SURGEON: Performant,

Flexible, and Accurate

Re-Hosting via Transplantation

Florian Hofhammer!, Marcel Busch', Qinying Wang!-?, Manuel Egele®, Mathias Payer!
'EPFL, Switzerland. {firstname.lastname}@epfl.ch
2Zhejiang University, China.
3Boston University, USA. megele@bu.edu

Abstract— Dynamic analysis of microcontroller-based embed-
ded firmware remains challenging. The general lack of source
code availability for Commercial-off-the-shelf (COTS) firmware
prevents powerful source-based instrumentation and prohibits
compiling the firmware into an executable directly runnable by
an analyst. Analyzing firmware binaries requires either acquisi-
tion and configuration of custom hardware, or configuration of
extensive software stacks built around emulators. In both cases,
dynamic analysis is limited in functionality by complex debugging
and instrumentation interfaces and in performance by low exe-
cution speeds on Microcontroller Units (MCUs) and Instruction
Set Architecture (ISA) translation overheads in emulators.

SURGEON provides a performant, flexible, and accurate re-
hosting approach for dynamic analysis of embedded firmware.
We introduce transplantation to transform binary, embedded
firmware into a Linux user space process executing natively
on compatible high-performance systems through static binary
rewriting. In addition to the achieved performance improvements,
SURGEON scales horizontally through process instantiation and
provides the flexibility to apply existing dynamic analysis tool-
ing for user space processes without requiring adaptations to
firmware-specific use cases. SURGEON’s key use cases include
debugging binary firmware with off-the-shelf tooling for user
space processes and fuzz testing.

I. INTRODUCTION

MCU-based embedded systems are ubiquitous and enable
a plethora of applications such as medical and health-related
applications [25], [53], [58], [71], smart home and infras-
tructural use cases [40], or industrial production and control
systems [19]. The lack of Memory Management Unit (MMU)-
based memory isolation, the prevalence of memory-unsafe lan-
guages such as C/C++, as well as exposure of such devices to
the Internet make them an attractive target for malicious actors
and security researchers. These properties consequently call
for thorough testing and analysis of such embedded firmware
to mitigate the potentially fatal impact of vulnerabilities on
the physical world.

Static analysis of software suffers from high false positive
rates for vulnerability detection [29], [39], [43]. This approach
becomes even more challenging when analyzing binary-only
firmware where source-based information such as type infor-
mation is lost during compilation. Hence, dynamic analysis

Workshop on Binary Analysis Research (BAR) 2024
1 March 2024, San Diego, CA, USA

ISBN 979-8-9894372-0-7
https://dx.doi.org/10.14722/bar.2024.23011
www.ndss-symposium.org

techniques build a cornerstone of modern software analysis.
Such techniques include fuzz testing, dynamic taint tracking,
symbolic execution, or simple execution in a debugger to
gather runtime information about the analyzed software.

However, COTS embedded devices commonly lack the
debug interfaces required for introspection into the firmware’s
execution. Even if such interfaces are available, low-power
MCUs come with limited on-device compute resources and
restrict the horizontal scalability of dynamic analysis through
the necessity of acquiring and configuring additional hardware.
Consequently, re-hosting embedded firmware into a virtual
environment has been proven a viable option for dynamic
analysis applications [16], [22], [23], [50], [51], [59], [60],
[62], [72], [74]. Yet, re-hosting approaches based on emulation
of CPU instructions in emulators such as QEMU [11] or
Unicorn [57] incur significant emulation overheads.

