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ABSTRACT

This paper introduces a novel information retrieval (IR) task of Con-

versational Entity Retrieval from a Knowledge Graph (CER-KG),

which extends non-conversational entity retrieval from a knowl-

edge graph (KG) to the conversational scenario. The user queries in

CER-KG dialog turns may rely on the results of the preceding turns,

which are KG entities. Similar to the conversational document IR,

CER-KG can be viewed as a sequence of interrelated ranking tasks.

To enable future research on CER-KG, we created QBLink-KG, a

publicly available benchmark that was adapted from QBLink, a

benchmark for text-based conversational reading comprehension

of Wikipedia. As an initial approach to CER-KG, we experimented

with Transformer- and LSTM-based query encoders in combination

with the Neural Architecture for Conversational Entity Retrieval

(NACER), our proposed feature-based neural architecture for en-

tity ranking in CER-KG. NACER computes the ranking score of

a candidate KG entity by taking into account diverse lexical and

semantic matching signals between various KG components in its

neighborhood, such as entities, categories, and literals, as well as

entities in the results of the preceding turns in dialog history. The

reported experimental results reveal the key challenges of CER-KG

along with the possible directions for new approaches to this task.
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1 INTRODUCTION

The recent advances in deep learning have propelled human-machine

dialog from the narrow confines of scripted task completion into

everyone’s daily life. With the growing popularity of mobile de-

vices and digital personal assistants, the human-machine dialog

is well-poised to soon become the primary modality for informa-

tion seeking. In conversational information seeking [11], users en-

gage in a dialog with a search system to address their information

needs. Producing a search system’s response for user utterances in

information-seeking dialogues requires leveraging a wide variety of

sources (text collections, knowledge graphs, tables, and databases)

and an even wider variety of approaches that can utilize these

sources along with the dialog context in the form of the preceding

dialog turns.

Prior research on conversational information seeking focused

on two major directions - conversational question answering (QA)

and conversational information retrieval (IR). Conversational QA

has been well-studied in the scenarios that involve documents

[25, 41ś44, 53], knowledge graphs [8, 17, 23, 24, 34, 46, 48], tables

[22] and their combinations, such as KG and documents [49, 50] or

KG, documents and tables [9]. Conversational IR research, however,

has so far only focused on documents [18, 29, 54], whereas entity

retrieval from a KG has not yet been studied in a conversa-

tional setting. To address this oversight, we introduce a novel

task of Conversational Entity Retrieval from a Knowledge Graph

(CER-KG) summarized in Figure 1 and defined as follows:

Definition 1. Conversational EntityRetrieval fromaKnowl-

edge Graph is an IR task that focuses on retrieving a KG entity in

response to a free-form query that may explicitly or implicitly rely

on the dialog context.

This definition leads to several important differences between

CER-KG and Conversational QA from a KG (CQA-KG). From a

conceptual perspective, CER-KG extends entity retrieval from a

KG to a dialog setting. Similar to conversational document IR [12],

CER-KG can thus be viewed as a sequence of interrelated rounds
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Dialog Context

Current Utterance

Q1: Name this American novel which is set on a ship whose
crew-members include the second mate Stubb, a Quaker

named Starbuck, and a native of Kokovoko named Queequeg.

A1: Moby-Dick

Q2: This author wrote about Ishmael and Captain Ahab in
Moby-Dick. He is also known for a work in which Billy Budd

accidentally kills John Claggart.

A2: Herman Melville

Q3: Melville wrote this collection of short stories, one of
which is about Amasa Delano, Benito Cereno, and another is

about a man who frequently responds to requests with “I
would prefer not to,” Bartleby the Scrivener.

A3:                 ......
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Figure 1: Overview of the proposed task of Conversational Entity Retrieval from a KG (CER-KG).

of candidate KG entity retrieval and ranking. Correspondingly, the

key challenges of CER-KG are the identification of a comprehensive

set of candidate answer entities in a KG and the effective relevance

signals and methods to translate those signals into the accurate

ranking of candidate entities. On the other hand, CQA-KG and

QA from a KG, which it extends, can be viewed as a sequence of

interrelated inference and reasoning procedures over a KG subset.

The key challenges of those procedures are the discovery ofmethods

that can simultaneously perform logical, comparative, quantitative

and verification reasoning, and infer the answers that may not be

present in a KG.

There are also notable differences in the benchmarks proposed

for these tasks. First, unlike short automatically constructed ques-

tions with a single focal entity typical of the datasets for CQA-

KG, such as CSQA [46] or ConvQuestions [8], QBLink-KG, our

benchmark for CER-KG, makes less strict assumptions about the

structure of the queries (as follows from Figure 1, the manually

written queries in QBLink-KG can be arbitrarily long and include

multiple entity mentions) or the nature of the answer entity (un-

like the answer entities to simple questions in CSQA, which are

restricted only to the object position of KG triplets, the answer

entities in CER-KG can be in the subject or object position of KG

triplets). Questions in CSQA, on the other hand, can have other

answer types besides KG entities (e.g. numbers, dates, yes/no) that

may not exist in the KG or have no answer at all. Overall, CER-KG

complements CQA-KG in the ecosystem of methods for different

types of information needs that may arise in real-life conversational

information-seeking interactions.

As the first approach to CER-KG,we propose aNeuralArchitecture

for Conversational Entity Retrieval (NACER), a feature-based neu-

ral architecture to point-wise ranking of candidate KG entities for

each dialog turn. Rather than taking distributed representations of

the current dialog turn, dialog context, and a candidate KG entity

to assess relevance internally, NACER directly utilizes diverse rele-

vance signals in the form of input features that capture semantic

and lexical similarities between a current dialog turn, preceding an-

swer(s) and candidate entity’s neighboring KG components, such as

entities, categories, and literals. The candidate KG entities are then

ranked according to their relevance scores computed by NACER.

In principal, NACER can be used along with CQA-KG methods to pro-

duce responses at appropriate turns of the same information-seeking

dialog.

To evaluate NACER1 and enable future research on CER-KG, we

adapted QBLink [15], an existing benchmark for conversational

reading comprehension of Wikipedia, to construct QBLink-KG2, a

CER-KG benchmark for DBpedia [28].

