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Abstract1

With the aimof quantifying turbulent behaviors of vortex filaments,we study themulti-2

fractality and intermittency of the family of generalized Riemann’s non-differentiable3

functions4

Rx0(t) =
∑

n �=0

e2π i(n
2t+nx0)

n2
, x0 ∈ [0, 1].5

These functions represent, in a certain limit, the trajectory of regular polygonal vortex6

filaments that evolve according to the binormal flow. When x0 is rational, we show7

that Rx0 is multifractal and intermittent by completely determining the spectrum of8

singularities of Rx0 and computing the L p norms of its Fourier high-pass filters, which9

are analogues of structure functions. We prove that Rx0 has a multifractal behavior10

also when x0 is irrational. The proofs rely on a careful design of Diophantine sets that11

depend on x0, which we study by using the Duffin–Schaeffer theorem and the Mass12

Transference Principle.13
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1 Introduction15

Multifractality and intermittency are among the main properties expected in turbulent16

flows but, as usual in the theory of turbulence, it is challenging to analyze them17

rigorously. Themotivation of this article is to quantify themultifractal and intermittent18

behavior of regular polygonal vortex filaments that evolve with the binormal flow. This19

evolution is represented, in a certain limit, by the function Rx0 : R → C defined by20

Rx0(t) =
∑

n �=0

e2π i(n
2t+nx0)

n2
, (1)21

for x0 ∈ [0, 1] fixed. This function is one of the possible generalizations of the classic22

Riemann’s non-differentiable function, which is recovered when x0 = 0, and it can23

also be seen as the solution to a periodic Cauchy problem for the free Schrödinger24

equation. In this article we study the multifractality and intermittency of Rx0 , which25

until now was unknown for x0 �= 0:26

• When x0 ∈ Q, we completely describe the multifractality of Rx0 by computing27

its spectrum of singularities (Theorem 1.1). We also compute the L p norms of its28

Fourier high-pass filters to deduce its intermittency exponents (Theorem 1.6) and29

show that Rx0 is intermittent.30

• When x0 /∈ Q, we give a result that proves multifractality (Theorem 1.3) and31

strongly suggests that the spectrum of singularities depends on the irrationality of32

x0, and hence that it is different from when x0 ∈ Q.33

The main novelty in this article is a careful design of Diophantine sets and the use of34

the Duffin–Schaeffer theorem and the Mass Transference Principle to compute their35

measure and dimension. When x0 ∈ Q, we use the partial Duffin–Schaeffer theorem36

as proved byDuffin and Schaeffer in [21], while when x0 /∈ Qwe need the full strength37

of the theorem as proved by Koukoulopoulos and Maynard [37]. We give an overview38

of these arguments in Sect. 2. Before that, we introduce the concepts of multifractality39

and intermittency in Sect. 1.1, we discuss the connection of Rx0 and vortex filaments40

in Sect. 1.2 and we state our results in Sects. 1.3 and 1.4.41

1.1 Multifractality and intermittency42

The concepts ofmultifractality and intermittency arise in the studyof three dimensional43

turbulence of fluids and waves, both characterized by low regularity and a chaotic44

behavior. These are caused by an energy cascade by which the energy injected in large45

scales is transferred to small scales. In this setting, large eddies constantly split in46

smaller eddies, generating sharp changes in the velocity magnitude. Moreover, this47

cascade is not expected to be uniform in space, and the rate at which these eddies48

decrease depends on their location.49
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Multifractality and intermittency in the limit evolution...

Mathematically speaking, an option to measure the irregularity of the velocity v50

is to compute the local Hölder regularity, that is, the largest α = α(x) such that51

|v(x+h)−v(x)| � |h|α when |h| → 0. The lack of uniformity in space suggests that52

the Hölder level sets Dα = { x : α(x) = α } should be non-empty, and of different53

size, for many values of α. In this context, the spectrum of singularities is defined as54

d(α) = dimH Dα , where dimH is the Hausdorff dimension, and the velocity v is said55

to be multifractal if d(α) takes values in multiple Hölder regularities α.56

On the other hand, intermittency is a measure of the likelihood of localized bursts or57

outlier events. One way to quantify it is by analyzing the structure functions Sp(h) =58

〈|v(x + h) − v(x)|p〉 of the velocity when the scale h tends to zero. More precisely,59

defining the flatness as60

F4(h) = S4(h)

S2(h)2
, for very small h, (2)61

we have small-scale intermittency1 if limh→0 F4(h) = +∞. Assuming the typical62

power law63

Sp(h) � |h|ζp , (3)64

it is usual to rephrase the definition of intermittency as ζ4 − 2ζ2 < 0 for the intermit-65

tency exponent2 ζp. This definition, and in particular (2), is inspired by the probabilistic66

concept of kurtosis,3 which quantifies how large the tails of the underlying probability67

distribution are. A large kurtosis implies fat tails, which suggests that outlier events68

are more likely than for a normal distribution, agreeing with the widespread idea of69

non-Gaussianity. More generally, moments Fp(h) = Sp(h)/S2(h)p/2 of order p ≥ 470

can be used to measure the tails of a probability distribution (see [27, p. 124]) and71

therefore intermittency, so it is common in recent physics literature to measure ζp72

for different p (see [42] and references therein, also [2] for a numeric intermittent73

model). The intermittency condition is then rewritten as ζp − pζ2/2 < 0, a behavior74

that corresponds to a sublinear ζp.75

1.2 Rx0 as the trajectory of polygonal vortex filaments76

The binormal flow is amodel introduced byDaRios4 in 1906 [19] as an approximation77

to the evolution of a vortex filament according to Euler equation and whose validity78

has been precisely and rigorously described theoretically by Fontelos and Vega in [26]79

in the setting of the Navier–Stokes equations. This model describes the motion of the80

filament X : R × R → R
3, X = X(x, t) by the equation X t = X x × X xx . Inspired81

1 Proposed by Frisch [27, p. 122, (8.2)] and Anselmet et al. [1].
2 In this setting, intermittency is regarded as a nonlinear correction toKolmogorov’s theory (see [12, Section
2.4]) which predicted the exponents ζp to be a linear function of p and hence ζ4 − 2ζ2 = 0 and, in general,
ζp − pζ2/2 = 0.
3 The fourth standardized moment, sometimes also referred to as tailedness.
4 Explored also by Levi-Civita in [38].
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Fig. 1 Image of φx0 , t ∈ [0, 1], defined in (5), for some values of x0

by Jerrard and Smets [33], De la Hoz and Vega [20] observed numerically that if the82

initial filament XM (x, 0) is a regular polygon with M corners at the integers x ∈ Z,83

then the trajectory of the corners XM (0, t) is a plane curve which, identifying the84

plane with C and when M is large, looks like85

φ(t) =
∑

n∈Z

e2π in
2t − 1

n2
= 2π i t − π2

3
+ R0(t). (4)86

Moreover, let χM (x, 0) be an infinite polygonal line that loops the polygon of M sides87

a finite but large number of times and ends in two half-lines, symmetrized at x = 0.88

Banica and Vega rigorously proved in [4] that, under certain hypotheses, its binormal89

flow evolution χM (x, t) obtained in [3] satisfies90

lim
M→∞ M χM (x0, t) = φx0(t) :=

∑

n∈Z

e2π in
2t − 1

n2
e2π inx0 , ∀x0 ∈ [0, 1]. (5)91

We show in Figs. 1 and 2 the image of φx0 for some values of x0. Like in (4), noticing92

that the Fourier series
∑

n �=0
e2π inx

n2
is 2π2

(
x2 − x + 1

6

)
, we can write93

φx0(t) = 2π i t − 2π2
(
x20 − x0 + 1

6

)
+ Rx0(t),94

which shows thatφx0 and Rx0 have the same regularity as functions of t . In otherwords,95

Rx0 captures the regularity of the limit trajectory of polygonal vortex filaments that96

evolvewith the binormal flow. This connectionmotivates us to study themultifractality97

and intermittency of Rx0 .98

1.3 Definitions and notation99

We now rigorously define the concepts discussed above.100

1.3.1 Holder regularity101

A function f : R → C is α-Hölder at t ∈ R, which we denote by f ∈ Cα(t), if there102

exists a polynomial Pt of degree at most α such that | f (t + h) − Pt (h)| ≤ C |h|α103
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Multifractality and intermittency in the limit evolution...

Fig. 2 The images of φx0 , t ∈ [0, 1], for the values x0 = 0, 0.1, 0.2, 0.3, 0.4, 0.5, from the rightmost to
the leftmost

for some constant C > 0 and for h small enough. In particular, if 0 < α < 1, the104

definition above becomes105

f ∈ Cα(t) ⇐⇒ | f (t + h) − f (t)| ≤ C |h|α, for h small enough.106

The local Hölder exponent of f at t is α f (t) = sup{α : f ∈ Cα(t) }. We say f is107

globally α-Hölder if f ∈ Cα(t) for all t ∈ R.108

1.3.2 Spectrum of singularities109

The spectrum of singularities of f is110

d f (α) = dimH{ t : α f (t) = α },111
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where dimH is the Hausdorff dimension,5 and convene that d(α) = −∞ if { t :112

α f (t) = α } = ∅.113

1.3.3 Intermittency exponents114

As discussed in (3), the exponents ζp of the structure functions Sp(h) describe the115

behavior of the increments of functions in small scales. Here we take the analogous116

approach of studying the high-frequency behavior of functions. Let � ∈ C∞(R) be a117

cutoff function such that �(x) = 0 in a neighborhood of the origin and �(x) = 1 for118

|x | ≥ 2. For a periodic function f with Fourier series f (t) =∑n∈Z ane2π int , define119

the high-pass filter by120

P≥N f (t) =
∑

n∈Z
�
( n
N

)
an e

2π int , N ∈ N.121

We treat the L p norms ‖P≥N f ‖pp as the analytic and Fourier space analogues of the122

structure functions.6 Our analogous to the power law (3) is7123

η f (p) = lim inf
N→∞

log(‖P≥N f ‖pp)
log(1/N )

, (6)124

which means that for any ε > 0 we have ‖P≥N f ‖pp ≤ N−η f (p)+ε for N �ε 1,125

and that this is optimal in the sense that there is a subsequence Nk → ∞ such that126

‖P≥Nk f ‖pp ≥ N
−η f (p)−ε

k for k �ε 1. We define the p-flatness to be127

Fp(N ) = ‖P≥N f ‖pp
‖P≥N f ‖p2

, N � 1.128

The corresponding intermittency exponent8 is η f (p) − p η f (2)/2.129

1.4 Results130

To simplify notation, let us denote αRx0
(t) = αx0(t), dRx0

(α) = dx0(α) and ηRx0
(p) =131

ηx0(p) for our function Rx0 defined in (1).132

5 See [25, Sections 3.1–3.2] for definitions and basic properties of Hausdorff measures and the Hausdorff
dimension.
6 We may think of the small scale h to be represented by 1/N , where N is the frequency parameter.
7 The heuristic exponent ζp in (3) and η(p) defined in (6) are a priori different. However, the definition of
ζp can be made rigorous using L p norms so that it is equal to η(p), as shown by Jaffard in [32, Prop. 3.1]
The exponent η(p) is actually related to the Besov regularity of f . Assuming ‖P≥N f ‖p � ‖P�N f ‖p
(which is the case for Rx0 ), where P�N f denotes the band-pass filter defined with the cutoff � with the

additional assumption of compact support, then η(p) = sup{ s : f ∈ Bs/p
p,∞}, where f ∈ Bs

p,q if and only

if (2ks‖P�2k f ‖)k ∈ 	q .
8 If the liminf in (6) is a limit, then ‖P≥N f ‖pp � N−ηp and hence Fp(N ) � N−(η f (p)−pη f (2)/2).
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Multifractality and intermittency in the limit evolution...

Since Weierstrass [47] announced9 Riemann’s non-differentiable function as the133

first candidate of a continuous and non-differentiable function in 1872, the regularity134

of R0 has been studied by several authors. After Hardy [30] and Gerver [28, 29]135

proved that it is only almost nowhere differentiable (see also the simplified proof136

of Smith [45]), Duistermaat [22] launched the study of its Hölder regularity. Jaffard137

completed the picture in his remarkable work [31, Theorem 1] (see also [11] for a138

recent alternative proof) by computing139

α0(t) = 1

2
+ 1

2μ̃(t)
, for t /∈ Q, (7)140

where μ̃(t) is the exponent of irrationality of t restricted to denominators q �≡141

2 (mod 4).10 He combined this with an adaptation of the Jarník–Besicovitch theo-142

rem to prove143

d0(α) =
⎧
⎨

⎩

4α − 2, 1/2 ≤ α ≤ 3/4,
0, α = 3/2,
−∞, otherwise.

144

Our first results concern the spectrum of singularities of Rx0 for x0 �= 0.145

Theorem 1.1 Let x0 ∈ Q. Then,146

dx0(α) =
⎧
⎨

⎩

4α − 2, 1/2 ≤ α ≤ 3/4,
0, α = 3/2,
−∞, otherwise.

147

Remark 1.2 (a) To prove Theorem 1.1, we adapt the classical approach due to Duis-148

termaat [22] and Jaffard [31] by carefully choosing subsets of the irrationals with149

novel Diophantine restrictions to disprove Hölder regularities. However, the argu-150

ments in [31] to compute their Hausdorff dimension do not suffice11 when x0 �= 0.151

We solve this by using the Duffin–Schaeffer theorem and the Mass Transference152

Principle; see Sect. 2 for the outline of the argument.153

(b) Even if dx0 = d0 for all x0 ∈ Q, we think that αx0(t) �= α0(t). However, Theo-154

rem 1.1 does not require computing αx0(t) for all t ∈ R. A full description of the155

sets { t : αx0(t) = α } is an interesting and challenging problem because when156

x0 �= 0 it is not clear how to characterize the Hölder regularity αx0(t) in terms of157

some irrationality exponent like in (7). We do not pursue this problem here, which158

we leave for a future work.159

9 Weierstrass announced R(t) =∑∞
n=1 sin(n

2t)/n2; R0(t) =∑∞
n �=0 e

2π in2t/n2 can be seen as its imag-
inary part.
10 Precisely, μ̃(t) = sup{μ > 0 : ∣∣t − p

q

∣∣ ≤ q−μ for infinitely many coprime pairs (p, q) ∈
N
2 with qn �≡ 2 (mod 4)}.

11 The restriction for denominators in the case x0 = 0 is essentially a parity condition, which is solved in
[31] by dividing the set by the factor 2. This does not generalize to the case x0 = P/Q where the condition
for the denominator will be to be a multiple of 4Q.
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Let now x0 /∈ Q. Let pn/qn be its approximations by continued fractions, and160

define the exponents μn by |x0 − pn/qn| = 1/qμn
n . Define the alternative12 exponent161

of irrationality162

σ(x0) = lim sup
n→∞

{μn : qn /∈ 4N }. (8)163

This exponent always exists and σ(x0) ≥ 2 (see Proposition 5.2). Our result is the164

following.165

Theorem 1.3 Let x0 /∈ Q. Let 2 ≤ μ < 2σ(x0), with σ(x0) as in (8). Then, for all166

δ > 0,167

1

μ
≤ dimH

{
t : 1

2
+ 1

4μ
− δ ≤ αx0(t) ≤ 1

2
+ 1

2μ

}
≤ 2

μ
. (9)168

Remark 1.4 (a) We show in Fig. 3 a graphic representation of Theorem 1.3.169

(b) Theorem 1.3 shows that Rx0 is multifractal when σ(x0) > 2.170

(c) Theorem 1.3 would be strengthened to 1/μ ≤ dx0(1/2 + 1/2μ) ≤ 2/μ for μ <171

2σ(x0) if we could compute the dimension of some well-identified Diophantine172

sets, see Remark 5.4. This would give a nontrivial spectrum of singularities in an173

open interval for all x0 /∈ Q. We leave this for a future work.174

(d) The reasons to have an interval (1/μ, 2/μ) for the dimension in (9) seem to us175

deeper in nature. Unlike the upper bound 2/μ, which follows from approximating176

t with rationals p/q with unrestricted q ∈ N and with error q−μ (see the Jarník–177

Besicovitch theorem 2.2), the lower bound depends on the nature of x0 which178

imposes restrictions to q . When x0 = P/Q ∈ Q, we require q ∈ 4QN, which179

still results in a set of dimension 2/μ. However, when x0 /∈ Q we require q be180

restricted to an exponentially growing sequence (given by the denominators of the181

continued fraction approximations of x0). This restriction is much stronger and182

gives a set of t of dimension 1/μ. These results follow from the Duffin–Schaeffer183

theorem and the Mass Transference Principle.184

(e) The theorem and its proof (see the heuristic discussion in Sect. 5.2.1) suggest that185

the spectrum of singularities may be dx0(α) = 4α − 2 in the range 1
2 + 1

4σ(x0)
≤186

α ≤ 3
4 , and possibly something different outside of this range. In particular, we187

expect the segment of the spectrum in 5/8 ≤ α ≤ 3/4 to be present for all x0.188

Remark 1.5 Our results suggest that the trajectories of the binormal flow do not have a189

generic behavior in terms of regularity. Indeed, if Xn is a sequence of independent and190

identically distributed complex Gaussian random variables, then the random function191

S(t) =
∞∑

n=1

Xn
e2π in

2t

n2
(10)192

12 The usual exponent of irrationality is μ(x0) = lim supn→∞ μn .
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Fig. 3 A graphic representation of Theorem 1.3.We have a continuum ofWhitney-type boxes parametrized
by μ along the dashed diagonal line d(α) = 4α − 2. The graph of dx0 (α) has at least a point in each of
those boxes

has13 almost surely αS(t) = 3/4 for all t ∈ R [34]. Hence the generic behavior of (10)193

is monofractal. In contrast, the fine structure of the linear phase nx0 of Rx0 causes a194

multifractal behavior.195

Regarding intermittency, we compute the L p norms of the Fourier high-pass filters196

of Rx0 and the intermittency exponents ηx0(p) when x0 ∈ Q, from which we deduce197

that Rx0 is intermittent.198

Theorem 1.6 Let x0 ∈ Q. Let 1 < p < ∞. Then,199

∥∥P≥N Rx0

∥∥p
p �

⎧
⎨

⎩

N− p
2 −1, p > 4,

N−3 log N , p = 4,
N−3p/4, p < 4,

(11)200

and therefore201

ηx0(p) = lim
N→∞

log(‖P≥N f ‖pp)
log(1/N )

=
{
p/2+ 1, p > 4,
3p/4, p ≤ 4.

