0 1 = 5 while ⌧2 will be evaluated as

P14
t=0 1 = 15. So, indeed, the longer sequence ⌧2 will be

automatically preferred.

D Details on the Prompt Generation Task

Task Description. In discrete text-prompt generation [e.g., 10, 74], we input a discrete text-prompt
a and an observation sequence o to a large pre-trained downstream LM ⇡DLM(yDLM |a, o) to directly
classify text o, without finetuning ⇡DLM. Here, yDLM denotes the output of the large downstream
LM ⇡DLM on the observation text o prompted by text a. We follow the classical prompt setting
[e.g., 10, 75, 60] that solves the classification problem by an encoder-only downstream LM via token
infilling. Classification is reduced to selecting tokens corresponding to some predefined class labels,
known as verbalizers, such as “happy” for positive and “sad” for negative. The set of verbalizers is
denoted as C. As an example, to classify an observation text o by prompt a using an encoder-only
downstream LM ⇡DLM, we input a template such as “[o] [a] [MASK]” to ⇡DLM, and select the
most probable verbalizer token that fills into [MASK].

Setting. In our input-agnostic setting, the generated prompt is independent of the observation text o.
During inference time, only the learned prompts are used and the LM ⇡✓ is discarded. The initial
input x to ⇡✓ is a dummy, and the target y is the class label in the mask position. We also adopt the
few-shot setting, where the training set consists of a small number of samples per class. There is a
larger standard test set for evaluation. With a fixed length T , the goal is to find discrete text-prompts
a = (a0, . . . , aT�1) that have high test accuracy.

Source of the Preference. For learning the token-level guidance, we simulate the sequence-level
preference by the recently proposed stepwise metric Rstep in Deng et al. [60], i.e., the higher the
metric value the better prompt. This choice ensures a fair comparison with RLPrompt [60] and avoids
a potential overfitting that we train and evaluate the LM on the same evaluation metric “accuracy”.

Given a prompt a, observation text o, and the true class label y 2 C, Rstep measures the gap between
the true class’s probability and the highest probability in other classes. The gap is defined as

Gapo(a, y) = ⇡DLM(y |a, o) � max
y02C,y0 6=y

⇡DLM(y0 |a, o),

26

where Gapo(a, y) > 0 when the prediction yDLM(a, o) for text o is correct and < 0 otherwise.
Define the indicator for correct prediction for o, Corro, as Corro = 1{Gapo(a, y) > 0}. The
stepwise metric Rstep for prompt a on observation text o and true class label y is define as

Rstep(yDLM(a, o), y) = �1�Corro
1 �Corro

2 ⇥ Gapo(a, y),

where �1 = 180 and �2 = 200. In the experiments (Section 4 and Appendix A.2), we report test
accuracy as in prior works.

LM Training. Since the prompt-generation task does not assume the availability of supervised data
— the ground-truth prompts, the LM ⇡✓ is trained by the REINFORCE-style update in Section 2.2 to
automatically discover highly-accurate prompts.

E More Related Work

Prompt Generation. Prior works [e.g., 6, 10, 85, 97] have shown that manual prompts can steer
LMs to perform NLP tasks in the few/zero-shot setting. In general, prompts can be discrete, consisting
of real token-strings; or can be continuous, where the prompts are entirely free word-embeddings
that do not map to real tokens. Several works [e.g., 98–102, 83] tune continuous soft prompts using
gradient descent, which typically requires some expensive gradient information [78, 103]. In this
work, we apply our framework to the task of input-agnostic discrete-prompt optimization due to
its challenging setting, better human understandability of the learned prompts [104, 105], potential
transferability across LMs [106, 76, 60], and more robustness in the low-data regime [99]. Recent
works propose some new settings such as input-dependent prompt-tuning [88], which are potential
further applications of our framework and are left for future work.

Text Summarization. Apart from using RL techniques discussed in Sections 3, prior works
on text summarization [e.g., 7, 89, 107–109] mainly focus on structural designs of the LMs and
improvements on the source of the (pre-)training data, where the LMs are typically trained by vanilla
MLE on the supervised data. In this paper, we apply our preferenced-grounded token-level guidance
to this task by considering a weighted-MLE objective for LM training. The weights given by the
learned reward function reflect some sequence-level preference among multiple candidate summaries.
Our framework thus has the potential to learn and improve from lower-quality data, and generate
summaries fulfilling more general evaluation metrics, such as human preference.