2 RELATEDWORK

2.1 Non-conversational entity retrieval from a
KG

Benchmarks for non-conversational entity retrieval from a KG, such

as DBPedia-Entity v2 [19], aim at finding an entity, an attribute of

an entity, or a list of entities in response to a keyword query or a

question. Traditional IR methods proposed for this task [7, 38, 59]

construct structured documents for each KG entity and aim to

correctly weigh and aggregate lexical matches of the key query

concepts in different fields of structured entity documents to obtain

the entity ranking score. The neural architectures proposed for this

task range from feed-forward neural networks with attention [2] to

transformers [6, 13, 16, 57] and aim to match dense representations

of textual queries and KG entities.

2.2 QA and CQA from a KG

Prior research on QA from a KG independently studied simple and

complex questions. Simple questions, such as those in the Sim-

pleQuestions benchmark [3], correspond to a single KG triplet, in

1source code available at https://doi.org/10.5281/zenodo.10685904
2available at https://doi.org/10.6084/m9.figshare.25256290
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which the entity in the subject position is mentioned in a ques-

tion and the entity in the object position is the answer. Existing

approaches for simple QA from a KG can be grouped into two

categories: end-to-end neural networks [20, 32] and pipelined ap-

proaches [31, 36, 39, 52, 58].

Property SQA QA CQA ER CER

Involves a multi-turn dialog ✗ ✗ ✓ ✗ ✓

Answer is present in a KG ✓ ✗ ✗ ✓ ✓

Answer is a KG entity ✓ ✗ ✗ ✓ ✓

Multiple types of answers or no

answer
✗ ✓ ✓ ✗ ✗

Answer requires reasoning

and/or inference
✗ ✓ ✓ ✗ ✗

Anaphoras, co-references and

ellipses
✗ ✗ ✓ ✗ ✗

Table 1: Summary of the key properties of Simple Question

Answering (SQA), Complex Question Answering (QA), Con-

versational Question Answering (CQA), Entity Retrieval (ER)

and Conversational Entity Retrieval (CER) from a KG.

Complex QA from a KG has been well-studied in both non-

conversational [5, 21, 30, 40, 47] and conversational [8, 17, 23, 24,

34, 48] settings. The major challenge of complex questions is that

answering them requires multi-hop traversal of a KG, performing

reasoning, comparison, counting or set operations over a subset of

a KG to discover the facts that may not be explicitly present in a KG.

These challenges have been addressed with heuristic approaches

[8], multi-hop inference [30, 47], reinforcement learning [24] and

semantic parsing into an executable logical form [17, 21, 23, 34, 40,

48] or a specialized language to represent the reasoning process [5].

Conversational setting introduces additional challenges of resolving

anaphoras, co-references, and ellipses.

The key properties of CER-KG and the related tasks are sum-

marized in Table 1, from which it follows that CER-KG methods

cannot be evaluated on CQA-KG benchmarks and vice versa.

3 QBLINK-KG

QBLink-KG, our proposed benchmark for CER-KG, was adapted

from QBLink [15], a benchmark for conversational reading com-

prehension over Wikipedia. QBLink consists of a short lead and

a series of up to three queries (all are hand-crafted), the answers

to which are single named entities corresponding to the titles of

Wikipedia articles. Formally, the task of CER-KG is to retrieve the

correct answer entity 𝑎𝑘 from a KG in response to a query 𝑞𝑘 in

the 𝑘th dialog turn given the dialogue context, which includes all

preceding queries 𝑞1, . . . , 𝑞𝑘−1 and answers 𝑎1, . . . , 𝑎𝑘−1 to them.

We used the English subset of the September 2021 DBpedia

snapshot3 as the target KG for QBLink-KG. Since DBpedia is con-

structed through information extraction from Wikipedia infoboxes

[28], QBLink answers provided as the titles of Wikipedia articles

can be easily converted to DBpedia entity URIs, if the corresponding

entities exist in DBpedia.

QBLink cannot be utilized for CER-KG in its original form since

knowledge graphs (even those derived from Wikipedia) contain

3https://databus.dbpedia.org/dbpedia/collections/dbpedia-snapshot-2021-09

significantly less information than Wikipedia. Specifically, a named

entity that is the answer to a QBLink question may not exist as

an entity in DBpedia. To adapt QBLink to CER from DBpedia, we

performed two necessary filtering steps described below. The total

number of queries in each split of the benchmark after each filtering

step are summarized in Table 2.

Filtering step Train Valid Test
No filtering 68,454 5,451 9,597
wiki_page ≠ ∅ 59,796 4,772 8,436
Target entity ∈ Y 14,586 1,100 1,682

Table 2: Total number of queries in each split of the bench-

mark after each filtering step.

First, we filtered out all QBLink queries that are unusable for

the benchmark regardless of entity linking and candidate selection

methods (i.e. all queries with an empty wiki_page field or those

queries for which the answer does not correspond to a Wikipedia

page or cannot bemapped to a DBpedia entity). For the evaluation of

NACER and the baselines with specific entity linking and candidate

selection methods used in this work, we then filtered out the queries

with the answers that do not belong to the set of candidate entities

Y obtained with these methods.4 The final statistics of QBLink-KG

are shown in Table 3.

Statistic Train Valid Test
Total words 388,900 30,397 53,025
Distinct words 37,722 8,261 11,897
Avg. words per query 26.66 27.36 26.25

Table 3: Statistics of QBLink-KG.

As follows from Table 3, the queries in QBLink-KG are verbose,

with over 20 words per query on average.

3.1 Entity linking and selection of candidate
entities

Both NACER and the baselines utilize the same set of candidate

entities Y generated based on the set of entities E = {𝑒1
𝑙
, . . . , 𝑒𝑟

𝑙
}

linked from 𝑞𝑘 , as shown in Figure 3. The entities linked to 𝑞𝑘 were

obtained using the method proposed in [32]5, which proved to be

effective for non-conversational simple QA from a KG. A set of

candidate answer entities Y was obtained by including all other

entities in the same triplets with the entities in E. To prevent an

explosion of the set of candidate entities, we did not consider linked

entities in 𝑞𝑘 with a degree greater than 100.