202

Consequently, limN→∞ Fp(N ) = +∞ for p ≥ 4. In particular, Rx0 is intermittent.203

Remark 1.7 (a) The p = 4 intermittency exponent in (11) is η(4) − 2η(2) = 0, but204

the fact that ‖P≥N Rx0‖44 does not follow a pure power law makes F4(N ) � log N .205

For p > 4, we have η(p) − pη(2)/2 = 1 − p/4 < 0, so Rx0 is intermittent in206

small scales when x0 ∈ Q.207

13 [34, p.86, Theorem 2] shows that almost surely αS(t) ≥ 3/4 for all t , and and [34, p. 104, Theorem 5]
shows that almost surely αS(t) ≤ 3/4 for all t .
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(b) The upper bound in (11) in Theorem 1.6 holds for all x0 ∈ [0, 1]. The theorem208

shows that this is optimal when x0 ∈ Q, but we do not expect it to be optimal209

when x0 /∈ Q. We suspect that the exact behavior, and hence ηx0(p), depends on210

the irrationality of x0. We aim to study this question in a future work.211

1.5 Related literature on the analytic study of Riemann’s non-differentiable212

function213

Beyond the literature for the original Riemann’s function R0, the closest work to the214

study of Rx0 is by Oskolkov and Chakhkiev [40]. They studied the regularity of Rx0(t)215

almost everywhere as a function of two variables (x0, t), which is not fine enough to216

capture multifractal properties.217

Alternatively, there are many works studying Rx0(t) as a function of x0 with t218

fixed, motivated by the fact that Rx0 is the solution to an initial value problem for the219

periodic free Schrödinger equation. From this perspective, Kapitanski and Rodnianski220

[35] studied the Besov regularity of the fundamental solution14 as a function of x221

with t fixed. This approach is also intimately related to the Talbot effect in optics222

which, as proposed by Berry and Klein [7], is approximated by the fundamental223

solution to the periodic free Schrödinger equation. Pursuing the related phenomenon224

of quantization,15 the geometry of the profiles of Schrödinger solutions have been225

studied for fixed t by Berry [6] and Rodnianski [43]. Following the numeric works of226

Chen andOlver [16, 17], this perspective has also been extended to the nonlinear setting227

and other dispersive relations by Chousonis et al. [18, 24] and Boulton, Farmakis and228

Pelloni [8, 9].229

There is a literature for other natural generalizations of Riemann’s function, like230

F(t) =
∞∑

n=1

e2π i P(n)t

nα
, P a polynomial, α > 1,231

For P(n) = n2, Jaffard [31] gave his results for all α > 1. Chamizo and Córdoba232

[13] studied the Minkowski dimension of their graphs. Seuret and Ubis [44] studied233

the non-convergent case α < 1, using a local L2 exponent. Chamizo and Ubis [14,234

15] studied the spectrum of singularities for general polynomials P . Further gener-235

alizations concerning fractional integrals of modular forms were studied by Pastor236

[41].237

1.6 Structure of the article238

In Sect. 2we discuss the general strategywe follow to prove our theorems, stressing the239

new ideas related to Diophantine sets with restrictions, the Duffin–Schaeffer theorem240

and the Mass Transference Principle. In Sect. 3 we prove preliminary results for the241

local Hölder regularity of Rx0 , in particular the behavior around rational points t .242

14 Which, up to constants, is either ∂t Rx0 (t) or ∂2x0 Rx0 (t).
15 See the article by Olver [39] for an instructive account of quantization.
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In Sect. 4 we compute the spectrum of singularities of Rx0 when x0 ∈ Q and prove243

Theorem 1.1. In Sect. 5 we prove Theorem 1.3. In Sect. 6 we prove Theorem 1.6 by244

computing the L p norms of the high-pass filters of Rx0 . The proofs of some auxiliary245

results are postponed to Appendices A and B to avoid breaking the continuity of the246

main arguments.247

2 An overview on the general arguments and on Diophantine248

approximation249

2.1 General argument250

An important part of the arguments in this article relies onDiophantine approximation.251

We will work with both the exponent of irrationality252

μ(x) = sup
{

μ > 0 :
∣∣∣x − p

q

∣∣∣ ≤ 1

qμ
for infinitely many coprime pairs (p, q) ∈ N × N

}
,253

(12)254

and the Lebesgue and Hausdorff measure properties of the related sets255

Aμ =
{
x ∈ [0, 1] |

∣∣∣x − p

q

∣∣∣ ≤ 1

qμ
for infinitely many coprime pairs (p, q) ∈ N × N

}
,256

(13)257

where the caseμ = ∞ is understood as A∞ =⋂μ≥2 Aμ. In a somewhat hand-waving258

way, μ(x) = μ means that |x − p/q| � 1/qμ infinitely often, which ceases to be true259

for any larger μ.260

With these concepts in hand, the classic way to study the regularity of Rx0 (used261

by Duistermaat, Jaffard and subsequent authors) is to first compute the asymptotic262

behavior of Rx0 around rationals. Using the Poisson summation formula we will get263

a leading order expression of the form264

Rx0

( p
q

+ h
)
− Rx0

( p
q

)
∼

√
h

q
Gq ∼

√
h√
q

, (14)265

where Gq includes a quadratic Gauss sum of period q, hence |Gq | ∼ √
q whenever it266

does not cancel. This shows that in most rationals the regularity of Rx0 is 1/2. Let now267

t /∈ Q with irrationality exponent μ(t) = μ. Then, essentially |t − p/q| � 1/qμ, so268

choosing h = t − p/q we get269

Rx0

(
t
)
− Rx0

(
t − h

)
∼

√
h√
q

∼ h
1
2+ 1

2μ .270

123

Journal: 208 Article No.: 2971 TYPESET DISK LE CP Disp.:2024/8/28 Pages: 63 Layout: Small-Ex



R
ev
is
ed

Pr
oo
f

V. Banica et al.

This suggests that αx0(t) = 1
2 + 1

2μ . Combining this with the Jarnik–Besicovitch271

theorem, which says that dimH Aμ = 2/μ, we get the desired d(α) = 4α − 2 in the272

range 1/2 ≤ α ≤ 3/4.273

This argument is essentially valid up to assuming Gq �= 0 in (14). This, however,274

does not always hold. Apart from a parity condition on q coming from the Gauss sums275

(present already in previous works), an additional condition arises that depends on x0.276

For example, if x0 = P/Q ∈ Q, this condition has the form of Q | q. In terms of the277

sets Aμ, this means that we need to restrict the denominators of the approximations278

to a subset of the natural numbers. So let Q ⊂ N, and define279

Aμ,Q =
{
x ∈ [0, 1] :

∣∣∣x − p

q

∣∣∣ ≤ 1

qμ
for infinitely many coprime pairs (p, q) ∈ N ×Q

}
.280

(15)281

Clearly Aμ,Q ⊂ Aμ, but a priori it could be much smaller. Does Aμ,Q preserve the282

measure of Aμ? Previous works need to work with situations analogue to Q = 2, but283

here we need to argue for all Q ∈ N. For that, at the level of the Lebesgue measure we284

will use the Duffin–Schaeffer theorem, while we will compute Hausdorff measures285

and dimensions via the Mass Transference Principle.286

2.2 Lebesguemeasure: Dirichlet approximation and the Duffin–Schaeffer287

theorem288

Both the Dirichlet approximation theorem and the theory of continued fractions imply289

A2 = [0, 1]\Q. However, neither of them give enough information about the sequence290

of denominators they produce, so they cannot be used to determine the size of the set291

A2,Q ⊂ A2. The recently proved Duffin–Schaeffer conjecture gives an answer to this292

kind of questions.293

Theorem 2.1 (Duffin–Schaeffer theorem [37]) Let ψ : N → [0,∞) be a function.294

Define295

Aψ =
{
x ∈ [0, 1] :

∣∣∣x − p

q

∣∣∣296

≤ ψ(q) for infinitely many coprime pairs (p, q) ∈ N × N

}
.297

Let ϕ denote the Euler totient function.16 Then, we have the following dichotomy:298

(a) If
∑∞

q=1 ϕ(q)ψ(q) = ∞, then |Aψ | = 1.299

(b) If
∑∞

q=1 ϕ(q)ψ(q) < ∞, then |Aψ | = 0.300

16 The Euler totient function: for q ∈ N, ϕ(q) is the number of natural numbers i ≤ q such that gcd(q, i) =
1.
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The relevant part of this theorem is (a), since (b) follows from the canonical limsup301

covering302

Aψ ⊂
∞⋃

q=Q

⋃

1≤p≤q
(p,q)=1

( p
q

− ψ(q),
p

q
+ ψ(q)

)
, ∀ Q ∈ N303

�⇒ |Aψ | ≤
∞∑

q=Q

ϕ(q)ψ(q), ∀ Q ∈ N. (16)304

On the other hand, as opposed to the classic theorem by Khinchin17 [36, Theorem 32],305

the arbitrariness ofψ allows to restrict the denominators to a setQ ⊂ N just by setting306

ψ(q) = 0 when q /∈ Q. In particular, Aμ,Q = Aψ if we define ψ(q) = 1Q(q)/qμ,307

where 1Q is the indicator function of the set Q. Hence, the relevant sum for the sets308

Aμ,Q is309

∞∑

q=1

ϕ(q)ψ(q) =
∑

q∈Q

ϕ(q)

qμ
.310

In particular, it is fundamental to understand the behavior of the Euler totient function311

ϕ on Q.312

The complete proof of the Duffin–Schaeffer theorem was given recently by Kouk-313

oulopoulos and Maynard [37, Theorem 1], but Duffin and Schaeffer [21] proved back314

in 1941 that the result holds under the additional assumption that there exists c > 0315

such that316

N∑

q=1

ϕ(q) ψ(q) ≥ c
N∑

q=1

q ψ(q), for infinitely many N ∈ N. (17)317

In the setting of Aμ,Q, this condition is immediately satisfied by sets Q for which318

there is a c > 0 such that ϕ(q) > c q for all q ∈ Q. Examples of this are:319

• Q = P the set of prime numbers, and320

• Q = {Mn : n ∈ N } where M ∈ N, that is, the set of power of a given number M .321

It follows from our computations in Appendix A that the condition (17) is also satisfied322

by323

• Q = {Mn : n ∈ N } where M ∈ N, that is, the set of multiples of a given number324

M .325

To prove Theorem 1.1 for x0 = P/Q, we restrict the denominators to the latter set with326

M = 4Q; in particular, the 1941 result byDuffin and Schaeffer [21] suffices. However,327

17 Khinchin’s theorem states that if ψ : N → [0,∞) is a function such that q2ψ(q) is decreasing and∑∞
q=1 q ψ(q) = ∞, then the set { x ∈ [0, 1] : |x− p/q| ≤ ψ(q) for infinitely many pairs (p, q) ∈ N×N }

has Lebesgue measure 1.
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in the case of x0 /∈ Qwe need to restrict the denominators to an exponentially growing328

sequence qn for which we do not know if (17) holds. Hence, in this case we need the329

full power of the result by Koukoulopoulos and Maynard [37]. This might give an330

indication of the difficulty to settle the case x0 /∈ Q.331

2.3 Hausdorff dimension: the Jarník–Besicovitch theorem and theMass332

Transference Principle333

We mentioned that A2 = [0, 1]\Q, and it follows from the argument in (16) that334

|Aμ| = 0 forμ > 2. But how small is Aμ is whenμ > 2? Ameasure theoretic answer335

to that is the Jarník and Besicovitch theorem from the 1930s (see [25, Section 10.3]336

for a modern version).337

Theorem 2.2 (Jarník–Besicovitch theorem) Let μ > 2 and let Aμ be defined as in338

(13). Then, dimH Aμ = 2/μ and H2/μ(Aμ) = ∞.339

In this article we need to adapt this result to Aμ,Q. First, using the Duffin–Schaeffer340

Theorem 2.1 we will be able to find the largest μ0 ≥ 1 such that |Aμ0,Q| = 1, so341

that |Aμ,Q| = 0 for all μ > μ0. To compute the Hausdorff dimension of those342

zero-measure sets, we will use a theorem by Beresnevich and Velani, called the Mass343

Transference Principle [5, Theorem 2]. We state here its application to the unit cube344

and to Hausdorff measures.345

Theorem 2.3 (Mass Transference Principle [5]) Let Bn = Bn(xn, rn) be a sequence of346

balls in [0, 1]d such that limn→∞ rn = 0. Let α < d and let Bα
n = Bn(xn, r

α/d
n ) be the347

dilation of Bn centered at xn by the exponent α. Suppose that Xα := lim supn→∞ Bα
n348

is of full Lebesgue measure, that is, |Xα| = 1. Then, calling X := lim supn→∞ Bn,349

we have dimH X ≥ α and Hα(X) = ∞.350

To illustrate the power of the Mass Transference Principle, let us explain how351

the Jarnik–Besicovitch Theorem 2.2 follows as a simple corollary of the Dirichlet352

approximation theorem. From the definition of Aμ we can write18353

Aμ = lim sup
q→∞

⋃

1≤p≤q,(p,q)=1

B
( p
q

,
1

qμ

)
. (18)354

Choose α = 2/μ so that (Aμ)α = Aμα = A2, which by the Dirichlet approximation355

theorem has full measure. Then, the Mass Transference Principle implies dimH Aμ ≥356

2/μ and H2/μ(Aμ) = ∞. The upper bound follows from the canonical cover of Aμ357

in (18), proceeding like in (16).358

For Aμ,Q, once we find the largest μ0 for which |Aμ0,Q| = 1 using the Duffin–359

Schaeffer theorem, we will choose α = μ0/μ so that the property (Aμ,Q)α =360

Aμα,Q = Aμ0,Q has full measure, and the Mass Transference Principle will then361

imply dimH Aμ,Q ≥ μ0/μ.362

18 The expression in (18) is not in the form of a limsup of balls. It follows, however, that the limsup of any
enumeration whatsoever of the balls considered in the construction gives the same set.
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3 Preliminary results on the local regularity of Rx0363

In this section we carry over to Rx0 regularity results that are by now classical for R0.364

In Sect. 3.1 we prove that Rx0 is globallyC
1/2. In Sect. 3.2 we compute the asymptotic365

behavior of Rx0 around rationals. In Sect. 3.3 we give a lower bound for αx0(t) that is366

independent of x0.367

3.1 A global Hölder regularity result368

Duistermaat [22, Lemma 4.1.] proved that R0 is globally C1/2(t). The same holds for369

all x0 ∈ R. We include the proof for completeness.370

Proposition 3.1 Let x0 ∈ R. Then, αx0(t) ≥ 1/2 for all t ∈ R. That is, Rx0 is globally371

C1/2.372

Proof For h �= 0, let N ∈ N such that 1
(N+1)2

≤ |h| < 1
N2 , and write373

Rx0(t + h) − Rx0(t) =
∑

|n|≤N

e2π in
2t e2π inx0

n2

(
e2π in

2h − 1
)

374

+
∑

|n|>N

e2π in
2t e2π inx0

n2

(
e2π in

2h − 1
)
.375

Since |eix − 1| ≤ |x | for all x ∈ R, we bound376

∣∣∣∣
∑

|n|≤N

e2π in
2t e2π inx0

n2

(
e2π in

2h − 1
)∣∣∣∣ ≤

∑

|n|≤N

∣∣e2π in2h − 1
∣∣

n2
377

≤ 2|h|N < 2|h| 1√|h| = 2
√|h|.378

For the other sum, we trivially bound
∣∣e2π in2h − 1

∣∣ ≤ 2 to get379

∣∣∣∣
∑

|n|>N

e2π in
2t e2π inx0

n2

(
e2π in

2h − 1
)∣∣∣∣ ≤ 2

∞∑

n=N+1

2

n2
≤ 4

N
≤ 8

N + 1
≤ 8
√|h|.380

Hence
∣∣Rx0(t + h)− Rx0(t)

∣∣ ≤ 10|h|1/2. This holds for all t , so Rx0 ∈ C1/2(t) for all381

t ∈ R. ��382

3.2 Asymptotic behavior of Rx0 around rational t383

The building block for all results in this article is the behavior of Rx0 around rationals,384

which we compute explicitly.385
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Proposition 3.2 Let x0 ∈ R. Let p, q ∈ N be such that (p, q) = 1. Then,386

Rx0

(
p

q
+h

)
−Rx0

(
p

q

)
= −2π ih387

+
√|h|
q

∑

m∈Z
G(p,m, q) F±

(
x0 − m/q√

h

)
, for h �=0,388

where F± = F+ if h > 0 and F± = F− if h < 0, and389

G(p,m, q) =
q−1∑

r=0

e2π i
pr2+mr

q , F±(ξ) =
∫

R

e±2π i x2 − 1

x2
e2π i xξ dx .390

The function F± is bounded and continuous, F±(0) = 2π(−1± i), and391

F±(ξ) = (1± i)
e∓π iξ2/2

ξ2
+ O

(
1

ξ4

)
= O

(
1

ξ2

)
, as ξ → ∞.392

Proof We follow the classical approach, which can be traced back to Smith [45], of393

using the Poisson summation formula. From the definition of Rx0 , complete first the394

sum to n ∈ Z to write395

Rx0

(
p

q
+ h

)
− Rx0

(
p

q

)
= −2π ih +

∑

n∈Z

e2π in
2h − 1

n2
e2π i

pn2

q e2π inx0 ,396

where we must interpret the term n = 0 as the value of e2π in
2h−1
n2

� 2π ih as n → 0.397

Split the sum modulo q by writing n = mq + r and398

∑

n∈Z

e2π in
2h − 1

n2
e2π i

pn2

q e2π inx0 =
q−1∑

r=0

e2π i
pr2

q
∑

m∈Z

e2π i(mq+r)2h − 1

(mq + r)2
e2π i(mq+r)x0 .399

(19)400

Use the Poisson summation formula for the function401

f (y) = e2π i(yq+r)2h − 1

(yq + r)2
e2π i(yq+r)x0 ,402

for which, changing variables (yq + r)
√|h| = z, we have403

f̂ (ξ) =
√|h|
q

e2π irξ/q
∫

e2π i sgn(h)z2 − 1

z2
e
2π i z√|h| (x0−ξ/q)

dz404

=
√|h|
q

e2π irξ/q F±
(
x0 − ξ/q√|h|

)
.405
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Therefore,406

(19) =
q−1∑

r=0

e2π i
pr2

q
∑

m∈Z

√|h|
q

e2π irm/q F±
(
x0 − m/q√|h|

)
407

=
√|h|
q

∑

m∈Z
G(p,m, q) F±

(
x0 − m/q√|h|

)
.408

The properties for F± follow by integration by parts and the value of the Fresnel409

integral. ��410

The main term in Proposition 3.2 corresponds to m ∈ Z such that x0 − m/q is411

closest to 0. Define412

{
mq = argminm∈Z

∣∣x0 − m
q

∣∣,
xq = x0 − mq

q ,
so that |xq | =

∣∣∣x0 − mq

q

∣∣∣ = dist

(
x0,

Z

q

)
≤ 1

2q
.413

(20)414

Then, shifting the sum,415

Rx0

( p
q

+ h
)
− Rx0

( p
q

)
= −2π ih +

√|h|
q

G(p,mq , q)F±
( xq√|h|

)
416

+
√|h|
q

∑

m �=0

G(p,mq + m, q) F±
(
xq − m/q√|h|

)
.417

Let us now bound the sum as an error term. As long as (p, q) = 1, it is a well-known418

property of Gauss sums that |G(p,m, q)| ≤ √
2q for all m ∈ N, so419

√|h|
q

∣∣∣∣
∑

m �=0

G(p,mq + m, q) F±
(
xq − m/q√|h|

)∣∣∣∣ ≤ 2

√|h|√
q

∑

m �=0

∣∣∣∣F±
(
xq − m/q√|h|

)∣∣∣∣.420

Since |xq | ≤ 1/(2q) and m �= 0, we have |xq − m/q| � |m|/q. This suggests421

separating two cases:422

• If q
√|h| < 1, we use the property F±(x) = O(x−2) to bound423

∑

m �=0

∣∣∣∣F±
(
xq − m/q√|h|

)∣∣∣∣ �
∑

m �=0

|h|
|xq − m/q|2 � q2 |h|

∑

m �=0

1

m2 � q2|h|.424
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• If q
√|h| ≥ 1, we split the sum as425

∑

m �=0

∣∣∣∣F±
(
xq − m/q√|h|

)∣∣∣∣ =
∑

|m|≤q
√|h|

∣∣∣∣F±
(
xq − m/q√|h|

)∣∣∣∣

+
∑

|m|≥q
√|h|

∣∣∣∣F±
(
xq − m/q√|h|

)∣∣∣∣

≤
∑

|m|≤q
√|h|

C +
∑

|m|≥q
√|h|

|h|
|xq − m/q|2

� q
√|h| + q2|h|

∑

|m|≥q
√|h|

1

m2 � q
√|h|.