Weighted MLE in NLP. Though not a very common techinique, the approach of weighted MLE
has been adopted in prior NLP research. For example, RAML [110] samples outputs proportionally
to its exponentiated scaled “reward" (negative edit/Hamming distance) using stratified sampling.
GOLD [111] frames text generation as an offline RL problem with expert demos and learns from the
demos by importance weighting, where training examples with higher probability under the model
are weighted higher. Besides, Ghosh et al. [112] apply the weighted MLE technique to table-to-text
generation and Junczys-Dowmunt et al. [113] apply this technique to grammatical error correction
for machine translation. Our token-level reward-weighted MLE in Section 2.2 adds to this research
thread by emphasizing the important tokens in the supervised sequences and downweighting the
unimportant tokens. This design may better utilize the LM capacity and the optimization budget. The
efficacy of our reward-weighted MLE is experimentally verified in Section 4.2.

Align LMs with Preference. Similar to our paper, prior works on aligning LMs with preference
typically focus on adjusting the pretrained LMs, where preference comes from human feedback or
from some automatic metrics. A classical strategy is to add external filters on top of the pretrained
LMs for the generated text sequences or for the training sequences [e.g., 19], where the LMs are
trained using MLE on abundant supervised data. Another classical approach finetunes LMs using
supervised learning (vanilla MLE) on some curated/improved datasets [20–22], or on massive highly-
curated collections of tasks phrased as instructions for supervised finetuning the LMs [114–117].
Apart from supervised learning, reinforcement learning techniques have also been applied to learn
from human feedback (RLHF). Similar to the discussion in Section 3, these works typically learn a
sequence-level classifier that predicts human (pairwise) preferences and during LM training add a
general-purpose KL penalty that is less-targeted to the specific LM task and feedback (preference,
metric scores, etc.) [e.g., 14, 23–25], such as a token-level KL penalty towards the initial LM prior to
training.

27

Alternatively, the divergence of the LMs from a target distribution can also be used as the finetuning
objectives. This line of research [e.g., 118–120] formalizes controlled text generation as a constraint
satisfaction problem over LM’s probability distribution, with an additional divergence-minimization
objective that the LMs should have a minimal KL- or f -divergence from the original pretrained
model. These approaches, however, require explicit functional specification on the constraints or on
the human preference, rather a more vague form of (binary) comparison between LM samples. For
example, Go et al. [120] consider human preference as a probability distribution measuring how well
the generated text-sequence satisfies the preference. Apart from this more demanding requirement,
these approaches further require special methods to sample from the resulting LM.

To sum up, prior works on aligning LMs with preference mostly focus on an ungrounded sequence-
level guidance, which can suffer from the delay-feedback issue in LM training, as discussed in
Sections 1 and 3. By contrast, our preference-grounding perspective can provide a stable, data-driven,
task-specific token-level guidance on LM training, and can potentially improve on the vanilla MLE,
especially when the quality of the supervised data cannot be guaranteed. We experimentally validate
this intuition in Section 4 and Appendix A.2.

Apart from fine-tuning the pretrained LMs, Korbak et al. [121] recently apply preference alignment
to the pre-training stage of the LMs. As with prior works, the sparse sequence-level evaluation
(without KL penalty/stabilizer) is directly used, to learn a token-level value function, to condition the
LM generation on, or for a reward-weighted regression objective. The pre-training stage in Korbak
et al. [121] is a potential further application of our framework since we make no assumption on the
zero-shot ability of the initialized LMs, as discussed in Sections 2.2 and 4.3.

We also notice that a recent robotics paper [122] proposes to learn a weighted-sum aggregation
together with the per-step reward, to form the sequence-level evaluation in learning the reward
function, based on pairwise preference over two trajectories of equal length. Compared with this
recent work, our aggregation functions in Section 2.1 do not require additional modeling and training,
and therefore can be more efficient and more stable for the reward-function learning. Additionally,
we do not assume that trajectory lengths are equal, as this may be infeasible for LM tasks such as text
summarization. Furthermore, our framework allows utilizing the preference among more than two
trajectories, rather than the classical pairwise preference. In this particular aspect, our framework can
be more general than this recent work of Kim et al. [122].