4 NACER

To identify the most effective types of relevance signals for CER-

KG, we propose NACER, a feature-based neural architecture for KG

entity ranking. As shown in Figure 2, NACER has a modular archi-

tecture consisting of three main components: the encoding layer,

4to enable experiments with other entity linking and candidate entity selection meth-
ods, we release both filtered and unfiltered versions of QBLink-KG
5with the only difference that the linked entities can be subjects or objects of KG
triplets
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the matching feature aggregation layers, and the entity relevance

score computation layer.

4.1 Encoding Layer

Features. NACER computes the score of each candidate KG entity

𝑦𝑖 ∈ Y based on the feature vector 𝑦𝑖 constructed based on 𝑞𝑘 ,

𝑎𝑘−1
6 and T𝑖 , a set of all KG triplets that include 𝑦𝑖 , as detailed

in Table 4. The feature vector 𝑦𝑖 for 𝑦𝑖 consists of the features de-

rived using either semantic similarity function 𝑓𝑒 (a, b) or lexical

similarity function 𝑓𝑤 (𝑎, 𝑏) based on: (1) lexical and distributed

representations of KG structural components (entities, predicates,

literals and categories) in T𝑖 ; (2) lexical and distributed representa-

tions of 𝑞𝑘 ; (3) lexical and distributed representations of 𝑎𝑘−1:

𝑦𝑖 = [ent𝑒 , pred𝑒 ,lit𝑒 , cat𝑒 , ans-1𝑒 ,

ent𝑤 , pred𝑤 ,lit𝑤 , cat𝑤 , ans-1𝑤] .
(1)

The first five features are calculated using 𝑓𝑒 , while the last five

features are calculated using 𝑓𝑤 , as detailed in Table 4.

We experiment with three parametric and non-parametric vari-

ants of 𝑓𝑒 (a, b) to determine the degree of similarity between the

distributed representations of a and b: (1) dot product 𝑓𝑒-dot (a, b) =

a⊤b; (2) multiplicative interaction function 𝑓𝑒-mult (a, b) = a⊤Wb

with trainable parameterW; (3) additive interaction function 𝑓𝑒-add (a, b) =

v⊤ tanh(W𝑎a + W𝑏b) with trainable parameters v, W𝑎 and W𝑏 .

The parameters W for the multiplicative interaction function, and

v,W𝑎 ,W𝑏 for the additive interaction function can be either shared

between ent𝑒 , pred𝑒 , lit𝑒 , cat𝑒 , ans-1𝑒 features or trained inde-

pendently for each feature (column par. sharing in Table 5).

𝑓𝑤 (𝑎, 𝑏) utilizes the bag-of-words representations of𝑎 = {𝑎1, . . . , 𝑎𝑛}

and 𝑏 = {𝑏1, . . . , 𝑏𝑚} to quantify the lexical similarity as a sum of

smooth inverse frequencies [1] of their overlapping terms:

𝑓𝑤 (𝑎, 𝑏) =
∑︁

𝑤∈𝑎∩𝑏

𝜆

𝜆 + 𝑛(𝑤)
, (2)

where 𝜆 is a hyper-parameter and 𝑛(𝑤) is KG frequency of term𝑤 .

Embeddings. We used the publicly available7 embeddings of

words and KG structural components (entities, predicates, cate-

gories, and literals) obtained using KEWER method [37] in the

encoding layer of NACER and for feature computation.

Turn encoding methods. a𝑘−1, a distributed representation

of the preceding answer in the dialog, and q𝑘 , a distributed rep-

resentation of the 𝑘th query in a CER-KG information-seeking

dialog, are created in the encoding layer. We consider four options

for dialog turn encoding: (1) KEWER: calculating the weighted

mean of KEWER embeddings of the words and entities in 𝑞𝑘 ; (2)

BiLSTM: embedding 𝑞𝑘 using a pre-trained BiLSTM with max-

pooling [10]; (3)BERT: embedding𝑞𝑘 with a pre-trained BERT [14];

(4) BERT+KEWER: embedding 𝑞𝑘 with the K-Adapter [55], a

framework enabling to inject KG-specific information encoded

in KEWER embeddings into the distributed representation of q𝑘
created with pre-trained BERT.

6without the loss of generality, we limit the discussion to only the answer to the
previous turn 𝑎𝑘−1 . However, features based on 𝑎1, . . . , 𝑎𝑘−2 can easily be added to
𝑦𝑖 (see results and analysis in Section 6.2)
7https://academictorrents.com/details/4778f904ca10f059eaaf27bdd61f7f7fc93abc6e

4.2 Feature aggregation and score computation
layers

Each candidate answer entity 𝑦𝑖 for the 𝑘th turn is then ranked

based on its logit score:

𝑝logit (𝑦𝑖 |𝑞𝑘 , 𝑎𝑘−1,T𝑖 ) =

w⊤
𝑠 𝜎 (W

⊤
𝑎2𝜎 (W

⊤
𝑎1𝑦𝑖 + b𝑎1 ) + b𝑎2 ) + 𝑏𝑠 , (3)

whereW{𝑎1,𝑎2 } and b{𝑎1,𝑎2 } are theweights and biases in thematch-

ing feature aggregation layers (we use two in Eq. 3, but the number

can vary); w𝑠 is a weight vector of the size determined by the num-

ber of neurons in the final matching feature aggregation layer; 𝑏𝑠
is a scalar bias of the entity score computation layer, and 𝑝logit de-

notes a non-normalized logit probability, which is passed through

softmax during calculation of the loss function.

4.3 Loss function

Cross-entropy between one-hot distribution for the target entity 𝑦𝑡
and the entity logit score from Eq. (3) was used as the loss function.