426

These two bounds can be written simultaneously as427

∑

m �=0

∣∣∣∣F±
(
xq − m/q√|h|

)∣∣∣∣ � min
(
q
√|h|, q2|h|),428

where the underlying constant is universal. Multiply by
√|h|/√q to get the following429

corollary.430

Corollary 3.3 Let x0 ∈ R. Let p, q ∈ N be such that (p, q) = 1. Then,431

Rx0

(
p

q
+ h

)
− Rx0

(
p

q

)
= −2π ih +

√|h|
q

G(p,mq , q)F±
(

xq√|h|
)

432

+O
(
min

(√
q h, q3/2 h3/2

))
,433

where the underlying constant of the O is independent of p, q and x0.434

Remark 3.4 The difference between x0 = 0 and x0 �= 0 is clear from Corollary 3.3.435

• If x0 = 0, we have xq = 0 = mq for all q . The main term is |h|1/2q−1 G(p, 0, q)436

F±(0), so there is a clear dichotomy: R0 is differentiable at p/q if and only437

if G(p, 0, q) = 0, which happens if and only if q ≡ 2 (mod 4); in all other438

rationals, Rx0 is C
1/2.439

• If x0 �= 0, it is in general false that xq = 0, so to determine the differentiability of440

Rx0 we need to control the magnitude of F±(xq/
√|h|).441

3.3 Lower bounds for the local Hölder regularity442

We now give lower bounds for αx0(t) that do not depend on x0. In Sect. 3.3.1 we work443

with t ∈ Q, and in Sect. 3.3.2 with t /∈ Q.444
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3.3.1 At rational points445

There is a dichotomy in the Hölder regularity of Rx0 at rational points.446

Proposition 3.5 Let x0 ∈ R and t ∈ Q. Then, either αx0(t) = 1/2 or αx0(t) = 3/2.447

Proof Let t = p/q with (p, q) = 1. If q is fixed, we get min
(√

q |h|, q3/2 |h|3/2) =448

q3/2|h|3/2 for small enough |h|, so from Corollary 3.3 we get449

Rx0

(
p

q
+ h

)
− Rx0

(
p

q

)
= −2π ih +

√|h|
q

G(p,mq , q)F±
(

xq√|h|
)

450

+O
(
q3/2h3/2

)
. (21)451

Then, differentiability completely depends on the Gauss sum G(p,mq , q) and on xq .452

Case 1 If G(p,mq , q) = 0, then
∣∣Rx0

( p
q + h

) − Rx0

( p
q

) + 2π ih
∣∣ �q h3/2, so453

αx0(p/q) ≥ 3/2.454

Case 2 If G(p,mq , q) �= 0 and xq �= 0. Then, |G(p,mq , q)| � √
q and455

limh→0 xq/
√|h| = ∞, so

∣∣F±
(
xq/

√|h|)∣∣ � h/x2q . Hence, αx0(p/q) ≥ 3/2456

because457

Rx0

(
p

q
+ h

)
− Rx0

(
p

q

)
= −2π ih + O

(√
h√
q

h

x2q
+ q3/2h3/2

)
458

= −2π ih + Oq
(
h3/2

)
.459

Case 3 If G(p,mq , q) �= 0 and xq = 0, we have |G(p,mq , q)| � √
q, so from (21)460

we get461

∣∣∣∣Rx0

(
p

q
+ h

)
− Rx0

(
p

q

)∣∣∣∣ ≥
√|h|
q

|G(p,mq , q)||F±(0)|462

+Oq(h) �
√
h√
q

+ Oq(h) �q h1/2463

for h �q 1. Together with Proposition 3.1, this implies αx0(p/q) = 1/2.464

That Cases 1 and 2 actually imply αx0(t) = 3/2 is a bit more technical; we postpone465

the proof to Proposition B.6 in Appendix B. ��466

3.3.2 At irrational points467

We give a lower bound αx0(t) that depends on the exponent of irrationality of t , but468

not on x0.469

Proposition 3.6 Let x0 ∈ R and t ∈ R\Q. Let μ(t) be the exponent of irrationality of470

t . Then, αx0(t) ≥ 1
2 + 1

2μ(t) .471
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The proof of this result, which we include for completeness, closely follows the472

procedure by Chamizo and Ubis [15, Proof of Theorem 2.3].473

Remark 3.7 Similar to what happens for x0 = 0, where α0(t) = 1/2 + 1/2μ̃(t) ≥474

1/2+ 1/2μ(t) (see (7)), we do not expect the bound in Proposition 3.6 to be optimal475

for all t /∈ Q. However, it will be enough to compute the spectrum of singularities.476

Proof In view of Proposition 3.1, there is nothing to prove if μ(t) = ∞, so assume477

μ(t) < ∞. Let pn/qn be the n-th approximation by continued fractions of t . Center478

the asymptotic behavior in Corollary 3.3 at pn/qn , and bound it from above by479

∣∣∣∣Rx0

(
pn
qn

+ h

)
− Rx0

(
pn
qn

)∣∣∣∣ �
√|h|√
qn

+ |h| +min
(√

qn h, q3/2n h3/2
)
, (22)480

where we used that |G(pn,mqn , qn)| ≤
√
2qn for all n ∈ N and |F(x)| � 1 for all481

x ∈ R.482

Let h �= 0 be small enough. The sequence |t − pn/qn| is strictly decreasing, so483

choose n such that484

∣∣∣∣t −
pn
qn

∣∣∣∣ ≤ |h| <

∣∣∣∣t −
pn−1

qn−1

∣∣∣∣ . (23)485

Then, from (22), (23) and |t − pn/qn + h| ≤ 2|h|, we get486

∣∣Rx0 (t + h) − Rx0 (t)
∣∣

≤
∣∣∣∣Rx0

(
pn
qn

+ t − pn
qn

+ h

)
− Rx0

(
pn
qn

)∣∣∣∣

+
∣∣∣∣Rx0

(
pn
qn

+ t − pn
qn

)
− Rx0

(
pn
qn

)∣∣∣∣

�
√|h|√
qn

+ |h| +min
(√

qn |h|, q3/2n |h|3/2
)

.

(24)487

Next we compute the dependence between qn and h. By the property of continued488

fractions489

1

qμn
n

=
∣∣∣t − pn

qn

∣∣∣ ≤ 1

qn+1qn
,490

we get 1/qn ≤ 1/q1/(μn−1)
n+1 for all n ∈ N. Then, from (23) we get491

1

qμn
n

≤ |h| <
1

qμn−1
n−1

≤ 1

qμn−1/(μn−1−1)
n

. (25)492

We now bound each term in (24) using (25).493

• For the first term, by (25),
√|h|/√qn ≤ |h| 12+ 1

2μn .494
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• The fact that μn ≥ 2 implies 1
2 + 1

2μn
≤ 3

4 , so |h| ≤ |h|3/4 ≤ |h| 12+ 1
2μn and the495

second term is absorbed by the first one.496

• For the third term, we write the minimum as497

min
(√

qn |h|, q3/2n |h|3/2
)
=
{√

qn |h|, when |h| ≥ 1/q2n ,

q3/2n |h|3/2 when |h| ≤ 1/q2n .
498

So we have two regions:499

– When |h| ≥ 1/q2n , use (25) to bound500

√
qn |h| ≤ |h|

|h|(μn−1−1)/2μn−1
= |h| 12+ 1

2μn−1 .501

– When |h| ≤ 1/q2n , we directly have qn ≤ |h|−1/2, so502

q3/2n |h|3/2 = |h|3/2−3/4 = |h|3/4 ≤ |h| 12+ 1
2μn−1 ,503

where in the last inequality we used 1
2 + 1

2μn−1
≤ 3

4 as before.504

Gathering all cases, we get505

|Rx0(t + h) − Rx0(t)| ≤ |h| 12+ 1
2μn + |h| 12+ 1

2μn−1 .506

From the definition of the exponent of irrationality μ(t) = lim supn→∞ μn , for any507

δ > 0 there exists Nδ ∈ N such thatμn ≤ μ(t)+δ for all n ≥ Nδ . Then, since |h| < 1,508

we have |h| 12+ 1
2μn ≤ |h| 12+ 1

2μ(t)+2δ for all n ≥ Nδ . Renaming δ, we get Nδ ∈ N such509

that510

|Rx0(t + h) − Rx0(t)| ≤ |h| 12+ 1
2μ(t)−δ

, for all |h| ≤
∣∣∣∣t −

pNδ

qNδ

∣∣∣∣,511

so αx0(t) ≥ 1
2 + 1

2μ(t) − δ. Since this holds for all δ > 0, we conclude that αx0(t) ≥512

1
2 + 1

2μ(t) . ��513

4 Proof of Theorem 1.1: spectrum of singularities when x0 ∈ Q514

In this section we prove Theorem 1.1. Let us fix x0 = P/Q such that (P, Q) = 1.515

To compute the spectrum of singularities dx0 , we first characterize the rational points516

t where Rx0 is not differentiable, and then we give an upper bound for the regularity517

αx0(t) at irrational t .518
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4.1 At rational points t519

In the proof of Proposition 3.5 we established that Rx0 is not differentiable at t = p/q520

if and only if G(p,mq , q) �= 0 and xq = dist(x0, Z/q) = 0. We characterize this in521

the following proposition.522

Proposition 4.1 Let x0 = P/Q with gcd(P, Q) = 1, and let p, q ∈ N such that523

gcd(p, q) = 1. Then, Rx0 is non-differentiable at t = p/q if and only if524

• q = kQ with k ≡ 0, 1, 3 (mod 4), in the case Q ≡ 1 (mod 2).525

• q = kQ with k ≡ 0 (mod 2), in the case Q ≡ 0 (mod 4).526

• q = kQ with k ∈ Z, in the case Q ≡ 2 (mod 4).527

In all such cases, the asymptotic behavior is528

Rx0

(
p

q
+ h

)
− Rx0

(
p

q

)
= c e2π iφp,q,x0 F±(0)

√|h|√
q

− 2π ih529

+O
(
min

(√
q h, q3/2 h3/2

))
. (26)530

where c = 1 or c = √
2 depending on parity conditions of Q and q. In particular,531

αx0(t) = 1/2.532

Proof In view of the proof of Proposition 3.5, we must identify the conditions for533

G(p,mq , q) �= 0 and xq = 0. Since xq = dist(P/Q, Z/q), we have xq = 0 when534

there exists mq ∈ Z such that535

P

Q
= mq

q
⇐⇒ Pq = mqQ.536

Since gcd(P, Q) = 1, then necessarily Q|q . Reversely, if q = kQ, then picking537

mq = kP we have mq/q = P/Q. In short,538

xq = 0 ⇐⇒ q is a multiple of Q.539

So let q = kQ for some k ∈ N. Then, mq = kP . Let us characterize the second540

condition G(p,mq , q) = G(p, kP, kQ) �= 0. It is well-known that541

G(a, b, c) �= 0 ⇐⇒ either

{
c is odd, or
c is even and c

2 ≡ b (mod 2).
(27)542

We separate cases:543

• Suppose Q is odd. Then, according to (27), we need either544

– kQ odd, which holds if and only if k is odd, or545

– kQ even, which holds if and only if k is even, and kQ/2 ≡ kP (mod 2). Since546

Q is odd and k is even, this is equivalent to k/2 ≡ 0 (mod 2), which means547

k ≡ 0 (mod 4).548
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Therefore, if q = kQ, the Gauss sum G(p,mq , q) �= 0 if and only if k ≡ 0, 1, 3549

(mod 4).550

• Suppose Q ≡ 0 (mod 4). Since q = kQ is even, by (27) we need kQ/2 ≡ kP551

(mod 2). Since Q is a multiple of 4, this is equivalent to kP ≡ 0 (mod 2). But552

since Q is even, then P must be odd. Therefore, kmust be even. In short, if q = kQ,553

we have G(p,mq , q) �= 0 if and only if k is even.554

• Suppose Q ≡ 2 (mod 4). Since q = kQ is even, by (27) we need kQ/2 ≡ kP555

(mod 2). Now both Q/2 and P are odd, so this is equivalent to k ≡ k (mod 2),556

which is of course true. Therefore, if q = kQ, we have G(p,mq , q) �= 0 for all557

k ∈ Z.558

Once all cases have been identified, (26) follows from Corollary 3.3 and from the559

fact that if G(p,mq , q) �= 0 we have |G(p,mq , q)| = c
√
q with c = 1 or c = √

2.560

��561

4.2 A general upper bound for irrational t562

We begin the study of t /∈ Q by giving a general upper bound for αx0(t) for t /∈ Q. The563

proof uses an alternative asymptotic expression around rationals that we postpone to564

Appendix B.565

Proposition 4.2 Let x0 ∈ Q and t /∈ Q. Then, αx0(t) ≤ 3/4.566

Proof See Appendix B, Proposition B.3. ��567

4.3 Upper bounds depending on the irrationality of t568

We now aim at an upper bound for αx0(t) that depends on the irrationality of t at the569

level of Proposition 3.6. The idea is to approximate t by rationals p/q where Rx0570

is non-differentiable, which we characterized in Proposition 4.1. To avoid treating571

different cases depending on the parity of Q, let us restrict19 q ∈ 4QN, such that the572

three conditions in Proposition 4.1 are simultaneously satisfied and (26) holds.573

Let μ ∈ [2,∞). Define the classic Diophantine set574

Aμ =
{
t ∈ (0, 1)\Q : ∣∣t − p

q

∣∣ ≤ 1

qμ
for i. m. coprime pairs (p, q) ∈ N × N

}
575

and for 0 < a < 1 small enough define the restricted Diophantine set576

Aμ,Q =
{
t ∈ (0, 1)\Q : ∣∣t − p

q

∣∣ ≤ a

qμ
for i. m. coprime pairs (p, q) ∈ N × 4QN

}
.577

For μ = ∞ we define A∞ = ⋂μ≥2 Aμ and A∞,Q = ⋂μ≥2 Aμ,Q . Clearly, Aμ,Q ⊂578

Aμ. Our first step is to give an upper bound for αx0(t) for t ∈ Aμ,Q .579

19 We lose nothing with this reduction when computing the spectrum of singularities, but it may be prob-
lematic if we aim to compute the Hölder regularity αx0 (t) for all t .
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Proposition 4.3 Let μ ≥ 2 and t ∈ Aμ,Q. Then, αx0(t) ≤ 1
2 + 1

2μ .580

Proof We begin with the case μ < ∞. If t ∈ Aμ,Q , there is a sequence of irreducible581

fractions pn/qn with qn ∈ 4QN, for which we can use (26) and write582

Rx0 (t) − Rx0

( pn
qn

)
= c e2π iφn,x0

√|hn |√
qn

− 2π ihn + O
(
min

(√
qn hn, q

3/2
n h3/2n

))
,583

(28)584

where we absorbed F(0) into c and we defined hn and μn as585

hn = t − pn
qn

, |hn| = 1

qμn
n

≤ a

qμ
n

<
1

qμ
n

. (29)586

We now absorb the second and third terms in (28) in the first term. First,μ ≥ 2 implies587

q2n |hn| ≤ 1, so min(
√
qn |hn|, q3/2n |hn|3/2) = q3/2n |hn|3/2. Letting C be the universal588

constant in the O in (28),589

C q3/2n |hn|3/2 ≤ c

4

√|hn|√
qn

⇐⇒ q2n |hn| ≤
c

4C
,590

and since q2n |hn| ≤ aq2−μ
n ≤ a, it suffices to ask a ≤ c/(4C). Regarding the second591

term, we have592

2π |hn| ≤ c

4

√|hn|√
qn

⇐⇒ qn |hn| ≤
( c

8π

)2
593

This holds for large n because q2n |hn| ≤ 1 implies qn |hn| ≤ 1/qn , and because594

lim supn→∞ qn = ∞ (otherwise qn would be bounded and hence the sequence pn/qn595

would be finite). All together, using the reverse triangle inequality in (28) and the596

bound for hn in (29)597

∣∣∣∣Rx0 (t) − Rx0

(
pn
qn

)∣∣∣∣ ≥
c

2

√|hn|√
qn

≥ c

2
|hn|

1
2+ 1

2μ , ∀n � 1.598

This means that Rx0 cannot be better than C 1
2+ 1

2μ at t , thus concluding the proof for599

μ < ∞.600

If t ∈ A∞,Q , by definition t ∈ Aμ,Q for all μ ≥ 2, hence we just proved that601

αx0(t) ≤ 1/2+ 1/(2μ) for all μ ≥ 2. Taking the limit μ → ∞ we get αx0(t) ≤ 1/2.602

��603

To prove Theorem 1.1, we need to compute dimH{ t : αx0(t) = α }with prescribed604

α. For that, we need to complement Proposition 4.3 by proving that for t ∈ Aμ,Q we605

also have αx0(t) ≥ 1
2 + 1

2μ . By Proposition 3.6, it would suffice to prove that t ∈ Aμ,Q606

123

Journal: 208 Article No.: 2971 TYPESET DISK LE CP Disp.:2024/8/28 Pages: 63 Layout: Small-Ex



R
ev
is
ed

Pr
oo
f

Multifractality and intermittency in the limit evolution...

