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ABSTRACT
The quantification of repetitive movements, known as repet-

itive action counting, is critical in various applications, such
as fitness tracking, rehabilitation, and manufacturing operation
monitoring. Traditional methods predominantly relied on the
estimation of red-green-and-blue (RGB) frames and body pose
landmarks to identify the number of action repetitions. However,
these methods suffer from several issues, such as instability un-
der varying camera viewpoints, propensity for over-counting or
under-counting, challenges in differentiating sub-actions, and in-
accuracies in recognizing salient action poses, etc. Our method
integrates joint angles with body pose landmarks to address these
issues, thereby surpassing the performance benchmarks of ex-
isting state-of-the-art repetitive action counting methodologies.
The efficacy of our approach is underscored by a Mean Abso-
lute Error (MAE) of 0.211 and an Off-By-One Accuracy (OBOA)
of 0.599 on a public repetitive action counting data set, Rep-
Count [1]. Comprehensive experimental results demonstrate the
effectiveness and robustness of our method.

Keywords: Repetitive action counting, Pose estimation,
Transformer, Skeleton, Pose landmarks

1. INTRODUCTION
Repetitive actions are a fundamental component of a myr-

iad of activities spanning from physical exercise to precision-
oriented tasks such as experimental operations and assembly pro-
cesses [2]. In the realm of physical activity and exercise, the
accurate quantification of repetitive movements can greatly en-
hance the effectiveness of training regimens and rehabilitation
programs by ensuring that exercises are performed correctly and
consistently [3, 4]. Similarly, in scientific experimentation, the
precision and repeatability of actions are paramount, as they di-
rectly influence the validity and reliability of experimental results.
Assembly operations, whether in manufacturing or delicate tasks
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such as machine assembly, also rely heavily on the meticulous
repetition of actions to maintain quality and efficiency. Con-
sequently, the ability to analyze and quantify repetitive actions
becomes a crucial tool for ensuring correctness, efficiency, and
quality across diverse fields. This underscores the importance of
developing robust methods for repetitive action counting analy-
sis that are adaptable and accurate across varying contexts and
applications [5–10].

1.1 Related Works
Existing repetitive action counting methods, such as the

method detailed by [1], predominantly utilized inputs from red-
green-and-blue (RGB) frame inputs. This preference for RGB
inputs stems from their simplicity and directness [11, 12]. While
it provided a solution for repetitive action counting but could not
independently isolate and recognize periodic movement [13, 14].
Alternative strategies, as explored by [15] et al. and [16] et al.,
have achieved better performance by using contextual informa-
tion in repetitive actions. Furthermore, [17] proposed a pose
saliency Transformer for repetitive action counting, setting a new
benchmark in counting accuracy, which introduces a new mech-
anism called Pose Saliency Representation (PSR). This mecha-
nism uses the two most salient poses to represent the action, pro-
viding a more streamlined and efficient representation than the
RGB frame-based representation. Unlike conventional methods
that rely on intricate computations to extract high-level seman-
tic information from the spatial and temporal dimensions within
frames, PSR simplifies this process. Based on the PSR, a Pose
Saliency Transformer for repetitive action counting is proposed
in [17]. This framework consists of three components: i) Pose
extraction, where pose information is identified and isolated from
each frame. ii) A video-Transformer-based model that maps each
extracted pose to an action category; and iii) A lightweight ac-
tion trigger mechanism designed for video-level repetitive action
counting, which quantifies the occurrences of specific actions
throughout the video sequence. In this model, the repetitive ac-
tion counting predominantly hinges on human pose estimation,

1 Copyright © 2024 by ASME



which uses landmark detection to identify the joint positions of
human skeletons. Despite its innovative approach, this method
often encounters various challenges. These include instability
under varying camera viewpoints, propensity for over-counting
or under-counting repetitions, challenges in differentiating sub-
actions, difficulties in accurately identifying salient poses, etc.
Such limitations underscore the need for enhanced techniques
that can reliably address these issues, thereby improving the ro-
bustness and accuracy of repetitive action counting.