5 EXPERIMENTAL SETUP

5.1 Baselines

BM25F. As an established baseline using only lexical matching, we

utilized BM25F [45], an extension of the popular BM25 retrieval

model to structured (i.e. multi-field) documents. To adapt BM25F

to the conversational retrieval scenario, we included 𝑎𝑘−1 into

𝑞𝑘 . DBpedia entities were converted into 4-field (entity names,

attributes, categories and related entity names) entity documents

using the method from [37]8. We experimented with BM25F using

the BM25 parameter settings recommended in the literature (𝑏 𝑓 =

0.75, 𝑤 𝑓 = 1.0 set uniformly for each field and 𝑘1 = 1.2) [33, p.

233] (BM25F𝑜𝑟𝑖𝑔), and optimized the model using coordinate ascent

based on 100 queries and answers randomly selected from the

training set (BM25F𝐶𝐴).

GENRE. We utilized GENRE [13], a Transformer-based model pro-

posed for non-conversational entity retrieval, as a task-specific

neural generative baseline. Instead of retrieving answer entities,

GENRE directly generates their surface forms token-by-token in

an auto-regressive manner. As a model fine-tuning BART for entity

retrieval from Wikipedia and employing a constrained decoding

strategy that forces generated text to be entities relevant to a query,

GENRE is a strong baseline, which was shown to be superior to

purely semantic matching-based entity retrieval methods using

maximum-inner-product search over distributed representations of

queries and entities. To adapt GENRE to the conversational retrieval

scenario, we supply 𝑎𝑘−1 and 𝑞𝑘 into GENRE’s encoder and map

the generated surface forms of answer entities to DBpedia URIs.

LLaMa. We utilized LLaMa 2 [51] (specifically llama-2-7b) as a

foundation large language model (LLM) baseline. The prompt for

this model included a detailed description of the task along with

10 examples from the training set of QBLink-KG. Each example

included the preceding answer, the current query, and the 10 ranked

candidate entities from the set of candidate entities utilized by

NACER and the memory network baselines with the correct answer

entity ranked at the top.

8source code available at https://github.com/teanalab/dbpedia2fields
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  Previous answer:
Moby-Dick

  Current query (    ):
This author wrote
about Ishmael and

Captain Ahab in
Moby-Dick. He is

also...

 Candidate entity (    ):
Herman Melvile
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Query
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 (1) KEWER             
(2) BiLSTM            
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Typee
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KG
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encoding layer features  
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candidate entity score (3) BERT                 
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Figure 2: Neural Architecture for Conversational Entity Retrieval from a Knowledge Graph.

Feature Feature value Feature description

ent𝑒 𝑓𝑒

(

q𝑘 ,

∑

(𝑦𝑖 ,𝑝𝑜 ,𝑒𝑜 ) ∈T𝑖
e𝑜+

∑

(𝑒𝑠 ,𝑝𝑠 ,𝑦𝑖 ) ∈T𝑖
e𝑠

| (𝑦𝑖 ,𝑝𝑜 ,𝑒𝑜 ) ∈T𝑖 |+| (𝑒𝑠 ,𝑝𝑠 ,𝑦𝑖 ) ∈T𝑖 |

)
semantic similarity between q𝑘 and the mean of KEWER embed-

dings of KG entities that are either subject (e𝑠 ) or object (e𝑜 ) in

the same triplet as 𝑦𝑖

pred𝑒 𝑓𝑒

(

q𝑘 ,

∑

(𝑠𝑗 ,𝑝 𝑗 ,𝑜 𝑗 ) ∈T𝑖
p𝑗

| (𝑠 𝑗 ,𝑝 𝑗 ,𝑜 𝑗 ) ∈T𝑖 |

)

semantic similarity between q𝑘 and the mean of KEWER embed-

dings of predicates p𝑗 from the triplets in T𝑖

lit𝑒 𝑓𝑒

(

q𝑘 ,

∑

(𝑦𝑖 ,𝑝 𝑗 ,𝑙 𝑗 ) ∈T𝑖
l𝑗

| (𝑦𝑖 ,𝑝 𝑗 ,𝑙 𝑗 ) ∈T𝑖 |

)
semantic similarity between q𝑘 and the mean of embeddings l𝑗 of

literals from T𝑖 . l𝑗 is calculated as themean of KEWER embeddings

of tokens in 𝑙 𝑗

cat𝑒 𝑓𝑒

(

q𝑘 ,

∑

(𝑦𝑖 ,𝑐 𝑗 ) ∈T𝑖
c𝑗

| (𝑦𝑖 ,𝑐 𝑗 ) ∈T𝑖 |

)

semantic similarity between q𝑘 and the mean of KEWER embed-

dings of categories c𝑗 that 𝑦𝑖 belongs to

ans-1𝑒 𝑓𝑒

(

a𝑘−1,

∑

(𝑦𝑖 ,𝑝 𝑗 ,𝑜 𝑗 ) ∈T𝑖
o𝑗 +

∑

(𝑒𝑠 ,𝑝𝑠 ,𝑦𝑖 ) ∈T𝑖
e𝑠

| (𝑦𝑖 ,𝑝 𝑗 ,𝑜 𝑗 ) ∈T𝑖 |+| (𝑒𝑠 ,𝑝𝑠 ,𝑦𝑖 ) ∈T𝑖 |

)
semantic similarity between a𝑘−1 and the mean of KEWER em-

beddings of objects (o𝑗 ) or subjects (e𝑠 ) in the same triplets as 𝑦𝑖
(𝑜 𝑗 can be an entity, literal, or category)

ent𝑤

∑

(𝑦𝑖 ,𝑝𝑜 ,𝑒𝑜 ) ∈T𝑖
𝑓𝑤 (𝑞𝑘 ,𝑒𝑜 )+

∑

(𝑒𝑠 ,𝑝𝑠 ,𝑦𝑖 ) ∈T𝑖
𝑓𝑤 (𝑞𝑘 ,𝑒𝑠 )

| (𝑦𝑖 ,𝑝𝑜 ,𝑒𝑜 ) ∈T𝑖 |+| (𝑒𝑠 ,𝑝𝑠 ,𝑦𝑖 ) ∈T𝑖 |

average lexical similarity between 𝑞𝑘 and the labels of KG entities

that are either a subject (𝑒𝑠 ) or an object (𝑒𝑜 ) in the same triplet

with 𝑦𝑖

pred𝑤

∑

(𝑠𝑗 ,𝑝 𝑗 ,𝑜 𝑗 ) ∈T𝑖
𝑓𝑤 (𝑞𝑘 ,𝑝 𝑗 )