has irrationality μ(t) = μ. Unfortunately, when μ < ∞ this need not be true. To fix607

this, for 2 ≤ μ < ∞ define the companion sets608

Bμ = Aμ\
⋃

ε>0

Aμ+ε609

=
{
t ∈ Aμ | ∀ε > 0,

∣∣t − p

q

∣∣ ≤ 1

qμ+ε
only for finitely many

p

q

}
,610

and611

Bμ,Q = Aμ,Q\
⋃

ε>0

Aμ+ε612

=
{
t ∈ Aμ,Q | ∀ε > 0,

∣∣t − p

q

∣∣ ≤ 1

qμ+ε
only for finitely many

p

q

}
,613

(30)614

which have the properties we need.615

Proposition 4.4 Let 2 ≤ μ < ∞. Then,616

(i) Bμ,Q ⊂ Bμ ⊂ { t ∈ R\Q : μ(t) = μ }.617

(ii) If t ∈ Bμ,Q, then αx0(t) = 1
2 + 1

2μ .618

(iii) If t ∈ A∞,Q, then αx0(t) = 1/2.619

Proof (i) First, Bμ,Q ⊂ Bμ because Aμ,Q ⊂ Aμ. The second inclusion is a conse-620

quence of the definition of the irrationality exponent in (12). Indeed, t ∈ Bμ ⊂ Aμ621

directly implies that μ(t) ≥ μ. On the other hand, for all ε > 0, t ∈ Bμ implies622

t /∈ Aμ+ε , so t can be approximated with the exponent μ + ε only with finitely many623

fractions, and thus μ(t) ≤ μ + ε. Consequently, μ(t) ≤ μ.624

(ii) By (i), t ∈ Bμ,Q implies μ(t) = μ, so by Proposition 3.6 we get αx0(t) ≥ 1
2 +625

1
2μ . At the same time, t ∈ Bμ,Q ⊂ Aμ,Q , so Proposition 4.3 implies αx0(t) ≤ 1

2 + 1
2μ .626

(iii) It follows directly from Propositions 3.1 and 4.3. ��627

Corollary 4.5 Let 2 < μ < ∞. Then, for all ε > 0,628

Bμ,Q ⊂
{
t ∈ (0, 1) : αx0(t) = 1

2
+ 1

2μ

}
⊂ Aμ−ε .629

For μ = 2 we have the slightly more precise630

B2,Q ⊂ { t ∈ (0, 1) : αx0(t) = 3/4 } ⊂ A2.631

For μ = ∞,632

A∞,Q ⊂ { t ∈ (0, 1) : αx0(t) = 1/2 } ⊂ A∞ ∪ Q.633

123

Journal: 208 Article No.: 2971 TYPESET DISK LE CP Disp.:2024/8/28 Pages: 63 Layout: Small-Ex



R
ev
is
ed

Pr
oo
f

V. Banica et al.

Proof Left inclusions follow from Proposition 4.4 for all μ ≥ 2, so we only need to634

prove the right inclusions. When μ = 2, it follows from the Dirichlet approximation635

theorem, which states that R\Q ⊂ A2, and Proposition 3.5, in which we proved that636

if t is rational, then either αx0(t) = 1/2 or αx0(t) ≥ 3/2. Thus, { t ∈ (0, 1) : αx0(t) =637

3/4 } ⊂ (0, 1)\Q ⊂ A2. Suppose now that 2 < μ < ∞ and that αx0(t) = 1
2 + 1

2μ .638

By Proposition 3.6, αx0(t) ≥ 1
2 + 1

2μ(t) , so we get μ ≤ μ(t). In particular, given any639

ε > 0, we have μ− ε < μ(t), so
∣∣t − p

q

∣∣ ≤ 1/qμ−ε for infinitely many coprime pairs640

(p, q) ∈ N×N, which means that t ∈ Aμ−ε . Finally, for μ = ∞, if t /∈ Q is such that641

αx0(t) = 1/2, then by Proposition 3.6 we get μ(t) = ∞, which implies that t ∈ Aμ642

for all μ ≥ 2, hence t ∈ A∞. ��643

Now, to prove Theorem 1.1 it suffices to compute dimH Aμ and dimH Bμ,Q .644

Proposition 4.6 For 2 ≤ μ < ∞, dimH Aμ = dimH Bμ,Q = 2/μ. Also,645

dimH A∞ = 0.646

Form this result, whose proofwe postpone,we can proveTheorem1.1 as a corollary.647

Theorem 4.7 Let x0 ∈ Q. Then, the spectrum of singularities of Rx0 is648

dx0(α) =
⎧
⎨

⎩

4α − 2, 1/2 ≤ α ≤ 3/4,
0, α = 3/2,
−∞, otherwise.

649

Proof Proposition 3.1 implies d(α) = −∞ when α < 1/2, while Propositions 3.5650

and 4.2 imply that dx0(3/2) = 0 and dx0(α) = −∞ if α > 3/4 and α �= 3/2. When651

1/2 ≤ α ≤ 3/4, it follows from Corollary 4.5, Proposition 4.6 and the periodicity of652

Rx0 . First, dx0(1/2) ≤ dimH(A∞ ∪ Q) = 0 because dimH Q = dimH A∞ = 0. On653

the other hand, for 2 ≤ μ < ∞ we get654

2

μ
≤ dx0

(
1

2
+ 1

2μ

)
≤ 2

μ − ε
, ∀ε > 0 �⇒ dx0

(
1

2
+ 1

2μ

)
= 2

μ
.655

which gives the result for 1/2 < α ≤ 3/4 by renaming α = 1/2+ 1/(2μ). ��656

Let us now prove Proposition 4.6.657

Proof of Proposition4.6 We have A2 = (0, 1)\Q by Dirichlet approximation, so658

dimH A2 = 1. For μ > 2 we have dimH Aμ = 2/μ by the Jarnik–Besicovitch The-659

orem 2.2. Also, A∞ ⊂ Aμ for all μ ≥ 2, so dimH A∞ ≤ 2/μ for all μ ≥ 2, hence660

dimH A∞ = 0. So we only need to prove that dimH Bμ,Q = 2/μ for 2 ≤ μ < ∞.661

Moreover,662

Bμ,Q = Aμ,Q\
⋃

ε>0

Aμ+ε ⊂ Aμ,Q ⊂ Aμ,663

which implies dimH Bμ,Q ≤ dimH Aμ = 2/μ. Hence it suffices to prove that664

dimH Bμ,Q ≥ 2/μ. This claim follows from H2/μ(Aμ,Q) > 0. Indeed, we first665
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remark that the sets Aμ are nested, in the sense that Aσ ⊂ Aμ when σ > μ. We can666

therefore write667

⋃

ε>0

Aμ+ε =
⋃

n∈N
Aμ+ 1

n
.668

By the Jarnik–Besicovitch Theorem 2.2, dimH Aμ+1/n = 2/(μ + 1/n) < 2/μ, so669

H2/μ(Aμ+1/n) = 0 for all n ∈ N, hence670

H2/μ
(⋃

ε>0

Aμ+ε

)
= H2/μ

(⋃

n∈N
Aμ+ 1

n

)
= lim

n→∞H2/μ
(
Aμ+ 1

n

)
= 0.671

Therefore,672

H2/μ(Bμ,Q
) = H2/μ

(
Aμ,Q\

⋃

ε>0

Aμ+ε

)
= H2/μ(Aμ,Q) −H2/μ

(⋃

ε>0

Aμ+ε

)
673

= H2/μ (Aμ,Q
)
,674

soH2/μ(Aμ,Q) > 0 implies H2/μ(Bμ,Q) > 0, hence dimH Bμ,Q ≥ 2/μ.675

Let us thus proveH2/μ(Aμ,Q) > 0, for which we follow the procedure outlined in676

Sect. 2 with the set of denominatorsQ = 4QN. We first detect the largest μ such that677

Aμ,Q has full Lebesgue measure using the Duffin–Schaeffer Theorem 2.1. Define678

ψμ,Q(q) = a
14QN(q)

qμ
,679

where a > 0 comes from the definition of Aμ,Q and 14QN(q) is the indicator function680

of 4QN,681

14QN(q) =
{
1, if 4Q | q,

0, otherwise.
682

Then, we have Aμ,Q = Aψμ,Q , where683

Aψμ,Q =
{
t ∈ [0, 1] :

∣∣∣t − p

q

∣∣∣ ≤ ψμ,Q(q) for i. m. coprime pairs (p, q) ∈ N × N

}
684

has the form needed for the Duffin–Schaeffer Theorem 2.1. Indeed, the inclusion ⊂685

follows directly from the definition of ψμ,Q . For the inclusion ⊃, observe first that686

if t ∈ Aψμ,Q with μ > 1, then t /∈ Q. Now, if a coprime pair (p, q) ∈ N
2 satisfies687

|t − p/q| ≤ ψμ,Q(q), then q ∈ 4QN because otherwise we get the contradiction688

0 <

∣∣∣t − p

q

∣∣∣ ≤ ψμ,Q(q) = a
14QN(q)

qμ
= 0.689
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In this setting, the Duffin–Schaeffer theorem says that Aμ,Q has Lebesgue measure 1690

if and only if691

∞∑

q=1

ϕ(q) ψμ,Q(q) = a

(4Q)μ

∞∑

n=1

ϕ(4Qn)

nμ
= ∞,692

and has zero measure otherwise. Using this characterization, we prove now693

|Aμ,Q | =
{
1, μ ≤ 2,
0, μ > 2,

(31)694

independently of a. To detect the critical μ = 2, trivially bound ϕ(n) < n so that695

∞∑

n=1

ϕ(4Qn)

nμ
<

∞∑

n=1

4Qn

nμ
= 4Q

∞∑

n=1

1

nμ−1 < ∞, if μ > 2.696

However, this argument fails whenμ = 2.What is more, denote by P the set of primes697

so that698

∞∑

n=1

ϕ(4Qn)

n2
>

∑

p∈P, p>4Q

ϕ(4Qp)

p2
699

If p ∈ P and p > 4Q, then gcd(p, 4Q) = 1 because p � 4Q (for if p | 4Q then700

p ≤ 4Q). Therefore, ϕ(4Qp) = ϕ(4Q) ϕ(p) = ϕ(4Q) (p − 1) > ϕ(4Q) p/2, so701

∞∑

n=1

ϕ(4Qn)

n2
>

ϕ(4Q)

2

∑

p∈P, p>4Q

1

p
= ∞,702

because the sum of the reciprocals of the prime numbers diverges.20 The Duffin–703

SchaefferTheorem2.1 thus implies that |A2,Q | = 1 and, in particular, dimH A2,Q = 1.704

From this we immediately get |Aμ,Q | = 1 when μ < 2 because A2,Q ⊂ Aμ,Q .705

Once we know (31), we use the Mass Transference Principle Theorem 2.3 to com-706

pute the dimension of Aμ,Q for μ > 2. Write first707

Aμ,Q = lim sup
q→∞

⋃

p≤q, (p,q)=1

B

(
p

q
, ψμ,Q(q)

)
.708

Let β = 2/μ so that709

ψμ,Q(q)β =
(
a
14QN(q)

qμ

)β

= aβ 14QN(q)

qμβ
= a2/μ

14QN(q)

q2
= ψ2,Q(q),710

20 This argument shows that the strategy used here to compute the dimension of Aμ,Q also works if we
restrict the denominators to the primes Q = P in the first place. This situation arises when computing the
spectrum of singularities of trajectories of polygonal lines with non-zero rational torsion, studied in [4].
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with a new underlying constant a2/μ. Therefore,711

(Aμ,Q)β := lim sup
q→∞

⋃

p≤q, (p,q)=1

B

(
p

q
, ψμ,Q(q)β

)
712

= lim sup
q→∞

⋃

p≤q, (p,q)=1

B

(
p

q
, ψ2,Q(q)

)
= A2,Q .713

Observe that β is chosen to be the largest possible exponent that gives |(Aμ,Q)β | =714

|(Aμβ,Q)| = 1. Since (31) is independent of a, we get |(Aμ,Q)2/μ| = |A2,Q | = 1, and715

the Mass Transference Principle Theorem 2.3 implies that H2/μ
(
Aμ,Q

) = ∞. The716

proof is complete. ��717

5 Proof of Theorem 1.3: spectrum of singularities when x0 /∈ Q718

In this sectionweworkwith x0 /∈ Q and prove Theorem 1.3. Following the strategy for719

x0 ∈ Q, we first study the Hölder regularity at rational t in Sect. 5.1, and at irrational720

t in Sect. 5.2721

5.1 Regularity at rational t722

Let t = p/q an irreducible fraction. With Corollary 3.3 in mind, we now have xq =723

dist(x0, Z/q) �= 0. Since q is fixed, limh→0 xq/|h|1/2 = ∞, so F±(x) = O(x−2)724

implies F±(xq/
√|h|) � |h|/x2q when h → 0. Also |G(p,mq , q)| ≤ √

2q for all mq .725

Hence,726

∣∣∣∣ Rx0

(
p

q
+ h

)
− Rx0

(
p

q

)
+ 2π ih

∣∣∣∣ �
(

1√
q x2q

+ q3/2
)

h3/2.727

This regularity is actually the best we can get.728

Proposition 5.1 Let x0 ∈ R\Q and let t ∈ Q. Then, αx0(t) = 3/2.729

We postpone the proof of αx0(t) ≤ 3/2 to Proposition B.6. In any case, this means730

that when x0 /∈ Q, Rx0 is more regular at rational points than when x0 ∈ Q.731

5.2 Regularity at irrational t732

Let now t /∈ Q. Again, we aim at an upper bound for αx0(t) that complements the733

lower bound in Proposition 3.6. by approximating t /∈ Q by rationals pn/qn and using734

the asymptotic behavior in Corollary 3.3. However, now x0 /∈ Q implies xqn �= 0, so735

we cannot directly assume F±(xqn/
√|hqn |) � F±(0) � 1 anymore. Therefore, it is736

fundamental to understand the behavior of the quotient xqn/
√|hqn |.737
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5.2.1 Heuristics738

Let q ∈ N and define the exponents μq and σq as usual,739

xq =dist

(
x0,

Z

q

)
= 1

qσq
, |hq |=dist

(
t,

Z

q

)
= 1

qμq
, �⇒ xq√|hq |

= 1

qσq−μq/2 .740

If σq − μq/2 > c > 0 holds for a sequence qn , we should recover the behavior when741

x0 ∈ Q because742

lim
n→∞

(
σqn − μqn

2

)
≥ c > 0 �⇒ lim

n→∞
xqn√|hqn |

= 0743

�⇒ F±
(

xqn√|hqn |
)

� F±(0), n � 1. (32)744

The main term in the asymptotic behavior for Rx0(t) − Rx0(pn/qn) in Corollary 3.3745

would then be746

Main Term =
√|hqn |
qn

G(pn,mqn , qn)F±(0) �
√|hqn |√

qn
� h

1
2+ 1

2μqn
qn747

if we assume the necessary parity conditions so that |G(pn,mqn , qn)| � √
qn .748

Recalling the definition of the exponent of irrationality μ(·) in (12), we may think749

of σqn → μ(x0) and μqn → μ(t), so these heuristic computations suggest that750

αx0(t) ≤ 1
2 + 1

2μ(t) for t such that μ(t) ≤ 2μ(x0). Since Proposition 3.6 gives751

αx0(t) ≥ 1
2 + 1

2μ(t) , we may expect that752

αx0(t) = 1

2
+ 1

2μ(t)
, if 2 ≤ μ(t) ≤ 2μ(x0), (33)753

or at least for a big subset of such t . It is less clear what to expect whenμ(t) > 2μ(x0),754

since (32) need not hold. Actually, if σqn − μqn/2 < c < 0 for all sequences, then755

since F±(x) = x−2 + O(x−4),756

lim
n→∞

xqn√|hqn |
= lim

n→∞ q
μqn /2−σqn
n = ∞ �⇒ F±

(
xqn√|hqn |

)
� 1

q
μqn−2σqn
n

757

= |hqn |1−
2σqn
μqn ,758

which in turn would make the main term in Rx0(t) − Rx0(pn/qn) be759

Main Term =
√
hqn
qn

G(pn,mqn , qn)F±
(

xqn√|hqn |
)

� h
1
2+ 1

2μqn
qn h

1− 2σqn
μqn

qn � h
3
2−

4σqn−1
2μqn

qn ,760

123

Journal: 208 Article No.: 2971 TYPESET DISK LE CP Disp.:2024/8/28 Pages: 63 Layout: Small-Ex



R
ev
is
ed

Pr
oo
f

Multifractality and intermittency in the limit evolution...

which corresponds to an exponent 3
2 − 4μ(x0)−1

2μ(t) . Together with lower bound in Propo-761

sition 3.6, we would get 1
2 + 1

2μ(t) ≤ αx0(t) ≤ 3
2 − 4μ(x0)−1

2μ(t) , which leaves an open762

interval for αx0(t).763

The main difficulty to materialize the ideas leading to (33) is that we need the764

sequence qn to generate good approximations of both x0 and t simultaneously, which765

a priori may be not possible. In the following lines we show how we can partially766

dodge this problem to prove Theorem 1.3.767

5.2.2 Proof of Theorem 1.3768

Let σ ≥ 2. Recalling the definition of the sets Aμ,Q in (15), define769

Aσ,N\4N =
{
x ∈ [0, 1] :

∣∣∣∣x − b

q

∣∣∣∣770

<
1

qσ
for infinitely many coprime pairs (b, q) ∈ N × (N\4N)

}
.771

We first prove that the restriction in the denominators21 does not affect the Hausdorff772

dimension.773

Proposition 5.2 Let σ ≥ 2. Then, dimH Aσ,N\4N = 2/σ . Moreover, A2,N\4N =774

(0, 1)\Q, hence |A2,N\4N| = 1. If σ > 2, then H2/σ (Aσ,N\4N) = ∞.775

Proof The proof for the upper bound for the Hausdorff dimension is standard.Writing776

Aσ,N\4N = lim sup
q→∞ (q /∈4N)

⋃

1≤b<q, (b.q)=1

B

(
b

q
,
1

qσ

)
777

=
∞⋂

Q=1

⋃

q≥Q, q /∈4N

( ⋃

1≤b<q, (b.q)=1

B
(b
q

,
1

qσ

))
,778

we get an upper bound for the Hausdorff measures using the canonical cover779

Aσ,N\4N ⊂
⋃

q≥Q, q /∈4N

( ⋃

1≤b<q

B
(b
q

,
1

qσ

))
, ∀Q ∈ N780

�⇒ Hβ(Aσ,N\4N) ≤ lim
Q→∞

∑

q≥Q

1

qσβ−1 . (34)781

Thus,Hβ(Aσ,N\4N) = 0 when σβ −1 > 1, and consequently dimH Aσ,N\4N ≤ 2/σ .782

For the lower bound we follow the procedure discussed in Sect. 2, though unlike in783

the proof of Proposition 4.6 we do not need the Duffin–Schaeffer theorem here. We784

21 This condition, which will be apparent later, comes from parity the conditions for the Gauss sums not
to vanish.
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first study the Lebesgue measure of Aσ,N\4N. From (34) with β = 1, we directly get785

|Aσ,N\4N| = 0 when σ > 2. When σ = 2, we get A2,N\4N = A2 = (0, 1)\Q. Indeed,786

if bn/qn is the sequence of approximations by continued fractions of x ∈ (0, 1)\Q,787

two consecutive denominators qn and qn+1 are never both even.22 This means that788

there is a subsequence bnk/qnk such that |x − bnk/qnk | < 1/q2nk and qnk is odd for all789

k ∈ N. In particular, qnk /∈ 4N, so (0, 1)\Q ⊂ A2,N\4N. Hence,790

|Aσ,N\4N| =
{
1, σ ≤ 2,
0, σ > 2,

(35)791

With this in hand, we use the Mass Transference Principle Theorem 2.3. For β > 0,792