In our work, we refine the action counting method by inte-
grating joint angles with the pose landmark to address the repet-
itive action counting problem using a Transformer network. By
leveraging this integrated model, our system achieves a more
comprehensive understanding of repetitive actions, leading to
significant improvements in the accuracy and robustness of count-
ing mechanisms. Our method addresses several existing issues,
such as instability under varying camera viewpoints, propensity
for over-counting or under-counting, challenges in differentiating
sub-actions, inaccuracies in recognizing salient action poses, etc.
Our model significantly improves the accuracy and robustness of
repetitive action counting, as evidenced by the RepCount data set
introduced by [1].

1.2 Contribution
The contribution of this paper is as follows:

• We analyze different combinations of joint angles and body
pose landmarks in effectively solving the repetitive action
counting problem.

• We improve the repetitive action counting performance in
addressing issues such as instability under varying camera
viewpoints, propensity for over-counting or under-counting,
challenges in differentiating sub-actions, and inaccuracies in
recognizing salient action poses, etc.

• Our experimental results obtain better performance than the
state-of-the-art results on the well-established public data
set.

The structure of the rest contents is as follows: we first introduce
our approach in Section 2. Next, we provide experimental results
in Section 3. Finally, we give conclusions in Section 4.

2. POSE AND JOINT ANGLE ANNOTATION
As shown in Fig. 1, the extraction of 33 pose landmarks is

carried out by the Google Mediapipe BlazePose model. This
approach achieves an accuracy of 84.50% accuracy on the public
Yoga dataset, which features varying backgrounds, outperform-
ing other methods by 1.1% [18]. By using pose landmarks, the
backgrounds are eliminated and only pose landmarks are used in
repetitive action counting. Five joint angles are extracted based
on the landmarks shown in Fig. 1, which are elbow, shoulder,
hip, knee, and ankle angles, thereby providing a comprehensive
framework for the evaluation of human posture and movement
dynamics.

FIGURE 1: BlazePose landmarks and five joint angles

2.1 Salient Pose Annotation
As illustrated in Fig. 2, salient pose annotation [17] lever-

ages just two salient poses to denote the features of each action,
thereby establishing a unique mapping between salient poses and
repetitive action counting. The presence of two adjacent different
salient poses indicates a valid repetitive action. For example, the
action Jump Jack has two salient poses. The salient pose I is an
expansion pose, where hands meet above the head while legs are
spread wide, engaging upper body and core muscles in a peak
kinetic stance. The salient pose II would typically contrast this by
returning limbs to a neutral position, and repositioning of limbs
towards the body’s midline.

FIGURE 2: Salient pose annotation

2.2 Annotation Correction of the Public Data Set
After analyzing the original data set RepCount [1], we no-

ticed that the ground truth count of the action data stu4_5.mp4
in the test data set was incorrectly labeled as 51, whereas the
correct ground truth label should be 5 after a thorough review,
and we corrected the label annotation. This discovery ensures
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the integrity and reliability of the data set for subsequent analyses
and applications.

2.3 Architecture of the Repetitive Action Counting Model
The pose mapping is input into the Transformer [19], which

leveraging the attention mechanisms, processes only the skeletal
and joint angle data to recognize the temporal patterns inherent
to the repetitive actions. Figure 3 illustrates this process. The
shifted window mechanism is carried out to realize cross-window
connections while maintaining the computational efficiency of the
non-overlapping window-based self-attention approach.

After pose mapping using the Transformer in [19], we can
obtain the density score for each frame and generate a density
map from the obtained scores, as shown in Fig. 4. Higher values
indicate a higher similarity to the salient pose I, while lower values
indicate a higher match to the salient pose II. The action-trigger
mechanism is used to compute the time at which two salient poses
appear in sequence in an action category, where a specific upper
and lower limit is set to differentiate the scores of the two salient
poses, thus clustering the non-salient poses in the middle and
easily categorizing the salient poses at both ends [20–22].

3. EXPERIMENTS AND RESULTS
3.1 Experiment Setup

The experimental platform is a workstation with an Ubuntu
16.04 system equipped with an Intel Xeon Gold 6226R CPU, an
NVIDIA GeForce RTX 3090 graphics card, and 64343M RAM.
The RepCount dataset, having over 700 videos, was partitioned
into training, validation, and testing subsets following a 60:20:20
ratio.