F A Discussion on Applying RL Methods to LM Tasks

F.1 LM Generation as a Token-level MDP

In most LM generation tasks, there is a dataset D = {(xi, yi)}Ni=1 of N supervised examples, where x
is the input to the LM that can be a dummy, and y 2 Y is the target text sequence. Viewing the LM as
a token-level RL policy, LM generation can be formulated as a sequential decision-making problem,
specified by the Markov Decision Process (MDP) M = (S,A, P,R, �, µ0) [123]. Specifically, S
is the state space, where the state at timestep t, st, consists of the LM input x and the previously
generated tokens a<t = (a0, . . . , at�1), t > 0, i.e., s0 = x and 8 t > 0, st = (x, a<t). A is the
action space, which is the vocabulary V , and an action at at timestep t � 0 is a token from V .
P (st, at) : S ⇥ A ! S is the transition function that deterministically appends the newly sampled
token to the end of the current state, i.e., 8 t � 0, st+1 = (st, at) = (x, at). R(sT , y) : S⇥Y ! R
is the environmental reward (task-specific evaluation metric) that depends on the final state sT of
the LM-generation trajectory and the target sequence y. Here T is the ending time of the trajectory,
i.e., the length of the full generated text sequence; and sT = (x, a0, . . . , aT�1) is the final state
of the generation trajectory consisting of the LM input x and the full generated text sequence
a = (a0, . . . , aT�1). � 2 [0, 1] is the discount factor. And µ0(x) : S ! [0, 1] is the distribution of
the initial input x.

We denote the LM as ⇡✓(at | st), parametrized by ✓. At each timestep t, ⇡✓(at | st) generates the next
token at given the current state st = (x, a<t). The ultimate goal of policy learning (LM training) is
to maximize the expected environmental reward R, which can be expressed as

max✓ E(x,y)Ea⇠
QT�1

t=0 ⇡✓(at | st) [R(sT = (x,a), y)] ,

where (x, y) is drawn from the corresponding sampling distribution.

28

F.2 Delayed Feedback in RL-based LM Training

As discussed in Appendix F.1, the environmental reward R(sT , y) is only defined on the full generated
text sequence a. The token-level MDP formulation of LM generation thus meets the problem of
sparse reward-signal or the delayed feedback issue discussed in Section 1. Hereafter, we will use
“sparse reward (signal)” and “delayed feedback” interchangeably depending on the context, as they
are used synonymously in the RL literature.

Specifically, prior works [e.g., 31, 60, 32] often manually interpolate the intermediate rewards by
some non-informative values such as 0 or �1, i.e., 8 t � 0

R(st, y) =

⇢
0 or � 1, t < T
R(sT , y), t = T

. (7)

It is clear that the reward signal is sparse. In other words, the feedback to intermediate actions/tokens
is delayed until the full text-sequence has been generated.

We note that this sparse-reward/delayed-feedback problem will not be addressed by the standard
actor-critic or Q-learning methods in RL. With only sparse reward-signals, it can be difficult to
estimate the token-level value functions in these RL methods.

Specifically, the standard Monte Carlo estimate of the value functions is known to have high variance
due to the large sampling space [123]. This problem is even severe in the LM tasks where there are
exponentially many text sequences that can follow a partial sequence.

Further, as discussed in Guo et al. [31], the sparse-reward/delayed-feedback problem can also hurt the
bootstrapping-style method for learning the value functions, since the standard value-function learning
can suffer from “the unstable per-step bootstrapping-style training with sparse reward signals.” This
can subsequently harm the LM training since many actor-critic or Q-learning methods rely heavily
on how accurately the learned value function(s) can assess the quality of intermediate text sequences
[31, 123, 124].