(Aσ,N\4N)β = lim sup
q→∞
q /∈4N

⋃

1≤b<q, (b,q)=1

B

(
b

q
,

(
1

qσ

)β)
793

= lim sup
q→∞
q /∈4N

⋃

1≤b<q, (b,q)=1

B

(
b

q
,

1

qσβ

)
= Aσβ,N\4N.794

Thus, choosing β = 2/σ we get (Aσ,N\4N)2/σ = A2,N\4N, hence by (35) we get795

|(Aσ,N\4N)2/σ | = 1. The Mass Transference Principle implies dimH Aσ,N\4N ≥ 2/σ796

and H2/σ (Aσ,N\4N) = ∞. ��797

Let x0 ∈ Aσ,N\4N. Then there exists a sequence of pairs (bn, qn) ∈ N×(N\4N) such798

that |x0 − bn/qn| < 1/qσ
n and moreover bn/qn are all approximations by continued799

fractions. Define800

Qx0 = { qn : n ∈ N }801

to be the set of such denominators. This sequence exists because:802

• if σ = 2, there is a subsequence of continued fraction approximations with odd803

denominator, in particular with qn /∈ 4N.804

• if σ > 2, by definition there exist a sequence of pairs (bn, qn) ∈ N× (N\4N) such805

that806

∣∣∣∣x0 − bn
qn

∣∣∣∣ <
1

qμ
n

≤ 1

2q2n
, for large enough n ∈ N.807

By a theorem of Khinchin [36, Theorem 19], all such bn/qn are continued fraction808

approximations of x0.809

22 If x = [a0; a1, a2, . . .] is a continued fraction, then q0 = 1, q1 = a1 and qn = anqn−1 + qn−2 for
n ≥ 2. If qN and qN+1 were both even for some N , then qN−1 would also be, and by induction q0 = 1
would be even.
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Since all such qn are the denominators of continued fraction approximations, the810

sequence qn grows exponentially.23 Following again the notation in (15) in Sect. 2, for811

μ ≥ 1 and 0 < c < 1/2, let24812

Aμ,Qx0
=
{
t ∈ [0, 1] :

∣∣∣∣t −
p

q

∣∣∣∣ <
c

qμ
for infinitely many coprime pairs (p, q) ∈ N ×Qx0

}
.813

814

Proposition 5.3 For μ ≥ 1, dimH(Aμ,Qx0
) = 1/μ.815

Proof As in the proof of Proposition 5.2, the upper bound follows from the limsup816

expression Aμ,Qx0
= lim supn→∞

⋃
1≤p≤qn , (p,qn)=1 B(p/qn, c/q

μ
n ) and its canoni-817

cal covering818

Aμ,Qx0
⊂
⋃

n≥N

⋃

1≤p≤qn

B

(
p

qn
,

c

qμ
n

)
, ∀N ∈ N �⇒ Hβ

(
Aμ,Qx0

) ≤ cβ lim
N→∞

∞∑

n=N

1

qμβ−1
n

. (36)819

Sinceqn ≥ 2n/2, the series converges if and only ifμβ−1 > 0.Thus,Hβ(Aμ,Qx0
) = 0820

for all β > 1/μ, hence dimH(Aμ,Qx0
) ≤ 1/μ.821

For the lower bound we follow again the procedure in Sect. 2. First we compute the822

Lebesgue measure of Aμ,Qx0
. From (36) with β = 1 we get |Aμ,Qx0

| = 0 if μ > 1.823

When μ ≤ 1, we need the full strength of the Duffin–Schaeffer theorem proved by824

Koukoulopoulos and Maynard [37] (see Theorem 2.1 in this paper). Indeed, we have825

|Aμ,Qx0
| = 1 if and only if

∑∞
n=1 ϕ(qn)/q

μ
n = ∞, and otherwise |Aμ,Qx0

| = 0. If826

μ < 1, we use one of the classic properties of Euler’s totient function, namely that827

for ε = (1 − μ)/2 > 0 there exists N ∈ N such that ϕ(n) ≥ n1−ε for all n ≥ N . In828

particular, there exists K ∈ N such that829

∞∑

n=1

ϕ(qn)

qμ
n

≥
∞∑

n=K

ϕ(qn)

qμ
n

≥
∞∑

n=K

q1−μ−ε
n ≥

∞∑

n=K

1 = ∞,830

so |Aμ,Qx0
| = 1 if μ < 1. For μ = 1, none of these arguments work, and we need831

to know the behavior of ϕ(qn) for qn ∈ Qx0 , of which we have little control. So832

independently of c > 0,833

|Aμ,Qx0
| =

⎧
⎨

⎩

1, μ < 1,
?, μ = 1,
0, μ > 1.

(37)834

23 We actually have qn ≥ 2n/2. To see this, rename this sequence as a subsequence (bnk /qnk )k of the

continued fraction convergents of x0. By the properties of the continued fractions, qnk ≥ 2nk/2. Since

nk ≥ k, we get qnk ≥ 2k/2.
24 When μ = ∞ the definition is adapted as usual as A∞,Qx0

= ∩μAμ,Qx0
. Proofs for forthcoming

results are written for μ < ∞, but the simpler μ = ∞ case is proved the same way we did in Sect. 4.3.
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Even not knowing |A1,Qx0
|, the Mass Transference Principle Theorem 2.3 allows us835

to compute the Hausdorff dimension of Aμ,Qx0
from (37). As usual, dilate the set with836

an exponent β > 0:837

(Aμ,Qx0
)β = lim sup

n→∞

⋃

1≤p≤qn

B

(
p

qn
,

(
c

qμ
n

)β)
838

= lim sup
n→∞

⋃

1≤p≤qn

B

(
p

qn
,
cβ

qμβ
n

)
= Aμβ,Qx0

,839

with a new constant cβ . Since (37) is independent of c, we have |(Aμ,Qx0
)β | =840

|Aμβ,Qx0
| = 1 if μβ < 1, and the Mass Transference Principle implies841

dimH Aμ,Qx0
≥ β. Taking β → 1/μ, we deduce dimH Aμ,Qx0

≥ 1/μ. ��842

As in Proposition 4.4 and in the definition of Bμ,Q in (30), to get information about843

αx0(t) for t ∈ Aμ,Qx0
we need to restrict their exponent of irrationality. We do this by844

removing sets Aμ+ε defined in (13). However, compared to Proposition 4.4 we have845

two fundamental difficulties:846

(a) The dimensions dimH Aμ = 2/μ > 1/μ = dimH Aμ,Qx0
do not match anymore.847

(b) Because do not know the Lebesgue measure of A1,Qx0
in (37), we cannot conclude848

that H1/μ(Aμ,Qx0
) = ∞ if μ > 1.849

To overcome these difficulties, let δ1, δ2 > 0 and define the set850

Bδ1,δ2
μ,Qx0

=
(
Aμ,Qx0

\Aμ+δ1,Qx0

)
\
(⋃

ε>0

A2μ+δ2+ε

)
.851

Remark 5.4 (Explanation of the definition of Bδ1,δ2
μ,Qx0

) The role of δ2 is to avoid the852

problem (b) above, while δ1 has a technical role when controlling the behavior of853

F±(xqn/
√
hqn ) in (40). Last, we remove A2μ+ε instead of Aμ+ε to avoid problem (a)854

and to ensure that Bδ1,δ2
μ,Qx0

is not too small. The downside of this is that we can only855

get μ(t) ∈ [μ, 2μ + δ2] for the exponent of irrationality of t ∈ Bδ1,δ2
μ,Qx0

. If instead we856

worked with the set857

B̃δ1
μ,Qx0

=
(
Aμ,Qx0

\Aμ+δ1,Qx0

)
\
(⋃

ε>0

Aμ+ε

)
858

we would deduce μ(t) = μ and therefore αx0(t) = 1/2 + 1/(2μ). However, we do859

not know how to compute the dimension of B̃δ1
μ,Qx0

.860
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Proposition 5.5 Let μ ≥ 1. Then,861

(a) dimH Bδ1,δ2
μ,Qx0

= 1/μ.862

(b) If t ∈ Bδ1,δ2
μ,Qx0

, then αx0(t) ≥ 1
2 + 1

4μ+2δ2
.863

(c) If 2 ≤ μ < 2σ − δ1 and t ∈ Bδ1,δ2
μ,Qx0

, then αx0(t) ≤ 1
2 + 1

2μ .864

Proof of Proposition 5.5 (a) The inclusion Bδ1,δ2
μ,Qx0

⊂ Aμ,Qx0
directly implies dimH865

Bδ1,δ2
μ,Qx0

≤ 1/μ. We prove the lower bound following the proof of Proposition 4.6 in a866

few steps:867

(a.1) Since dimH Aμ+δ1,Qx0
= 1/(μ + δ1) < 1/μ, we have dimH(Aμ,Qx0

\868

Aμ+δ1,Qx0
) = 1/μ.869

(a.2) The sets Aμ are nested, so by the Jarnik–Besicovitch Theorem 2.2870

dimH
(⋃

ε>0

A2μ+δ2+ε

)
= sup

n∈N

{
dimH

(
A2μ+δ2+ 1

n

)}
871

= sup
n∈N

2

2μ + δ2 + 1
n

= 1

μ + δ2/2
.872

Moreover,Hγ
(⋃

ε>0 A2μ+δ2+ε

) = limn→∞ Hγ
(
A2μ+δ2+1/n

) = 0 for all γ ≥873

1/(μ + δ2/2).874

Take γ such that 1/(μ+δ2/2) < γ < 1/μ. From (a.1)we getHγ (Aμ,Qx0
\Aμ+δ1,Qx0

)875

= ∞, and from (a.2) we hav e Hγ
(⋃

ε>0 A2μ+δ2+ε

) = 0, so876

Hγ (Bδ1,δ2
μ,Qx0

) = Hγ (Aμ,Qx0
\Aμ+δ1,Qx0

) −Hγ

(⋃

ε>0

A2μ+δ+ε

)
> 0.877

Consequently dimH Bδ1,δ2
μ,Qx0

≥ γ , and taking γ → 1/μ we conclude dimH Bδ1,δ2
μ,Qx0

≥878

1/μ.879

(b) Let t ∈ Bδ1,δ2
μ,Qx0

. Then, t /∈ ⋃ε>0 A2μ+δ2+ε implies μ(t) ≤ 2μ + δ2, where880

μ(t) is the exponent of irrationality of t . Combining this with Proposition 3.6 we get881

αx0(t) ≥ 1
2 + 1

2μ(t) ≥ 1
2 + 1

4μ+2δ2
.882

(c) Let t ∈ Bδ1,δ2
μ,Qx0

. Since t ∈ Aμ,Qx0
\Aμ+δ1,Qx0

, there is a subsequence of883

denominators (qnk )k ⊂ Qx0 such that c/qμ+δ1
nk ≤ ∣∣t − pnk/qnk

∣∣ < c/qμ
nk for k ∈ N.884

Define the errors hnk and xnk , and the exponent μnk as885

hnk = t − pnk
qnk

, |hnk | =
1

q
μnk
nk

and xnk =
∣∣∣x0 − bnk

qnk

∣∣∣ <
1

qσ
nk

. (38)886

From the condition above, since c < 1, we immediately get that for any ε > 0,887

μ < μnk ≤ μ + δ1 + ε, ∀k �ε 1. (39)888
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By the asymptotic expansion in Corollary 3.3, we have889

Rx0(t) − Rx0

(
pnk
qnk

)
= |hnk |1/2

qnk
G(pnk , bnk , qnk ) F±

(
xnk√
hnk

)
− 2π ihnk + Error,890

where Error = O
(
min

(
q3/2nk h3/2nk , q1/2nk hnk

))
. Let us treat the elements in this expres-891

sion separately.892

• Since qnk /∈ 4N, we have |G(pnk , bnk , qnk )| ≥ √
qnk for k ∈ N. Indeed, if qnk893

is odd, then |G(pnk , bnk , qnk )| = √
qnk . If qnk ≡ 2 (mod 4), then bnk is odd, so894

qnk/2 ≡ bnk (mod 2) and hence |G(pnk , bnk , qnk )| =
√
2qnk . Also, by (38) and895

(39),896

xnk√|hnk |
= xnk q

μnk /2
nk <

q
μnk /2
nk

qσ
nk

≤ q
μ
2 + δ1

2 + ε
2

nk

qσ
nk

= 1

q
σ−μ

2 − δ1
2 − ε

2
nk

. (40)897

Hence, if 2σ > μ + δ1, we can choose ε = σ − μ/2− δ1/2 > 0 and we get898

lim
k→∞

xnk√|hnk |
≤ lim

k→∞
1

qσ−μ/2−δ1/2−ε/2
nk

= lim
k→∞

1

q(σ−μ/2−δ1/2)/2
nk

= 0.899

Since F± is continuous, we get |F±(xnk/|hnk |1/2)| ≥ |F±(0)|/2 � 1 for all k � 1.900

Therefore,901

Main term =
∣∣∣∣

√|hnk |
qnk

G(pnk , bnk , qnk ) F

(
xnk

|hnk |1/2
)∣∣∣∣ �

√|hnk |√
qnk

, ∀k � 1.902

• The term 2π ihnk is absorbed by the Main Term if |hnk | �
√|hnk |/√qnk , which is903

equivalent to |hnk | � 1/qnk . If μ > 1, we get precisely |hnk | < c/qμ
nk � 1/qnk .904

• Regarding the error term, we can write905

q1/2nk |hnk | =
√|hnk |√

qnk
(q2nk |hnk |)1/2, q3/2nk |hnk |3/2 =

√|hnk |√
qnk

q2nk |hnk |.906

Since Error ≤ C min
(
q3/2nk |hnk |3/2, q1/2nk |hnk |

)
for some C > 0, the error is907

absorbed by the Main Term if q2nk |hnk | ≤ c for a small enough, but universal908

constant c. Choosing c > 0 in the definition of Aμ,Qx0
, the condition |hnk | ≤909

c/qμ
nk ≤ c/q2nk is satisfied if μ ≥ 2.910

Hence, if 2 ≤ μ < 2σ − δ1 and t ∈ Bδ1,δ2
μ,Qx0

, then |Rx0(t) − Rx0(pnk/qnk )| �911

√|hnk |/√qnk for all k � 1. From (39) we have 1/
√
qnk = |hnk |1/(2μnk ) > |hnk |1/(2μ),912

so |Rx0(t)−Rx0(pnk/qnk )| � |hnk |
1
2+ 1

2μ for all k � 1,which impliesαx0(t) ≤ 1
2+ 1

2μ .913

��914
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From Proposition 5.5 we can deduce the main part of Theorem 1.3.915

Theorem 5.6 Let σ ≥ 2 and let x0 ∈ Aσ,N\4N. Let 2 ≤ μ < 2σ . Then, for all δ > 0,916

1

μ
≤ dimH

{
t : 1

2
+ 1

4μ
− δ ≤ αx0(t) ≤ 1

2
+ 1

2μ

}
≤ 2

μ
.917

Proof Choose δ2 > 0 and any δ1 < 2σ − μ. Hence, 2 ≤ μ < 2σ − δ1 and Proposi-918

tion 5.5 implies919

Bδ1,δ2
μ,Qx0

⊂
{
t : 1

2
+ 1

4μ + 2δ2
≤ αx0(t) ≤ 1

2
+ 1

2μ

}
.920

Since dimH Bδ1,δ2
μ,Qx0

= 1/μ and δ2 is arbitrary, we get the lower bound. Let us now921

prove the upper bound. If αx0(t) ≤ 1
2 + 1

2μ , by Proposition 3.6 we get 1
2 + 1

2μ(t) ≤922

αx0(t) ≤ 1
2 + 1

2μ , hence μ(t) ≥ μ. This implies t ∈ Aμ−ε for all ε > 0, so by the923

Jarnik–Besicovitch Theorem 2.2 we get924

dimH
{
t : 1

2
+ 1

4μ
− δ ≤ αx0(t) ≤ 1

2
+ 1

2μ

}
≤ dimH Aμ−ε = 2

μ − ε
925

for all δ ≥ 0. We conclude by taking the limit ε → 0. ��926

To get the precise statement of Theorem 1.3, we only need to relate the sets Aσ,N\4N927

with the exponent σ(x0) = lim supn→∞{μn : qn /∈ 4N } defined in (8). We proceed928

as follows. Since {Aσ,N\4N}σ≥2 is a nested family and A2,N\4N = (0, 1)\Q, for every929

x0 ∈ (0, 1)\Q there exists σ̃ (x0) = sup{ σ : x0 ∈ Aσ,N\4N }. Let us check that930

σ(x0) = σ̃ (x0). Indeed, call σ̃ (x0) = σ̃ .931

• If σ̃ > 2. Then for ε > 0 small enough there exists a sequence bk/qk such932

that qk /∈ 4N and |x0 − bk/qk | < 1/q σ̃−ε
k < 1/(2q2k ). By Khinchin’s theorem933

[36, Theorem 19], bk/qk is an approximation by continued fraction, for which934

|x0 − bk/qk | = 1/qμk
k < 1/q σ̃−ε

k , and therefore μk ≥ σ̃ − ε. This implies935

σ(x0) ≥ σ̃ − ε for all ε > 0, hence σ(x0) ≥ σ̃ . On the other hand, for all936

approximations by continued fractions with qn /∈ 4N with large enough n we have937

|x0 − bn/qn| = 1/qμn
n > 1/q σ̃+ε

n , hence μn ≤ σ̃ + ε. This holds for all ε > 0, so938

σ(x0) ≤ σ̃ .939

• If σ̃ = 2, then |x0 − bn/qn| = 1/qμn
n > 1/q2+ε

n , hence μn ≤ 2 + ε, for all940

approximations by continued fractions with qn /∈ 4N. Therefore, σ(x0) ≤ 2.941

Since σ(x0) ≥ 2 always holds, we conclude.942

Therefore, let x0 ∈ (0, 1)\Q. Then, x0 ∈ Aσ,N\4N for all σ < σ(x0), so the943

conclusion of Theorem 5.6 holds for 2 ≤ μ < 2σ , for all σ < σ(x0). That implies944

that for every δ > 0,945

1

μ
≤ dimH

{
t : 1

2
+ 1

4μ
− δ ≤ αx0 (t) ≤ 1

2
+ 1

2μ

}
≤ 2

μ
, for all 2 ≤ μ < 2σ(x0).946
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6 Proof of Theorem 1.6—the high-pass filters when x0 ∈ Q947

In this section we prove Theorem 1.6. For that, we compute the L p norms of the948

high-pass filters of Rx0 when x0 ∈ Q. In Sect. 6.1 we define Fourier high-pass filters949

using smooth cutoffs, reduce the computation of their L p norms to the study of Fourier950

localized L p estimates, state such localized estimates and deduce Theorem 1.6 from951

them. We prove such localized estimates in Sect. 6.2.952

6.1 High-pass filters and frequency localization953

We begin with the definition of high-pass filters we use in the proofs. Let φ ∈ C∞
954

a positive and even cutoff with support on [−1, 1] and such that φ(x) = 1 on x ∈955

[−1/2, 1/2]. Let ψ(x) = φ(x/2) − φ(x), and956

ψ−1(x) = φ(x)

φ(x) +∑i∈N ψ(x/2i )
, ψk(x) = ψ(x/2k)

φ(x) +∑i∈N ψ(x/2i )
, for k ≥ 0,957

so that we have the partition of unity
∑∞

k=−1 ψk(x) = 1. For k ≥ 0, ψk is supported958

on [−2k+1,−2k−1] ∪ [2k−1, 2k+1]. Let f be a periodic function with Fourier series959

f (t) =∑n∈Z ane2π int . With the partition of unity above, we perform a Littlewood–960

Paley decomposition961

f (t) =
∞∑

k=−1

Pk f (t), where Pk f (t) =
∑

n∈Z
ψk(n)ane

2π int .962

The Fourier high-pass filter at frequency N ∈ N is roughly P≥N f (t) =963 ∑
k≥log N Pk f (t). Let us be more precise working directly with Rx0 , whose frequen-964

cies in t are squared. Let N ∈ N be large, and define kN to be the unique kN ∈ N such965

that 2kN ≤ √
N < 2kN+1. We define the high-pass filter of Rx0 at frequency N as966

P≥N Rx0(t) =
∑

k≥kN

Pk Rx0(t), where Pk Rx0(t) =
∑

n∈N
ψk(n)

e2π i(n
2t+nx0)

n2
.967

(41)968

We first estimate ‖Pk Rx0‖p and then extend the result to estimate ‖P≥N Rx0‖p.969

Remark 6.1 At a first glance, using pure Littlewood–Paley blocks in the definition970

for high-pass filters in (41) may seem restrictive, since it is analogue to estimating971

high-frequency cutoffs only for a sequence Nk � 2k → ∞. However, the estimates972

we give depend only on the L1 norm of the cutoff ψ , so slightly varying the definition973

and support of ψ does not affect the estimates. This is analogous to having a cutoff974

�(x/N ) for a fixed � as we state in the introduction.975
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We now state the estimates for the frequency localized L p estimates. For the sake976

of generality, let � ∈ C∞ be compactly supported outside the origin and bounded977

below in an interval of its support (for instance, ψ defined above).978

Theorem 6.2 Let x0 ∈ R. Then, for N � 1,979

∥∥∥∥
∑

n∈Z
�
( n
N

)
e2π i(n

2 t+n x0)
∥∥∥∥
p

L p(0,1)

�

⎧
⎨

⎩

N p−2, when p > 4,
N 2 log N , when p = 4,
N p/2, when p < 4.