| (𝑠 𝑗 ,𝑝 𝑗 ,𝑜 𝑗 ) ∈T𝑖 |

average lexical similarity between 𝑞𝑘 and the labels of predicates

𝑝 𝑗 from the triplets in T𝑖

lit𝑤

∑

(𝑦𝑖 ,𝑝 𝑗 ,𝑙 𝑗 ) ∈T𝑖
𝑓𝑤 (𝑞𝑘 ,𝑙 𝑗 )

| (𝑦𝑖 ,𝑝 𝑗 ,𝑙 𝑗 ) ∈T𝑖 |
average lexical similarity between 𝑞𝑘 and literals 𝑙 𝑗 from T𝑖

cat𝑤

∑

(𝑦𝑖 ,𝑐 𝑗 ) ∈T𝑖
𝑓𝑤 (𝑞𝑘 ,𝑐 𝑗 )

| (𝑦𝑖 ,𝑐 𝑗 ) ∈T𝑖 |

average lexical similarity between 𝑞𝑘 and the labels of all cate-

gories 𝑐 𝑗 that 𝑦𝑖 belongs to

ans-1𝑤

∑

(𝑦𝑖 ,𝑝 𝑗 ,𝑜 𝑗 ) ∈T𝑖
𝑓𝑤 (𝑎𝑘−1,𝑜 𝑗 )+

∑

(𝑒𝑠 ,𝑝𝑠 ,𝑦𝑖 ) ∈T𝑖
𝑓𝑤 (𝑎𝑘−1,𝑒𝑠 )

| (𝑦𝑖 ,𝑝 𝑗 ,𝑜 𝑗 ) ∈T𝑖 |+| (𝑒𝑠 ,𝑝𝑠 ,𝑦𝑖 ) ∈T𝑖 |

average lexical similarity between 𝑎𝑘−1 and objects (𝑜 𝑗 ) or sub-

jects (𝑒𝑠 ) in the same triplets as 𝑦𝑖 (𝑜 𝑗 can be an entity, literal, or

category)

Table 4: Semantic and lexical similarity features utilized by NACER for scoring candidate answer entities.

KV-MemNN. Memory networks (MemNNs) [56] are a class of

differentiable models, which can perform simple inference over

structured or unstructured knowledge. Key-value MemNNs [35], in

which thememories are indexed by the keys, were shown to be effec-

tive at retrieving answers in text-based QA [35], non-conversational

simple QA from a KG [3] and conversational QA from a KG [46].

We used the following two adaptations of the Key-Value Memory

Network (KV-MemNN) [35] to CER-KG as the baselines. These

adaptations differ in the approaches used to fill𝑀 key-value mem-

ory slots (𝑘1, 𝑣1), . . . , (𝑘𝑀 , 𝑣𝑀 ).

The first approach (namedKV-MemNNin) uses𝑎𝑘−1 and 𝑒
1
𝑙
, . . . , 𝑒𝑟

𝑙
and the entities linked from 𝑞𝑘 as the keys 𝑘1, . . . , 𝑘𝑀 and enti-

ties in the same KG triplets as the values 𝑣1, . . . , 𝑣𝑀 . This way,

each key-value pair (𝑘𝑖 , 𝑣𝑖 ) can be constructed from a single KG

triplet, in which the subject or object 𝑘𝑖 is from the in-key set

{𝑎𝑘−1, 𝑒
1
𝑙
, . . . , 𝑒𝑟

𝑙
} and the object or subject in the same triplet is

used as a value 𝑣𝑖 . Key-value memories are represented using the

KEWER entity embeddings as (k1, v1), . . . , (k𝑀 , v𝑀 ). The set of

entities used as values {𝑣1, . . . , 𝑣𝑀 } is considered as the candidate

entities 𝑦1, . . . , 𝑦𝐶 . Each candidate entity 𝑦𝑖 is scored using q𝐻+1,
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        Values                  In-keys         

  Query (     ):
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wife of Moby-
Dick and Typee
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KEWER 
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         : Herman Melville

Typee
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writencharacter
written

born in

Elizabeth Shaw

Herman Melville

Ishmael

Herman Melvile

Candidate entities

Elizabeth Shaw

Herman Melville

Ishmael

Figure 3: Construction of the key-value memory slot pairs

and candidate entities for the KV-MemNN baselines.

the distributed representation of 𝑞 after 𝐻 hops over key-value

memories and y𝑖 , the KEWER embedding of𝑦𝑖 , as 𝑝logit (𝑦𝑖 ) = q⊤
𝐻
y𝑖 .

The second approach (named KV-MemNNout) is identical in all

aspects to KV-MemNNin, except that the set of key-value mem-

ory slots (𝑘1, 𝑣1), . . . , (𝑘𝑀 , 𝑣𝑀 ) are supplemented with the pairs

(𝑘𝑖 , 𝑣𝑖 ), where the value 𝑣𝑖 belongs to the set of candidate entities

Y = {𝑦1, . . . , 𝑦𝐶 } as before, but the out-key 𝑘𝑖 is not necessarily

from the set {𝑎𝑘−1, 𝑒
1
𝑙
, . . . , 𝑒𝑟

𝑙
} and can be any neighbor of the can-

didate entity 𝑦𝑖 (i.e. either a subject or an object in the triplet that

contains 𝑦𝑖 as an object or a subject). Thus, the construction of

memory slots is modified as follows. First, we consider a KG as

an undirected graph 𝐺 , where each subject-predicate-object triplet

(𝑠, 𝑝, 𝑜) corresponds to the undirected edge between the subject 𝑠

and object 𝑜 . Second, an additional hop in 𝐺 is performed starting

from the previously obtained value entities 𝑣𝑖 to obtain the out-keys.