We introduce transplantation, a novel re-hosting technique
that executes MCU firmware at the native speed of a more
powerful host CPU. Transplantation leverages the key insight
that embedded ISAs such as Arm Thumb2 used in Arm
Cortex-M based microcontrollers overlap with desktop-grade
ISAs as employed in Arm Cortex-A processors. Based on this
insight, transplantation (i) employs lightweight static binary
rewriting to transform bare-metal embedded firmware into a
Linux user space program, and (ii) natively executes the rewrit-
ten firmware alongside a minimal transplantation runtime as a
user space process on server-grade hardware. Transplantation
only necessitates small adjustments to the target binary to
account for semantic differences in target and host ISA,
replicate the target’s address space appropriately, and intercept
peripheral accesses. Our prototype implementation SURGEON
accounts for these requirements, and leverages High-level
Modeling (HLM) as introduced by HALucinator [16] for
peripheral emulation.

Through transplantation, SURGEON provides (i) flexibility,
ease of use, and scalability through execution as a user
space process, (ii) high execution speeds due to the native
execution of instructions on high-performance CPUs with
clock speeds in the range of multiple gigahertz (GHz) in-
stead of at maximum a few hundred megahertz (MHz) as
is the case on the original MCU, and (iii) precise periph-
eral emulation through analyst-provided peripheral models.
We make SURGEON available as open-source software at
https://github.com/HexHive/SURGEON.

II. BACKGROUND

In order to motivate the need for transplantation-based em-
bedded firmware analysis, we provide background information
on dynamic binary analysis. By summarizing the topic of re-
hosting, we bridge the gap between dynamic binary analysis in
a generic sense and software analysis for embedded firmware.

A. Dynamic Binary Analysis

Static analysis of software on both source code or binary
artifacts lacks runtime information about control flow and
internal state from concrete executions. Consequently, static
analysis commonly over-approximates potential control flow.
Due to this over-approximation and the lack of information
on runtime state build-up such as the layout of variables on
the heap, static analysis frequently incurs high false positive
rates [29], [39], [43].

Dynamic analysis, in contrast, gathers insights about the
Program Under Test (PUT)’s behavior during execution. In-
strumentation for dynamic analysis can be introduced at source
level (e.g., ASAN [63] or AFL++ [24]), binary level (e.g.,
RetroWrite [20], QEMU [11] or Valgrind [52]), or through
hardware tracing features (e.g., Intel Processor Trace [37] or
Arm CoreSight [8]). Dynamic binary analysis potentially only
covers the actually executed subset of all the code present
in the PUT. However, dynamic analysis techniques provide
an analyst with insights into the runtime state of an actual
execution of the target. As an example, fuzz testing [28], [67]
has proven to be an effective means of discovering numerous
bugs in software ranging from user space programs over
Operating System (OS) kernels and hypervisors to different
types of firmware [12], [14], [24], [47], [59], [61], [70].

While an analyst can leverage kernel-provided APIs such as
ptrace and perf to gain insights into a user space process’
behavior, such interfaces are not available when analyzing
bare-metal firmware. Furthermore, instead of relying on the
kernel for I/O operations through system calls, MCU firmware
directly accesses hardware peripherals to communicate with
the outside world. For these reasons, dynamic analysis for
embedded firmware commonly leverages re-hosting, which we
elaborate on in the following.

B. Re-hosting

Re-hosting is the process of building a virtual environ-
ment for a given firmware image that sufficiently models
the firmware’s hardware dependencies [22]. The goal of this
process is to design this virtual environment in a way that
the behavior of re-hosted firmware in this environment is
representative of executions on the real hardware.

In a re-hosted environment, three main components need
to be modeled with sufficient precision to achieve the desired
representativeness: (i) the ISA, (ii) hardware peripherals, and
(iii) additional hardware-specific behavior. This requirement
stems from the inherent differences between a system based
on an embedded MCU and the analyst’s host system.

