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Abstract
With the aim of quantifying turbulent behaviors of vortex filaments, we study the multi-
fractality and intermittency of the family of generalized Riemann’s non-differentiable
functions

e27‘ri(n2t+nxo)
Ry =) . x0 €0, 1].

n#0

n2

These functions represent, in a certain limit, the trajectory of regular polygonal vortex
filaments that evolve according to the binormal flow. When xq is rational, we show
that Ry, is multifractal and intermittent by completely determining the spectrum of
singularities of R, and computing the L? norms of its Fourier high-pass filters, which
are analogues of structure functions. We prove that R, has a multifractal behavior
also when x is irrational. The proofs rely on a careful design of Diophantine sets that
depend on xg, which we study by using the Duffin—Schaeffer theorem and the Mass
Transference Principle.
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1 Introduction

Multifractality and intermittency are among the main properties expected in turbulent
flows but, as usual in the theory of turbulence, it is challenging to analyze them
rigorously. The motivation of this article is to quantify the multifractal and intermittent
behavior of regular polygonal vortex filaments that evolve with the binormal flow. This
evolution is represented, in a certain limit, by the function Ry, : R — C defined by

27Ti(nzt+nx0)

e

Ri() =3 ———, M
n#0

for xo € [0, 1] fixed. This function is one of the possible generalizations of the classic
Riemann’s non-differentiable function, which is recovered when xo = 0, and it can
also be seen as the solution to a periodic Cauchy problem for the free Schrodinger
equation. In this article we study the multifractality and intermittency of R,,, which
until now was unknown for xo # 0:

e When xo € Q, we completely describe the multifractality of R, by computing
its spectrum of singularities (Theorem 1.1). We also compute the L” norms of its
Fourier high-pass filters to deduce its intermittency exponents (Theorem 1.6) and
show that R, is intermittent.

e When xo ¢ Q, we give a result that proves multifractality (Theorem 1.3) and
strongly suggests that the spectrum of singularities depends on the irrationality of
X0, and hence that it is different from when xy € Q.

The main novelty in this article is a careful design of Diophantine sets and the use of
the Duffin—Schaeffer theorem and the Mass Transference Principle to compute their
measure and dimension. When x¢ € QQ, we use the partial Duffin—Schaeffer theorem
as proved by Duffin and Schaeffer in [21], while when xo ¢ Q we need the full strength
of the theorem as proved by Koukoulopoulos and Maynard [37]. We give an overview
of these arguments in Sect. 2. Before that, we introduce the concepts of multifractality
and intermittency in Sect. 1.1, we discuss the connection of R, and vortex filaments
in Sect. 1.2 and we state our results in Sects. 1.3 and 1.4.

1.1 Multifractality and intermittency

The concepts of multifractality and intermittency arise in the study of three dimensional
turbulence of fluids and waves, both characterized by low regularity and a chaotic
behavior. These are caused by an energy cascade by which the energy injected in large
scales is transferred to small scales. In this setting, large eddies constantly split in
smaller eddies, generating sharp changes in the velocity magnitude. Moreover, this
cascade is not expected to be uniform in space, and the rate at which these eddies
decrease depends on their location.
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Multifractality and intermittency in the limit evolution...

Mathematically speaking, an option to measure the irregularity of the velocity v
is to compute the local Holder regularity, that is, the largest « = «(x) such that
[v(x +h) —v(x)| < |h|® when |h| — 0. The lack of uniformity in space suggests that
the Holder level sets Dy, = {x : a(x) = o} should be non-empty, and of different
size, for many values of «. In this context, the spectrum of singularities is defined as
d(a) = dimy Dy, where dimyy is the Hausdorff dimension, and the velocity v is said
to be multifractal if d (o) takes values in multiple Holder regularities «.

On the other hand, intermittency is a measure of the likelihood of localized bursts or
outlier events. One way to quantify it is by analyzing the structure functions S, (h) =
(lv(x + h) — v(x)|?) of the velocity when the scale i tends to zero. More precisely,
defining the flatness as

Sa(h
Fq(h) = #}1))2’ for very small 7, 2)

we have small-scale intermittency' if lim;_ o F4(h) = +00. Assuming the typical
power law

Sy(h) =~ |h|?, 3

it is usual to rephrase the definition of intermittency as ¢4 —2¢> < 0 for the intermit-
tency exponent?® ¢ p- This definition, and in particular (2), is inspired by the probabilistic
concept of kurtosis,> which quantifies how large the tails of the underlying probability
distribution are. A large kurtosis implies fat tails, which suggests that outlier events
are more likely than for a normal distribution, agreeing with the widespread idea of
non-Gaussianity. More generally, moments F,(h) = S,(h)/S$> (h)P/? of order p=>4
can be used to measure the tails of a probability distribution (see [27, p. 124]) and
therefore intermittency, so it is common in recent physics literature to measure ¢,
for different p (see [42] and references therein, also [2] for a numeric intermittent
model). The intermittency condition is then rewritten as ¢, — p¢2/2 < 0, a behavior
that corresponds to a sublinear ¢,.

1.2 Ry, as the trajectory of polygonal vortex filaments

The binormal flow is a model introduced by Da Rios* in 1906 [19] as an approximation
to the evolution of a vortex filament according to Euler equation and whose validity
has been precisely and rigorously described theoretically by Fontelos and Vega in [26]
in the setting of the Navier—Stokes equations. This model describes the motion of the
filament X : R x R —> R3, X = X (x, t) by the equation X; = X, x Xy,. Inspired

1 Proposed by Frisch [27, p. 122, (8.2)] and Anselmet et al. [1].

2 Inthis setting, intermittency is regarded as a nonlinear correction to Kolmogorov’s theory (see [ 12, Section
2.4]) which predicted the exponents ¢, to be a linear function of p and hence ¢4 —2¢, = 0 and, in general,
¢p —r52/2=0.

3 The fourth standardized moment, sometimes also referred to as tailedness.

4 Explored also by Levi-Civita in [38].

@ Springer

Journal: 208 Article No.: 2971 [ TYPESET [__|DISK [_]LE [_] CP Disp.:2024/8/28 Pages: 63 Layout: Small-Ex




82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

V. Banica et al.

(A) 20=0 (B) a0 = 1/4 (C) 2o =1/7 (D) z = 1/17

Fig.1 Image of Oxg- 1 €10, 1], defined in (5), for some values of x(

by Jerrard and Smets [33], De la Hoz and Vega [20] observed numerically that if the
initial filament X 57 (x, 0) is a regular polygon with M corners at the integers x € Z,
then the trajectory of the corners X ;(0, ¢) is a plane curve which, identifying the
plane with C and when M is large, looks like

2min®t -1 7T2
¢(r)=zn—2 :2nil—?+R0(t). 4)

nez

Moreover, let x ,,(x, 0) be an infinite polygonal line that loops the polygon of M sides
a finite but large number of times and ends in two half-lines, symmetrized at x = 0.
Banica and Vega rigorously proved in [4] that, under certain hypotheses, its binormal
flow evolution x ,,(x, r) obtained in [3] satisfies

e2nin2t —1 i
1 — — TTINX()
Jim Mo (0,1 = g (1) = Y ———— T, Vxg €[0,1]. (5)

nez

We show in Figs. 1 and 2 the image of ¢y, for some values of xo. Like in (4), noticing
2winx

¢ is 272 (x2 —x + %), we can write

that the Fourier series ), o

n2
: 2(,2 1
b (1) = 2mit — 27 (xo Y xo + 8) + Ry (1),
which shows that ¢,, and Ry, have the same regularity as functions of #. In other words,
Ry, captures the regularity of the limit trajectory of polygonal vortex filaments that

evolve with the binormal flow. This connection motivates us to study the multifractality
and intermittency of Ry,.

1.3 Definitions and notation
We now rigorously define the concepts discussed above.
1.3.1 Holder regularity

A function f : R — Cis a-Holder at t € R, which we denote by f € C*(z), if there
exists a polynomial P; of degree at most « such that | f(t + h) — P;(h)| < C|h|*
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Multifractality and intermittency in the limit evolution...

Fig. 2 The images of ¢xov t € [0, 1], for the values xo = 0, 0.1,0.2,0.3, 0.4, 0.5, from the rightmost to
the leftmost

for some constant C > 0 and for 4 small enough. In particular, if 0 < o < 1, the
definition above becomes

felC*t) < |f@+h)— f@)|<Clh|* forh small enough.

The local Holder exponent of f at ¢ is ay(t) = sup{a : f € C*(r)}. We say f is
globally a-Holder if f € C¥(¢) for all € R.

1.3.2 Spectrum of singularities

The spectrum of singularities of f is
dp(a) =dimp{t 1 ap(t) =a},
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where dimyy is the Hausdorff dimension,’ and convene that d(¢) = —oo if {r :
ap(t) =a} =40

1.3.3 Intermittency exponents

As discussed in (3), the exponents ¢, of the structure functions S, (k) describe the
behavior of the increments of functions in small scales. Here we take the analogous
approach of studying the high-frequency behavior of functions. Let & € C*°(R) be a
cutoff function such that ®(x) = 0 in a neighborhood of the origin and ®(x) = 1 for
|x| > 2. For a periodic function f with Fourier series f (1) =), .5 aneX™ " define
the high-pass filter by

Ponf) =3 <1>(%) an ¥ N eN.

nez

We treat the L? norms || P>y f ||1’; as the analytic and Fourier space analogues of the
structure functions.® Our analogous to the power law (3) is’

)4
ny(p) = liminf w7 ©

—oo  log(1/N)

which means that for any € > 0 we have |P-y f|I, < N=7PF€ for N > 1,
and that this is optimal in the sense that there is a subsequence Ny — oo such that

I P>n, fII5 > Nk_n‘/(p)_6 for k >>. 1. We define the p-flatness to be

I P>n £l

= ;o N> 1
I P=n fll2

Fp(N)

The corresponding intermittency exponent® is r(p)—png2)/2.

1.4 Results

To simplify notation, let us denote « Ry (t) = ay (1), d Ry (a) = dy, (o) and n Ry, (p) =
Nxo (p) for our function Ry, defined in (1).

5 See [25, Sections 3.1-3.2] for definitions and basic properties of Hausdorff measures and the Hausdorff
dimension.

6 We may think of the small scale & to be represented by 1/N, where N is the frequency parameter.

7 The heuristic exponent ) in (3) and n(p) defined in (6) are a priori different. However, the definition of
¢p can be made rigorous using L” norms so that it is equal to 1(p), as shown by Jaffard in [32, Prop. 3.1]
The exponent n(p) is actually related to the Besov regularity of f. Assuming [|P>n fllp = |P~n flp
(which is the case for Ry;), where P~y f denotes the band-pass filter defined with the cutoff ® with the

additional assumption of compact support, then n(p) = sup{s: f € Bf,{ go}, where f € Bf,’ q if and only
if QS| P_k 1Dk € €9.
8 If the liminf in (6) is a limit, then || P> £ | = N and hence Fp,(N) ~ N~ 1/ (P =Py /D),
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Multifractality and intermittency in the limit evolution...

Since Weierstrass [47] announced’ Riemann’s non-differentiable function as the
first candidate of a continuous and non-differentiable function in 1872, the regularity
of Rg has been studied by several authors. After Hardy [30] and Gerver [28, 29]
proved that it is only almost nowhere differentiable (see also the simplified proof
of Smith [45]), Duistermaat [22] launched the study of its Holder regularity. Jaffard
completed the picture in his remarkable work [31, Theorem 1] (see also [11] for a
recent alternative proof) by computing

1 1

t) = < ———, fort y 7

(1) 2+2u(t) ¢Q (N

where 71(¢) is the exponent of irrationality of ¢ restricted to denominators g ==

2 (mod 4).!9 He combined this with an adaptation of the Jarnik—Besicovitch theo-
rem to prove

4da —2,1/2 <a <3/4,
do(a) = {0, a=3/2,
—00, otherwise.

Our first results concern the spectrum of singularities of R, for xo # 0.

Theorem 1.1 Let xo € Q. Then,

doa—2,1/2 <a <3/4,
dy, (@) = 1 0, a =3/2,
—00, otherwise.

Remark 1.2 (a) To prove Theorem 1.1, we adapt the classical approach due to Duis-
termaat [22] and Jaffard [31] by carefully choosing subsets of the irrationals with
novel Diophantine restrictions to disprove Holder regularities. However, the argu-
ments in [31] to compute their Hausdorff dimension do not suffice!' when xq # 0.
We solve this by using the Duffin—Schaeffer theorem and the Mass Transference
Principle; see Sect.?2 for the outline of the argument.

(b) Even if dy, = dp for all xo € Q, we think that «y,(f) # o(t). However, Theo-
rem 1.1 does not require computing c, (¢) for all # € R. A full description of the
sets {# : ay,(f) = «} is an interesting and challenging problem because when
xo 7 0 it is not clear how to characterize the Holder regularity oy, () in terms of
some irrationality exponent like in (7). We do not pursue this problem here, which
we leave for a future work.

in2
9 Weierstrass announced R() = >0 sin(n?1)/n?; Ro(t) = 223&0 271 1n2 can be seen as its imag-
inary part.
- Precisely, i(r) = sup{u > 0 : |t - §| < g~ H for infinitely many coprime pairs (p, q) €

N2 with ¢, %2 (mod 4)}.

T The restriction for denominators in the case xo = 0 is essentially a parity condition, which is solved in
[31] by dividing the set by the factor 2. This does not generalize to the case xo = P/Q where the condition
for the denominator will be to be a multiple of 4Q.
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Let now xo ¢ Q. Let p, /g, be its approximations by continued fractions, and
define the exponents j1,, by |xo — pn/gn| = 1/¢". Define the alternative!? exponent
of irrationality

o(xo) = limsup { i, : gn ¢ 4N} ®)

n—oo

This exponent always exists and o (xg) > 2 (see Proposition 5.2). Our result is the
following.

Theorem 1.3 Let xg ¢ Q. Let 2 < < 20(x0), with o (xg) as in (8). Then, for all
6 >0,

<dimy § ¢t 1+1 § < (t)<1+1 <2 )
1 : p— —_— a p— — _
- 2 4u — TN = 2u ) T o

Remark 1.4 (a) We show in Fig.3 a graphic representation of Theorem 1.3.

(b) Theorem 1.3 shows that R, is multifractal when o (xp) > 2.

(c) Theorem 1.3 would be strengthened to 1/ < dy,(1/2 + 1/2p) <2/p for u <
20 (x0) if we could compute the dimension of some well-identified Diophantine
sets, see Remark 5.4. This would give a nontrivial spectrum of singularities in an
open interval for all xo ¢ Q. We leave this for a future work.

(d) The reasons to have an interval (1/w,2/u) for the dimension in (9) seem to us
deeper in nature. Unlike the upper bound 2/x, which follows from approximating
t with rationals p/q with unrestricted ¢ € N and with error ¢ 7 (see the Jarnik—
Besicovitch theorem 2.2), the lower bound depends on the nature of xo which
imposes restrictions to g. When xo = P/Q € Q, we require ¢ € 40N, which
still results in a set of dimension 2/u. However, when xg ¢ Q we require g be
restricted to an exponentially growing sequence (given by the denominators of the
continued fraction approximations of x¢). This restriction is much stronger and
gives a set of t of dimension 1/u. These results follow from the Duffin—Schaeffer
theorem and the Mass Transference Principle.