Figure 3 illustrates the KV-MemNNin and KV-MemNNout ap-

proaches to filling the memory slots. Note that the set of candidate

entities Y in both KV-MemNNin and KV-MemNNout is identical to

the set of candidate entities used by all variants of NACER, which

allows for a fair comparison of NACER with KV-MemNN{in,out} .

6 RESULTS

6.1 Retrieval accuracy

To examine different aspects of CER-KG and identify the types

of methods that can be employed by effective solutions to it, we

experimented with various variants of NACER and different types

of baselines on the test set of QBLink-KG. The results of these

experiments are presented in Table 5. Several main conclusions can

be drawn from the analysis of these results.

First, the retrieval accuracy of NACER and KV-MemNN-based

baselines varies significantly depending on the encoder for 𝑞𝑘 and

the type of matching function used. Although most combinations

of NACER with BERT- or BiLSTM-based encoders generally out-

performed all lexical, generative and LLM-based baselines, the com-

petitive performance of GENRE and, more surprisingly, optimized

BM25F with simple adaptations to the retrieval scenario are notable.

The superior performance of NACER over both GENRE and BM25F

can be attributed to the need to take into account both semantic

and lexical matching signals when quantifying the relevance of

the answer entities, possibly due to the verbosity of queries in

QBLink-KG. LLaMa 2 performance indicates that answering ver-

bose trivia-style queries in a conversational setting is a challenging

task for in-context learning with foundation LLMs.

Second, among all compared models, the NACER with the query

encoder using BERT and the KEWER-based K-Adapter, additive in-

teraction function and no parameter sharing resulted in the highest

retrieval accuracy. We believe there are two major reasons behind

this result. First, as a pre-trained language model, BERT already pos-

sesses rich knowledge acquired in an unsupervised manner from

Wikipedia. This knowledge allows it to perform slightly better than

BiLSTM as a turn encoder when most interaction functions are used

to calculate the features capturing semantic similarity between dis-

tributed representations of the current turn and components of

the KG surrounding the candidate entities. Second, the K-Adapter

efficiently injects the KG-specific information captured by KEWER

embeddings into BERT allowing it to better capture KG structure

when creating a distributed representation of the current query.

This ultimately improves the effectiveness of the features capturing

semantic similarity of the current query with the candidate enti-

ties, which translates into additional performance gains over the

pre-trained BERT across most metrics.

Third, the dot product interaction function consistently resulted

in the lowest accuracy among all semantic similarity functions

utilized by NACER. On the other hand, parametric multiplicative

and additive interaction functions increase the capacity of NACER,

which translates into improvement in its accuracy. Furthermore, pa-

rameter sharing of multiplicative and additive interaction functions

has a consistently negative effect on the accuracy across all met-

rics. NACER paired with different types of turn encoders generally

demonstrates better performance without parameter sharing.

Figure 4: Retrieval accuracy of NACER, when individual, all

semantic and all lexical similarity features are removed. The

red dotted line is the accuracy of NACER with all features.

Lastly, NACER outperforms KV-MemNN-based baselines across

all metrics in combination with any query encoder. The margin of

the difference between the best configurations of NACER and KV-

MemNNin ranges from 7% to 13 % for different metrics. This result

indicates that, in QBLink-KG, the relevance signals pointing to the

correct answer entity are mainly localized within a small neighbor-

hood around that entity in a KG, hence finding the correct answer
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Method 𝑞𝑘 encoding 𝑓𝑒 (a, b) par. sharing Hits@1 R@1 Hits@10 R@10 MRR

BM25F𝑜𝑟𝑖𝑔 - - - 373 0.2218 1125 0.6688 0.3639

BM25F𝐶𝐴 - - - 717∗ 0.4263∗ 1481∗ 0.8810∗ 0.5877∗

GENRE - - - 855∗ 0.5083∗ 1045∗ 0.6213∗ 0.5495∗

LLaMa - - - 383 0.3610 427 0.4030 0.3779

KV-MemNNin KEWER - - 991∗ 0.5892∗ 1496∗ 0.8894∗ 0.6905∗

KV-MemNNin BiLSTM - - 854 0.5077 1449 0.8615 0.6269

KV-MemNNin BERT - - 779 0.4631 1148 0.6825 0.5613

KV-MemNNin BERT+KEWER - - 811 0.4822 1154 0.6861 0.6125

KV-MemNNout KEWER - - 983 0.5844 1431 0.8507 0.6758

KV-MemNNout BiLSTM - - 847 0.5035 1389 0.8258 0.6007

KV-MemNNout BERT - - 765 0.4548 1131 0.6724 0.5512

KV-MemNNout BERT+KEWER - - 802 0.4768 1143 0.6795 0.5587

NACER KEWER dot - 648 0.3853 1314 0.7812 0.5172

NACER KEWER mult Y 782 0.4649 1399 0.8317 0.5824

NACER KEWER mult N 1016∗‡ 0.6040∗‡ 1567∗‡ 0.9316∗‡ 0.7164∗‡

NACER KEWER add Y 865 0.5143 1480 0.8799 0.6361

NACER KEWER add N 977 0.5809 1533‡ 0.9114‡ 0.6967‡

NACER BiLSTM mult Y 931 0.5535 1531‡ 0.9102‡ 0.6765

NACER BiLSTM mult N 979 0.5820 1555‡ 0.9245‡ 0.7029‡

NACER BiLSTM add Y 919 0.5464 1497‡ 0.8900‡ 0.6613

NACER BiLSTM add N 1053∗‡ 0.6260∗‡ 1592∗‡ 0.9465∗‡ 0.7389∗‡

NACER BERT mult Y 807 0.4798 1439 0.8555 0.6067

NACER BERT mult N 1016‡ 0.6064‡ 1573‡ 0.9352‡ 0.7178‡

NACER BERT add Y 938 0.5577 1522‡ 0.9049‡ 0.6758

NACER BERT add N 1095∗‡ 0.6510∗‡ 1600∗‡ 0.9512∗‡ 0.7658∗‡

NACER BERT+KEWER mult Y 979 0.5820 1553‡ 0.9233‡ 0.6993‡

NACER BERT+KEWER mult N 1030‡ 0.6124‡ 1559‡ 0.9269‡ 0.7239‡

NACER BERT+KEWER add Y 1048‡ 0.6231‡ 1569‡ 0.9328‡ 0.7297‡

NACER BERT+KEWER add N 1121∗‡ 0.6665∗‡ 1602∗‡ 0.9524∗‡ 0.7575∗‡

Table 5: Accuracy of BM25F, GENRE, LLaMa and different variants of NACER and KV-MemNN on the test set of QBLink-KG.