First, MCUs typically implement simple ISAs such as
Arm’s M-profile [66], PowerPC [55], or RISC-V [21] to

achieve small chip area and low power consumption. Analysts’
host systems however may be built around commodity desktop
CPUs, commonly implementing the x86(-64) ISA. For this
reason, existing re-hosting approaches commonly leverage
emulators such as QEMU [11] or Unicorn [57] for ISA
translation [16], [23], [50], [59], [60], [74]. This approach
introduces emulation overheads through ISA translation and
software-based address translation between the target and
host address spaces. Recently, SafireFuzz [62] exploited com-
patibilities between Arm Cortex-M and Cortex-A’s ISAs to
fuzz embedded firmware with high performance. However,
SafireFuzz ignores any remaining incompatibilities between
the ISAs, lacks modeling of additional MCU-specific behavior,
and thus threatens correctness of instruction execution and
system modeling. Transplantation as shown in Section III en-
sures semantic correctness of instructions and proper modeling
of the target system in a re-hosted environment.

Second, a re-hosted firmware’s peripherals must be modeled
to account for the firmware’s I/O operations. Re-hosting sys-
tems either employ Memory-mapped Input/Output (MMIO)-
based peripheral modeling or High-level Modeling (HLM)
for this purpose. In the first case, the re-hosting system
aims to model real peripherals’ behavior and handles memory
accesses to the MMIO region accordingly. On the one hand,
hardware-in-the-loop systems forward memory accesses to the
MMIO region via debug probes to real hardware [41], [50],
[72], which hinders scalability due to the reliance on actual
hardware. Systems emulating peripherals in software through
heuristic or symbolic-execution-based approximations [23],
[59], [60], [74] on the other hand incur imprecisions in
the peripheral modeling process. HLM, as introduced by
HALucinator [16] and employed by other systems [62], in
contrast intercepts control flow in the firmware at a pre-defined
higher level such as the Hardware Abstraction Layer (HAL)
API. Instead of accurately mimicking complex real hardware’s
behavior, only the HAL API’s behavior with known semantics
needs to be replicated. As code calling into HAL libraries is
oblivious to the logic executing beneath the HAL, replacing
HAL functions with developer-provided emulation code does
not affect the semantics of the firmware’s application logic.

Third, MCU-specific hardware behavior such as configur-
ing, dispatching and handling interrupts needs to be replicated
in a re-hosting environment as well. Such functionality in
certain cases can already be provided by an underlying system
emulator such as QEMU [11] but in other cases needs to be
accounted for by the developer of a re-hosting platform if the
underlying emulator does not support such functionality out
of the box as is the case for example with Unicorn [57].

III. TRANSPLANTATION

Transplantation is a versatile, performant, and easy-to-use
alternative to existing re-hosting approaches. Our key insight
is that significant overlaps between certain embedded MCU
ISAs and the ISAs supported by server-grade CPUs enable
straightforward cross-ISA translation. Exemplarily, the ISA
implementation of Arm’s Cortex-M lineup of microcontrollers

is highly compatible with the ISA implementation employed
in the Cortex-A lineup of CPUs as used in mobile, desktop,
and server-grade processors [5], [6], [54]. This observation
allows natively executing the majority of code of a Cortex-M
based MCU firmware in a Linux user space process on a
Cortex-A CPU, removing the requirements of ISA emulators
and the complexity added by such a layer of indirection. In
the following, we describe the challenges that re-hosting faces
and showcase how transplantation addresses these challenges
to provide flexible and performant re-hosting of embedded
firmware. We describe SURGEON, our prototype of a trans-
plantation system, and its potential use cases in Sections IV
and V. Throughout the rest of the paper, we use the term
target system to refer to the MCU-based system the binary
was originally intended to be executed on, and host system
for the system the re-hosted environment is running on.

A. Challenges

Challenge 1 — Representation of the Physical Address
Space: MCU firmware statically links all code and global data.
MCUs then map this firmware, its heap and stack as well as
MMIO-mapped peripherals and control registers into a single
flat physical address space. Those different memory regions
for ROM, RAM or MMIO are placed at fixed, architecture-
determined locations in this physical address space. Re-hosting
solutions must account for the corresponding address space
structure to accurately model the firmware’s expected execu-
tion environment.