(e) The theorem and its proof (see the heuristic discussion in Sect.5.2.1) suggest that
the spectrum of singularities may be d,, (o) = 4o — 2 in the range % + 46(;)60) <

a < %, and possibly something different outside of this range. In particular, we
expect the segment of the spectrum in 5/8 < o < 3/4 to be present for all xg.

Remark 1.5 Our results suggest that the trajectories of the binormal flow do not have a
generic behavior in terms of regularity. Indeed, if X, is a sequence of independent and
identically distributed complex Gaussian random variables, then the random function

2mint

S0 =3 X,° — (10)
n=1

12 The usual exponent of irrationality is u(xg) = lim sup,,_, o in.
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For every 2 < pu < 20(z)

d(a)
(o(w0) > 2)
1 ...............................
1/2 kersecspeessseossassrmssssssmens
2/p fmmmm e s
Ypfemmmmmmemmme e :
0 4} . H @
S [ 3
0 5 2 I 273 3§ 1

Fig.3 A graphic representation of Theorem 1.3. We have a continuum of Whitney-type boxes parametrized
by p along the dashed diagonal line d (o) = 4o — 2. The graph of dy, («) has at least a point in each of
those boxes

has!? almost surely ag(t) = 3/4 forallt € R [34]. Hence the generic behavior of (10)
is monofractal. In contrast, the fine structure of the linear phase nxg of Ry, causes a
multifractal behavior.

Regarding intermittency, we compute the L” norms of the Fourier high-pass filters
of Ry, and the intermittency exponents ny,(p) when xo € Q, from which we deduce
that Ry, is intermittent.

Theorem 1.6 Let xog € Q. Let 1 < p < 00. Then,

N_Lz)_l, p >4,
| PR |}, = { N=3 log N, p =14, (11)
N7/ p <4,

and therefore

Mo(P)= im ==Ny  — 13p/4.  p <4

10g(||Psz||§) _p/2+1, p>4,
N—oco log(1/N)

Consequently, limy_, oo F p(N) = +00 for p > 4. In particular, Ry is intermittent.

Remark 1.7 (a) The p = 4 intermittency exponent in (11) is n(4) — 2n(2) = 0, but
the fact that || P> y Ry, ||i does not follow a pure power law makes F4(N) >~ log N.
For p > 4, we have n(p) — pn(2)/2 =1 — p/4 < 0, so Ry, is intermittent in
small scales when xg € Q.

13 [34, p.86, Theorem 2] shows that almost surely «g(¢) > 3/4 for all ¢, and and [34, p. 104, Theorem 5]
shows that almost surely ag(t) < 3/4 for all ¢.
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(b) The upper bound in (11) in Theorem 1.6 holds for all xo € [0, 1]. The theorem
shows that this is optimal when xo € @Q, but we do not expect it to be optimal
when xo ¢ Q. We suspect that the exact behavior, and hence 7y, (p), depends on
the irrationality of xo. We aim to study this question in a future work.

1.5 Related literature on the analytic study of Riemann’s non-differentiable
function

Beyond the literature for the original Riemann’s function Ry, the closest work to the
study of Ry, is by Oskolkov and Chakhkiev [40]. They studied the regularity of Ry, (¢)
almost everywhere as a function of two variables (xo, ¢), which is not fine enough to
capture multifractal properties.

Alternatively, there are many works studying Ry, (¢) as a function of xo with ¢
fixed, motivated by the fact that R, is the solution to an initial value problem for the
periodic free Schrodinger equation. From this perspective, Kapitanski and Rodnianski
[35] studied the Besov regularity of the fundamental solution'* as a function of x
with ¢ fixed. This approach is also intimately related to the Talbot effect in optics
which, as proposed by Berry and Klein [7], is approximated by the fundamental
solution to the periodic free Schrodinger equation. Pursuing the related phenomenon
of quantization," the geometry of the profiles of Schrodinger solutions have been
studied for fixed ¢ by Berry [6] and Rodnianski [43]. Following the numeric works of
Chen and Olver [16, 17], this perspective has also been extended to the nonlinear setting
and other dispersive relations by Chousonis et al. [18, 24] and Boulton, Farmakis and
Pelloni [8, 9].

There is a literature for other natural generalizations of Riemann’s function, like

00 .
e27r1 P(n)t

F(r) = Z — P apolynomial, o« > I,
n=1

For P(n) = n?, Jaffard [31] gave his results for all « > 1. Chamizo and Cérdoba
[13] studied the Minkowski dimension of their graphs. Seuret and Ubis [44] studied
the non-convergent case @ < 1, using a local L> exponent. Chamizo and Ubis [14,
15] studied the spectrum of singularities for general polynomials P. Further gener-
alizations concerning fractional integrals of modular forms were studied by Pastor
[41].

1.6 Structure of the article

In Sect. 2 we discuss the general strategy we follow to prove our theorems, stressing the
new ideas related to Diophantine sets with restrictions, the Duffin—Schaeffer theorem
and the Mass Transference Principle. In Sect.3 we prove preliminary results for the
local Holder regularity of R,,, in particular the behavior around rational points ?.

14 Which, up to constants, is either d; Ry (1) or 8)%0 Ry (1).

15 See the article by Olver [39] for an instructive account of quantization.
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In Sect.4 we compute the spectrum of singularities of Ry, when xo € Q and prove
Theorem 1.1. In Sect.5 we prove Theorem 1.3. In Sect.6 we prove Theorem 1.6 by
computing the L? norms of the high-pass filters of Ry,. The proofs of some auxiliary
results are postponed to Appendices A and B to avoid breaking the continuity of the
main arguments.

2 An overview on the general arguments and on Diophantine
approximation

2.1 General argument

An important part of the arguments in this article relies on Diophantine approximation.
We will work with both the exponent of irrationality

1
n(x) = sup { n>0: ’x _r < — for infinitely many coprime pairs (p, g) € N x N]
g

q
(12)
and the Lebesgue and Hausdorff measure properties of the related sets
1
Ay = [x e [0,1] | ‘x — —| < — for infinitely many coprime pairs (p, g) € N x N}
g
(13)

where the case j1 = oo is understood as Aso = )5, Ay Ina somewhat hand-waving
way, ;1 (x) = pu means that |[x — p/q| >~ 1/q" 1nﬁn1tely often, which ceases to be true
for any larger w.

With these concepts in hand, the classic way to study the regularity of Ry, (used
by Duistermaat, Jaffard and subsequent authors) is to first compute the asymptotic
behavior of Ry, around rationals. Using the Poisson summation formula we will get
a leading order expression of the form

R(g +h) - R(g) ~ ?Gq ~ % (14)

where G includes a quadratic Gauss sum of period g, hence |G| ~ /q whenever it
does not cancel. This shows that in most rationals the regularity of Ry, is 1/2. Let now
t ¢ Q with irrationality exponent . (t) = w. Then, essentially |t — p/q| ~ 1/¢", so
choosing h =t — p/q we get
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This suggests that oy, (1) = % + ﬁ Combining this with the Jarnik—Besicovitch
theorem, which says that dimy A, = 2/u, we get the desired d(«) = 4o — 2 in the
range 1/2 <« < 3/4.

This argument is essentially valid up to assuming G, # 0 in (14). This, however,
does not always hold. Apart from a parity condition on g coming from the Gauss sums
(present already in previous works), an additional condition arises that depends on x.
For example, if xo = P/Q € Q, this condition has the form of Q | ¢. In terms of the
sets A, this means that we need to restrict the denominators of the approximations
to a subset of the natural numbers. So let @ C N, and define

1
Ay o= [x e [0,1] : ‘x — g‘ < qT‘ for infinitely many coprime pairs (p, g) € N x Q],

15)

Clearly A, o C A, but a priori it could be much smaller. Does A,, ¢ preserve the
measure of A, ? Previous works need to work with situations analogue to Q = 2, but
here we need to argue for all Q € N. For that, at the level of the Lebesgue measure we
will use the Duffin—Schaeffer theorem, while we will compute Hausdorff measures
and dimensions via the Mass Transference Principle.

2.2 Lebesgue measure: Dirichlet approximation and the Duffin-Schaeffer
theorem

Both the Dirichlet approximation theorem and the theory of continued fractions imply
A = [0, 1]\Q. However, neither of them give enough information about the sequence
of denominators they produce, so they cannot be used to determine the size of the set
Ay o C Aj. The recently proved Duffin—Schaeffer conjecture gives an answer to this
kind of questions.

Theorem 2.1 (Duffin—Schaeffer theorem [37]) Let ¥ : N — [0, 00) be a function.
Define

A¢={xe[0,1]:)x—§‘

< ¥ (q) for infinitely many coprime pairs (p,q) € N x N }

Let ¢ denote the Euler totient function.'® Then, we have the following dichotomy:

@ If 302 9@V (q) = 00, then |Ay| = 1.
(b) If 302, (@Y (g) < 00, then |Ay| = 0.

16 The Euler totient function: for q € N, ¢(q) is the number of natural numbers i < g suchthatged(q,i) =
1.
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The relevant part of this theorem is (a), since (b) follows from the canonical limsup

covering
00 » »
rveld U (E-ve Live). voen
4=0 1=p=q 1 q
(p.g)=1

= Ayl <) e@V(q), YQeN.
q=0

(16)

On the other hand, as opposed to the classic theorem by Khinchin!? [36, Theorem 32],
the arbitrariness of ¢ allows to restrict the denominators to a set @ C N just by setting
Y¥(g) = 0 when g ¢ Q. In particular, A, g = Ay if we define ¥ (q) = 19(q)/q",
where 1 ¢ is the indicator function of the set Q. Hence, the relevant sum for the sets

Ay Qis

Do) =) %‘”

I
g=1 qeQ

In particular, it is fundamental to understand the behavior of the Euler totient function

@on Q.

The complete proof of the Duffin—Schaeffer theorem was given recently by Kouk-
oulopoulos and Maynard [37, Theorem 1], but Duffin and Schaeffer [21] proved back
in 1941 that the result holds under the additional assumption that there exists ¢ > 0

such that

N N
290(61) v(g) = CZq ¥(q), forinfinitely many N € N.
g=1 q=1

7)

In the setting of A, o, this condition is immediately satisfied by sets Q for which

there is a ¢ > 0 such that ¢(q) > c ¢ for all ¢ € Q. Examples of this are:

e O = P the set of prime numbers, and

e Q={M": neN}where M € N, that is, the set of power of a given number M.

It follows from our computations in Appendix A that the condition (17) is also satisfied

by

e Q={Mn: neN}where M € N, that is, the set of multiples of a given number

M.

To prove Theorem 1.1 for xo = P/ Q, we restrict the denominators to the latter set with
M = 4Q;in particular, the 1941 result by Duffin and Schaeffer [21] suffices. However,

17 Khinchin’s theorem states that if ¥ : N — [0, 00) is a function such that qzw(q) is decreasing and
Z;":I q ¥ (g) = oo, thentheset {x € [0, 1] : |[x—p/q| < ¥ (q) for infinitely many pairs (p, g) € NxN}

has Lebesgue measure 1.
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in the case of xg ¢ Q we need to restrict the denominators to an exponentially growing
sequence g, for which we do not know if (17) holds. Hence, in this case we need the
full power of the result by Koukoulopoulos and Maynard [37]. This might give an
indication of the difficulty to settle the case xg ¢ Q.

2.3 Hausdorff dimension: the Jarnik-Besicovitch theorem and the Mass
Transference Principle

We mentioned that A, = [0, 1]\Q, and it follows from the argument in (16) that
|A,]l =O0for u > 2. Buthow smallis A, is when v > 27 A measure theoretic answer
to that is the Jarnik and Besicovitch theorem from the 1930s (see [25, Section 10.3]
for a modern version).

Theorem 2.2 (Jarnik—Besicovitch theorem) Let u > 2 and let A, be defined as in
(13). Then, dimy A, = 2/u and H*/"(A,) = oco.

In this article we need to adapt this result to A, ¢. First, using the Duffin—Schaeffer
Theorem 2.1 we will be able to find the largest wo > 1 such that [A,) g| = 1, so
that |A, g = O for all u > wo. To compute the Hausdorff dimension of those
zero-measure sets, we will use a theorem by Beresnevich and Velani, called the Mass
Transference Principle [5, Theorem 2]. We state here its application to the unit cube
and to Hausdorff measures.

Theorem 2.3 (Mass Transference Principle [S]) Let B, = By, (x,, rn) be a sequence of
balls in [0, 119 such that lim,,_s oo 1y = 0. Let o < d and let BY = B, (x,, r,?/d) be the
dilation of B, centered at x, by the exponent o.. Suppose that X* := limsup,,_, ., By
is of full Lebesgue measure, that is, |X*| = 1. Then, calling X := limsup,,_, o, By,

we have dimy X > o and H*(X) = oo.

To illustrate the power of the Mass Transference Principle, let us explain how
the Jarnik—Besicovitch Theorem 2.2 follows as a simple corollary of the Dirichlet
approximation theorem. From the definition of A, we can write!8

A, = limsup U B(p ! ) (18)

L
I
T 1<p=<q,(p.g)=1 1 4

Choose o = 2/ so that (A,)* = A, = Az, which by the Dirichlet approximation
theorem has full measure. Then, the Mass Transference Principle implies dimy A, >
2/u and H?>/H (A 1) = 00. The upper bound follows from the canonical cover of A,
in (18), proceeding like in (16).

For A, o, once we find the largest o for which [A,, ol = 1 using the Duffin—
Schaeffer theorem, we will choose @ = po/u so that the property (A, 0)* =
Aue,0 = Ay, o has full measure, and the Mass Transference Principle will then

imply dimy A, o = po/1-

18 The expression in (18) is not in the form of a limsup of balls. It follows, however, that the limsup of any
enumeration whatsoever of the balls considered in the construction gives the same set.
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3 Preliminary results on the local regularity of Ry,

In this section we carry over to Ry, regularity results that are by now classical for Ry.
In Sect. 3.1 we prove that R, is globally C 172 In Sect. 3.2 we compute the asymptotic
behavior of Ry, around rationals. In Sect. 3.3 we give a lower bound for «,, (¢) that is
independent of xg.

3.1 A global Holder regularity result

Duistermaat [22, Lemma 4.1.] proved that Ry is globally C'/2(r). The same holds for
all xo € R. We include the proof for completeness.