(42)980

When p = 2, the upper bound is sharp, that is,
∥∥∑

n∈Z �(n/N ) e2π i(n
2 t+n x0)

∥∥2
L2(0,1) �981

N.982

If x0 ∈ Q, then the upper bound is sharp. That is, if x0 = P/Q with (P, Q) = 1,983

then984

∥∥∥∥
∑

n∈Z
�
( n
N

)
e2π i(n

2 t+n x0)
∥∥∥∥
p

L p(0,1)

�Q

⎧
⎨

⎩

N p−2, when p > 4,
N 2 log N , when p = 4,
N p/2, when p < 4.

(43)985

Remark 6.3 All estimates in Theorem 6.2 depend on ‖�‖1 due to Lemma 6.4.986

We postpone the proof of Theorem 6.2 to Sect. 6.2. and use it now to compute the987

L p norms of the high-pass filters ‖P≥N Rx0‖p and therefore to prove Theorem 1.6.988

Proof of Theorem 1.6 Denote the estimate for x0 ∈ Q on (43) in Theorem 6.2 by989

∥∥∥∥
∑

n∈Z
�(n/N ) e2π i(n

2 t+n x0)
∥∥∥∥
p

L p(0,1)

� Gp(N ). (44)990

First, use the triangle inequality in (41) to bound991

‖P≥N Rx0‖p ≤
∑

k≥kN

‖Pk Rx0‖p =
∑

k≥kN

∥∥∥∥
∑

n∈Z
ψk(n)

e2π i(n
2t+nx0)

n2

∥∥∥∥
p

.992

Since ψk is supported on [2k−1, 2k+1], we can take the denominator n2 out of the L p
993

norm to get994

‖P≥N Rx0‖p �
∑

k≥kN

1

22k

∥∥∥∥
∑

n∈Z
ψk(n) e2π i(n

2t+nx0)
∥∥∥∥
p

,995
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for example using [23, Lemma 3.1, Corollary 3.2]. We can now use (44) to get25996

‖P≥N Rx0‖p �
∑

k≥kN

G p(2k)1/p

22k
� Gp(2kN )1/p

22kN
, (45)997

where the last equality follows by direct calculation because the defintion ofGp makes998

the series be geometric. For the lower bound, as long as 1 < p < ∞, the Mihklin999

multiplier theorem.26 combined again with [23, Lemma 3.1, Corollary 3.2] and (44)1000

gives1001

‖P≥N Rx0‖p � ‖PkN Rx0‖p � 1

22kN

∥∥∥∥
∑

n

ψkN (n) e2π i(n
2t+nx0)

∥∥∥∥
p

� Gp(2kN )1/p

22kN
.1002

(46)1003

Joining (45) and (46) and recalling that 2kN � √
N , we conclude that1004

‖P≥N Rx0‖p � Gp(2kN )1/p

22kN
�
⎧
⎨

⎩

N−1/2−1/p, p > 4,
N−3/4 (log N )1/4, p = 4,
N−3/4, p < 4,

1005

from which we immediately get1006

η(p) = lim
N→∞

log(‖P≥N Rx0‖pp)
log(1/N )

=
{
p/2+ 1, p > 4,
3p/4, p ≤ 4.

1007

��1008

6.2 Frequency localized Lp norms1009

In this section we prove Theorem 6.2. The L2 estimate, which holds for all x0, follows1010

from Plancherel’s theorem. For p �= 2, we use the following well-known lemma,1011

whose proof can be found in [10, Lemma 3.18] (see also [4, Lemma 4.4]).1012

Lemma 6.4 Let � ∈ C∞
0 (R). Let N ∈ N and q ∈ N such that q ≤ N. Let also a ∈ Z1013

such that (a, q) = 1. Then,1014

∣∣∣∣t −
a

q

∣∣∣∣ ≤
1

qN
�⇒

∣∣∣∣
∑

n∈Z
�
( n
N

)
e2π i(n

2t+nx)
∣∣∣∣1015

25 The estimates in Theorem 6.2 depend on ‖�‖1, so strictly speaking we need to check that for large
enough k � 1, the norm ‖ψk (2

k ·)‖1 does not depend on k. This is the case, since
∫

ψk (2
k x) dx =

∫ 2

1/2

ψ(x)

φ(2k x) +∑∞
i=0 ψ(2k x/2i )

dx =
∫ 2

1/2

ψ(x)

ψ(x/2) + ψ(x) + ψ(2x)
dx = Cψ .

26 Apply Mihklin’s theorem in R to the operator PkN in (41) to get ‖PkN f ‖p � ‖PkN P≥N f ‖p �
‖P≥N f ‖p , and then periodize the result using a theorem by Stein and Weiss [46, Chapter 7, Theorem 3.8]
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� ‖�‖1
N√

q
(
1+ N

√|t − a/q|) . (47)1016

Moreover, there exist δ, ε ≤ 1 only depending on � such that if1017

q ≤ εN ,

∣∣∣t − a

q

∣∣∣ ≤ δ

N 2 ,

∣∣∣x − b

q

∣∣∣ ≤ δ

N
1018

for some b ∈ Z, then1019

∣∣∣∣
∑

n∈Z
�
( n
N

)
e2π i(n

2t+nx)
∣∣∣∣ �‖�‖1

N√
q

.1020

We are now ready to prove Theorem 6.2.1021

Proof of Theorem 6.2 Let x0 ∈ R. For simplicity, we prove the L2 estimate for a1022

symmetric �. Considering f as a Fourier series in t , by Plancherel’s theorem we1023

write1024

∥∥∥∥
∑

n∈Z
�
( n
N

)
e2π i(n

2 t+n x0)
∥∥∥∥
2

L2(0,1)

=
∞∑

n=1

∣∣∣�
( n
N

)
e2π in x0 + �

(− n

N

)
e−2π in x0

∣∣∣
2

=
∞∑

n=1

�
( n
N

)2 ∣∣∣e2π inx0 + e−2π inx0
∣∣∣
2 �

∞∑

n=1

�
( n
N

)2 cos2(2πnx0)
1025

This sum is upper bounded by N by the triangle inequality. If x0 is rational, say1026

x0 = P/Q, the bound from below follows27 by summing only over multiples of Q in1027

[N , 2N ], so that1028

∥∥∥∥
∑

n∈Z
�
( n
N

)
e2π i(n

2 t+n x0)
∥∥∥∥
2

L2(0,1)

�
2N/Q∑

k=N/Q

cos2(2πkQx0) = N

Q
�Q N .1029

If x0 is irrational, it is known that the sequence (nx0)n is equidistributed in the torus,1030

which means that for any continuous p-periodic function1031

lim
N→∞

1

N

N∑

n=1

f (nx0) =
∫ p

0
f .1032

27 Without loss of generality assume that �(x) � 1 for x ∈ (1, 2).
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In particular, since for f (y) = cos(4π y) we have
∫ 1/2
0 f (y) dy = 0, we get28 for1033

large N that1034

∥∥∥∥
∑

n∈Z
�
( n
N

)
e2π i(n

2 t+n x0)
∥∥∥∥
2

L2(0,1)

�
2N∑

n=N

cos2(2πnx0) � N+
2N∑

n=N

cos(4πnx0) � N .1035

We now prove the upper bound (42) for any x0 ∈ R. The Dirichlet approximation1036

theorem implies that any t ∈ R\Q can be approximated as follows:1037

∀N ∈ N, ∃q ≤ N , 1 ≤ a ≤ q such that
∣∣∣t − a

q

∣∣∣ ≤ 1

qN
,1038

which can be rewritten as R\Q ⊂ ⋃N
q=1

⋃q
a=1 B

( a
q , 1

qN

)
for all N ∈ N. Therefore,1039

for any N ∈ N,1040

∥∥∥∥
∑

n∈Z
�(n/N ) e2π i(n

2 t+n x0)
∥∥∥∥
p

L p(0,1)

1041

≤
N∑

q=1

q∑

a=1

∫

B( aq , 1
qN )

∣∣∣∣
∑

n∈Z
�(n/N ) e2π i(n

2 t+n x0)
∣∣∣∣
p

dt . (48)1042

We split each integral according to the two situations in (47) in Lemma 6.4:1043

∫

|t− a
q |< 1

N2

∣∣∣∣
∑

n∈Z
�(n/N ) e2π i(n

2 t+n x0)
∣∣∣∣
p

dt

+
∫

1
N2 <|t− a

q |< 1
qN

∣∣∣∣
∑

n∈Z
�(n/N ) e2π i(n

2 t+n x0)
∣∣∣∣
p

dt

≤
∫

|t− a
q |< 1

N2

(
N√
q

)p

dt +
∫

1
N2 <|t− a

q |< 1
qN

(
1√

q |t − a
q |1/2

)p

dt

� N p−2

q p/2 + 1

q p/2

∫ 1
qN

1
N2

1

h p/2 dh.

(49)1044

The behavior of that last integral changes depending on p being greater or smaller1045

than 2.1046

• If p < 2,1047

(49) � N p−2

q p/2 + 1

q p/2

((
1

qN

)1−p/2

−
(

1

N 2

)1−p/2
)

≤ N p−2

q p/2 + 1

q N 1−p/2 ,1048

28 Using the trigonometric identity cos2(x) = (1+ cos(2x))/2.
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so1049

(48) ≤ N p−2
N∑

q=1

q∑

a=1

1

q p/2 + 1

N 1−p/2

N∑

q=1

q∑

a=1

1

q
� N p/2.1050

• If p = 2,1051

(49) � 1

q

(
1+

∫ 1
qN

1
N2

dh

h

)
� 1

q

(
1+ log(N 2) − log(qN )

)
= 1+ log(N/q)

q
,1052

hence1053

(48) �
N∑

q=1

(
1− log(q/N )

)
� N −

∫ N

1
log(x/N ) dx � N

(
1−

∫ 1

1
N

log(y) dy
)

1054

� N .1055

• If p > 2,1056

(49) � N p−2

q p/2 +
(
N 2
)p/2−1 − (qN )p/2−1

q p/2 � N p−2

q p/21057

�⇒ (48) � N p−2
N∑

q=1

1

q p/2−1 .1058

This series converges if and only if p > 4, and more precisely,1059

(48) �

⎧
⎨

⎩

N p−2, p > 4,
N 2 log N , p = 4,
N p−2 N 2−p/2 = N p/2, p < 4.

1060

This concludes the proof of (42).1061

Wenow prove the lower bound in (43) for x0 ∈ Q. Let x0 = P/Q with (P, Q) = 1.1062

Let δ, ε > 0 as given in Lemma 6.4, and let N ∈ N be such that Q ≤ εN . Bound the1063

L p norm from below by1064

∥∥∥∥
∑

n∈Z
�(n/N ) e2π i(n

2 t+n x0)
∥∥∥∥
p

L p(0,1)

≥
∫

B
(

a
Q , δ

N2

)
∣∣∣∣
∑

n∈Z
�(n/N ) e2π i(n

2 t+n x0)
∣∣∣∣
p

dt,1065

(50)1066

where a is any 1 ≤ a ≤ Q such that (a, Q) = 1. Use Lemma 6.4 with q = Q and1067

b = P , for which the condition 0 = |x0 − P/Q| < δ/N is satisfied trivially, and1068

|t − a/Q| < δ/N 2, which is valid on the domain of integration. Then, for N ≥ Q/ε,1069
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∥∥∥∥
∑

n∈Z
�(n/N ) e2π i(n

2 t+n x0)
∥∥∥∥
p

L p(0,1)

�
∫

B
(

a
Q , δ

N2

)
(

N√
Q

)p

dt � N p

Qp/2

δ

N 2 �Q N p−2.1070

In view of the upper bound in (42), this is optimal when p > 4. When p ≤ 4, we1071

refine the bound in (50) as follows. Define the set1072

QN = { q ∈ N : Q | q and q ≤ εN },1073

whose cardinality � εN/Q is as large as needed if N � 1. Observe that1074

B

(
a

q
,

δ

N 2

)
∩ B

(
a′

q ′ ,
δ

N 2

)
= ∅, ∀q, q ′ ∈ QN , (a, q) = 1 = (a′, q ′),1075

as long as a/q �= a′/q ′. Indeed, the distance from the centers is |aq ′−a′q|
q q ′ ≥ 1

q q ′ ≥1076

1
ε2N2 , while the radius is

δ
N2 < 1

ε2N2 (choosing a smaller δ > 0 if needed). Hence the1077

balls in the family {B(a/q, δ/N 2) : q ∈ QN , (a, q) = 1 } are pairwise disjoint, and1078

we can bound1079

∥∥∥∥
∑

n∈Z
�(n/N ) e2π i(n

2 t+n x0)
∥∥∥∥
p

L p(0,1)

1080

�
∑

q∈QN

∑

a:(a,q)=1

∫

B
(
a
q , δ

N2

)

∣∣∣∣
∑

n∈Z
�(n/N ) e2π i(n

2 t+n x0)
∣∣∣∣
p

dt . (51)1081

For each of those integrals we have q = Qn for some n ∈ N. To use Lemma 6.4 we1082

chose b = Pn so that 0 = |x0 − b/q| < δ/N , hence1083

(51) �
∑

q∈QN

∑

a:(a,q)=1

∫

B
(
a
q , δ

N2

)
( N√

q

)p
dt1084

� δ N p−2
∑

q∈QN

ϕ(q)

q p/2 � N p−2

Qp/2

εN/Q∑

n=1

ϕ(Qn)

n p/2 . (52)1085

We estimate this sum in the following lemma, which we prove in Appendix A, Corol-1086

lary A.5.1087

Lemma 6.5 Let Q ∈ N. Then, for N � 1,1088

N∑

n=1

ϕ(Qn)

n2
� log N , and

N∑

n=1

ϕ(Qn)

nα
� N 2−α, for α < 2,1089

where the implicit constants depend on Q and α.1090
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Using this lemma in (52), when p < 4 we get1091

∥∥∥∥
∑

n∈Z
�(n/N ) e2π i(n

2 t+n x0)
∥∥∥∥
p

L p(0,1)

�p,Q
N p−2

Qp/2

(εN

Q

)2− p
2 �p,Q N p/2.1092

Similarly, when p = 4 we get1093

∥∥∥∥
∑

n∈Z
�(n/N ) e2π i(n

2 t+n x0)
∥∥∥∥
4

L4(0,1)

�Q
N 2

Q2 log
(εN

Q

)
�Q N 2 log N .1094

Together with the upper bounds in (42), this completes the proof. ��1095

Appendix A. Sums of Euler’s totient function1096

Sums of the Euler totient function play a relevant role in this article, especially in1097

Lemma 6.5. In Sect.A.1 we state the classical results and briefly prove them for1098

completeness. In Sect.A.2 we adapt these classical proofs to sums modulo Q that we1099

need in this article. Throughout this appendix, ϕ denotes the Euler totient function and1100

μ denotes the Möbius function.291101

A.1 Sums of Euler’s totient function1102

Define the sum function1103

�(N ) =
N∑

n=1

ϕ(n), N ∈ N.1104

Proposition A.1 For N � 1,1105

�(N ) = CN 2 + O
(
N log N

)
, where C = 1

2

∞∑

n=1

μ(n)

n2
= 3

π21106

Proof By the Möbius inversion formula,1107

�(N ) =
N∑

n=1

ϕ(n) =
N∑

n=1

n

(∑

d|n

μ(d)

d

)
=

N∑

n=1

∑

d|n

n

d
μ(d).1108

29 For n ∈ N, μ(n) = 1 if n is has no squared prime factor and if it has an even number of prime factors;
μ(n) = −1 if n is has no squared prime factor and if it has an odd number of prime factors; and μ(n) = 0
if it has a squared prime factor.
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Calling n/d = d ′, the sum is in all natural numbers d and d ′ such that dd ′ ≤ N .1109

Therefore,1110

�(N ) =
∑

d,d ′ : dd ′≤N

d ′μ(d) =
N∑

d=1

μ(d)

�N/d ∑

d ′=1

d ′ =
N∑

d=1

μ(d)
�N/d (�N/d + 1)

2
.1111

For x ∈ R, write x = �x + {x}, where 0 ≤ {x} < 1 is the fractional part of x . Then,1112

direct computation shows that �x (�x + 1) = x2 + O(x) when x ≥ 1, so1113

�(N ) = 1

2

N∑

d=1

μ(d)