Hardware-in-the-loop, pure emulation, and HLM ap-
proaches all introduce a complex and expensive emulation
layer. This layer imposes a software-based address translation
for every access to the address space, and dispatches to differ-
ent emulator logic based on which region in the address space
is accessed. For example, accessing the MMIO region requires
peripheral-specific handling of loads and stores, whereas ac-
cessing RAM requires only Memory Protection Unit (MPU)
access permission checks. In summary, all accesses must
respect the original MCU’s physical address space layout.

Challenge 2 — MCU Architectural Features: MCUs differ
architecturally compared to a CPU’s user space mode. Such
differences include, e.g., execution modes, interrupt controllers
(Arm’s Nested Vectored Interrupt Controller (NVIC)), banked
registers, or hardware-supported exception entry and return
routines not present in a Linux process. Especially this last
example presents a significant difference between Arm Cor-
tex-M MCUs and an unprivileged Cortex-A user space context.
Loading a value into the program counter register always
triggers a branch to that location in user space, while load-
ing a magic value (OXxFFFFFFF1 to OXFFFFFFFED) instead
triggers a hardware-implemented exception return routine on
Arm Cortex-M. Re-hosting must account for such features.
Previous hardware-in-the-loop [50], [72], HLM [16] or purely
emulation-based [23], [59] re-hosting solutions commonly
emulate the corresponding logic, managing complex CPU state
solely in software. Other approaches executing MCU firmware
in user space ignore this challenge altogether [46], [62].

Challenge 3 — Peripheral Handling: MCU firmware
interacts with the outside world using peripherals. A re-
hosting environment must handle peripheral accesses with
varying degrees of accuracy, depending on the analyses to
be conducted and how the results of those analyses map
to the real hardware. Hardware-in-the-loop approaches are
commonly the most accurate due to their usage of “real”
peripherals. Pure emulation provides high accuracy using the
peripheral’s MMIO interface. However, this approach suffers
from significant engineering efforts to correctly implement the
vast diversity of available peripherals [22]. HLM leverages
the HAL layer of peripherals to reduce the engineering effort
for peripheral emulation. However, as a consequence, this
approach does not execute low-level peripheral specific code
beneath the HAL layer. The HAL interface provides informa-
tion about the semantics of data being passed in and out of
the firmware from and to peripherals, allowing highly accurate
modeling of those interfaces. Peripheral modeling based on
symbolic modeling or automated peripheral behavior inference
exposes a higher degree of automation but fails to guarantee
the same level of accuracy as HLM.

Challenge 4 — Correct Execution of Instructions: The
execution of instructions must be semantically equivalent to
the execution on the original MCU. Semantic equivalence
comprises both the instructions’ intended action (e.g., arith-
metic operations) and potential side-effects such as setting
CPU flags. While this generally does not pose an abundant
problem, emulators and hypervisors may introduce inaccuracy
when modeling a physical CPU [4], [26], [48], impacting
semantic correctness of the re-hosting environment.

Challenge 5 — Performance and Scalability: Many dy-
namic analysis techniques benefit from high execution speeds
and horizontal scalability. For example, fuzzing benefits from
fast and massively parallelized execution due to more iterations
being executed in less time. While not all dynamic analysis
use cases strictly require these properties, a re-hosting system
aiming to be generic and applicable to a broad range of use
cases needs to take performance and scalability into account.

Hardware-in-the-loop approaches emulate the target’s ISA
and forward peripheral accesses to real hardware via debug
probes. They require dedicated MCU hardware for each run-
ning firmware instance. Thus, these approaches lack scalability
and suffer from performance degradation due to the forwarding
of accesses to the physical device. In contrast, pure emulation
and High-level Modeling (HLM) approaches do not require
dedicated hardware and scale horizontally. Unfortunately, prior
systems pay a hefty emulation tax for emulating a foreign ISA.