Proposition 3.1 Let xo € R. Then, oy, (t) > 1/2 forallt € R. That is, Ry, is globally
c'2,

Proof For h # 0, let N € N such that < |h| < and write

1 1
(N+1)? NZ°

.2 o
eZmn teanxo

)
- (627”/1 h _ 1)
n

) )
627“" teZTrmxo

n Z : (ezm'nzh _ 1)_
|n|>N n

Ry(t+h) = Ryy(t) = Y

[n|<N

Since |e!* — 1| < |x| for all x € R, we bound

) .
eZﬂm teZJmeo

P2
- (le[zn h 1)
n

2min?h 1|

le
<>y —5
= 2

[n|<N

[n|<N

1
< 2|hIN < 2|h|ﬁ —2./|h.

. 202
For the other sum, we trivially bound |62” inh _ 1| < 2to get
eZninzt eZﬂinxo

)
5 (eZﬂm h 1)
n

Hence | Ry, (t +h) — Ry, (t)| < 10|h|'/2. This holds for all 7, so Ry, € C'/2(¢) for all
t eR. O

|n|>N

3.2 Asymptotic behavior of Ry, around rational ¢

The building block for all results in this article is the behavior of Ry, around rationals,
which we compute explicitly.

@ Springer

Journal: 208 Article No.: 2971 [ TYPESET [__|DISK [_]LE [_] CP Disp.:2024/8/28 Pages: 63 Layout: Small-Ex




386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

V. Banica et al.

Proposition 3.2 Let xg € R. Let p, g € N be such that (p, q) = 1. Then,

Ry, (£+h)—Rxo <£> = —2nih
q q

4
\/J]_ZG(p, .q) Fyt (#) for h #0,

mez

where Fy. = Fy if h > 0and F+ = F_ ifh <0, and

i pr +mr eiznixz — 1 i f
G(p,m, e , F = [ ——— e dx.
(p.m,q) = Ze L(6) /R ST dx

The function F4 is bounded and continuous, F+(0) = 2n(—1+£1i), and

F e (LY o
- R -, )
s =0E0 5 (s‘*) <s2) @ s

Proof We follow the classical approach, which can be traced back to Smith [45], of
using the Poisson summation formula. From the definition of Ry, complete first the
sum to n € Z to write

p 2mn _1 2 pn?
e (f0) - () - L

nez

. 2xin?h_ .
where we must interpret the term n = 0 as the value of eﬂn—zl ~2mihasn — O.

Split the sum modulo g by writing n = mgq + r and

2min2h 2 q-1 2 2mi(mq+r)2h
e —1 eZNi% e2ninx0 _ 627”.% € ? —1 eZni(qurr)xg
2 - 2 :

n . 2 gt

nez r= me7z

19)

Use the Poisson summation formula for the function
27i(yg+r)2h _
e 1 2711(yq+r)x()

7R

for which, changing variables (yq + r)+/|h| = z, we have

T 2mi sgn(h)z? _ .
f(é) = |h| e2ﬂir§/q / e - 1627'”W(X0—§/‘1) dZ
z

\/W 2rirélq (XO - 5/‘])
— vyl Fol 2227,
g ¢ TV
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Therefore,

qg—1

. 27”— \/_ 2mrm/q ()C() m/q>
(19)_rz0 m% . Fy N0
«/W < 0 —m/Q)
G(p, F. )
p Y G(p.m,q) Fx i

meZz

The properties for Fy follow by integration by parts and the value of the Fresnel

integral. O

The main term in Proposition 3.2 corresponds to m € Z such that xo — m/q is

closest to 0. Define

— : _m
mq—argmzl:leﬂxo q” 5o that |xq|=‘xo—@‘=dist<xo, §>§L
Xg = X0 = 4 q q 2q
(20)
Then, shifting the sum,
p p /A
R <—+h ~R —):—2 ih+ Y2 G F
g ) "°<q g OO d jE(«/W>
v —m/q
G(p,mg+m,q) Fr | ——— ).
q Z 7 J_|h|

m#0

Let us now bound the sum as an error term. As long as (p, g) = 1, itis a well-known

property of Gauss sums that |G (p, m, q)| < +/2q for allm € N, so

VIl

Xg —m/q vl
ZG(p,mwm,q)Fi( Wi )‘szﬁ >

m#0 m#£0

Since |x4] < 1/(29) and m # 0, we have |x;, — m/q| = |m|/q.
separating two cases:

e If ¢/Th] < 1, we use the property F(x) = O(x~?) to bound

2

m#Q

2
m/q| o

Fi (x"

il

This suggests

Xqg —m/q |h| 2 1 2
@("—)‘5 ————— >q°|h| Y — ~q°|hl
VInl m; g — 2w
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e If g /|h| = 1, we split the sum as

N T RS

()

m#0 Im|=g+/1hl
Im|=g~/1hl 2l

< > o+ ) 1]

Jxg =m/q|?
Im|<q~/Th] |m|>q«/\7

1
i+ a?lhl Y — = q/lhl.

lm|=g~/1h|

These two bounds can be written simultaneously as

2

m##0

Fi(TZj/qﬂ min (g v/I21. ¢*1h]).

where the underlying constant is universal. Multiply by +/|]/.,/q to get the following
corollary.

Corollary 3.3 Let xg € R. Let p, q € N be such that (p, q) = 1. Then,

p p J1h| (x )
wl=—+h)— Ry | — —27ih+ —G ,q)F.
°(q ) (q) g G e OF

+0 (min (ﬂh, q>? h3/2)) ,
where the underlying constant of the O is independent of p, q and x.

Remark 3.4 The difference between xg = 0 and xo # 0 is clear from Corollary 3.3.

e If xo = 0, we have x, = 0 = m, for all g. The main term is |2|'/?¢~! G(p, 0, q)
F41(0), so there is a clear dichotomy: Ry is differentiable at p/q if and only
if G(p,0,q) = 0, which happens if and only if ¢ = 2 (mod 4); in all other
rationals, Ry, is cl/z,

o If xp # 0, itis in general false that x, = 0, so to determine the differentiability of
Ry, we need to control the magnitude of Fi (x,/+/[h]).

3.3 Lower bounds for the local Holder regularity

We now give lower bounds for o, () that do not depend on xo. In Sect. 3.3.1 we work
with t € Q, and in Sect.3.3.2 with t ¢ Q.
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3.3.1 At rational points

There is a dichotomy in the Ho6lder regularity of Ry, at rational points.
Proposition 3.5 Let xo € R andt € Q. Then, either oy, (t) = 1/2 or oy, (t) = 3/2.

Proof Lett = p/q with (p, q) = 1.1f q is fixed, we get min (ﬁlhl, g3 |h|3/2) =
q3/%|h|3/? for small enough |h|, so from Corollary 3.3 we get

p p . /A X
(5 ) = () = 2+ L 6. e i
+0<q3/2h3/2). Q1)

Then, differentiability completely depends on the Gauss sum G(p, mg, g) and on x.

Case 1 If G(p,mq.q) = O, then [Ry (2 + h) — Ry(%) + 27ih| S HP/2, s0

Ay (P/q) = 3/2.
Case2 If G(p,my,q) # 0 and x;, # 0. Then, |G(p,my,q)] =~ ./q and

limy, 0 x4 /+/Th] = 00, so |F+(xq//TH])| < h/xqz. Hence, ay, (p/q) > 3/2
because

(g 1) =#a(5)
q q

Case 3 If G(p, my, q) # 0 and x, = 0, we have |G(p, my, q)| = ,/q, so from (21)
we get

(g 1) =a(5)
q q

h h
—2mih + 0(£—2 + q3/2h3/2>
V4 x;

= —2mih + 04 (h*?).

h
> @|G(P’mq’4)||Fi(0)|

\/E 1
+0,(h) ~ — 4+ 0y(h) 2 h'/?
q «/6 q q

for h <, 1. Together with Proposition 3.1, this implies ay, (p/q) = 1/2.

That Cases 1 and 2 actually imply oy, (t) = 3/2 is a bit more technical; we postpone
the proof to Proposition B.6 in Appendix B. O

3.3.2 Atirrational points

We give a lower bound a,,(7) that depends on the exponent of irrationality of ¢, but
not on xp.

Proposition 3.6 Let xg € R andt € R\Q. Let u(t) be the exponent of irrationality of
t. Then, oy, (1) > % + ﬁ
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The proof of this result, which we include for completeness, closely follows the
procedure by Chamizo and Ubis [15, Proof of Theorem 2.3].

Remark 3.7 Similar to what happens for xo = 0, where ap(t) = 1/2 + 1/2[1(¢) >
1/2+1/2u(t) (see (7)), we do not expect the bound in Proposition 3.6 to be optimal
for all + ¢ Q. However, it will be enough to compute the spectrum of singularities.

Proof In view of Proposition 3.1, there is nothing to prove if w(t) = 0o, so assume
u(t) < oo. Let p,/qn be the n-th approximation by continued fractions of 7. Center
the asymptotic behavior in Corollary 3.3 at p,/¢n, and bound it from above by

() -G 2

where we used that |G (p,, mg,, gn)| < +/2q, foralln € N and |F(x)| < 1 for all
x e R

Let 4 # 0 be small enough. The sequence |t — p, /qn| is strictly decreasing, so
choose n such that

+ |h| 4+ min (@h g h3/2), (22)

LA RN PR L (23)
qn dn—1
Then, from (22), (23) and |t — p,/qn + h| < 2|h|, we get
[Rxo (t +h) = Ry (1)
< Ry, (pn poo b +h> — Ry, <&>
4n qn qdn
24
+| Ry ( —i—t—&)—Rm(&) @
qn qn qn
vad 3/2
s (V@ 111, a2 1mP72)
dn

Next we compute the dependence between ¢,, and 4. By the property of continued
fractions

1
" qn+149n '

1
MHn = ‘t - &
qn qn

we get 1/g, < 1/qji(f”_l) for all n € N. Then, from (23) we get
1

< |h| < <
Wy = Hn—1 — _ I
2 qnil Qr/f" 1/(n—1—1)

(25)

We now bound each term in (24) using (25).

e For the first term, by (25), /1A]//qn < |h| o
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RTINS 1 3 3/4 1+-L
e The fact that u, > 2 implies 5 + 2 = 1090 |h| < |h]>/* < |h|2" 2 and the

second term is absorbed by the first one.
e For the third term, we write the minimum as

Jn |h],  when |h| > 1/q2,

. 3/2 3/2\ _
min (,/—|h| Ih| )_
A 1 g2 1hP when |h] < 1/q2.

So we have two regions:

— When |h| > l/q,%, use (25) to bound

| byl
Van Il = G =D = R

— When || < 1/¢2, we directly have g, < |h|~'/2,s0

P12 = PR = < g

IA

where in the last inequality we used % + < % as before.

2l‘tn—]
Gathering all cases, we get

1 1 1, 1
|Re(t + h) — Ry (1) < [R|2F 20 4 |2 50

From the definition of the exponent of irrationality w(t) = limsup,,_, o, iy, for any
8 > Othereexists Ns € Nsuchthat i, < u(t)+6 foralln > Ns. Then,since |h| < 1,

we have |h|2+2Mn < |h|2+2ﬂ(f>+25 for all n > Ns. Renaming &, we get Ns € N such
that

8

1 1
IRy (t + 1) — Ryy(0)] < |012F¥50 7 forall || < |t — 2%

qN;

)

SO 0y, (1) > % + % — 8. Since this holds for all § > 0, we conclude that oy, () >

1 1
3 + IGR O

4 Proof of Theorem 1.1: spectrum of singularities when xp € Q

In this section we prove Theorem 1.1. Let us fix xg = P/Q such that (P, Q) = 1.
To compute the spectrum of singularities dy,, we first characterize the rational points
t where Ry, is not differentiable, and then we give an upper bound for the regularity
Q. (¢) at irrational ¢.
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4.1 Atrational points t

In the proof of Proposition 3.5 we established that Ry, is not differentiable att = p/g
if and only if G(p,my, q) # 0 and x, = dist(xo, Z/q) = 0. We characterize this in
the following proposition.

Proposition 4.1 Let xo = P/Q with gcd(P, Q) = 1, and let p,q € N such that
ged(p, q) = 1. Then, Ry, is non-differentiable at t = p/q if and only if

e g =kQwithk=0,1,3 (mod 4), in the case Q =1 (mod 2).
e g =kQ withk =0 (mod 2), in the case Q =0 (mod 4).
e g =kQwithk € Z, in the case Q =2 (mod 4).

In all such cases, the asymptotic behavior is

‘ VIR
Ry (2 + h> ~ Ry, (£> = ceitnan ) LA _orin
q q NG
) (min (ﬁh, q3/2h3/2>). (26)

where ¢ = 1 or ¢ = /2 depending on parity conditions of Q and q. In particular,
ax () =1/2.

Proof In view of the proof of Proposition 3.5, we must identify the conditions for
G(p,mg,q) # 0and x;, = 0. Since x;, = dist(P/Q, Z/q), we have x;, = 0 when
there exists m, € Z such that

P mg
—27 <— Pq=qu.

Since ged(P, Q) = 1, then necessarily Q|g. Reversely, if ¢ = kQ, then picking
mg = kP we have my/q = P/Q. In short,

xg =0 <= ¢isamultiple of Q.

So let g = kQ for some k € N. Then, m; = kP. Let us characterize the second
condition G(p, my, q) = G(p, kP, kQ) # 0. Itis well-known that

c 1s odd, or

cisevenand 5 =b (mod 2). @7

G(a,b,c) #0 <= either {

We separate cases:
e Suppose Q is odd. Then, according to (27), we need either

— kQ odd, which holds if and only if k is odd, or

— kQ even, which holds if and only if k iseven,and k Q /2 = kP (mod 2). Since
Q is odd and k is even, this is equivalent to k/2 = 0 (mod 2), which means
k=0 (mod 4).
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Therefore, if ¢ = kQ, the Gauss sum G(p, mgy,q) # Oifandonlyif k =0, 1,3
(mod 4).

e Suppose Q = 0 (mod 4). Since ¢ = kQ is even, by (27) we need kQ/2 = kP
(mod 2). Since Q is a multiple of 4, this is equivalent to kP = 0 (mod 2). But
since Q is even, then P must be odd. Therefore, k mustbe even. Inshort,ifg = kQ,
we have G(p, my, q) # 0if and only if k is even.

e Suppose Q = 2 (mod 4). Since ¢ = kQ is even, by (27) we need kQ/2 = kP
(mod 2). Now both Q/2 and P are odd, so this is equivalent to k = k (mod 2),
which is of course true. Therefore, if g = kQ, we have G(p, my, q) # 0 for all
k € Z.

Once all cases have been identified, (26) follows from Corollary 3.3 and from the
fact that if G(p, my, q) # 0 we have |G(p, my, q)| = c/q withe = lorc = V2.
O

4.2 A general upper bound for irrational t

We begin the study of r ¢ Q by giving a general upper bound for e (¢) for ¢ Q. The
proof uses an alternative asymptotic expression around rationals that we postpone to
Appendix B.

Proposition 4.2 Let xo € Q and t ¢ Q. Then, o, (t) <3/4.