The largest value for each metric is boldfaced. The best performance by each model type is indicated by ∗. Statistical significance

of the difference with KV-MemNNin and KEWER encoder for 𝑞𝑘 based on the two-tailed paired Student’s 𝑡-test with 𝑝 = 0.05 is

indicated by ‡.

entity does not require the multi-hop inference capabilities of key-

value memory networks needed to effectively address CQA-KG.

Instead, effective methods for CER-KG should focus on identifying,

capturing, and combining lexical and semantic matching signals in

the immediate KG neighborhood of the answer entity.

6.2 Experiments with features

Feature ablation. To assess the relative importance of NACER

features on its performance, we conducted a feature ablation study.

In this study, we removed one feature or a set of features at a time

and retrained the best-performing configuration of NACER (BERT

with KEWER-based K-Adapter as the turn encoder, additive inter-

action function, and no parameter sharing). We also experimented

with two additional configurations, in which all semantic similarity

features (∗𝑒 ) and all lexical similarity features (∗𝑤 ) were removed.

The resulting Hits@1 values are shown in Figure 4.

As follows from Figure 4, the performance drops significantly

when either all semantic or all similarity features are removed,

which indicates that both feature types are critical to NACER’s

performance, with the semantic similarity features playing a more

important role than the lexical ones. Removal of most individual

features (with a notable exception of cat𝑒 and ent𝑤 ) had a smaller

but consistently negative impact on the accuracy of NACER, which

indicates that NACER effectively aggregates lexical and semantic

matching features into the answer entity score.

Features based on preceding answers. To assess the impact of

the dialog context, we measured the retrieval accuracy of NACER

when the features based on the preceding dialog turn answer

(ans-1𝑒 and ans-1𝑤 ) were removed from and the features based on

the answer to the two dialog turns prior to the current one (ans-2𝑒
and ans-2𝑤 ) were added to 𝑦𝑖 . The results of these experiments

in Table 7 highlight the importance of accounting for the dialog

context in the form of the answers to preceding queries in CER-KG.

6.3 Success and failure analysis

The top 3 entities ranked by NACER and KV-MemNNin in combi-

nation with different query encoders are shown in Table 6. Exami-

nation of the results in this table reveals the qualitative superiority

of answers obtained with NACER. Specifically, regardless of the

query encoder, NACERwas able to rank the correct entity as the top

result for 2 out of 3 queries in the example dialog. KV-MemNN𝑖𝑛 ,

on the other hand, was able to rank the correct entity in the top

position only for 1 query and only with 1 query encoder. Regardless

of the query encoder, NACER preserved the typical coherence of the
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Method Dialog turn
Top-3 answers and position of the correct answer

KEWER BiLSTM BERT BERT+ KEWER

NACER

1. Name this English author of novels like łThe Passion of

New Evež and łNights at the Circusž, known especially for
feminist reinterpretations of other works

Angela Carter Angela Carter Angela Carter Angela Carter
Sabine Huynh Sabine Huynh Sabine Huynh Sabine Huynh
Janez Menart Janez Menart Janez Menart Peter Russell

1 1 1 1

2. Carter wrote a libretto based on this Virginia Woolf novel,
whose protagonist has affairs with Queen Elizabeth I and the
princess Sasha and is mentored by Nicholas Greene while
writing a long poem called łThe Oak Treež

Freshwater (play) The Waves The Waves The Waves

The Waves Nights at the Circus
Orlando: A
Biography

Orlando: A
Biography

Vanessa Bell Wise Children Mrs. Dalloway The Magic Toyshop
8 4 2 2

3. At her death, Carter left incomplete a sequel to this
Charlotte Bronte novel. Carter’s sequel would’ve been about
Adele Varens, the adopted daughter of Mr. Rochester and
this novel’s title character

Jane Eyre Jane Eyre Jane Eyre Jane Eyre

Villette (novel)
Jane Eyre
(character)

Villette (novel) Villette (novel)

Wise Children Edward Rochester
The Professor

(novel)
The Professor

(novel)
1 1 1 1

KV-MemNN𝑖𝑛

1. Name this English author of novels like łThe Passion of

New Evež and łNights at the Circusž, known especially for
feminist reinterpretations of other works

Alamgir Hashmi Illusion and Reality Post- feminism Magic realism
Angela Carter Sabine Huynh Janez Menart Sabine Huynh
Peter Russell Janez Menart Peter Russell Janez Menart

1 6 9 9

2. Carter wrote a libretto based on this Virginia Woolf novel,
whose protagonist has affairs with Queen Elizabeth I and the
princess Sasha and is mentored by Nicholas Greene while
writing a long poem called łThe Oak Treež

Mrs. Dalloway Hamza Mrs. Dalloway Mrs. Dalloway
Night and Day

(novel)
Alt code Nights at the Circus The Waves

Jacob’s Room
The Passion of New

Eve
Between the Acts Jacob’s Room

5 10+ 10+ 5

3. At her death, Carter left incomplete a sequel to this
Charlotte Bronte novel. Carter’s sequel would’ve been about
Adele Varens, the adopted daughter of Mr. Rochester and
this novel’s title character

Jane Eyre Alt code Shirley (novel) Shirley (novel)
The Professor

(novel)
The Passion of New

Eve
The Professor

(novel)
The Professor

(novel)
Villette (novel) Hamza Villette (novel) Villette (novel)

1 10+ 10+ 10+

Table 6: Top-3 entities returned by NACER and KV-MemNN𝑖𝑛 baselines in combination with KEWER, BiLSTM, BERT and

BERT with KEWER 𝐾-Adapter query encoders along with the rank of the correct entity for queries in the same QBLink-KG

information seeking dialog. The correct answer entity is highlighted in boldface, if present in the top 3 results.