3.2 Evaluation of Different Scenarios Using Joint Angles
We evaluate different scenarios using joint angles in solving

the repetitive action counting problem, including:

• Using the 33 landmarks alongside five specific left joint
angles: left elbow (𝐴𝑒,left), left shoulder (𝐴𝑠,left), left hip
(𝐴ℎ,left), left knee (𝐴𝑘,left), and left ankle (𝐴𝑎,left).

• Using the 33 landmarks alongside five specific right joint
angles: right elbow (𝐴𝑒,left), right shoulder (𝐴𝑠,right), right
hip (𝐴ℎ,right), right knee (𝐴𝑘,right), and right ankle (𝐴𝑎,right).

• Using the 33 landmarks in conjunction with both left and
right joint angles for five key joints: left elbow (𝐴𝑒,left),
right elbow (𝐴𝑒,right), left shoulder (𝐴𝑠,left), right shoul-
der (𝐴𝑠,right), left hip (𝐴ℎ,left), right hip (𝐴ℎ,right), left knee
(𝐴𝑘,left), right knee (𝐴𝑘,right), left ankle (𝐴𝑎,left), and right
ankle (𝐴𝑎,right).

• Using the 33 landmarks alongside the average values of the
five joint angles for both the left and right sides, i.e., denoted
as: average elbow angle (𝐴̄𝑒), average shoulder angle (𝐴̄𝑠),
average hip angle (𝐴̄ℎ), average knee angle (𝐴̄𝑘), and average
ankle angle (𝐴̄𝑎).

We consider the single-side joint angles because all actions
in the RepCount data set are symmetric. Each scenario is de-
signed to assess the impact of joint angle configurations on the

accuracy of repetitive action counts, thereby contributing to a
comprehensive understanding of the problem space.

In this paper, we adopt the main evaluation metrics used
in previous work [1, 15–17], i.e., mean absolute error (MAE)
and off-by-one-accuracy (OBOA) counting accuracy. MAE rep-
resents the normalized absolute error between ground truth and
prediction, while OBOA measures the repetitive count rate of the
entire data set. They can be defined as:

𝑀𝐴𝐸 =
1
𝑁

𝑁∑︂
𝑖=1

|˜︁𝑐𝑖 − 𝑐𝑖 |˜︁𝑐𝑖 (1)

𝑂𝐵𝑂𝐴 =
1
𝑁

𝑁∑︂
𝑖=1

[|˜︁𝑐𝑖 − 𝑐𝑖 | ≤ 1] (2)

where ˜︁𝑐𝑖 is the ground truth count, 𝑐𝑖 is the prediction count, and
𝑁 is the number of videos.

The comparison results for the different scenarios are shown
in Table 1. We find that the case using landmarks and joint
angles performed better than the case using only landmarks. In
the cases using landmarks and joint angles, the best performance
is obtained by using landmarks and the average values of the
five left and right joint angles, in which the MAE ≈ 0.211 and
OBOA ≈ 0.599. Table 2 shows that on the RepCount data set,
our method consistently outperforms previous methods across
both evaluation metrics. Specifically, the MAE achieved by our
method is 0.211, which is lower than the 0.236 reported in [17].
Furthermore, the OBOA metric attained by our model is 0.599,
surpassing the 0.559 obtained in [17].

3.3 Visualization Comparison of Models: Landmark-Only
vs. Landmarks + Joint Angles
To validate the effectiveness of our proposed method, we vi-

sually analyze the output density maps obtained using two mod-
els: the model using only the landmarks and the model integrating
the 5 average joint angles with the landmarks. The density map
represents the density of a particular human pose in an input video
sample. Higher values (close to 1.00) indicate a higher similarity
to salient pose I, while lower values (close to 0.00) indicate a
higher match to salient pose II. The density map provides insight
into the distribution of the two salient poses throughout the video.
Our experiments focus on visualizing and comparing the follow-
ing issues in repetitive action counting: inability to stably deal
with instability under varying camera viewpoints, over-counting,
under-counting, difficulty in distinguishing sub-actions, inaccu-
racy in recognizing salient poses, etc.