Proof See Appendix B, Proposition B.3. O

4.3 Upper bounds depending on the irrationality of ¢

We now aim at an upper bound for o, (#) that depends on the irrationality of ¢ at the
level of Proposition 3.6. The idea is to approximate ¢ by rationals p/q where R,
is non-differentiable, which we characterized in Proposition 4.1. To avoid treating
different cases depending on the parity of @, let us restrict'® ¢ € 4QN, such that the

three conditions in Proposition 4.1 are simultaneously satisfied and (26) holds.
Let i € [2, 00). Define the classic Diophantine set

1
Ay = {t € (0, D\Q : |t - £| s for i. m. coprime pairs (p, g) € N x N}
q q
and for 0 < a < 1 small enough define the restricted Diophantine set
Au o= {t e (0, D\Q : |t — £| < % for i. m. coprime pairs (p, q) € N x 40N }
q q

For j1 = oo we define Aog = [, Ay and Aco 0 = (1,52 Ay, 0. Clearly, A, o C
A . Our first step is to give an upper bound for a (¢) forz € A, o.

19 We lose nothing with this reduction when computing the spectrum of singularities, but it may be prob-
lematic if we aim to compute the Holder regularity ay (¢) for all 7.
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Proposition4.3 Let n > 2 andt € Ay . Then, oy, (1) < % + ﬁ

Proof We begin with the case © < co.If t € A, o, there is a sequence of irreducible
fractions p, /g, with g, € 40QN, for which we can use (26) and write

i Vih
Pn) — ¢ e2Titnxg hin]

Ryy (1) — Ry (rT =27y + O (min (Vawhn, "> 1/*))

n Van
(28)
where we absorbed F'(0) into ¢ and we defined 4,, and w, as
DPn 1 a 1
hy=t——, |hy|l = < — < —. 29)
! a’ @k Tl g

We now absorb the second and third terms in (28) in the first term. First, © > 2 implies
q,%|hn| <1, so min(/q, |hnl, qsﬂ |h,|3/?) = qs/z |7, |32, Letting C be the universal

constant in the O in (28),

€ g3y 2 < S
4 /4n

2 C
= qplhl < VTek

and since q3|hn| < aq,%_“ < a, it suffices to ask a < ¢/(4C). Regarding the second
term, we have

2l < & Yl

4 /qn

c \2
= gl < (g)

This holds for large n because q,%|h,,| < 1 implies g, |h,| < 1/qn, and because
lim sup,,_, ., g» = oo (otherwise ¢, would be bounded and hence the sequence p, /g,
would be finite). All together, using the reverse triangle inequality in (28) and the
bound for 4, in (29)

p ¢ /1hn
Ry, (1) — Ro(;)’ "G = 2

1 1
|ha|2T2, ¥n> 1.

This means that R, cannot be better than C 1t at ¢, thus concluding the proof for

M < 00.
If t € A, g, by definitiont € A, o for all u > 2, hence we just proved that
oy, () <1/241/2p) for all u > 2. Taking the limit © — 0o we get oy, (1) < 1/2.
O

To prove Theorem 1.1, we need to compute dimy{ 7 : oy, () = o } with prescribed
a. For that, we need to complement Proposition 4.3 by proving that forr € A, o we
also have oy (1) > % + ﬁ By Proposition 3.6, it would suffice to prove thatt € A, o
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has irrationality p(¢#) = . Unfortunately, when p < oo this need not be true. To fix
this, for 2 < u < oo define the companion sets

B, = Au\ U Apte

e>0

t—£|
q

<

= {t €A, | Ye >0, only for finitely many r },
q

and

Bu,0 = A0\ U Apte

e>0

= {t €Ay | Ye >0, }t - £| < only for finitely many L },
q q

ghrte
(30)

which have the properties we need.

Proposition4.4 Let2 < u < oo. Then,

(i) Buo C By C{reR\Q: u@)=n}
(ii) If1 € By g, then oy, (1) = 5 + 5.
(iii) Ift € Ao, @, then oy, (t) = 1/2.

Proof (i) First, B, o C B, because A, o C A,. The second inclusion is a conse-
quence of the definition of the irrationality exponent in (12). Indeed, r € B, C A,
directly implies that p () > . On the other hand, for all € > 0, t € B, implies
t ¢ A, te, 50t can be approximated with the exponent i 4 € only with finitely many
fractions, and thus u(t) < u + €. Consequently, u(t) < u.

(i1) By (i), t € By, g implies (1) = 4, so by Proposition 3.6 we get oy, (1) > % +

ﬁ. At the same time, t € B, g9 C A, g, so Proposition 4.3 implies ay,(7) < % + ﬁ

(iii) It follows directly from Propositions 3.1 and 4.3. O

Corollary 4.5 Let2 < u < oo. Then, forall € > 0,
1 1
By o Cqte(0,1) : oy = 3 + ﬂ CAy_e.

For i = 2 we have the slightly more precise
By o C{te(0,1) : ayt) =3/4} C As.
For n = oo,

Ace.o C{1€(0,1) : ayy(t) =1/2} C Ao UQ.
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Proof Left inclusions follow from Proposition 4.4 for all > 2, so we only need to
prove the right inclusions. When p = 2, it follows from the Dirichlet approximation
theorem, which states that R\(Q C A,, and Proposition 3.5, in which we proved that
if ¢ is rational, then either ay, (f) = 1/2 or ay, (f) > 3/2. Thus, {t € (0, 1) : oy (t) =
3/4} C (0, D\Q C Aj. Suppose now that 2 < u < oo and that ay, (1) = 3 + ﬁ
By Proposition 3.6, oy, (1) > % + ﬁ, so we get u < wu(t). In particular, given any
€ > 0,wehave u —e < u(t), so |t — §| < 1/g*~¢ for infinitely many coprime pairs
(p,q) € Nx N, which means thatt € A, _. Finally, for u© = oo, if ¢ ¢ Q is such that
ay,(t) = 1/2, then by Proposition 3.6 we get j(#) = oo, which implies thatt € A,
forall u > 2, hencet € Aso. O

Now, to prove Theorem 1.1 it suffices to compute dimy; A, and dimy; B, o.
Proposition4.6 for 2 < u < oo, dimy A, = dimy B, o = 2/u. Also,
dimy Aso = 0.

Form this result, whose proof we postpone, we can prove Theorem 1.1 as a corollary.

Theorem 4.7 Let xo € Q. Then, the spectrum of singularities of Ry, is

4o —2,1/2 <a <3/4,
dyy () =1 0, a=3/2,
—00, otherwise.

Proof Proposition 3.1 implies d(«¢) = —oo when o < 1/2, while Propositions 3.5
and 4.2 imply that dy,(3/2) = 0 and dy,(o) = —oo if @ > 3/4 and o # 3/2. When
1/2 < o < 3/4, it follows from Corollary 4.5, Proposition 4.6 and the periodicity of
Ry,. First, dy,(1/2) < dimy(As U Q) = 0 because dimy Q = dimy Ao = 0. On
the other hand, for 2 < u < co we get

2<d l+l _ 2 Y 0 J 1+1 2
— -4+ — , Ve > = -4+ —)=-—.
M_xo 2 2u) T p—ce€ \2 21

which gives the result for 1/2 < o < 3/4 by renaming o« = 1/2 4+ 1/(2u). O
Let us now prove Proposition 4.6.

Proof of Proposition4.6 We have Ay = (0, 1)\Q by Dirichlet approximation, so
dimyy A = 1. For © > 2 we have dimyy A;, = 2/ by the Jarnik—Besicovitch The-
orem 2.2. Also, Aoc C Ay forall u > 2, so dimy Ase < 2/ forall u > 2, hence
dimy Aso = 0. So we only need to prove that dimy B, g = 2/ for2 < pu < oo.
Moreover,

Bu.o=Au.0\ U Apt+e CAp o CAy,

e>0

which implies dimy B, 9o < dimy A, = 2/u. Hence it suffices to prove that
dimy; B9 > 2/u. This claim follows from H%*/*(A,. o) > 0. Indeed, we first
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remark that the sets A, are nested, in the sense that A, C A, when o > p. We can
therefore write

U Apte = U Al

€>0 neN

By the Jarnik—Besicovitch Theorem 2.2, dimy; Ay 11/ = 2/(u + 1/n) < 2/u, so
HZ/“(AMH/,,) = 0 for alln € N, hence

Hz/u< U A,L+e> = H”“( U Au+,g> =, lim, Hz/M(AH%) v

e>0 neN

Therefore,

HYH(By,g) = M2 (Au,g\ U Aw) = H"(Au0) - H”ﬂ( U A,m)

€>0 e>0

= H* (AH,Q) )

s0 H?/*(A,. o) > 0 implies H*/*(B,. o) > 0, hence dimy; B, o > 2/u.

Let us thus prove H2/*(A w,0) > 0, for which we follow the procedure outlined in
Sect. 2 with the set of denominators Q = 4 ON. We first detect the largest p such that
Ay, o has full Lebesgue measure using the Duffin—Schaeffer Theorem 2.1. Define

L4on(q)
Yu0(g) =a q—“’
where a > 0 comes from the definition of A, ¢ and 14¢9n(g) is the indicator function
of 40N,

L, if40 | g,

Lion(g) = {0, otherwise.

Then, we have A, g = AW,Q’ where
AWQ = {t e[0,1] : ‘t — E‘ < ¥, 0(g) fori.m.coprime pairs (p, q) € N x N}
' q

has the form needed for the Duffin—Schaeffer Theorem 2.1. Indeed, the inclusion C
follows directly from the definition of v, ¢. For the inclusion D, observe first that
ifr € Ay, , with u > 1, then t ¢ Q. Now, if a coprime pair (p, q) € N? satisfies
It — p/q|l < ¥, 0(q),then g € 40N because otherwise we get the contradiction

Lion(q)
gt

0< -2 <vu0@ =a 0.
q
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In this setting, the Duffin-Schaeffer theorem says that A, ¢ has Lebesgue measure 1
if and only if

> 0@ Viol@) = Z ion _

= a0y

and has zero measure otherwise. Using this characterization, we prove now

I, uw=<2,

independently of a. To detect the critical u = 2, trivially bound ¢(n) < n so that

< @(40n) 40 —
> 3 w0y

n=1 n=1

<oo, if u>2.

However, this argument fails when u = 2. What is more, denote by IP the set of primes
so that

o @(40n) “Qp)
Y EE. ¥R

peP, p>40 p

If p € Pand p > 40, then gcd(p,4Q) = 1 because p 1 40 (for if p | 40 then
p = 4Q). Therefore, p(40p) = ¢(40) ¢(p) = ¢(4Q) (p — 1) > ¢(4Q) p/2, so

o 9(40n)  ¢(4Q) 1
EF I L =

peP, p>40 P

because the sum of the reciprocals of the prime numbers diverges.”® The Duffin—
Schaeffer Theorem 2.1 thus implies that |A | = 1and, inparticular,dimy; A g = 1.
From this we immediately get |A;, o| =1 when 1 < 2 because Ay 9 C Ay .

Once we know (31), we use the Mass Transference Principle Theorem 2.3 to com-
pute the dimension of A, ¢ for u > 2. Write first

Ay o = limsup U B(S,WM,Q(Q))-

N
y r=q, (p,q)=1

Let B =2/ so that

T4on(q) P L4on(g) L4on(q)
B_ [, 4ONG)\ g T4ONG) o/ 740 _
Yu.0(q)" = (d p ) =a T =a”/t 7 =v2.0(q),

20 This argument shows that the strategy used here to compute the dimension of A, ¢ also works if we
restrict the denominators to the primes Q = P in the first place. This situation arises when computing the
spectrum of singularities of trajectories of polygonal lines with non-zero rational torsion, studied in [4].
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with a new underlying constant a>/#*. Therefore,
. p
(Ap0)? :=limsup | J B( =, wu,Q(q)ﬂ)
7% p<q. (p.)=1 a

= lim sup U B(g Wz,Q(CI)> = A2,0.

7% p<q, (p.g)=1
Observe that 8 is chosen to be the largest possible exponent that gives |(A M,Q)ﬂ| =
|(Aup.0)| = 1.Since (31) is independent of a, we get |(A,,.0)>/*| = |Az, o] = 1, and

the Mass Transference Principle Theorem 2.3 implies that H*/* (A, o) = co. The
proof is complete. O

5 Proof of Theorem 1.3: spectrum of singularities when xg ¢ Q
In this section we work with xg ¢ Q and prove Theorem 1.3. Following the strategy for

xo € Q, we first study the Holder regularity at rational 7 in Sect. 5.1, and at irrational
t in Sect.5.2

5.1 Regularity at rational ¢
Lett = p/q anirreducible fraction. With Corollary 3.3 in mind, we now have x, =

dist(xo, Z/q) # 0. Since ¢ is fixed, limj_0 x,/|h|'/? = o0, s0 Fi(x) = O(x?)
implies Fiy (x4 /+/|R]) S |h|/x§ when i — 0. Also |G(p, my, q)| < «/2q for all m,.

Hence,
p p . 1 32\ 132
R ——|—h>—R (—)+2mh‘,§ +4q h>'<.
’ x"(q “\4q NCEY

This regularity is actually the best we can get.

Proposition 5.1 Let xo € R\Q and lett € Q. Then, o,,(t) = 3/2.

We postpone the proof of a, (f) < 3/2 to Proposition B.6. In any case, this means
that when xo ¢ Q, Ry, is more regular at rational points than when xo € Q.

5.2 Regularity at irrational ¢

Let now ¢ ¢ Q. Again, we aim at an upper bound for oy, (¢) that complements the
lower bound in Proposition 3.6. by approximating ¢ ¢ Q by rationals p, /g, and using
the asymptotic behavior in Corollary 3.3. However, now xo ¢ Q implies x4, # 0, so
we cannot directly assume Fx(xg,//|hq,|) = F+(0) ~ 1 anymore. Therefore, it is

fundamental to understand the behavior of the quotient x4, //|hg, |.
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5.2.1 Heuristics

Let g € N and define the exponents 14 and oy, as usual,

_ dist Z_l o= dist Z_l Xq 1
Xq=dis xo,g _qT‘I’ |q|— 18 tvg _qT‘i’ == \/W_qoqfu,qﬂ'

If o, — uy/2 > ¢ > 0 holds for a sequence g,,, we should recover the behavior when
xo € Q because

lim (aqn—“z"")>c>o —  lim 2=

- n—00 |hqn |

— Fi<i> ~FL(0), n>1. (32

Vlhg, |

The main term in the asymptotic behavior for Ry, (t) — Ryx,(pn/gn) in Corollary 3.3
would then be

1 1
V |hqn| V |hqn| §+2qu

Main Term = ——G(py, mg,, qn) F+(0) = >~ hg,
dn e A/ 4n e

if we assume the necessary parity conditions so that |G (p,, mg,, )| = /qn.
Recalling the definition of the exponent of irrationality w(-) in (12), we may think
of o4, — p(xo) and ug, — w(t), so these heuristic computations suggest that

ax,(t) < % + 2;(1) for ¢ such that p(#) < 2u(xg). Since Proposition 3.6 gives

Oy, (1) > % + Tl(t)’ we may expect that

1

oy (1) = 3 if 2 < () = 2u(xo), (33)

+ N
2u(t)

or at least for a big subset of such 7. It is less clear what to expect when () > 2u(xg),
since (32) need not hold. Actually, if o, — 1g,/2 < ¢ < 0 for all sequences, then
since Fr(x) =x~ 2+ 0(x™),

X, . - X 1
im qn — lim q#qn/ Tqn = 00 F:I: qn ~ .
n—00 |hqn| n—00 /|hqn| #(In_ 9qn
- 20‘qn
= |hq;1 | Han |

which in turn would make the main term in Ry, (t) — Ry, (pn/qn) be

V h(1n

n

1 1 _ 20q, 3_ 4ogy, —1

X >+
qn ~ 2" 2uq g, ~ 2 21q,
G(pnqu,,’ Qn)F:I:< ) - hQn ! hQn ! - hqn ! ’

Vihg,|

Main Term =
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)=l Together with lower bound in Propo-

2 ()
sition 3.6, we would get 3 + 2l < 0y (1) < 3 — 20

interval for oy (7).