NACER with Hits@1 R@1 Hits@10 R@10 MRR

no prec. answer 880 0.5232 1492 0.8871 0.6338

1 prec. answer 1121 0.6665 1602 0.9524 0.7575

2 prec. answers 1159 0.6891 1611 0.9578 0.7810

Table 7: Impact of the features based on the answers to pre-

ceding dialog turns on the retrieval accuracy of NACER.

top-ranked entities. Specifically, all entities top-ranked by NACER

regardless of the context encoder for the first query in the dialog

(Angela Carter, Sabine Huynh, Janez Menart and Peter Russell) are

poets. All entities top ranked by both NACER in combination with

BERT query encoder for the second query (The Waves, Orlando: A

Biography and Mrs. Dalloway) and by KV-MemNN𝑖𝑛 in combina-

tion with BERT+KEWER (Mrs. Dalloway, The Waves and Jacob’s

Room) are Virginia Wolf’s novels, however, NACER was more pre-

cise in ranking the correct answer. Similar observations can bemade

about the entities top-ranked by NACER and KV-MemNN𝑖𝑛 in com-

bination with BERT. Jane Eyre, Villette, The Professor and Shirley

are all Bronte’s novels, however only NACER was able to correctly

rank Jane Ayre as the top answer. Consistent with the results in

Table 5, using a weighted mean of KEWER embeddings as the query

encoder produces the most accurate results for KV-MemNN𝑖𝑛 . The

top results for this configuration are typically consistent, unlike

the combination of KV-MemNN𝑖𝑛 with BiLSTM, but KV-MemNN𝑖𝑛

lacks precision. Overall ineffectiveness of the query encoder based

on the aggregation of KEWER embeddings can be attributed to the

fact that KEWER embeddings capture topical rather than typical

similarity (e.g. Vanessa Bell is a sister of Virginia Woolf and Wise

Children is a novel by Angela Carter).

7 CONCLUSION

In this paper, we introduce a novel task of CER-KG; QBLink-KG, the

first benchmark for CER-KG; and NACER, a feature-based neural

architecture for CER-KG. Experiments with NACER in combination

with different types of query encoders reveal that neural architec-

ture aggregating lexical and semantic matching features from the

immediate KG neighborhood of candidate answer entities is a more

effective solution for CER-KG than multi-hop inference, answer

generation or in-context learning with LLMs.

In conclusion, we outline possible avenues for future work. First,

the accuracy of NACER and the baselines is equally affected by the

methods utilized for entity linking and candidate entity selection

steps, even though these steps are external to NACER and the

baselines. Alternative approaches to these steps may improve the

reported results and warrant further investigation. No aspects of

NACER and the employed methods for entity linking and candidate

entity selection are specific to DBpedia, however, adapting QBLink-

KG to other KGs (e.g. Wikidata) is another possible avenue.
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A EXTRACTING FEATURES FROM DBPEDIA
SNAPSHOT

The feature vector 𝑦𝑖 for a candidate KG entity 𝑦𝑖 was derived from

T𝑖 , the set of KG triplets extracted from the Mappingbased Objects

subset and the URI object triplets of the Infobox Properties in the

DBpedia snapshot. ent𝑒 and ent𝑤 features were derived from the

Mappingbased Objects subset and URI object triplets of the Infobox

Properties included in T𝑖 . Triplets from the Mappingbased Literals

subset and literal triplets from the Infobox Properties were used to

derive lit𝑒 and lit𝑤 features. Triplets from the Mappingbased

Objects, Mappingbased Literals and Infobox Properties were used to

derive the values of the pred𝑒 and pred𝑤 features. The categories

of entities used to derive the cat𝑒 and cat𝑤 features were obtained

from the Article Categories subset of the snapshot. Finally, all four

aforementioned subsets were used to derive ans𝑒 and ans𝑤 . All

entity redirects were resolved using the Transitive Redirects subset.

B HYPERPARAMETER SETTINGS AND
MODEL DESIGN CHOICES

Various hyperparameters of the proposed models and the baselines

were set to the values that had been demonstrated as effective in the

existing literature [4, 27]. The parameters of BM25F were trained

to maximize MRR using the coordinate ascent procedure with 5

iterations, 1 restart, and the smallest parameter value increment of

0.02. In Eq. (3), ReLU was used as a non-linearity function 𝜎 , and

the numbers of neurons in the first and second matching feature

aggregation layers of NACER were set to 20 and 10, respectively.

The dimensionality of v in the additive interaction function was set

to 512. We considered 𝑛-grams up to size 3 and set the number of

candidate entities to 400, following [32]. Following [37], the term

weighting parameter 𝜆 in Eq. 2 was set to 3× 10−4. We used V1 con-

figuration of InferSent9 encoder as the implementation of BiLSTM

encoder with max pooling. The pre-trained bert-base-uncased

from theHugging Facewas used as the implementation of BERT.We

fine-tuned GENRE for 10 epochs using the training split of QBLink-

KG and set the beam size to 10. We compared the performance

of KV-MemNNin and KV-MemNNout baselines using 𝐻 = 1, 2, 3, 4

hops on the validation set and found out that both methods demon-

strated the best performance when 𝐻 = 3, which is the setting we

used to report their results.

C TRAINING PROCEDURE

All variants of NACER and KV-MemNN were trained on the train-

ing split of QBLink-KG. To address overfitting, we utilized early

stopping and saved the model parameters resulting in the smallest

loss on the validation set. Adam optimizer [26] with the learning

rate of 10−3 was used to train all models, except NACER with 𝑓𝑒-dot,

which was trained with the learning rate 10−5. KV-MemNN models

were trained for 1000 epochs, while the variants of NACER were

trained for a maximum of 100 epochs, except NACER with 𝑓𝑒-dot
and 𝑓𝑒-add, since we found out that these configurations required

a larger number of epochs (1500) for convergence. NACER with

the KEWER embeddings-based turn encoder was trained for 500

epochs. One query was used in each training iteration.
9https://github.com/facebookresearch/InferSent
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