F.3 Sparse Reward with KL Penalty

With the sparse-reward/delayed-feedback issue in Appendix F.2, prior works typically add a token-
level KL-penalty to the sparse sequence-level environmental rewards Eq. (7). For simplicity, assume
that in Eq. (7) the intermediate rewards are interpolated by 0. The KL-stabilized reward signal
R(st, at, y) is

R(st, at, y) =

⇢
�c · KL(⇡✓(at | st) ||⇡0(at | st)), t < T � 1
R(sT , y) � c · KL(⇡✓(at | st) ||⇡0(at | st)), t = T � 1

, (8)

where c is a hyper-parameter and ⇡0 is some prior distribution, such as the uniform distribution
[31, 60], the initial LM prior to training [23, 61], the supervised-fine-tuned model [62, 63, 12, 14],
or the base momentum model [65]. For a concrete example, see Line 224-235 of the popular trlx
package’s implementation.

With this KL-stabilized reward signal R(st, at, y), the action-value function for the policy/LM ⇡✓ is

Q(st, at, y) = E{at0}
T�1
t0=t+1

⇠⇡✓

"
T�1X

t0=t

�t0�tR(st0 , at0 , y) | st, at

#

= E{at0}
T�1
t0=t+1

⇠⇡✓

"
�T�1�t

R(sT , y) � c ·

T�1X

t0=t

�t0�tKL(⇡✓(at0 | st0) ||⇡0(at0 | st0)) | st, at

(9)

It is clear from Eq. (9) that the environmental reward R(sT , y) is multiplied by a factor exponentially
decayed with respect to the length of the remaining horizon T � 1 � t. Without the KL penalty, the
action-value Q(st, at, y) could be tiny when t is small, i.e., at the beginning of the text-sequence
generation. This could make it hard to accurately model and learn the action values, echoing the
previously-stated harm of the sparse-reward/delayed-feedback problem mentioned by Guo et al. [31]

Recall that the standard actor-critic and Q-learning methods in RL use the action-value function
Q(st, at, y) as the token-level guidance (per-step critic) for policy/LM training. Due to the expo-
nentially decaying factor �T�1�t, when the discount factor � in Eq. (9) is not sufficiently large, this

29

https://github.com/CarperAI/trlx/blob/0c5246f64e5e0ecb5fb2de65d440b122c792caf8/trlx/orchestrator/ppo_orchestrator.py#L224
https://github.com/CarperAI/trlx/blob/0c5246f64e5e0ecb5fb2de65d440b122c792caf8/trlx/orchestrator/ppo_orchestrator.py#L224

token-level guidance Q(st, at, y) in RL-based LM training mainly reflects the (discounted) sum of
future KL-penalty, rather than the actual goal of LM training — the environmental reward R(sT , y).
This phenomenon can be more evident at the beginning of the text-sequence generation, i.e., when
the length of the remaining horizon T � 1 � t is long. On the other hand, learning the action-value
function Q(st, at, y) under a large discount factor � is known to be challenging [123], since the highly
varying (late) future can significantly affect the current action value Q(st, at, y). The selection of the
discount factor �, therefore, becomes a tradeoff and a challenge. Note that R(sT , y) here is generic
and can represent automatic evaluation metrics or (human) preference, and that the beginning of text
generation can affect all subsequent token selections. Intuitively, using Eq. (9) as the token-level
guidance for policy/LM training can thus be less successful in the concrete LM task, especially when
generating longer sequences, as we verified in Appendix A.2.

In the experiments (Section 4 and Appendix A.2), we compare our preference-grounding approach
with RL-based baselines that estimate a standard value function similar to Eq. (9) from sparse
environmental reward with KL penalty, such as the RLPrompt method [60] and the (supervised+)
PPO/NLPO methods in RL4LMs [61]. We leave as future work the potential combination of our
preference-grounded guidance with actor-critic and Q-learning methods in RL-based LM training.

G Further Discussion on the Guidance Re-estimation Scheme

As discussed in Section 2.2, in this paper, we deal with the most general setting where the LM
training directly starts from a raw pre-trained LM, rather than an initial LM that has been fine-tuned
via supervised learning on the desired dataset, such as in Stiennon et al. [12]. We also make no
assumptions about the zero-shot ability of the raw pre-trained LM. We choose this setting because it
is more general and naturally fits into the task of text-prompt generation, where supervised datasets
of good prompts are not available and the initial LM cannot generate good prompts.