The main difficulty to materialize the ideas leading to (33) is that we need the
sequence ¢, to generate good approximations of both xp and ¢ simultaneously, which
a priori may be not possible. In the following lines we show how we can partially
dodge this problem to prove Theorem 1.3.

which corresponds to an exponent % —

, which leaves an open

5.2.2 Proof of Theorem 1.3

Let o > 2. Recalling the definition of the sets A, ¢ in (15), define

A, NN = {x €[0,1] :

:
x — =
q
1 o . .
<— for infinitely many coprime pairs (b, g) € N x (N\4N) ¢ .
q
We first prove that the restriction in the denominators>' does not affect the Hausdorff

dimension.

Proposition 5.2 Let 0 > 2. Then, dimy Ay nun = 2/0. Moreover, Ay nun =
(0, D\Q, hence |Ay wun| = 1. If o > 2, then H/o (Ag, nyaN) = 00

Proof The proof for the upper bound for the Hausdorff dimension is standard. Writing

Ag man = limsup U B<_’ _a>
400 @#4N) | p g (b.g)=1 74

N U (U sh)

b L
0=1420.q¢4N M<b<q bgy=1 1 4

we get an upper bound for the Hausdorff measures using the canonical cover

Aswan (U B(b 1)) V0 €N

- =
q>0,q¢4N " 1<b<q 7 4

, 1
—  HP(A, nuw) < lim Zﬁ (34)
QﬁoquQ 4

Thus, Hﬁ(Ag, n4n) = 0whenof —1 > 1, and consequently dimy Ay Ny < 2/0.
For the lower bound we follow the procedure discussed in Sect. 2, though unlike in
the proof of Proposition 4.6 we do not need the Duffin—Schaeffer theorem here. We

21 This condition, which will be apparent later, comes from parity the conditions for the Gauss sums not
to vanish.
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first study the Lebesgue measure of Ay n4n. From (34) with 8 = 1, we directly get
|As, mun| = Owheno > 2. When o = 2, we get Ay nun = Az = (0, 1)\Q. Indeed,
if b, /q, is the sequence of approximations by continued fractions of x € (0, )\Q,
two consecutive denominators ¢, and ¢,+ are never both even.?2 This means that
there is a subsequence by, /q,, such that [x — b,, /gn, | < l/q,%k and gp, is odd for all
k € N. In particular, g,, ¢ 4N, so (0, )\Q C Az n4n. Hence,

1,0 <2,
|Ag, NN | = {07 S (35)

With this in hand, we use the Mass Transference Principle Theorem 2.3. For g > 0,

B . b 1\?
(A, nuan)? = lim sup U B(_,<_> )
q

(e
qzﬁ\? l<b<q, by=1 1 N

b 1
= limsu l | Bl—-,— | =A .

q—>oop (q qU'B) oF. RN
q¢4N 1<b<q, (b.q)=1

Thus, choosing f = 2/0 we get (Ag, N\4N)2/” = A N\4N, hence by (35) we get
[(Ag, N\4N)2/ﬂ| = 1. The Mass Transference Principle implies dimy Ay nun > 2/0
and H*/ (Ag, n\an) = 00. o

Letxg € Ay, nyan. Then there exists a sequence of pairs (b, g,) € Nx (N\4N) such
that |xo — b,/qn| < 1/g7 and moreover b, /g, are all approximations by continued
fractions. Define

Qxo ={gn : n €N}

to be the set of such denominators. This sequence exists because:

e if 0 = 2, there is a subsequence of continued fraction approximations with odd
denominator, in particular with ¢, ¢ 4N.

e if o > 2, by definition there exist a sequence of pairs (b,, g,) € N x (N\4N) such
that

b 1
X0 — —| < —% = 55, forlargeenoughn € N.
qn qn 245

By a theorem of Khinchin [36, Theorem 19], all such b,, /g, are continued fraction
approximations of xq.

29fx = lag; ay, ap, ...] is a continued fraction, then g9 = 1, ¢1 = a1 and g, = anq—1 + qn—2 for
n > 2.1f gy and gy were both even for some N, then g _; would also be, and by induction gg = 1
would be even.
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Since all such g, are the denominators of continued fraction approximations, the
sequence g, grows exponentially.”? Following again the notation in (15) in Sect. 2, for
w=>1and0 < c < 1/2, let**

P

q

< % for infinitely many coprime pairs (p, g) € N x Qy, } .

Auo, = {z €0,1] : .

Proposition 5.3 For u > 1, dimH(Au,on) =1/un.

Proof As in the proof of Proposition 5.2, the upper bound follows from the limsup

expression A, Qy = = limsup,,_, o, U1<p<qn (prgm)=1 B(p/qn, c/qh) and its canoni-
cal covering

Ave,cJ U (q —L>, VN eN = HP(Aug,) = lim Z ﬂﬁ -, (36)
n n

n>N 1<p=<q, n=N 4

Since g, > 2"/?,the series converges if and onlyif uf—1 > O.Thus,HB(AM,QXO) =0
for all B > 1/, hence dimH(AM,QXO) <1/un.

For the lower bound we follow again the procedure in Sect. 2. First we compute the
Lebesgue measure of A/t»on- From (36) with 8 = 1 we get |AM,QXO| =0ifu > 1.
When o < 1, we need the full strength of the Duffin—Schaeffer theorem proved by
Koukoulopoulos and Maynard [37] (see Theorem 2.1 in this paper). Indeed, we have
|Au 0, | = 1if and only if > o @(qn)/qh = oo, and otherwise |1Au. 0, | = 0.1f
u < 1, we use one of the classic properties of Euler’s totient function, namely that
for e = (1 — )/2 > 0O there exists N € N such that ¢(n) > n'~¢ foralln > N.In
particular, there exists K € N such that

o0 o0 o0

(p(CIn) (Qn) 1—
S,y et DBUMAED DI
n=1 n=K dn n=K n=K
so |A M’on| = lif u < 1. For u = 1, none of these arguments work, and we need

to know the behavior of ¢(g,) for g, € Q,,, of which we have little control. So
independently of ¢ > 0,

L w<l,

Ao, =17 n=1, (37
0, u>1.

23 We actually have g, > 21/2 To see this, rename this sequence as a subsequence (bpy /qn; )i of the
continued fraction convergents of xo. By the properties of the continued fractions, gn, > 2"%/2 Since
ng > k, we get qny = 2k/2,

24 When pu = oo the definition is adapted as usual as AOO-on =Ny A 1. Oxp - Proofs for forthcoming
results are written for ;& < oo, but the simpler u = oo case is proved the same way we did in Sect.4.3.
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Even not knowing |A 1,0, |, the Mass Transference Principle Theorem 2.3 allows us
to compute the Hausdorff dimension of A, o, ~from (37). As usual, dilate the set with
an exponent 8 > 0:

c\?
(AM,QXO) —hmsup U <— <7> )

T 1<p<qn 4
B

= lim sup U (— T) = Aug. 0y
n—o0 1<p<qn qn

with a new constant ¢?. Since (37) is independent of ¢, we have |(A/A,on)ﬂ| =
|AM/3,QxO| = 1 if uB < 1, and the Mass Transference Principle implies
dimy A:uvg).‘o > B. Taking B — 1/u, we deduce dimyy AM:QXO >1/u. O

As in Proposition 4.4 and in the definition of B, ¢ in (30), to get information about
ay,(t) fort € A, ¢ we need to restrict their exponent of irrationality. We do this by
removing sets A, . defined in (13). However, compared to Proposition 4.4 we have
two fundamental difficulties:

(a) The dimensionsdimyy A, =2/u > 1/u = dimy AM,Q.\O do not match anymore.
(b) Because do notknow the Lebesgue measure of Ay, Q) in(37), we cannot conclude

thatHl/M(AM,QXO) =ocoif u > 1.

To overcome these difficulties, let §1, > > 0 and define the set

81,8
BM], szo - (A/L’on \Au+61,Qx0)\< U A2u+52+6>-

e>0

Remark 5.4 (Explanation of the definition of B’S' & ) The role of §, is to avoid the

problem (b) above, while §; has a technical role when controlling the behavior of

Fi(xg,/\/hg,) in (40). Last, we remove Ay, 1. instead of A, ¢ to avoid problem (a)

and to ensure that B°" 52 is not too small. The downside of this is that we can only
X0

get pu(t) € [w, 2 + 2] for the exponent of irrationality of ¢ € B 52 If instead we

worked with the set
50
B/j,l Q’VO ( M, QAO\AM+81 QYO) ( U A/"+€>
€>0
we would deduce () = p and therefore oy, (r) = 1/2 4+ 1/(2n). However, we do

not know how to compute the dimension of El‘i‘ o, -
’ XO
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Proposition 5.5 Let i > 1. Then,

(a) dimy be'gz =1/u.

81,6 1
(b) Ift € B! 5 . then oy, (t) = 7+ 4ul252~

() If2<p< 26 —S1andt € B‘Sl 62 thenaxo(t) < 2 + 2/4

Proof of Proposition 5.5 (a) The inclusion Bil 52 C Au0, directly implies dims
’ Xo

BZ' ’52 < 1/p. We prove the lower bound following the proof of Proposition 4.6 in a
£ xo

few steps:

(a.1) Since dimy Au+31,9x0 = 1/(u + 81) < 1/u, we have dimH(Au,Qm\

Auisy.0,) = 1/1.
(a.2) The sets A,, are nested, so by the Jarnik—Besicovitch Theorem 2.2

dimy ( U Awﬁe) = sup {dimy (4y,15,,1)]

=0 neN

2 1
sup T = .
neN2pu 48+ n+82/2

Moreover, HY (U~ A2ptsr+e) = limy—oo H (A2j45,41/n) = Oforally >
1/ +82/2).

Take y suchthat1/(u+68/2) < y < 1/u.From(a.1) we get H” (A, Q) \Au+51.94)
= 00, and from (a.2) we hav e HY ( Ue=0 A2M+52+€) =0, so

HV(B51 ,82 ) = 'HV(A/L Qy \A4s,, Q‘O) — HY ( U A2M+3+€) > 0.

e>0

81,82

o, 2V and taking y — 1/ we conclude dimy B >
X0

Consequently dimy; B
/. 5 s
(b) Let t € BH"’QZXO. Then, 1 ¢ (..o A2p+8,+¢ implies (1) < 2u + 85, where

w(t) is the exponent of irrationality of 1. Combining this with Proposition 3.6 we get
I () T T e
X0 =2 2u(t)y = 2 4p+25,

(c) Let r € Bs"g Since 1 € Ay, 9, \Au+s,,Q,, there is a subsequence of

81,62
#, Qx

denominators (g, )x C Dy, such that c/q’H' ! |t — p,,k/q,,k| < c/q,’fk for k € N.

Define the errors £, and x,,, and the exponent 1, as

D 1 b 1
By = 1= 2% gy = e and i, = ‘xo _mlo— @38
qny qn, dny ng

From the condition above, since ¢ < 1, we immediately get that for any € > 0,
W< fn <pH+0+e Vhk> 1. (39
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Rxo (t) - Rxo <

By the asymptotic expansion in Corollary 3.3, we have

Xng

S,

pnk> _ |hnk|1/2

Nk

G(puy» buys gny) Fi< ) — 2mihy,, + Error,

dny

3/2,3/2 172

where Error = O ( min (gn,” huys Guy hny )) Let us treat the elements in this expres-
sion separately.

e Since gn, ¢ 4N, we have |G (pp,, buy» qn,)| = /qn, for k € N. Indeed, if g,,

is odd, then |G (py,, by, Gn )| = /Gn;- If qn, = 2 (mod 4), then by, is odd, so

qn, /2 = by, (mod 2) and hence |G (pp;, b, qn,)| = /2qn, . Also, by (38) and
(39),

Hny /2 S+4+5
X 2 1
M qﬂnk/ - qny < dny | N ' (40)
g Ak o = o w8«
V| Ay 4y o=5-3-5

Hence, if 20 > u + &1, we can choose € = 0 — /2 — §1/2 > 0 and we get

. Xnj . 1 . 1
lim <lim ————————=lim ——————— = O
k—o00 |h”k| T k—oo qgkfu/2781/2fe/2 k—o00 q’g—u/z—al/z)/z

Since Fy is continuous, we get | Fy. (xXy, /|hn, |'/?)| > |F£(0)]/2 = 1 forallk > 1.
Therefore,

h h
Main term = @G(pnk’bnk,an)F( Xny )‘ ~ \/m

| 1172 Iny

, Yk 1.

Any

The term 27ih,, is absorbed by the Main Term if |h,, | < /|hn, |/ /qn; > Which is
equivalent to |hy, | < 1/q,, . If u > 1, we get precisely |h,, | < c/q,‘fk <L 1/qu,.
Regarding the error term, we can write

s ]
|hnk| =

qny

J|h
— (qy%k|hnk|)1/2» qsk/2|hnk|3/2 = M
N Ani N dni

Qp%k|hnk|'

Since Error < C min (q,?{z |h,,k|3/2,q,1k/2 |hnk|) for some C > 0, the error is

absorbed by the Main Term if q,%k |y, | < c for a small enough, but universal
constant ¢. Choosing ¢ > 0 in the definition of A, ¢, . the condition |/, | <

c/qh, < c/ql is satisfied if 1 > 2.

31,02

Hence, if 2 < pu < 20 — 61 and t € Bu,on’ then |Ry () — Ryy(Puy/qn)l 2

Vn ) Jang for all k 3> 1. From (39) we have 1/ /Gny = |y, |V @H) > |hy,, |V @0,
1 1
50| Ryg ()= Reg (g /G| 2 |22 forall k > 1, whichimplies oy, (1) < § 455

O
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From Proposition 5.5 we can deduce the main part of Theorem 1.3.