((N
d

)2 + O
(N
d

))
= N 2

2

N∑

d=1

μ(d)

d2
+ O

(
N

N∑

d=1

1

d

)
.1114

The series
∑∞

d=1 μ(d)/d2 is absolutely convergent, and its value is known to be1115

2C = 6/π2, so write1116

N∑

d=1

μ(d)

d2
= 2C −

∞∑

d=N+1

μ(d)

d2
= 2C + O

( ∞∑

d=N+1

1

d2

)
= 2C + O

( 1

N

)
.1117

Since
∑N

d=1 1/d � log N , we get �(N ) = C N 2 + O(N ) + O(N log N ) = CN 2 +1118

O(N log N ). ��1119

As a Corollary of Lemma A.1 we obtain the analogue result for the sums weighted1120

by n−α . Observe that when α > 2 the sum is convergent.1121

Corollary A.2 Let α ≤ 2. For N � 1,1122

N∑

n=1

ϕ(n)

n2
� log N , and

N∑

n=1

ϕ(n)

nα
� N 2−α, if α < 2.1123

Proof Upper bounds immediately follow from ϕ(n) ≤ n. For lower bounds, assume1124

first that α ≥ 0. From Proposition A.1 we directly get1125

N∑

n=1

ϕ(n)

nα
≥ 1

Nα

N∑

n=1

ϕ(n) = 1

Nα
�(N ) � N 2−α,1126

which is optimal when α < 2. For the case α = 2 we use the summation by parts1127

formula30 to get1128

N∑

n=1

ϕ(n)

n2
= �(N )

N 2 −
N−1∑

n=1

�(n)

(
1

(n + 1)2
− 1

n2

)
1129

30 Let an and bn be two sequences, and let BN = ∑N
n=1 bn . Then,

∑N
n=1 anbn = aN BN −

∑N−1
n=1 Bn(an+1 − an).
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= �(N )

N 2 +
N−1∑

n=1

�(n)
2n + 1

n2 (n + 1)2
. (53)1130

Restrict the sum to log N ≤ n ≤ N − 1, and combine it with �(n) � n2 for n � 11131

from Proposition A.1 to get1132

N∑

n=1

ϕ(n)

n2
� 1+

N−1∑

n≥log N

1

n
� log N − log log N � log N , for N � 1.1133

When α < 0, restrict the sum to n ∈ [N/2, N ] and use �(N ) = CN 2 + O(N log N )1134

in Proposition A.1 to get1135

N∑

n=1

ϕ(n)

nα
=

N∑

n=1

ϕ(n) n|α| ≥
(N
2

)|α| N∑

n≥N/2

ϕ(n) �|α|
�(N ) − �(N/2)

Nα
� N 2−α.1136

��1137

A.2 Sums of Euler’s totient functionmodulo Q1138

For Q ∈ N, let1139

�Q(N ) =
N∑

n=1

ϕ(Qn) when N � 1,1140

To estimate the behavior when N → ∞ we adapt the proofs of Proposition A.1 and1141

Corollary A.2.1142

Proposition A.3 Let Q ∈ N. Then, �Q(N ) ≤ QN 2, and there exists a constant1143

cQ > 0 such that1144

�Q(N ) ≥ cQN
2 + OQ(N log N ).1145

Consequently, �Q(N ) �Q N 2 when N � 1.1146

Proof The upper bound follows directly from ϕ(n) < n for all n ∈ N, so it suffices to1147

prove the lower bound. For that, first restrict the sum to n ≤ N such that (Q, n) = 1.1148

By the multiplicative property of the Euler function, we get1149

�Q(N ) ≥
N∑

n=1
(Q,n)=1

ϕ(Qn) = ϕ(Q)

N∑

n=1
(Q,n)=1

ϕ(n). (54)1150
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The proof now follows the same strategy as in Proposition A.1. Use Möbius inversion1151

to write1152

N∑

n=1
(Q,n)=1

ϕ(n) =
N∑

n=1
(Q,n)=1

(
n
∑

d|n

μ(d)

d

)
=

N∑

n=1
(Q,n)=1

∑

d|n

n

d
μ(d).1153

Observe that if (Q, n) = 1 and if we decompose n = d d ′, then both d and d ′ are1154

coprime with Q. Conversely, if d and d ′ are coprime with Q, then so is n = d d ′.1155

Thus,1156

N∑

n=1
(Q,n)=1

ϕ(n) =
∑

d,d ′ : d d ′≤N
(Q,d)=1=(Q,d ′)

d ′ μ(d) =
N∑

d=1
(Q,d)=1

μ(d)

⎛

⎜⎜⎝
�N/d ∑

d ′=1
(Q,d ′)=1

d ′

⎞

⎟⎟⎠ . (55)1157

In the following lemma we give a closed formula for the inner sum. We postpone its1158

proof.1159

Lemma A.4 Let Q ∈ N, Q ≥ 2. Then,1160

SQ =
Q−1∑

n=1
(Q,n)=1

n = Q ϕ(Q)

2
, and SQ,k =

kQ−1∑

n=1
(Q,n)=1

n = Q ϕ(Q)

2
k2, ∀k ∈ N.1161

Now, for every d ≤ N , find kd ∈ N ∪ {0} such that kd Q ≤ �N/d < (kd + 1)Q,1162

and write1163

sum�N/d 
d ′=1

(Q,d ′)=1

d ′ =
kd Q−1∑

d ′=1
(Q,d ′)=1

d ′ +
�N/d ∑

d ′=kd Q+1
(Q,d ′)=1

d ′ = SQ,kd + O
(
(kd + 1)Q2

)
1164

= Q ϕ(Q)

2
k2d + O

(
(kd + 1)Q2

)
. (56)1165

Since the definition of kd is equivalent to 1
Q �N/d −1 < kd ≤ 1

Q �N/d , we deduce1166

that kd = � 1
Q �N/d  . Consequently, since �x = x + O(1) and �x 2 = x2 + O(x),1167

we get1168
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kd = N

Qd
+ O(1) and k2d = N 2

Q2d2
+ 1

Q
O
(N
d

)
. (57)1169

Hence, from (56) and (57) we get1170

�N/d ∑

d ′=1
(Q,d ′)=1

d ′ = ϕ(Q)

2Q

N 2

d2
+ O

(
ϕ(Q)

N

d
+ Q

N

d
+ Q2

)
= ϕ(Q)

2Q

N 2

d2
+ Q2 O

(
N

d

)
.1171

We plug this in (55) to get1172

N∑

n=1
(Q,n)=1

ϕ(n) = ϕ(Q)

2Q
N 2

N∑

d=1
(Q,d)=1

μ(d)

d2
+ O

(
Q2N

N∑

d=1
(Q,d)=1

μ(d)

d

)
.1173

The sum
∑∞

n=1 μ(d)/d2 is absolutely convergent, and cQ :=∑∞
d=1, (Q,d)=1 μ(d)/d2 >1174

0 because1175

cQ = 1+
∞∑

d=2
(Q,d)=1

μ(d)

d2
and

∣∣∣∣
∞∑

d=2
(Q,d)=1

μ(d)

d2

∣∣∣∣ ≤
π2

6
− 1 < 1.1176

Hence,1177

N∑

d=1
(Q,d)=1

μ(d)

d2
= cQ −

∞∑

d=N+1
(Q,d)=1

μ(d)

d2
= cQ + O

( ∞∑

d=N+1

1

d2

)
= cQ + O(1/N ).1178

Together with |∑N
d=1, (Q,d)=1 μ(d)/d| � log N , this implies1179

N∑

n=1
(Q,n)=1

ϕ(n) = cQ
ϕ(Q)

2Q
N 2 + O

(ϕ(Q)

Q
N
)
+ O(Q2N log N )1180

= cQ
ϕ(Q)

2Q
N 2 + OQ(N log N ).1181

Together with (54) we conclude �Q(N ) ≥ cQ
ϕ(Q)2

2Q N 2 + OQ(N log N ). ��1182

Proof of LemmaA.4 We begin with k = 1. When Q = 2, we have S2,1 = 1 =1183

2 ϕ(2)/2, so we may assume Q ≥ 3. We first observe that ϕ(Q) is even, because if1184

Q has an odd prime factor p, then ϕ(p) = p − 1, which is even, is a factor of ϕ(Q).1185

Otherwise, Q = 2r with r ≥ 2, so ϕ(Q) = 2r−1 is even. Now, the observation that1186

(Q, n) = 1 ⇐⇒ (Q, Q − n) = 1 implies1187
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SQ,1 =
�Q/2 ∑

n=1
(Q,n)=1

n +
Q−1∑

n=�Q/2 +1
(Q,n)=1

n =
�Q/2 ∑

n=1
(Q,n)=1

(
n + (Q − n)

) = Q
ϕ(Q)

2
.1188

Let now k ≥ 2, so that1189

kQ−1∑

n=(k−1)Q+1
(Q,n)=1

n =
Q−1∑

n=1
(Q,n)=1

(
n + (k − 1)Q

)
1190

= SQ,1 + (k − 1)Qϕ(Q) = Qϕ(Q)
(
k − 1

2

)
.1191

Consequently,1192

SQ,k =
k∑

	=1

⎛

⎜⎜⎝
	Q∑

n=(	−1)Q+1
(Q,n)=1

n

⎞

⎟⎟⎠ =
k∑

	=1

Qϕ(Q)

(
	 − 1

2

)
= Qϕ(Q)

2
k2.1193

��1194

To conclude, we prove the estimates for the weighted sums that we needed in1195

Lemma 6.5 as a corollary of Proposition A.3. As before, when α > 2 the sums are1196

absolutely convergent.1197

Corollary A.5 (Lemma 6.5) Let Q ∈ N and α ≤ 2. For N � 1,1198

N∑

n=1

ϕ(Qn)

n2
� log N , and

N∑

n=1

ϕ(Qn)

nα
� N 2−α for α < 2.1199

The implicit constants depend on Q, and also on α when α < 0.1200

Proof Upper bounds followdirectly fromϕ(n) ≤ n. Lower bounds follow fromPropo-1201

sition A.3 with the same strategy as in the proof of Corollary A.2. If α ≥ 0, by1202

Proposition A.3 we get1203

N∑

n=1

ϕ(Qn)

nα
≥ 1

Nα
�Q(N ) �Q N 2−α, when N � 1.1204

When α = 2, combine Proposition A.3 with summing by parts as in (53) to get1205

N∑

n=1

ϕ(Qn)

n2
= �Q(N )

N 2 +
N−1∑

n=1

�Q(n)
2n + 1

n2 (n + 1)2
� 1+

N−1∑

n=log N

1

n
� log N .1206
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When α < 0, choosing δ > 0 small enough depending on Q, Proposition A.3 implies1207

1208

N∑

n=1

ϕ(Qn)

nα
≥α N |α|

N∑

n=δN

ϕ(Qn) = N |α|(�Q(N ) − �Q(δN )
)
�Q,α N |α|N 2 = N 2−α.1209

��1210

Appendix B. Alternative asymptotic behavior of Rx0 around rational t1211

Following Duistermaat [22], we give an alternative asymptotic behavior of Rx0 around1212

rationals that complements Corollary 3.3 and allows us to prove Propositions 3.51213

and 4.2.1214

Proposition B.1 Let x0 ∈ R. Let p, q ∈ N be such that (p, q) = 1. Let xq =1215

dist(x0, Z/q). Let h �= 0 and denote sign(h) = ± so that h = ±|h|. If xq = 0,1216

Rx0

( p
q

+ h
)
− Rx0

( p
q

)
+ 2π ih

= 2π(−1± i)

√|h|√
q

G(p,mq , q)√
q

+ 2(1± i) q3/2|h|3/2
∑

m �=0

G(p,mq + m, q)√
q

e
−2π i m2

4q2h

m2 + O
(
q7/2h5/2

)
,

(58)1217

If xq �= 0,1218

Rx0

( p
q

+ h
)
− Rx0

( p
q

)
+ 2π ih

= 2(1± i) q3/2|h|3/2
∑

m∈Z

G(p,mq + m, q)√
q

e
−2π i

(m−qxq )2

4q2h

(m − qxq)2

+ O

(
q7/2h5/2

∑

m∈Z

1

(m − qxq)4

)
.

(59)1219

Proof From the definition Rx0(t) =∑n �=0 e
2π i(n2t+nx0)/n2, we first write1220

Rx0

( p
q

+ h
)
− Rx0

( p
q

)
+ 2π ih = 2π ih +

∑

n �=0

e2π in
2h − 1

n2
e2π i

pn2

q e2π inx0

= 2π ih
∑

n∈Z

( ∫ 1

0
e2π in

2hτ dτ
)
e2π i

pn2

q e2π inx0 .

1221
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Split the summodulo q bywriting n = mq+r and use the Poisson summation formula1222

to obtain1223

Rx0

( p
q

+ h
)
− Rx0

( p
q

)
+ 2π ih

= 2π ih
q−1∑

r=0

e2π ir
2 p/q

∑

m∈Z

( ∫ 1

0
e2π i(mq+r)2hτ dτ

)
e2π i(mq+r)x0

= 2π ih
q−1∑

r=0

e2π ir
2 p/q

∑

m∈Z

∫ ( ∫ 1

0
e±2π i(zq+r)2|h|τ dτ

)
e2π i(zq+r)x0 e−2π imz dz

= ±2π i

√|h|
q

∑

m∈Z

q−1∑

r=0

e2π i
pr2+mr

q

∫ 1

0

∫
e±2π iy2τ e

2π i y√|h| (x0−m
q )

dy dτ.

1224

where we changed variables (zq + r)2|h| = y2. Now complete the square to get1225

Rx0

( p
q

+ h
)
− Rx0

( p
q

)
+ 2π ih1226

= ±2π i

√|h|
q

∑

m∈Z
G(p,m, q)

∫ 1

0

( ∫
e
±2π iτ

(
y± x0−m/q

2τ
√|h|

)2
dy
)
e∓2π i (x0−m/q)2

4τ |h| dτ1227

= ±2π i
1± i

2

√|h|
q

∑

m∈Z
G(p,m, q)

∫ 1

0

1√
τ
e∓2π i (x0−m/q)2

4τ |h| dτ. (60)1228

By changing variables, and defining xq = minm∈Z |x0 − m/q| = |x0 − mq/q| as in1229

(20), we write1230

Rx0

( p
q

+ h
)
− Rx0

( p
q

)
+ 2π ih1231

= π(−1± i)

√|h|√
q

∑

m∈Z

G(p,mq + m, q)√
q

∫ ∞

1

1

ξ3/2
e−2π i

(xq−m/q)2

4h ξdξ. (61)1232

We now separate cases. If xq = 0, the integral of the term m = 0 is
∫∞
1 ξ−3/2dξ = 2.1233

In all other cases, that is, if either xq �= 0 or m �= 0, integration by parts implies1234

∫ ∞

1

1

ξ3/2
e−2π i

(xq−m/q)2

4h ξdξ

= 2

π i

q2h

(m − qxq)2

(
e
−2π i

(m−qxq )2

4q2h + 3

2

∫ ∞

1

1

ξ5/2
e−2π i

(xq−m/q)2

4h ξdξ

)

= O

(
q2h

(m − qxq)2

)
.

1235
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What is more, integrating by parts again we obtain1236

∫ ∞

1

1

ξ3/2
e−2π i

(xq−m/q)2

4h ξdξ = 2

π i

q2h

(m − qxq)2

(
e
−2π i

(m−qxq )2

4q2h + O
( q2h

(m − qxq)2

))
.1237

Combining these with (61) give the desired expressions. ��1238

Remark B.2 Computations for (60) are made rigorous to avoid convergence problems1239

by writing1240

∑

n∈Z

e2π in
2h − 1

n2
e2π in

2 p/q e2π inx0 = lim
ε→0

∑

n∈Z

e2π in
2h(1+iε) − 1

n2
e2π in

2 p/q e2π inx0 .1241

Proposition B.1 will allow us to give upper bounds of αx0(t) for general t .1242

Proposition B.3 Let x0 ∈ Q and t /∈ Q. Then, αx0(t) ≤ 3/4.1243

Proof Set x0 = P/Q with P, Q ∈ N and (P, Q) = 1. Let t /∈ Q and let pn/qn be its1244

approximations by continued fractions. It is well-known31 that there is a subsequence1245

of odd denominators qnk . Renaming that subsequence back to qn , we may assume that1246

all qn are odd. Consequently, |G(pn,m, qn)| = √
q for all m, n ∈ N. As usual, let1247

hn = t − pn
qn

, |hn| <
1

q2n
, xqn = min

m∈Z

∣∣∣
P

Q
− m

qn

∣∣∣ =
∣∣∣
P

Q
− mqn

qn

∣∣∣,1248

and we immediately deduce that either xqn = 0 or 1/Q ≤ qnxqn ≤ 1/2. We separate1249

cases:1250

Case 1 We have xqn = 0 for infinitely many n ∈ N. Rename that subsequence and1251

rewrite (58) as1252

∣∣∣Rx0

( pn
qn

+ hn
)
− Rx0

( pn
qn

)
+ 2π ihn

∣∣∣1253

= 2π
√
2

√|hn|√
qn

+ O
(
q3/2n h3/2n

)
�

√|hn|√
qn

(
1+ O

(
q2nhn

))
. (62)1254

Let δ > 0 which we determine later. Separate cases again:1255

Case 1.1. Suppose that
∣∣1+ O

(
q2nhn

)∣∣ ≥ δ for infinitely many n ∈ N. Then,1256

∣∣Rx0(t) − Rx0(t − hn) + 2π ihn
∣∣ ≥ δ

√|hn|√
qn

≥ δ |hn|3/4,1257

because q2n |hn| ≤ 1. Hence |Rx0(t) − Rx0(t − hn)| ≥ (δ/2) |hn|3/4 for1258

infinitely many n ∈ N, and consequently αx0(t) ≤ 3/4.1259

31 Because two consecutive denominators qn and qn+1 are never both even.
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Case 1.2. We have
∣∣1+ O

(
q2nhn

)∣∣ < δ for all large enough n. In that case, we1260

evaluate (62) at a point closer to pn/qn . Let ε > 0 and write (58) for εhn ,1261

so that instead of (62) we get1262

∣∣∣∣Rx0

(
pn
qn

+ εhn

)
− Rx0

(
pn
qn

)
+ 2π iεhn

∣∣∣∣ �
√

ε

√|hn|√
qn

(
1+ εO

(
q2nhn

))
.1263

Since q2n |hn| < 1 and the constant underlying the big-O is universal, say1264

C , choose ε ≤ 1/(2C), in such a way that1265

∣∣∣∣Rx0

(
pn
qn

+ εhn

)
− Rx0

(
pn
qn

)
+ 2π iεhn

∣∣∣∣ �
√

ε

2

√|hn|√
qn

.1266

From this and (62), we write1267

√
ε

2

√|hn |√
qn

�
∣∣∣∣Rx0

(
pn
qn

+ εhn

)
− Rx0

(
pn
qn

)∣∣∣∣+ 2πε|hn |

≤
∣∣∣∣Rx0

(
pn
qn

+ εhn

)
− Rx0 (t)

∣∣∣∣+
∣∣∣∣Rx0 (t) − Rx0

(
pn
qn

)∣∣∣∣+ 2πε|hn |

�
∣∣∣∣Rx0

(
pn
qn

+ εhn

)
− Rx0 (t)

∣∣∣∣

+
√|hn |√

qn

(
1+ O

(
q2n hn

))+ 2π(1+ ε)|hn |

≤
∣∣∣∣Rx0

(
pn
qn

+ εhn

)
− Rx0 (t)

∣∣∣∣+ 2δ

√|hn |√
qn

.