Challenge 6 — Introspection: Dynamic analysis requires
introspection into the Program Under Test (PUT) at runtime.
Hardware-in-the-loop, pure emulation, and HLM usually re-
quire the presence of a hardware debugging interface or mod-
ification of the emulation layer, i.e., adding a debugger stub
to enable attaching a debugger. Therefore, these approaches
result in additional engineering effort, a restricted feature set
in comparison to common interfaces for user space software,
communication overhead, or a combination of the above.

Transplantation

et T Bttt O]

H Preprocessing ' Runtime ;

1 i :

| i .

| N i

Firmware H E: i !
Bnary : »> . HLM Peripheral :

1 [eripheral 1

; N Handlers H

Transplantation i l E i Runtime i
v | |1 Ll |
H ISA Mapping i »> '

HLM Locations : et M =ENLIODkS P :
and Handlers b [P [LowFidelity Him |+ Commodity OS '
1 I R O] :

: S ee |

ua Y & |
Memory 1 bt} :
Mappings | . ;
1 I .
U

Fig. 1. An overview of transplantation. Key contributions are shown in gray.

B. Transplantation

Firmware transplantation addresses the aforementioned
challenges. Transplantation provides address space layout
replication in a user space process’s virtual address space,
execution speed and correct instruction semantics through
native execution, and introspection capabilities through stan-
dard tooling for Linux user space processes. Any behavioral
differences that stem from hardware-implemented behavior on
an embedded MCU as well as peripherals are modeled in a
minimal transplantation runtime.

More specifically, transplantation leverages the insight that
many ISAs implemented in low-performance MCUs are also
supported either fully or to a great extent in high-performance
desktop and server CPUs. Examples for ISAs providing such
an overlap are Arm’s Thumb2 instruction set employed in
the Cortex-M and Cortex-A architectures, PowerPC, or RISC-
V [9], [21], [34], [54], [65], [66], [68]. Transplantation as a
concept is architecture-agnostic and only requires this syn-
tactic and semantic compatibility of target and host ISAs to
natively execute MCU firmware binaries in a Linux user space
process on a compatible ISA. This approach differs from both
binary ISA translation and direct execution of firmware bina-
ries and provides an analyst with multiple advantages. Binary
ISA translation describes the idea of translating from one
execution environment and ISA to a fundamentally different
combination of ISA and environment, such as re-hosting an
Arm Cortex-M firmware into an emulator on an x86-based
host machine. Direct execution on the other hand describes
the execution and analysis of targeted software on the orig-
inal device. We position transplantation as a middle ground
between these two approaches. Transplantation leverages the
native ISA of the target firmware and replicates the rest of the
environment in a minimal user-space runtime. Consequently,
we obtain the correctness of instruction execution provided
by direct execution, and the flexibility of a software-modeled
execution environment typically provided by emulators. Fur-
ther, transplantation overcomes the ISA translation overheads
of emulators such as QEMU and the performance limitations
of MCUs with low clock frequencies (few MHz) by natively
executing firmware code in a user space process on a fully-

featured high-performance CPU (multiple GHz).

Transplantation follows a two-step approach: First, after
ensuring syntactic compatibility of the host and target ISA,
we transform the target binary into a user-space-compatible
program via Static Binary Instrumentation (SBI). In this step,
we (i) address any potential semantic differences between
the two involved ISAs, (ii) insert branches into the runtime
to HLM peripheral handlers for complex HAL functions,
(iii) replace simple HAL functions inline with corresponding
emulation code (low-fidelity HAL), (iv) and optionally insert
additional analyst-defined instrumentation. In the second step,
our runtime ensures correct execution of the target firmware
in a user space process. The runtime replicates the target
environment by loading the firmware binary into the virtual
address space at the defined locations, thereby maintaining
the expected address space layout. Moreover, the runtime
emulates hardware-specific behavior that cannot be addressed
during static binary rewriting in software and redirects any
peripheral accesses to the corresponding HLM emulation
functions. Figure 1 shows this two-stepped approach. In the
following sections, we detail the design of the instrumentation
and runtime phases, respectively.