Theorem 5.6 Let o > 2 and let xg € Ay, N\4n. Let 2 < i < 20. Then, for all § > 0,

1 1 2
—SSay() S s+ =

SRR

1
fdimH{t'
n

1
m 2t
Proof Choose 8, > 0 and any §; < 20 — . Hence, 2 < u < 20 — §; and Proposi-
tion 5.5 implies

881,32 C t._+—<a (t)<l+i
1, Qxg 2 T Ap+28 T T2 T 2u]”
Since dimyy Bi] ’52 = 1/p and &, is arbitrary, we get the lower bound. Let us now
’ XO

prove the upper bound. If o, (t) < % + ﬁ, by Proposition 3.6 we get % + % <

ay () < % + ﬁ, hence p(t) > . This implies t € A, _, for all € > 0, so by the
Jarnik—Besicovitch Theorem 2.2 we get

1 1 1 1 2
di t:-+-——-6%< 1) < -4+ —¢ <di Ay e =
lmH{ 2“1‘4“ _axo()_2+2M}_ 1MH Apy—e h—e
for all § > 0. We conclude by taking the limit € — 0. O

To get the precise statement of Theorem 1.3, we only need to relate the sets Ay, NN
with the exponent o (x9) = limsup,,_, ..{ tn : gn ¢ 4N} defined in (8). We proceed
as follows. Since {As, Nn\4n}o>2 is a nested family and A wan = (0, D\Q, for every
xo € (0, D\Q there exists o (xp) = sup{o : x9 € Ao, NN }. Let us check that
o (xg) = 0 (x0). Indeed, call 5 (xg) = 7.

e If & > 2. Then for ¢ > 0 small enough there exists a sequence by /g such
that gx ¢ 4N and |xo — bi/qk| < 1/q7 "¢ < 1/(2¢?). By Khinchin’s theorem
[36, Theorem 19], bi/qk is an approximation by continued fraction, for which
Ixo — bx/qrl = 1/q;* < 1/qf ¢, and therefore u; > & — €. This implies
o(xg) > o — € for all € > 0, hence o(xg) > &. On the other hand, for all
approximations by continued fractions with g, ¢ 4N with large enough n we have
X0 — bn/qnl = 1/q," > 1/q,f+f, hence p, < & + €. This holds for all € > 0, so
o(xg) <0.

o If & = 2, then |xo — b,/qnl = 1/¢k" > 1/q3+6, hence pu, < 2 + ¢, for all
approximations by continued fractions with g, ¢ 4N. Therefore, o (xg) < 2.
Since o (xp) > 2 always holds, we conclude.

Therefore, let xo € (0, 1)\Q. Then, xo € Ay nu4n for all o < o(xp), so the
conclusion of Theorem 5.6 holds for 2 < u < 20, forall 0 < o (xp). That implies

that for every § > 0,

1 1 1 1 2
§dimH{t :5—1— —8<axO(t)<f+—} 5;, forall 2 < u < 20(xq).

1
w du —2 " 2
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6 Proof of Theorem 1.6—the high-pass filters when xg € Q

In this section we prove Theorem 1.6. For that, we compute the L?” norms of the
high-pass filters of Ry, when xo € Q. In Sect.6.1 we define Fourier high-pass filters
using smooth cutoffs, reduce the computation of their L” norms to the study of Fourier
localized L? estimates, state such localized estimates and deduce Theorem 1.6 from
them. We prove such localized estimates in Sect. 6.2.

6.1 High-pass filters and frequency localization

We begin with the definition of high-pass filters we use in the proofs. Let ¢ € C*>
a positive and even cutoff with support on [—1, 1] and such that ¢ (x) = 1l on x €

[—1/2,1/2]. Let ¥ (x) = ¢ (x/2) — ¢ (x), and

¢ (x) ex) = v (x/29
¢ @) + Pjen ¥ (6/2)) P+ Xjen ¥ (x/2)

Y_1(x) = fork > 0,

so that we have the partition of unity Y - _; ¥x(x) = 1. For k > 0, y is supported
on [—2Kk+1 _2k=11y [2k=1 2k+1] Let f be a periodic function with Fourier series
f@) =3 ,czan €2 With the partition of unity above, we perform a Littlewood—
Paley decomposition

f@O =" Pf@), where Puf(t)=)_ yrma,e™™.

k=—1 nez

The Fourier high-pass filter at frequency N € N is roughly P>y f(t) =
Zkzlog ~ P f (). Let us be more precise working directly with R,,, whose frequen-
cies in ¢ are squared. Let N € N be large, and define ky to be the unique ky € N such
that 2V < /N < 2fv+1 We define the high-pass filter of R v at frequency N as

27ri(n2t+nxo)
PonR() = ) | PRy (D), where  PeRyy(1) = ) yu(m)—————.
k>kn neN
(41)

We first estimate || Px Ry, || , and then extend the result to estimate || P>y Ry |l p-

Remark 6.1 At a first glance, using pure Littlewood—Paley blocks in the definition
for high-pass filters in (41) may seem restrictive, since it is analogue to estimating
high-frequency cutoffs only for a sequence Ny ~ 25 — oco. However, the estimates
we give depend only on the L' norm of the cutoff 1y, so slightly varying the definition
and support of ¢ does not affect the estimates. This is analogous to having a cutoff
®(x/N) for a fixed ® as we state in the introduction.
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Multifractality and intermittency in the limit evolution...

We now state the estimates for the frequency localized L? estimates. For the sake
of generality, let ¥ € C* be compactly supported outside the origin and bounded
below in an interval of its support (for instance, i defined above).

Theorem 6.2 Let xg € R. Then, for N > 1,

n p NP2, when p > 4,

Z \p(_) o 2i (0 14 x0) < { N%logN, when p =4 (42)
N ~ ) 9

nez LP(0,1) NP/2 when p < 4.

When p = 2, the upper bound is sharp, that is,
N.

If xo € Q, then the upper bound is sharp. That is, if xo = P/Q with (P, Q) = 1,
then

. 2 2
’ ZneZ \I'(n/N) eZm(n t+n xq) ”LZ(O,]) ~

; . » NP2, when p > 4,
Z qj(ﬁ) eZm(n t+n xp) ~9 N2 IOgN, when p= 4, (43)
e LP(0,1) NP2, when p < 4.

Remark 6.3 All estimates in Theorem 6.2 depend on ||| due to Lemma 6.4.

We postpone the proof of Theorem 6.2 to Sect. 6.2. and use it now to compute the
L? norms of the high-pass filters || P>y Ry, ||, and therefore to prove Theorem 1.6.

Proof of Theorem 1.6 Denote the estimate for xo € Q on (43) in Theorem 6.2 by

4
~ G,(N). (44)
LP(0,1)

Z W(n/N) eZni(nz t4n x0)

nez

First, use the triangle inequality in (41) to bound

627ri(nzt+nx0)

> ) ———

nez

IP=NRugllp < Y MPRyllp = Y

k>kn k>kn

14

Since v is supported on [2%—1, 2k+1] we can take the denominator n? out of the L?
norm to get

Z wk (n) eZni(n2t+nX())

nez

1
1PN Ryllp S D 53¢

k>kn 4
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for example using [23, Lemma 3.1, Corollary 3.2]. We can now use (44) to get®

G (2k)1/p G (sz)l/P
IPonRyllp S Y —Fm— = (45)
k>kn

where the last equality follows by direct calculation because the defintion of G, makes
the series be geometric. For the lower bound, as long as 1 < p < oo, the Mihklin
multiplier theorem.?® combined again with [23, Lemma 3.1, Corollary 3.2] and (44)
gives

G (zkw)l/P

IP=NRxollp 2 1 Pry Reoll p = e

Z Wk}v (n) eZm(n t+nxp)
P

22kN

(46)

Joining (45) and (46) and recalling that 2kv ~ /N, we conclude that

G,@yp  [NTEEUP L p >,
”PZ‘NRXO”I’ZZZ—](N: N_3/4(10gN)1/4’p=4,
N34, p <4,

from which we immediately get

10g([| P> Ryl p) 241, p>4,
p(p) = lim —S-=NEwllp) | 2/ P

.
NS log(I/N) 3p/a,  p<a.

6.2 Frequency localized L? norms

In this section we prove Theorem 6.2. The L2 estimate, which holds for all xq, follows
from Plancherel’s theorem. For p # 2, we use the following well-known lemma,
whose proof can be found in [10, Lemma 3.18] (see also [4, Lemma 4.4]).

Lemma6.4 Let W € C°(R). Let N € Nand q € N suchthatq < N. Letalsoa € 7
such that (a, q) = 1. Then,

Z\y< ) eZni(n2t+nx)

nez

25 The estimates in Theorem 6.2 depend on ||W||{, so strictly speaking we need to check that for large
enough k >> 1, the norm || wk(Zk-) |I1 does not depend on k. This is the case, since

P (x) 2 ¥ (x)
2kxyd =/ _d :/ dx = Cy,.
/ WA= @ 1y, v Ty vem e ryen T

26 Apply Mihklin’s theorem in R to the operator Py, in (41) to get [Py fllp = 1Pk P>nfllp <
| P~y fl p, and then periodize the result using a theorem by Stein and Weiss [46, Chapter 7, Theorem 3.8]
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N
< .
~ I G (T N VT —a/q)

(47)

Moreover, there exist §, € < 1 only depending on ¥V such that if

a 8 b 8
gzev, -9 =2 -t d
- gl ~— N2 g/~ N
for some b € 7, then
n Fon2 N
§ :W(—) eZm(n tHnx) | ~ )
1\] (R4 /\/zi

nez
We are now ready to prove Theorem 6.2.

Proof of Theorem 6.2 Let xo € R. For simplicity, we prove the L> estimate for a
symmetric W. Considering f as a Fourier series in #, by Plancherel’s theorem we
write

2
n

— i ’\p(ﬁ) e2m‘nx0 + \IJ( _ _) e—2m'nxo 2
L20.)  p=1 " N

Z W (%) eZ7n'(n2 t4n xg)

nez

00
— Z \y(i)z ‘eZNinxo + 672ninxo
! N
n=

P i \D(i)zcosz(Znnx )
- n=1 N ’

This sum is upper bounded by N by the triangle inequality. If xo is rational, say
xo = P/Q, the bound from below follows?” by summing only over multiples of Q in
[N, 2N], so that

n Fo2 % 2N/Q N
Z‘I’(ﬁ) o2mi(n® t4n x0) > Z COSZ(ZITkao) _ 6 ~o N.
nez L20,1)  k=N/Q

If xg is irrational, it is known that the sequence (nxg), is equidistributed in the torus,
which means that for any continuous p-periodic function

1 Y P
ngnooﬁ};fmxo): /0 f.

27 Without loss of generality assume that W (x) >~ 1 for x € (1, 2).
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In particular, since for f(y) = cos(4wy) we have f01/2 f(y)dy = 0, we get?® for
large N that

2 2N
n .
Z lIl(ﬁ) i (n? 1+ x0) > Z cos>(2mnxg) ~ N+ Z cos(4mnxg) =
nez L%2(0,1) ,=N n=N

We now prove the upper bound (42) for any xo € R. The Dirichlet approximation
theorem implies that any # € R\Q can be approximated as follows:

a
VNeN, g <N, 1<a=<g suchthat ‘t——‘g—
q

which can be rewritten as R\Q C Uf]vzl Ui_, B(g qLN) for all N € N. Therefore,
forany N € N,

p
Z \Il(n/N) ezﬂi(nz t+n xo)

Lr(0,1)

nez

N ¢q
<> f > W(n /N 0 ) Car, (48)
g=1a=17B(g:

nez

qN)

We split each integral according to the two situations in (47) in Lemma 6.4:
Z \I—’(H/N) 2mi(n? t4n xo) dt

/|;_< nez
)

+ \I/(n N e2m(n t+n xo)

/~1<|t—"l<l Z / )

N2 q' ~gN 'neZ

/ (N)pcm/ ( : )pdt
—¢1<- NZi L <lt—Ll<zk Jalt — 1/2

NP2 ]
= g g /12 o2 -

P
dt

(49)

The behavior of that last integral changes depending on p being greater or smaller
than 2.

o If p <2,

NP2 1\'"7P2 1\ N2 1
Wy~ 4 ((= (=5 <= 4 ,
q[’/2 ql’/z gN N2 qP/2 qu—p/Z

28 Using the trigonometric identity cos? (x) = (1 4+ cos(2x))/2.
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SO

N ¢q
1
(48)<N1’222qp/2 e MZZ— NP2,

g=la=1 a=1a=11

o If p=2,

(49) ~ 1(1 +f" dh) <! (1+108V?) — log(g) ) = 1 +log(N/g)
q q

G h
2
hence
N N 1
< — ~ _ ~ )
“8) < Zl (1 log(q/N)) ~N /1 log(x/N) dx = N(l /; log(y) dy)
q:
o If p>2,

p—2 2\p/2=1 p/2—1 p—2
N N (N?) (gN) N

(49) ~

ql’/z qP/Z ~ ql’/2
1
p—2
— @SN Z AT
q= l

This series converges if and only if p > 4, and more precisely,

NP2, p >4,
(48) < § N2 logN, =4,
NP2 N2=PI2 = NP/2, p < 4.

This concludes the proof of (42).

We now prove the lower bound in (43) for xg € Q. Letxg = P/Q with (P, Q) = 1.
Let §, € > 0 as given in Lemma 6.4, and let N € N be such that Q < e N. Bound the
L? norm from below by

14
Z ‘-I—’(I/l/N) eZﬂi(n2 t+n xg) dt,

nez

Z \I/(I’l/N) eZJTi(nz t+n xo)

nez

p
),
oy J8(§%)
(50)
where a is any 1 < a < Q such that (a, Q) = 1. Use Lemma 6.4 with ¢ = Q and

b = P, for which the condition 0 = |[xg — P/Q| < &/N is satisfied trivially, and
t —a/Q| < S/Nz, which is valid on the domain of integration. Then, for N > Q /e,

@ Springer

Journal: 208 Article No.: 2971 [ TYPESET [__|DISK [_]LE [_] CP Disp.:2024/8/28 Pages: 63 Layout: Small-Ex




1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

V. Banica et al.

Z \Ij(l’l/N) 627'[!('1 t+n xp)

nez

N\’ NP &
z / (—) dt ~ —— — ~o NP2,
oy IB(g.5) \W@ Qri2 N?

o

In view of the upper bound in (42), this is optimal when p > 4. When p < 4, we
refine the bound in (50) as follows. Define the set

Ov={qeN:Q]|qgand g <eN},

whose cardinality >~ e N/ Q is as large as needed if N > 1. Observe that

a 9 a § , .
B(;I,F)QB(?,m):@’ Vg,q € On, (a,q9)=1=(d, q"),

as long as a/q # a’/q’. Indeed, the distance from the centers is W > # >
ﬁ, while the radius is % < oz N2 (choosing a smaller 6 > 0 if needed). Hence the
balls in the family {B(a/q, 8/N2) : q € Qp, (a,q) = 1} are pairwise disjoint, and
we can bound

14
Z \IJ(l’l/N) eZni(n2t+n x0)

nez Lp(0.1)

= Z/W

qeQy a:a,q)=1

14
3 Wn/Ny T gy (51)

nez

For each of those integrals we have ¢ = On for some n € N. To use Lemma 6.4 we
chose b = Pn so that 0 = |xo — b/q| < 8/N, hence

Gnz Y 3 /7i ) ar

qeQy ai(a.g)=1

_p €N/Q
sy 0@ N gon
=ON qb/2 — Qr/2 np/2 (52)
q€Qn n=1

We estimate this sum in the following lemma, which we prove in Appendix A, Corol-
lary A.S.