Inability to stably deal with varying camera viewpoints:
As shown in Fig. 5, we observe that the density map integrating
the 5 average joint angles with the landmarks exhibits a more
accurate capture of salient poses when the camera viewpoint
changes. Specifically, the density values for the salient pose I
remain consistently high (close to 1.00) after varying the camera
viewpoint. In contrast, the density map using only the land-
marks shows a significant drop in density values after the camera
viewpoint changes from the front view to the side view, with den-
sity values ≈ 0.00 in the 440-800 frame range. This difference
suggests that compared to using only the landmarks, using both
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FIGURE 3: Architecture of the repetitive action counting model

TABLE 1: Comparison of different cases using landmarks and joint angles.

Different Cases MAE↓ OBOA↑
Only landmarks 0.236 0.559
Landmarks + five left joint angles 0.227 0.571
Landmarks + five right joint angles 0.226 0.573
Landmarks + five left and right joint angles 0.213 0.587
Landmarks + average values of the five left and right joint angles 0.211 0.599

FIGURE 4: Action-trigger mechanism using density values

the landmarks and 5 average joint angles enables the model not
to miss certain salient poses during camera viewpoint changes,
thereby maintaining the accuracy of repetitive action counting.

Over-counting: As shown in Fig. 6, the density map gener-
ated from the landmarks alone tends to produce over-counts when
a subject attempts to perform the Pull Up action but fails to com-
plete it due to fatigue. The over counts are generated due to the
subject’s slight movement around the salient pose where the sub-

TABLE 2: Performance comparison on repetitive action counting

Input Type Method MAE↓ OBOA↑

Video-level
Zhang et al. [16] 0.879 0.155
Huang et al. [23] 0.526 0.160
Hu et al. [1] 0.443 0.291

Pose-level Yao et al. [17] 0.236 0.559
Our model 0.211 0.599

ject’s arms are extended. In such cases, a landmark-only model
may misinterpret these attempts as valid transitions between two
salient poses, resulting in overcounts in repetitive action count-
ing. However, incorporating the 5 average joint angles allows the
model to recognize salient poses more accurately. As shown in
Fig. 6, when the subject attempts to perform a Pull Up action
but fails to complete it, this phenomenon is reflected in the den-
sity map obtained by integrating the 5 average joint angles with
the landmarks, where the density value is lower than that for the
salient pose I, i.e., the subject fully completes the Pull Up action
with the arms bent. Integrating the 5 average joint angles helps
the model recognize when a subject’s attempts are unsuccessful,
thus avoiding over-counting these partial or incomplete attempts.

Under-counting: As shown in Fig. 7, when a subject en-
deavors to perform a Side Raise action continuously, the density
map derived exclusively from the landmarks fluctuates irregularly
between 0.00 and 1.00, and shows multiple peaks between 0.50
and 0.75, rather than regularly fluctuating between 0.00 (salient
posture II) and 1.00 (salient posture I). However, the density map
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FIGURE 5: Density map comparison: landmarks-only vs. land-
marks + joint angles - addressing the inability issue to stably deal
with varying camera viewpoints

FIGURE 6: Density map comparison: landmarks-only vs. land-
marks + joint angles - addressing the over-counting issue

integrating the 5 average joint angles with the landmarks shows
density values regularly fluctuating between 0.00 and 1.00, rep-
resenting the subject’s movements between the two salient poses.
Also, compared to the density map using only the landmarks,
which cannot accurately identify the salient pose I in the 200-400
and 610-800 frame ranges, the density map obtained using both
the landmarks and 5 average joint angles can accurately identify
the salient pose I and provide the correct density values ≈ 1.00
for the salient pose I. This sample suggests that integrating the
joint angles with the landmarks makes the model more sensitive
to salient poses than using only the landmarks, thus improving
performance when dealing with the under-counting issue.