1) Static Binary Instrumentation: We first analyze and
modify the provided binary to ensure interoperability with
our minimal Linux user space process runtime and syntactic
and semantic compatibility of the target’s and host’s ISAs.
Transplantation exploits the overlap between target and host
system ISAs. Any remaining differences in instruction seman-
tics between the target and the host system are accounted
for by replacing problematic instructions in the binary. These
differences typically stem from architecture-specific behavior,
such as interrupt and privilege level configuration or co-
processor accesses. Any replacements in the binary are done
(i) inline, (ii) by inserting direct branches to emulation code,
or (iii) by replacing the instruction with a trapping instruction
and emulating the logic in a trap handler in the runtime.
To maintain the original address space layout (Challenge 1),
replacements must not exceed the replaced code in size.
In case of space limitations that prevent inline replacement
of instructions with semantically equivalent code snippets,
instructions are replaced with branches or traps to emulation
code. The aforementioned approaches are thus listed in order
of decreasing preference, with increasing performance impact
and at the same time increasing general applicability. While
inline replacements are possible in many cases, trapping into
the runtime is a fail-safe fallback. Any required additional code
for branch targets or trap handlers is added in unused parts of
the address space (e.g., reserved regions in the physical address
space that an MCU firmware would never refer to). Through
this approach, the target system’s architectural features that
are not present on the host system are faithfully replicated in
software, addressing Challenge 2. Any non-modified code and
data in the target binary are copied verbatim into the output
binary. Consequently, the target binary’s layout is unmodified,
ensuring proper representation of its address space (Chal-
lenge 1). Additionally, branches to handlers in the runtime

are inserted at the beginning of each function that is to be
replaced via High-level Modeling (HLM). In the embedded
system context, this allows a transplantation system such as
SURGEON to intercept and redirect calls to HAL functions
during execution, and provides the necessary prerequisite for
successful peripheral emulation via HLM (Challenge 3). We
further describe the runtime component of this method of
emulating peripherals in Section III-B2.

2) Runtime: Our runtime first loads the target binary into its
virtual address space. In this process, the runtime ensures that
Challenge 1, the correct replication of the expected address
space layout is addressed by mapping code and data into the
virtual address space at their expected locations. The runtime’s
code and data itself are located in unused parts of the virtual
address space in order to not interfere with the Program
Under Test (PUT)’s memory ranges. Apart from this initial
loader, the runtime contains the code for emulating device-
specific behavior such as exception entry and return routines
provided by hardware in the original MCU, as well as any
handlers emulating peripheral accesses via HLM. Thereby
addressing Challenges 2 and 3, this emulation code is executed
whenever the target firmware reaches code locations that were
previously instrumented for replicating MCU-specific behavior
or peripheral accesses via HLM. After loading the PUT into
the virtual address space, the runtime hands over control to
the target program through a branch to its designated entry
point. From this point on, the re-hosted firmware executes
natively on the host CPU. This execution model provides
transplantation with the high performance stated as a goal
in Challenge 5, thanks to native code execution on a high-
performance host CPU. The re-hosted system’s state can be
easily replicated by forking the user space process, allowing
for simple horizontal scalability across cores in the host sys-
tem. Furthermore, executing natively in a user-space process
provides an analyst with a plethora of mature tooling for
introspection and analysis (Challenge 6). For example, Linux’s
ptrace API enables the analyst to debug a re-hosted PUT
with standard debuggers such as GDB without the need for
a potentially limited GDB server stub implementation in an
emulator. Additionally, this approach enables the analyst to
leverage unmodified user space tooling such as AFL++ [24].
We employ the latter for fuzzing embedded firmware as
further described in Section V-B. Transplantation consequently
provides an analyst with full flexibility in terms of applicable
user space tooling without needing to modify the tools for a
different environment in an emulator or on real hardware.