Lemma 6.5 Let Q € N. Then, for N > 1,

N N
Zw(ann):logN, and Z%:Nz_“, for o <2,

n=1 n=1

where the implicit constants depend on Q and «.
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Using this lemma in (52), when p < 4 we get

-2 _r
3 W(n/N) i 0 N ()~ v
Q Qp/2 Q Q
nez LP(0, 1)
Similarly, when p = 4 we get
4 2
. N N
3 W/ Ny 20 ) ~p — log (E ) ~o N? log N.
nez L*(0,1) 0? Q
Together with the upper bounds in (42), this completes the proof. O

Appendix A. Sums of Euler’s totient function

Sums of the Euler totient function play a relevant role in this article, especially in
Lemma 6.5. In Sect. A.1 we state the classical results and briefly prove them for
completeness. In Sect. A.2 we adapt these classical proofs to sums modulo Q that we

need in this article. Throughout this appendix, ¢ denotes the Euler totient function and
w denotes the Mdbius function.??

A.1 Sums of Euler’s totient function
Define the sum function
N
O(N) = Z(p(n), N eN.
n=1

Proposition A.1 For N > 1,

pu(n) 3

1 oo
®(N) = CN? + O(NlogN), where C = — Z

2 n2  x?

n=1

Proof By the Mobius inversion formula,

S(N) = z¢<n>—z (z“(‘”) ZZ ().

n=1 dln n=1 din

29 Forn € N, u(n) = 1if n is has no squared prime factor and if it has an even number of prime factors;
u(n) = —1 if n is has no squared prime factor and if it has an odd number of prime factors; and p(n) =0
if it has a squared prime factor.

@ Springer

Journal: 208 Article No.: 2971 [ TYPESET [__|DISK [_]LE [_] CP Disp.:2024/8/28 Pages: 63 Layout: Small-Ex




1109

1110

1

1112

1ms3

1114

115

1116

117

1118

119

1120

121

1122

1123

1124

1125

1126

1127

1128

1129

V. Banica et al.

Calling n/d = d’', the sum is in all natural numbers d and d’ such that dd’ < N.
Therefore,

LN/d] N

/ / LN/d] (IN/d] +1)

P(N) = E d'p(d) = E w(d) E d = E n(d) > .
d.d':dd'<N d'=1 d=1

For x € R, write x = |x] + {x}, where 0 < {x} < 1 is the fractional part of x. Then,
direct computation shows that [x | (|x| + 1) = x> + O(x) when x = 1, so

| N\2 N N2 & ) -~
=1 S (2 + o) - £ 519 Lo (V51

The series ZZOZI w(d)/d?* is absolutely convergent, and its value is known to be
2C = 6/712, SO write

N 00 o]
Z%ﬁl):zc- 3 “;d)_zc+0< N %>:2C+0<%>'
d=1 d=N+1 d=N+1

Since Y, 1/d ~ log N, we get ®(N) = C N> + O(N) + O(N logN) = CN? +
O(NlogN). O

As a Corollary of Lemma A.1 we obtain the analogue result for the sums weighted
by n™¢. Observe that when o > 2 the sum is convergent.

Corollary A.2 Let o < 2. For N > 1,

) )
Z(p ~logN, and Z‘P_:Nz—a’ if a <?2.
n=1

Proof Upper bounds immediately follow from ¢(n) < n. For lower bounds, assume
first that « > 0. From Proposition A.1 we directly get

S 1
> Zw(n) —<1><N) N2

n% _N“

—

n=

which is optimal when o < 2. For the case ¢ = 2 we use the summation by parts
formula’® to get

N
¢ _ q’(N) 1
z:: Z cp('”( )2 E)

30 Let a, and by be two sequences, and let By = Z,Il\l:lbn- Then, Z,[X:]anbn = ayBy —
Z,I,V;II Bn(an+l —ay).
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2n +1
n2(n+1)2°

P
_ o) )

N—1
d(n)

Restrict the sum to log N < n < N — 1, and combine it with ®(n) ~ n? forn > 1
from Proposition A.1 to get

Zgo(n) 1+ Z - ’VlogN—loglogN ~logN, for N> 1.
n>logN

When «a < 0, restrict the sum to n € [N/2, N] and use ®(N) = CN? + O(N log N)
in Proposition A.1 to get

N N

Z‘P(H) _ Z(p(n)nlal > (%)Ia\ Z (1) ~p D(N) = ©(N/2) ~ N2

1\]0
n=1 n=1 n>N/2

A.2 Sums of Euler’s totient function modulo Q
For Q € N, let
N
®o(N) = ¢(Qn) when N > I,

n=1

To estimate the behavior when N — oo we adapt the proofs of Proposition A.1 and
Corollary A.2.

PropositionA.3 Let O € N. Then, ®o(N) < ON?, and there exists a constant
cg > 0 such that

®o(N) > cgN? + 0g(Nlog N).

Consequently, ®o(N) ~¢ N2 when N > 1.

Proof The upper bound follows directly from ¢(n) < n for all n € N, so it suffices to
prove the lower bound. For that, first restrict the sum to n < N such that (Q,n) = 1.
By the multiplicative property of the Euler function, we get

N N
Po(N)= Y 9(Qm)=9(Q) Y ¢n). (54)
i (G
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The proof now follows the same strategy as in Proposition A.1. Use Mdbius inversion

to write

N

1

> e = ﬁ‘ (nZ ) Z Z ().

n=1
(Q,n)=

n=1 d|n = din
(Q.m=1 (Q n) 1

Observe that if (Q,n) = 1 and if we decompose n = d d’, then both d and d’ are
coprime with Q. Conversely, if d and d’ are coprime with Q, then soisn = dd’.

Thus,

N

D e =

n=1
(Q.m=1

N |N/d]

Y. dud= ) wd) Z df. 55
d,d :dd <N d=1 =1
(Q.d)=1=(0.d") (Q.d)=1 (Qd) 1

In the following lemma we give a closed formula for the inner sum. We postpone its

proof.

LemmaA4d Let Q € N, Q > 2. Then,

kO—1

= Q(pZ(Q), and SQ’k = Z n = QwT(Q)kzv Vk € N

n=1
(Q.n)=1

Now, for every d < N, find kg € NU {0} such that k;Q < |[N/d] < (kg + 1)0,

and write

sum

LN/dJ

ke Q-1 LN/d]
= Y d+ Y d=Su+0(tk+10?)
d'=1 d'=kyQ+1
(0.d"=1 (0,d)=1
Qe(Q)
= =C= K+ 0k +1Q?). (56)

Since the definition of kg is equivalent to é IN/d]—1 <ky < é LN/d], we deduce
that k; = Lé N /d]|. Consequently, since x| = x + O(1) and |x|? = x> 4+ O (x),

we get
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N »  N* 1 /N
ki= g + O and kd_WJFEO(E). (57)
Hence, from (56) and (57) we get
LN /d] 2
; 0(Q) N_ E E 2 v(Q) N? 2 ﬁ
; d=55 7 +0<¢(Q)d+Qd+Q>— 0 & te O(d).
(0.d)=1

We plug this in (55) to get
N N
(Q) wu(d) p(d)
> e =N Z —+0<Q2N ¥ 22 )
=1 d
(@)= (=1 (Q.d)=1

Thesum ) o | 1(d)/d? is absolutely convergent, and ¢ := > de1. (0.d)=1 w(d)/d* >
0 because

(d) & uld)|  w?
=1+ Z ‘ Z ik =< T 1<1
d=2 d=2
(Q,d)=1 (Q,d)=1
Hence,
N 00 00
wn(d) n(d) 1
d=1 d=N+1 d=N+1
(0.,d)=1 (Q.d)=1
Together with | ZQV:], 0.d)=1 H(d)/d| < log N, this implies
Y 0(0) 0(0)
3 o) =co N2+O<—N>+0(Q Nlog N)
ot 20 o
(Q,n)=1
= co ¢2<3>N2 +0o(Nlog N).

2
VJ(ZQQ> N?+ 0g(NlogN). O

Proof of Lemma A.4 We begin with k = 1. When Q = 2, we have Sp; = 1 =
2¢(2)/2, so we may assume Q > 3. We first observe that ¢(Q) is even, because if
O has an odd prime factor p, then ¢(p) = p — 1, which is even, is a factor of ¢(Q).
Otherwise, Q = 2" with r > 2, s0 ¢(Q) = 2"~ ! is even. Now, the observation that
(Q,n) =1 <<= (Q, Q —n) =1 implies
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LO/2] 0-1 LQ/2] 0(0)
Sor= > n+ X =Y (i+@-m)=0"2.

n=1 n=[0Q/2]+1 n=1

(Q.n)=1 (Q,n)=1 (Q,n)=1

Let now k > 2, so that

ko—1 0-1
Yo=Y <n+(k—1)Q>

=(k—1)0+1 =1
! (Q,n)=1 (Q’fn)=1

1
= So.1+ (k= 1)0¢(0) = 0p(0)(k - 5)'

Consequently,
140) k
1 Qp(Q) 2
=X Y nf=Yenofing)=2
t=1 | n=(t—1)Q+1 =1
(Q.m)=1

O

To conclude, we prove the estimates for the weighted sums that we needed in
Lemma 6.5 as a corollary of Proposition A.3. As before, when o > 2 the sums are
absolutely convergent.

Corollary A.5 (Lemma 6.5) Let Q € Nand o < 2. For N > 1,

N N
Z(p(ann)zlogN, and Z%:N%“ for a <2.

n=1
The implicit constants depend on Q, and also on o when a < 0.

Proof Upper bounds follow directly from ¢ (n) < n.Lower bounds follow from Propo-
sition A.3 with the same strategy as in the proof of Corollary A.2. If « > 0, by
Proposition A.3 we get

1
Z (”(Q”) <3 ®o(N) g N**, when N > 1.

When o« = 2, combine Proposition A.3 with summing by parts as in (53) to get

a Do (N 2n + 1
Z(p(Qn)— o )+Z ®om) z(ni Lt Z ‘“1°gN~

2
n
n=1 n=1 n= logN
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When o < 0, choosing § > 0 small enough depending on Q, Proposition A.3 implies

i@ >, Nl i 0(On) = NI(@g(N) = gBN)) =g.0 NIN? =
n% = Q 2 o

n=N

N2,

Appendix B. Alternative asymptotic behavior of Ry, around rational t

Following Duistermaat [22], we give an alternative asymptotic behavior of R, around
rationals that complements Corollary 3.3 and allows us to prove Propositions 3.5

and 4.2.

PropositionB.1 Let xo € R. Let p,q € N be such that (p,q) = 1.

Let x4 =

dist(xo, Z/q). Let h # 0 and denote sign(h) = % so that h = %|h|. If x; =0,

Rxo<£ + h) - Rxo<£) + 2ih
q q

h G s )
BN, IO YY)
NG (58)
2mi m?
—2miy
+2(1 £i) g PR Z G(p.mg+m,q) e 4t L0 <q7/2h5/2> ’
m#Q ﬁ m?
Ifxq 7& 0;
R (2 +1) = Roy(2) # 27
q q
_ .(m—qzxq)z
=201+ 1) g2 Y G(p,mg +m,q) e a7 59)
mel, ﬂ (m — qxq)2
7/2),5/2
co(rmApat )
Proof From the definition Ry, (1) =), £0 i t4nx0) /n?, we first write
2rin’h 2
B .
Ro(Z+0) =Ry (L) +2mih = 2min+ ) S P70 G2rin
q q 120 n
in? 2mri - 27'rmx
_27”/,12(/ annhrd> 0
nez
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Split the sum modulo ¢ by writing n = mg +r and use the Poisson summation formula
to obtain

Rxo<£ + h) - RXO(E) +2mih
= 27ih Ze2mr p/q Z (/ 271i(mq+r)2hr d‘L’) eZni(mq+r)x0

mez
=2mih Zezmr pla Z/ / s dT) o SR T 2
meZ
meZ r=0

where we changed variables (zq + r)?|h| = y?. Now complete the square to get

Rxo<3 + h) - Rxo(g) +27ih
q q

2
xp—m/q . (xg—m)/ )2
= 427 Z G(p,m, q)/ / :i:2mr }i 21W> dy) €¥2m 04r|h|q dr
meZ
1+i h| m/q)*
= 4o ' > Gp.m.g) / e ﬂm W gy, (60)
mez
By changing variables, and defining x, = minyez [xo —m/q| = |xo — m4/q| as in

(20), we write

RXO(E + h) - RXO(§> +2mih

v/ h] G(p,mg+m,q) / _27”
= 1+
=m(=1%i) /2 '%:Z Ja =T

fdg (61)

We now separate cases. If x, = 0, the integral of the termm = 0is [;° & 3/2d& = 2.
In all other cases, that is, if either x, # 0 or m # 0, integration by parts implies

00 ) 2
1, Gq=m/a) £
—— e an d&
/1 53/2
_ i qZh e*2ﬂl(m4qxq) /‘ —Znt(w m/q) Sdi:
i (m — qxg)? 1 55/2

2

q-h
o|l——= ).
((m—qxq)2>
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What is more, integrating by parts again we obtain

00 o —m /)2 2 (m—qxq)? 2
/ 1 6_27”. (xgq 4h/q) 5d§ _ i q h 672711 4:2;11 n 0( q h ) .
| &2 wi (m — qxq)? (m — qxg)?

Combining these with (61) give the desired expressions. O

Remark B.2 Computations for (60) are made rigorous to avoid convergence problems
by writing

) ) .
eZmn e27un h(l+ie) _

§ —1 2min®p/q 2minxg . 1 2win?plq 2minxg

3 e e = lm%) 3 e e .
n €—> n

nez nez

Proposition B.1 will allow us to give upper bounds of oy, (¢) for general ¢.
PropositionB.3 Let xg € Qandt ¢ Q. Then, oy, (t) < 3/4.

Proof Setxo = P/Q with P, Q € Nand (P, Q) = 1. Lett ¢ Q and let p, /g, be its
approximations by continued fractions. It is well-known>! that there is a subsequence
of odd denominators g,, . Renaming that subsequence back to ¢,,, we may assume that
all g, are odd. Consequently, |G (pn, m, g,)| = /q for all m, n € N. As usual, let

1 P m P m
hy=1— 22, lhn| < —. xq,,zmin———z’——ﬂ,
4n qy meZ | Q 4n 0 qn

and we immediately deduce that either x,, = 0 or 1/Q < g,x4, < 1/2. We separate
cases:

Case 1 We have x;, = 0 for infinitely many n € N. Rename that subsequence and
rewrite (58) as

‘Rxo<ﬁ i) = Reg (22) + 27,
4n dn

_ V| hal 3/2,3/2\ _ v |hnl 2
- 27“/5% +0 (%) = N (1+0@2h)) . ©2

n

Let § > 0 which we determine later. Separate cases again:

Case 1.1. Suppose that |1 4+ O(g2h,)| > & for infinitely many n € N. Then,

h
|Ryg(6) — Rug (1 — hy) + 2mihy| = 8—?'_”' > § 4,

qn

because g2|h,| < 1. Hence |Ry,(t) — Ryy(t — hy)| > (8/2) |h,|3/* for
infinitely many n € N, and consequently oy, (t) < 3/4.