Difficulty in distinguishing sub-actions: As shown in
Fig. 8, an additional Jump action is present at the end of the
Pommel Horse action, which has a lower limb feature similar
to the regular Pommel Horse action and is a sub-action of the
Pommel Horse. The density map obtained using only the land-
marks incorrectly treats this Jump action as a valid count for
Pommel Horse, with a peak close to 1.00 at around frame 340 in
Fig. 8, which suggests that an additional count is computed using
the landmark-only model, and illustrates the difficulty in distin-
guishing sub-actions in action counting using the landmark-only
model. However, the density map integrating the 5 average joint
angles with the landmarks effectively identifies the Jump action

FIGURE 7: Density map comparison: landmarks-only vs. land-
marks + joint angles - addressing the under-counting issue

is not a valid count for Pommel Horse, resulting in a lower density
value ≈ 0.00 for this irrelevant sub-action, which in turn provides
a more accurate repetitive action counting.

FIGURE 8: Density map comparison: landmarks-only vs. land-
marks + joint angles - addressing the difficulty in distinguishing
sub-actions issue

Inaccuracy in recognizing salient poses: As shown in
Fig. 9a, it is difficult for a model using only the landmarks to
provide consistent and reliable density values for the salient pose
I (straightened arms) in the counting of the action Bench Press.
Instability occurs when the subject is hindered by factors such as
fatigue or slight movements during the execution of the salient
pose I, resulting in drops in the density values of the continu-
ous salient pose I, which should be close to 1.00. However, by
integrating the joint angles with the landmarks, the model con-
sistently and accurately identifies the salient pose I (straightened
arms) with a stable density value of 1.00. A similar performance
is shown in Fig. 9b, where the subject performs the Jump Jack
action on the right side of the camera view. The density map ob-
tained using only the landmarks does not accurately differentiate
between the two salient poses, resulting in small-scale fluctua-
tions between 0.00 and 0.25 in the beginning half of the density
map, while the correct density value for the salient pose I should
be close to 1.00. However, the density map obtained using both
the landmarks and 5 average joint angles provides a clear count-
ing of the Jump Jack action, with the density values fluctuating
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uniformly between 0.00 and approximately 1.00.

(a) Addressing the inaccuracy in recognizing salient poses in
Bench Press

(b) Addressing the Inaccuracy in recognizing salient poses in Jump
Jack

FIGURE 9: Density map comparison: landmarks-only vs. land-
marks + joint angles - addressing the inaccuracy issue in recog-
nizing salient poses

These experimental results confirm the advantages of our
proposed approach integrating the 5 average joint angles with
the landmarks in solving the following issues in repetitive action
counting: inability to stably deal with varying camera viewpoints,
over-counting, under-counting, difficulty in distinguishing sub-
actions, and inaccuracy in recognizing salient poses, making our
method a robust and effective approach for the repetitive action
counting task.

In addition to the improvements demonstrated above in the
regular repetitive action counting cases, we have observed that
integrating the 5 average joint angles with the landmarks can lead
to effective and robust counting in video samples with various
video effects, such as instantaneous brightness changes, zoom
shifts, etc. Fig. 10 illustrates that the density map using both
the landmarks and 5 average joint angles provides more accurate
results in repetitive action counting than only using the landmarks.

4. CONCLUSION
In summary, this paper integrates the 5 average joint an-

gles and body landmarks in solving the repetitive action counting

FIGURE 10: Density map comparison: landmarks-only vs. land-
marks + joint angles - addressing the video effect issue

problem. Our method significantly improves the performance of
repetitive action counting and provides the following improve-
ments: i) Accurate performance in handling camera viewpoint
variations. ii) Solving the over-counting and under-counting
problems. iii) Improving the recognition of sub-actions. iv)
Performing more accurate salient pose recognition. Our method
obtains a mean absolute error (MAE) of 0.211 and an off-by-one
accuracy (OBOA) counting accuracy of 0.599. Comprehensive
experimental results demonstrate the effectiveness and robust-
ness of our proposed method. This innovative method not only
enhances overall performance but also effectively addresses the
previously outlined challenges. Overall, our results outperform
previous state-of-the-art methods and point the way to future
research in the repetitive action counting problem area.
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