As discussed before, under this general setting, the LM ⇡✓ can evolve from a less-preferred distribution
to a highly-preferred one, over the training process. Since our reward function r� is trained by text
sequences sampled from ⇡✓, there is a distribution shift between the sequences used to train r� during
reward-function learning, and the sequences evaluated by r� during LM training, especially after ⇡✓

has been sufficiently improved. To keep r� as accurate guidance for LM training, a natural idea is
to refine r� periodically on the text generations from the latest LM, leading to our reward-function
retraining scheme.

We emphasize that the reward-function retraining scheme does not give our method an unfair
advantage over the baseline methods. In particular, RLPrompt [60] and RL4LMs’ methods [61]
retrain their value-functions in every optimization step, and thus, they query the environmental
reward in every optimization step. Specifically, in Algorithm 1 of the RL4LMs paper, the penalized
reward R̂t is calculated in each optimization step, whose calculation requires the true environmental
reward R (Eq. (1) of the RL4LMs paper). Besides, in the codebase of RLPrompt, this environmental
interaction is implemented in this line, which is queried in every optimization step, as seen in this line.
In the notion of Reinforcement Learning from Human Feedback (RLHF), this every-step interaction is
similar to asking humans to score the LM generations in every training step, which can be infeasible.
By contrast, in our paper, we reduce the frequency of these environmental interactions by retraining
the guidance model only periodically and only during the first half of the LM-training process.

Though the motivation of this reward-function retraining scheme comes from model-based RL
(Section 2.2), we notice that some prior RLHF works do implement similar ideas. For example,
Page 2 of Ziegler et al. [23] mentions that “..., we continue to collect additional data and retrain our
reward model as the policy improves (online data collection).” Page 2 of Stiennon et al. [12] mentions
that “We can then gather more human data using samples from the resulting policy, and repeat the
process.” Page 5 of Menick et al. [25] and Page 20 of Bai et al. [24] also have similar discussions.
Based on these, our reward-function retraining scheme is both well-motivated and practical, even
with human rankings in RLHF.

H Potential Negative Societal Impacts

Since our framework can ground the sequence-level preference into token-level guidance for LM
training and can be not tied to a specific preference source, it is possible that this framework may be

30

https://github.com/mingkaid/rl-prompt/blob/24ff3e6a81bbd39e4d9ccaaaee41885bc5058682/rlprompt/modules/sql_module.py#L125
https://github.com/mingkaid/rl-prompt/blob/24ff3e6a81bbd39e4d9ccaaaee41885bc5058682/rlprompt/trainers/trainer.py#L158

used to train ill-intended LMs by grounding some malicious or unethical preferences. This potential
negative impact may be mitigated by closer monitoring the datasets on which our framework operates.

I Limitations

Since our token-level guidance is learned by grounding sequence-level preference, a potential failure
case of our framework will be when the preference orderings are very noisy. In this situation, the
learned guidance may not be meaningful and hence could even deteriorate the subsequent utilization
of it in LM training.

Even though we have shown in Section 4.3 that it can be beneficial to use more than two sequences
to learn the token-level guidance, it can be practically challenging to obtain a high-quality ranking
among many candidate text sequences, e.g., when the number of sequences is more than seven.

Besides, the reward-function retraining scheme may incur some additional computational complexity,
compared with training the reward function only once and fixing it throughout the LM-training
process.

J Computational Resources

The experiments are conducted on NVIDIA GeForce RTX 3090 and NVIDIA A100 GPUs. Depending
on the specific task and setting, several models could be trained concurrently on a single GPU.

31

	Introduction
	Main Method
	Token-level Guidance Learning for Preference Grounding
	LM Training with Preference-grounded Token-level Guidance

	Related Work
	Experiments
	Input-agnostic Discrete-prompt Generation
	Text Summarization
	Ablation Study

	Conclusion
	Additional Experimental Results
	Tabular Results
	Further Ablation Study

	Additional Experiment Details
	Prompt Generation
	Text Summarization

	A Naïve Numeric Example for the Average Aggregation
	Details on the Prompt Generation Task
	More Related Work
	A Discussion on Applying RL Methods to LM Tasks
	LM Generation as a Token-level MDP
	Delayed Feedback in RL-based LM Training
	Sparse Reward with KL Penalty

	Further Discussion on the Guidance Re-estimation Scheme
	Potential Negative Societal Impacts
	Limitations
	Computational Resources