31 Because two consecutive denominators qn and g, 11 are never both even.
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Case 1.2. We have |1 4+ O(g2h,)| < & for all large enough n. In that case, we
evaluate (62) at a point closer to p,/q,. Let € > 0 and write (58) for €h,,,
so that instead of (62) we get

Rxo<@ + ehn> - Rxo<@> + 2mich,
qn

n

hnl

qn

~ e

(1+€0(a2h)).

Since q,% |h,| < 1 and the constant underlying the big- O is universal, say
C, choose € < 1/(2C), in such a way that

€ J|h
Rm(@ +ehn) - Rxo<ﬁ> ©amieny| > Y& Nl
qn n 2 v Qn
From this and (62), we write
h
e Sl Rxo(ﬂﬂhn) —Rm(@) + 2elhnl
2 qn qn qn
Pn Pn
= Rxo (* + 6hn> - Rxo(t) = Rxo(t) - Rxo (7>‘ + 2melh,|
4n qn
Pn
S Ry, (CT + Ehn) — Ry, (@)
V1 hnl
+ \/q—: (14 O(grhn)) +27(1 + €)|ha]
< Rxo<& + eh,,) ~ Ry ()] +28 Y 1l
qn qn
: : !
In the last line we used the hypothesis of Case 1.2 and |h,| < Tar T

Hence,

)

2

Z(«/E )«/W

p
Rxo(q—” + ehn> — Ry (1) Yo —Cs "

n

for some C > 0. Fix v/€ = 4C§ small enough. Writing p,, /¢, + €h, =
t — (1 — €)hy, and observing that (1 — €)|h, | =~ |h,|, we conclude that

Rior = (1 = ) = Ryy ()|

S 5 il

P = ) |hn|3/4 ~|(1—= e)h,,|3/4, for large enough n.
n

Hence o, () < 3/4.
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Case 2 We have x,, # O for all large enough n € N, hence 1/0 < guxq4, < 1/2.

We now use (59) which has no leading /'/?

1/0 < gx4 <1/2,as

RXO(E + h) ~ Ry (f) +2rih
q q
5 i(m—qxq)z

. 1 (qurm)2 - 4q2h
G(p.0,9) VIh| 21 Z mip)T e

=2(1+i) —— NG f

meZ

Define the auxiliary function
—2ni(m2—2qxqm)y

2
. —1m“+2mgm e
fay =) ST

] 2
mez, (m —qxq)

Take absolute values and write
RXO(E + h) . Rxo(£> + 2ih
q

—2«/'*/«/?2 fq< >+0Q(q2h)’.

term. Rewrite it,>> assuming

g 00 (¢24)

(63)

(64)

We now state the properties of this function, whose proof we postpone.

LemmaB.4 Letg € N, let p € N be coprime with g and f, defined in (63). Then,

(a) fy is periodic of period Q.

(b) there exists yg € [0, Q] depending on q (and on p) such that | f (yg)| > 5.

(¢c) The sequence defined by yZ = yg + kQ satisfies

lim y{ =00, and |f;(y\)|>5, VkeN.
k—o00

Remark B.5 The dependence on p of the point yg isirrelevant for our purposes. Indeed,
once we fixt ¢ QQ, we get the sequence of approximations p, /¢, , hence each g, comes
with one and only one p,. Hence, we can assume that the sequence f,, only depends

on q,.

We now evaluate (64) at p,, /g, and h, =t — p, /g, and we separate two cases:

32 When q is odd and coprime with p, the inverses of 2 and p modulo ¢ exist. Therefore,

pretmr +mr . — 2 4 . (r-%—(2p)_1m)2
q

L m=
262ﬂl(4p) q Ze2nlp _ 27Tl(4p)

G(p.m.q) = Zez”’
r=1 r=1
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Case 2.1. Suppose lim sup,,_, , q,%|h,,| > 0, so that there exists ¢ > 0 and a subse-
quence for which ¢ < q3|hn| < 1. Then, from (64) we get

Ry (1) — Rx0<ﬁ> +2mih,| > c
qn

fq,,< lhn> +0g <q3h,,) .

Fix § > 0 which we later determine. Proceeding like in Case 1, we separate
two cases:

Case 2.1.1.

Case 2.1.2.

@ Springer

Suppose ‘ fan (4q+h) + 0¢ (g2hy)| = 6 for infinitely many n. Then,

Ry, (1) — Rxo<p"> +2rih,

for infinitely many 7, which implies a., (t) < 3/4.

Suppose ’fqn(4q2h ) + 09 (q2hy)
let €, be a sequence which we determine later, and define n,, = €,/ q,%.
Observe that n, = €,|h, |/(q,%|h,, |) =~ €,|hy|. Evaluate (64) at n,, to get

RXO<& + n,,) — Ry, <&> +2min,
q qn

< 4 for all large enough n. Then,

=2fﬁq§n f<4; >+0Q(q3nn)
=2V2¢, \/—fqn< ) Og ()|

Fix k € N large enough and set €, = 1/(4yZ"). Then, by Lemma B.4

(©),
1
Jan (E)‘ Ny |fqn

Since e, > 1/(kQ),if k € Nislarge enough we get Og (¢,) < Cpe€, <
1. In particular, |h,| >~ ¢ kn,. Therefore,

> 5, Vn large enough.

JN NI
Rxo(ﬂ + 77n) - Rxo<&) +27win,| > €, i = 2/2 |
4n 4n A/ 4n «/‘]n
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1315 With this, and using the assumption of this case in (64), we write
Jh
62/2_| "| S Ry, <& + 77n> - Rx()(pn)‘ + 27,
' 4n qn qn
Pn Pn
< Rxo — + M _Rxo(t) + Rxo(t)_Rxo — || + 27,
4n dn
1316
)4 V1
< R<q— +nn) — Ry(0)| +8—= W + 27 (|l + 7w
Jh
< Rm(&m,,)—Rxo(r) SpAUTIY
qn A 4n
1317 for large enough n, where in the last line we used 1, >~ |h,|/k < |hy|
[hal 1 [/ 3/2
an.d |h,| < —Vf 7= < Vf Since €, ~¢ 1/k, set§ = 1/(cok®?)
1319 with some small enough cg > 0 so that

1320 Z > 5|hn|3/4.

p
Rxg(qn + 77n> - Rxo(t) Z

(ei/z—ca)—' '>3—J_'
qn

qn

1321 Write p,/qn + nn =t — (hy, — np). Since |h,, — n,| < 2|h,|, we get

> 8|h |>* = 8|hy — na ¥, for large enough n,

1322

Rug (1 = (= 1)) = Ry 1)

1323 which implies ay, (1) < 3/4.
1324 Case 2.2. Suppose lim,,_, o q,%|hn| = 0. In this case, the term q,flhn| in (64) tends to
1325 zero, which kills the desired |A,, |3/ 4 that came from /i, //qn. To counter
1326 that, define n,, = €, /q,% asin Case 2.1.2. By (64),
p /1n
1327 Rxo (q—: + T]n) - Rxo(q,,) +2win,| = 2\/_6n fqn( ) + OQ (€x)| -
1328 Fix k € N large enough and set e, = 1/ (4yZ"). Then,
1 C C
_ dn _ 0 _*0
20 fqn(a)‘ - ‘fqn (3")[=5. and Og(en) = Coer = o Sr0 ="
1330 SO
1331 Rxo(& +7]n> - Rxo(&> +2mwin,| > €, T)n'
n 4n v/ 4n
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1332 With this and (64), we can write

en—'n” < Rx0<& + nn) - Rx0<&>‘ + 270,
qn qn

1333 . Rxo <& + 77}1) - Rxo(t) + Rxo @) — Rxo (&>' + 27777n
qn qn
SJ Rx()(& + nn) - Rx()(t) + ] qn|hn| + 21 (Np + |hal).
qn A 4n
1334 Since lim,,_, 5o q3|hn| = 0 implies h, = o(n,), and n,, = ? j: we get
Pn NG J'Tn €n /ln _ & 3/4
1335 Rxo(f + Un) - Rxo(t) 2 (en —q,"n ) = M -
4n N o
1336 Write p,/qn + 1y =t + (9, — hy). Recalling €, >~ 1/(kQ) for all n, and
1337 since h, = o(n,) implies |n, — h,| = n,, we conclude

3/4
€ 3/4

' g M — hn|3/4’

1338

Reg (14 (= h)) = Rey (0] =

1339 and therefore o, (1) < 3/4. m|

1340 We now prove Lemma B.4.

1341 Proof of Lemma B.4 (a) Write first

/
0#%—qmlrzl\xo——‘—q\xo——]— |Pg — Omy| = E",

133 where m = |Pq — Omy,| € N\{0}. Hence, the variable y in (63) only appears in

LoD i 272 , y
1340 e27n(m 2qxgm)y _ e Ti(Qm=—2mgm) 5 7

145 which is Q-periodic. Hence f;; has period Q.
1346 (b) Split the sum in f, in the terms m = 0, 1 and the rest,

, _1 14+2mg e—27‘ri(l—2qxq)y
+ eZm(4p) 7

+ Error
(Clxq)2 (1 - qxq)2

) =
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where 1/0Q < gx, < 1/2 implies

Z 2mitp)”

m#0,1

|n12+2n1qm e_2ﬂi(m2_2qxqm)y
|Error| = o "

(m — qxq)?

On the other hand, the phase in

1 14+2mg
q

e2m’(4p)_ e—2m‘(1—2qxq)y.

is continuous, decreasing, and Q-periodic. That implies that there exists yg € [0, O]

amidp)~! o

. q
such that e e 2mi(-24x¢)yy — 1 and consequently,

1 1 1
U—qx? 2 ta=i22~

1
q
DIz o+

3=5

because in (0, 1) the function 1/x2 4+ 1/(1 — x)? has a minimum in x = 1/2.
(¢) The fact that f, is Q-periodic implies that | f,(yi)| = |f;(v§ +nQ)| =

lIf,001=5 o

We now complete the proof of Proposition 3.5.

Proposition B.6 Let xg € Randt € Q. If ay(t) # 1/2, then ay,(t) = 3/2.

Proof By Proposition B.1, () = 1/2happensonlyif x, = Oand G(p, mg, q) # 0.
o If x, =0and G(p, my, q) =0, then xo € Q and g € 2N. From (58) and the fact

that
G(p,m,q)
ezni(4p)7lm2/‘1 G(p,0,q), q odd,
=1 2mip™ /2% /4 G(p, 0, q), g=0 (mod 4)and m even,

2mip™ (=112 /g 2rip™ (n=D/D/4 G(p,1,¢), g =2 (mod 4) and m odd,

and G(p, m, q) = 0 otherwise, we have

Rxo<£ 4 h) - RXO(E) +27ih
q q

(65)

Glpumg+m.q) ¢
=210y PPy M T +0 (q"217).

2
m odd ﬂ mn
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It suffices to find a sequence y; — oo such that |g(yx)| > ¢ > 0 for some ¢ > 0,
where

—2mim?y

G(p,mg+m,q) e
g =y —
m odd \/E m

because that way, defining h; = 1/(4¢%yx), we get

p p . 3/2 5/2 3/2
R (5 ) = Reg () + 2] 24 18001 = 003 Zg 1!

for all k large enough, hence ay,(r) < 3/2. So let us find that sequence yy.
According to (65), if g = 0 (mod 4), by symmetry we can write

—2mim? mg+m\2 mg—m\2
_ G(P,O,(Z) e 2mim*y 627.”-p—]< q;r ) é 627”-p—l< 412 ) é
g(y) 7 i <&
m>0 odd

-1
2rim?(y—L2—
G(p.0,q9) zmp*lﬁ e M=) p=my
=2 ¢ " ———5——cos|2n m).
v m>0 odd m

On the other hand, if g = 2 (mod 4), then

im2
G(p.1.q) e 2mim™y

2
Vi G ™
- +m—1\2  mg+m—1 1 . 1| gmg—m—1 2 mg—m—1 1
27ip l[ e ]* 2rip (7‘1 15—y
% (e ( 2 ) 2 4, 2 ) 2 q)

—1
12 A —2mim?(y—L— _
=2 7G(p, La) ezm.pil w 76 e Y : cos <2777 7P lmq nl)
= 2 2q ’
Vi m=0 odd m

g(y) =

Choose the sequence yy = p~'/(4q) + k for k € N. Then, since Xg = |xo —
my/q| = 0 implies xo = my/q, but also xo = P/Q in its reduced form, we get

©  cos (n% 2m + 1))

~ , Vk eN. 66
AIETS T € (66)
m=0
Define the Fourier series
0 2
cos(2m+ Hmz) w
G(z) = — T =—(1-2 e(—1,1),
(@) mEZO am 1 12 A (I—12z]) ze( )

so that, after extending periodically to R, in view of (66), we have |g(y,)| =
|G(p~'P/Q)| for all n € N. Observe that the only zeros of G are (2m + 1)/2
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for m € Z. We separate two cases again. If g = 0 (mod 4), by (65) m, must be
odd. Then Qm, = Pg implies 4 | Q, hence both p~!and P are odd. We deduce
p~'P/Q # (2m+1)/2forany m € Z,because otherwise p~' P = 2m+1)Q/2
for some m, so p~! P would be even. If ¢ = 2 (mod 4), then mg is even and
Q(@my/2) = P(q/2) implies that Q is odd. Hence p_lP/Q #* (2m + 1)/2 for
any m € Z. In both cases, this implies that |g(yx)| = IG(p~'P/Q)| # 0 for all
k, which is what we wanted to prove.
e If x; # 0, according to (59) we get

Rl 1) = Rolg)

i 952 (67)
2mi
. G(p,mg+m.,q) e s
+ th‘ ~ ’(qh)m S, SRR g =+ 0 (g7 ‘
~ NG (m — qxq)

because 0 < gx, < 1/2.1f g is odd, we use (65) and the definition of f; in (63)
to write

p p . 3/2,3/2 1 2
R (—+h>—R (—)+2 h‘: h ’ (— + O(g°h)|.
‘ X0 q X0 4 Tl q fq 4612/1 (q )

(68)

With the definition of y,‘f in Lemma B.4, choose the sequence h; = 1/(4¢> yZ)
that tends to zero and for which |fq(1/(4q2hZ))| = |fq(yZ)| > 5. This and (68)
show that ay, (t) = 3/2. When q is even, by (65), the sum in (67) only has either
even or odd terms. The main term is m = 0 if even terms survive, and m = 1 if
odd terms survive, and crude estimates in the error suffice to conclude. 0O
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