1268

In the last line we used the hypothesis of Case 1.2 and |hn| ≤
√|hn |√

qn
1√
qn
.1269

Hence,1270

∣∣∣∣Rx0

(
pn
qn

+ εhn

)
− Rx0(t)

∣∣∣∣ �
(√

ε

2
− Cδ

) √|hn|√
qn

,1271

for some C > 0. Fix
√

ε = 4Cδ small enough. Writing pn/qn + εhn =1272

t − (1− ε)hn and observing that (1− ε)|hn| � |hn|, we conclude that1273

∣∣∣Rx0

(
t − (1− ε)hn

)− Rx0(t)
∣∣∣1274

� δ

√|hn|√
qn

≥ δ |hn|3/4 � |(1− ε)hn|3/4, for large enough n.1275

Hence αx0(t) ≤ 3/4.1276
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Case 2 We have xqn �= 0 for all large enough n ∈ N, hence 1/Q ≤ qnxqn ≤ 1/2.1277

We now use (59) which has no leading h1/2 term. Rewrite it,32 assuming1278

1/Q ≤ qxq ≤ 1/2, as1279

Rx0

(
p

q
+ h

)
− Rx0

(
p

q

)
+ 2π ih

= 2(1± i)
G(p, 0, q)√

q

√|h|√
q

q2|h|

⎡

⎢⎢⎣
∑

m∈Z
e
2π i(4p)−1 (mq+m)2

q
e
−2π i

(m−qxq )2

4q2h

(m − qxq )2
+ OQ

(
q2h

)
⎤

⎥⎥⎦ .

1280

Define the auxiliary function1281

fq(y) =
∑

m∈Z
e2π i(4p)

−1 m2+2mqm
q

e−2π i(m2−2qxqm)y

(m − qxq)2
. (63)1282

Take absolute values and write1283

∣∣∣∣Rx0

( p
q

+ h
)
− Rx0

(
p

q

)
+ 2π ih

∣∣∣∣1284

= 2
√
2

√|h|√
q

q2|h|
∣∣∣∣ fq
(

1

4q2h

)
+ OQ

(
q2h
)∣∣∣∣ . (64)1285

We now state the properties of this function, whose proof we postpone.1286

Lemma B.4 Let q ∈ N, let p ∈ N be coprime with q and fq defined in (63). Then,1287

(a) fq is periodic of period Q.1288

(b) there exists yq0 ∈ [0, Q] depending on q (and on p) such that | fq(yq0 )| ≥ 5.1289

(c) The sequence defined by yqk = yq0 + kQ satisfies1290

lim
k→∞ yqk = ∞, and | fq(yqk )| ≥ 5, ∀k ∈ N.1291

Remark B.5 The dependence on p of the point yq0 is irrelevant for our purposes. Indeed,1292

oncewe fix t /∈ Q, we get the sequence of approximations pn/qn , hence each qn comes1293

with one and only one pn . Hence, we can assume that the sequence fqn only depends1294

on qn .1295

We now evaluate (64) at pn/qn and hn = t − pn/qn and we separate two cases:1296

32 When q is odd and coprime with p, the inverses of 2 and p modulo q exist. Therefore,

G(p,m, q) =
q∑

r=1

e
2π i pr

2+mr
q = e

2π i(4p)−1 m2
q

q∑

r=1

e
2π i p (r+(2p)−1m)2

q = e
2π i(4p)−1 m2

q G(p, 0, q).
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Case 2.1. Suppose lim supn→∞ q2n |hn| > 0, so that there exists c > 0 and a subse-1297

quence for which c < q2n |hn| ≤ 1. Then, from (64) we get1298

∣∣∣∣Rx0(t) − Rx0

(
pn
qn

)
+ 2π ihn

∣∣∣∣ ≥ c

√|hn|√
qn

∣∣∣∣ fqn
(

1

4q2nhn

)
+ OQ

(
q2nhn

)∣∣∣∣ .1299

Fix δ > 0 which we later determine. Proceeding like in Case 1, we separate1300

two cases:1301

Case 2.1.1. Suppose
∣∣∣ fqn

(
1

4q2n hn

)
+ OQ

(
q2nhn

)∣∣∣ ≥ δ for infinitely many n. Then,1302

∣∣∣∣Rx0(t) − Rx0

(
pn
qn

)
+ 2π ihn

∣∣∣∣ ≥ cδ

√|hn|√
qn

≥ cδ|hn|3/41303

for infinitely many n, which implies αx0(t) ≤ 3/4.1304

Case 2.1.2. Suppose
∣∣∣ fqn

(
1

4q2n hn

)
+ OQ

(
q2nhn

)∣∣∣ < δ for all large enough n. Then,1305

let εn be a sequence which we determine later, and define ηn = εn/q2n .1306

Observe that ηn = εn|hn|/(q2n |hn|) � εn|hn|. Evaluate (64) at ηn to get1307

∣∣∣∣Rx0

(
pn
qn

+ ηn

)
− Rx0

(
pn
qn

)
+ 2π iηn

∣∣∣∣

= 2
√
2
√

ηn√
qn

q2nηn

∣∣∣∣ fq
(

1

4q2nηn

)
+ OQ

(
q2nηn

)∣∣∣∣

= 2
√
2 εn

√
ηn√
qn

∣∣∣∣ fqn
(

1

4εn

)
+ OQ (εn)

∣∣∣∣ .

1308

Fix k ∈ N large enough and set εn = 1/(4yqnk ). Then, by Lemma B.41309

(c),1310

∣∣∣∣ fqn
(

1

4εn

)∣∣∣∣ =
∣∣ fqn (y

qn
K )
∣∣ ≥ 5, ∀n large enough.1311

Since εn � 1/(kQ), if k ∈ N is large enough we get OQ (εn) ≤ CQεn ≤1312

1. In particular, |hn| �Q kηn . Therefore,1313

∣∣∣∣Rx0

(
pn
qn

+ ηn

)
− Rx0

(
pn
qn

)
+ 2π iηn

∣∣∣∣ ≥ εn

√
ηn√
qn

� ε
3/2
n

√|hn|√
qn

.1314
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With this, and using the assumption of this case in (64), we write1315

ε
3/2
n

√|hn|√
qn

�
∣∣∣∣Rx0

(
pn
qn

+ ηn

)
− Rx0

(
pn
qn

)∣∣∣∣+ 2πηn

≤
∣∣∣∣Rx0

(
pn
qn

+ ηn

)
− Rx0(t)

∣∣∣∣+
∣∣∣∣Rx0(t) − Rx0

(
pn
qn

)∣∣∣∣+ 2πηn

�
∣∣∣∣Rx0

(
pn
qn

+ ηn

)
− Rx0(t)

∣∣∣∣+ δ

√|hn|√
qn

+ 2π(|hn| + ηn)

�
∣∣∣∣Rx0

(
pn
qn

+ ηn

)
− Rx0(t)

∣∣∣∣+ δ

√|hn|√
qn

,

1316

for large enough n, where in the last line we used ηn � |hn|/k ≤ |hn|1317

and |hn| ≤
√|hn |√

qn
1√
qn

�
√|hn |√

qn
. Since εn �Q 1/k, set δ = 1/(cQk3/2)1318

with some small enough cQ > 0 so that1319

∣∣∣∣Rx0

(
pn
qn

+ ηn

)
− Rx0(t)

∣∣∣∣ �
(
ε
3/2
n − Cδ

)√|hn|√
qn

� δ

√|hn|√
qn

≥ δ|hn|3/4.1320

Write pn/qn + ηn = t − (hn − ηn). Since |hn − ηn| ≤ 2|hn|, we get1321

∣∣∣∣Rx0

(
t − (hn − ηn)

)
− Rx0 (t)

∣∣∣∣ ≥ δ|hn |3/4 � δ|hn − ηn |3/4, for large enough n,1322

which implies αx0(t) ≤ 3/4.1323

Case 2.2. Suppose limn→∞ q2n |hn| = 0. In this case, the term q2n |hn| in (64) tends to1324

zero, which kills the desired |hn|3/4 that came from
√
hn/

√
qn . To counter1325

that, define ηn = εn/q2n as in Case 2.1.2. By (64),1326

∣∣∣∣Rx0

(
pn
qn

+ ηn

)
− Rx0

(
pn
qn

)
+ 2π iηn

∣∣∣∣ = 2
√
2εn

√
ηn√
qn

∣∣∣∣ fqn
(

1

4εn

)
+ OQ (εn)

∣∣∣∣ .1327

Fix k ∈ N large enough and set εn = 1/(4yqnk ). Then,1328

∣∣∣∣ fqn
(

1

4εn

)∣∣∣∣ =
∣∣∣ fqn

(
yqnk

)∣∣∣ ≥ 5, and OQ(εn) ≤ CQεn = CQ

4yqnk
� CQ

kQ
≤ 1,1329

so1330

∣∣∣∣Rx0

(
pn
qn

+ ηn

)
− Rx0

(
pn
qn

)
+ 2π iηn

∣∣∣∣ ≥ εn

√
ηn√
qn

.1331
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With this and (64), we can write1332

εn

√
ηn√
qn

≤
∣∣∣∣Rx0

(
pn
qn

+ ηn

)
− Rx0

(
pn
qn

)∣∣∣∣+ 2πηn

≤
∣∣∣∣Rx0

(
pn
qn

+ ηn

)
− Rx0(t)

∣∣∣∣+
∣∣∣∣Rx0(t) − Rx0

(
pn
qn

)∣∣∣∣+ 2πηn

�
∣∣∣∣Rx0

(
pn
qn

+ ηn

)
− Rx0(t)

∣∣∣∣+
√|hn|√

qn
q2n |hn| + 2π(ηn + |hn|).

1333

Since limn→∞ q2n |hn| = 0 implies hn = o(ηn), and ηn =
√

ηn√
qn

√
εn√
qn
, we get1334

∣∣∣∣Rx0

(
pn
qn

+ ηn

)
− Rx0 (t)

∣∣∣∣ �
(

εn − q2n hn −
√

εn√
qn

)√
ηn√
qn

≥ εn

2

√
ηn√
qn

= ε
3/4
n

2
η
3/4
n .1335

Write pn/qn + ηn = t + (ηn − hn). Recalling εn � 1/(kQ) for all n, and1336

since hn = o(ηn) implies |ηn − hn| � ηn , we conclude1337

∣∣∣∣Rx0

(
t + (ηn − hn)

)
− Rx0(t)

∣∣∣∣ ≥
ε
3/4
n

2
η
3/4
n �Q |ηn − hn|3/4,1338

and therefore αx0(t) ≤ 3/4. ��1339

We now prove Lemma B.4.1340

Proof of Lemma B.4 (a) Write first1341

0 �= qxq = q min
m∈Z

∣∣∣x0 − m

q

∣∣∣ = q
∣∣∣x0 − mq

q

∣∣∣ = 1

Q
|Pq − Qmq | =

m′
q

Q
,1342

where m′
q = |Pq − Qmq | ∈ N\{0}. Hence, the variable y in (63) only appears in1343

e2π i(m
2−2qxqm) y = e2π i(Qm2−2m′

qm)
y
Q ,1344

which is Q-periodic. Hence fq has period Q.1345

(b) Split the sum in f p in the terms m = 0, 1 and the rest,1346

fq(y) = 1

(qxq)2
+ e2π i(4p)

−1 1+2mq
q

e−2π i(1−2qxq )y

(1− qxq)2
+ Error1347
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where 1/Q ≤ qxq ≤ 1/2 implies1348

|Error| =
∣∣∣∣
∑

m �=0,1

e2π i(4p)
−1 m2+2mqm

q
e−2π i(m2−2qxqm)y

(m − qxq)2

∣∣∣∣

≤
∞∑

m=2

1

(m − qxq)2
+

∞∑

m=1

1

(m + qxq)2
≤

∞∑

m=2

1

(m − 1/2)2
+

∞∑

m=1

1

m2

= π2

2
− 4+ π2

6
≤ 3.

1349

On the other hand, the phase in1350

e2π i(4p)
−1 1+2mq

q e−2π i(1−2qxq )y .1351

is continuous, decreasing, and Q-periodic. That implies that there exists yq0 ∈ [0, Q]1352

such that e2π i(4p)
−1 1+2mq

q e−2π i(1−2qxq )yq0 = 1, and consequently,1353

| fq(yq0 )| ≥ 1

(qxq)2
+ 1

(1− qxq)2
− 3 ≥ 1

(1/2)2
+ 1

(1− 1/2)2
− 3 = 51354

because in (0, 1) the function 1/x2 + 1/(1− x)2 has a minimum in x = 1/2.1355

(c) The fact that fq is Q-periodic implies that | fq(yqn )| = | fq(yq0 + nQ)| =1356

| fq(yq0 )| ≥ 5. ��1357

We now complete the proof of Proposition 3.5.1358

Proposition B.6 Let x0 ∈ R and t ∈ Q. If αx0(t) �= 1/2, then αx0(t) = 3/2.1359

Proof ByPropositionB.1,αx0(t) = 1/2 happens only if xq = 0 andG(p,mq , q) �= 0.1360

• If xq = 0 and G(p,mq , q) = 0, then x0 ∈ Q and q ∈ 2N. From (58) and the fact1361

that1362

G(p,m, q)1363

=

⎧
⎪⎨

⎪⎩

e2π i(4p)
−1m2/q G(p, 0, q), q odd,

e2π i p
−1(m/2)2/q G(p, 0, q), q ≡ 0 (mod 4) and m even,

e2π i p
−1((m−1)/2)2/qe2π i p

−1((m−1)/2)/q G(p, 1, q), q ≡ 2 (mod 4) and m odd,

1364

(65)1365

and G(p,m, q) = 0 otherwise, we have1366

Rx0

( p
q

+ h
)
− Rx0

( p
q

)
+ 2π ih1367

= 2(1± i) q3/2|h|3/2
∑

m odd

G(p,mq + m, q)√
q

e
−2π i m2

4q2h

m2 + O
(
q7/2h5/2

)
.1368
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It suffices to find a sequence yk → ∞ such that |g(yk)| ≥ c > 0 for some c > 0,1369

where1370

g(y) =
∑

m odd

G(p,mq + m, q)√
q

e−2π im2 y

m2 ,1371

because that way, defining hk = 1/(4q2yk), we get1372

∣∣∣Rx0

( p
q

+ hk
)
− Rx0

( p
q

)
+ 2π ihk

∣∣∣ �q h3/2k |g(yk)| − O(h5/2k ) �q h3/2k1373

for all k large enough, hence αx0(t) ≤ 3/2. So let us find that sequence yk .1374

According to (65), if q ≡ 0 (mod 4), by symmetry we can write1375

g(y) = G(p, 0, q)√
q

∑

m≥0 odd

e−2π im2 y

m2

(
e
2π i p−1

(
mq+m

2

)2
1
q + e

2π i p−1
(
mq−m

2

)2
1
q
)

= 2
G(p, 0, q)√

q
e2π i p

−1 m2
q

4q
∑

m≥0 odd

e−2π im2(y− p−1

4q )

m2 cos

(
2π

p−1mq

2q
m

)
.

1376

On the other hand, if q ≡ 2 (mod 4), then1377

g(y) = G(p, 1, q)√
q

∑

m≥0 odd

e−2π im2 y

m2

×
(
e
2π i p−1

[(mq+m−1
2

)2+mq+m−1
2

]
1
q + e

2π i p−1
[(mq−m−1

2

)2+mq−m−1
2

]
1
q
)

= 2
G(p, 1, q)√

q
e
2π i p−1 (mq−1)2+2(mq−1)

4q
∑

m≥0 odd

e
−2π im2(y− p−1

4q )

m2 cos

(
2π

p−1mq

2q
m

)
.

1378

Choose the sequence yk = p−1/(4q) + k for k ∈ N. Then, since xq = |x0 −1379

mq/q| = 0 implies x0 = mq/q , but also x0 = P/Q in its reduced form, we get1380

|g(yk)| �
∣∣∣∣∣∣

∞∑

m=0

cos
(
π

p−1P
Q (2m + 1)

)

(2m + 1)2

∣∣∣∣∣∣
, ∀k ∈ N. (66)1381

Define the Fourier series1382

G(z) =
∞∑

m=0

cos ((2m + 1)π z)

(2m + 1)2
= π2

8
(1− |2z|) z ∈ (−1, 1),1383

so that, after extending periodically to R, in view of (66), we have |g(yn)| =1384

|G(p−1P/Q)| for all n ∈ N. Observe that the only zeros of G are (2m + 1)/21385
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for m ∈ Z. We separate two cases again. If q ≡ 0 (mod 4), by (65) mq must be1386

odd. Then Qmq = Pq implies 4 | Q, hence both p−1 and P are odd. We deduce1387

p−1P/Q �= (2m+1)/2 for anym ∈ Z, because otherwise p−1P = (2m+1)Q/21388

for some m, so p−1P would be even. If q ≡ 2 (mod 4), then mq is even and1389

Q(mq/2) = P(q/2) implies that Q is odd. Hence p−1P/Q �= (2m + 1)/2 for1390

any m ∈ Z. In both cases, this implies that |g(yk)| = |G(p−1P/Q)| �= 0 for all1391

k, which is what we wanted to prove.1392

• If xq �= 0, according to (59) we get1393

∣∣∣Rx0

( p
q

+ h
)
− Rx0

( p
q

)

+ 2π ih
∣∣∣ �

∣∣∣(qh)3/2
∑

m∈Z

G(p,mq + m, q)√
q

e
−2π i

(m−qxq )2

4q2h

(m − qxq)2
+ O

(
q7/2h5/2

) ∣∣∣
(67)1394

because 0 < qxq ≤ 1/2. If q is odd, we use (65) and the definition of fq in (63)1395

to write1396

∣∣∣Rx0

( p
q

+ h
)
− Rx0

( p
q

)
+ 2π ih

∣∣∣ � q3/2h3/2
∣∣∣ fq
( 1

4q2h

)
+ O

(
q2h
)∣∣∣.1397

(68)1398

With the definition of yqk in Lemma B.4, choose the sequence hk = 1/(4q2yqk )1399

that tends to zero and for which | fq(1/(4q2hqk ))| = | fq(yqk )| ≥ 5. This and (68)1400

show that αx0(t) = 3/2. When q is even, by (65), the sum in (67) only has either1401

even or odd terms. The main term is m = 0 if even terms survive, and m = 1 if1402

odd terms survive, and crude estimates in the error suffice to conclude. ��1403
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