IV. SURGEON: RE-HOSTING VIA TRANSPLANTATION

We present SURGEON, a transplantation-based re-hosting
system targeting Arm Cortex-M embedded firmware. Our pro-
totype re-hosts such firmware into a Linux user space process
natively executing on Arm Cortex-A chips. In the following,
we provide details on the implementation of SURGEON’s two
main components, the Static Binary Instrumentation (SBI)
engine as well as our runtime component.

1) Static Binary Instrumentation: We implement SUR-
GEON’s SBI engine in Python, leveraging Capstone [1] and
Keystone [2] for disassembling and assembling code, respec-
tively. As a first step, we employ Ghidra [27] to identify basic
block boundaries for potential instrumentation during static
binary rewriting. We feed the set of identified basic blocks as
well as a list of explicit instrumentation targets to the SBI
engine, which in turn leverages this information to instru-
ment the given firmware binary. Our instrumentation engine
supports multiple instrumentation passes with different targets
and granularity. In a first pass, our SBI engine addresses
semantic incompatibilities between the target and host ISAs. In
our prototype, we re-host Arm Cortex-M MCU firmware into
an Arm Cortex-A CPU Linux user space process. While the
majority of instructions can be executed as-is, a small number
of instructions require dedicated handling. We categorize these
instructions as follows:

Modifying MCU-specific CPU state: The instructions
msr and mrs copy information from general-purpose registers
to model-specific registers and vice versa, respectively. If
possible, we rewrite those instructions to only change argu-
ments with semantic equivalence (e.g., model the Cortex-M
Application Program Status Register (APSR) with Cortex-A’s
Current Program Status Register (CPSR)). Otherwise, we
emulate their behavior in other instructions (e.g., copies
to/from unused floating point registers for modeling banked
stack pointer registers). Where complex logic prevents direct
replacement, we replace the instruction with a branch to
emulation code or, if dictated by space limitations, a bkpt
instruction to trap-and-emulate in our runtime.

Software interrupts: The svc instruction on both Arm
Cortex-M and Cortex-A causes a software interrupt to be
raised. Whereas the firmware expects the corresponding in-
terrupt handler to be executed, such a software interrupt in
a Linux user space process causes a transition to the kernel
and execution of a syscall. In order to execute the firmware’s
interrupt handler and not issue unexpected syscalls during
dynamic analysis, we replace svc instructions with bkpt
instructions and pass control on to the interrupt handler from
our runtime’s trap handler triggered as a result of the bkpt.

Coprocessor accesses: On Arm MCUs, up to 16 co-
processors can be defined for adding features to the main
processor. Any instruction executing on the main CPU is also
streamed to a coprocessor and executed on the coprocessor if
necessary [7]. Hardware floating point support implemented
on a coprocessor does not require special handling by SUR-
GEON, since the corresponding floating point instructions are
transparently executed on the floating-point implementation of
the host Cortex-A CPU. In our experiments (see Section V),
we did not encounter custom coprocessors. In case a custom
coprocessor is employed, the instructions for coprocessor data
processing (cdp/cdp2), moving data from Arm registers to
the coprocessor and vice versa (mcr/mcr2, mcrr/mcrr2,
mrc/mrc2, mrrc/mrrc?2) and loading and storing data
from or to memory (ldc/ldc2, stc/stc2) need to be
rewritten. Depending on the coprocessor’s functionality, those

Fig. 2. HAL function entry points are replaced with branches to our handlers.
The remainder of the function stays unmodified but is not executed anymore.

instructions are rewritten inline with equivalent functionality,
or in case of space limitations are replaced with a call or trap
into the runtime for emulation.

After the pass ensuring semantic fidelity, we leverage both
generic basic block instrumentation as well as explicitly spec-
ified instrumentation points. We instrument the entry points of
HAL functions to dispatch to HAL handlers in our runtime.
This instrumentation pass simply replaces the function pro-
logue of a HAL function in the firmware with an unconditional
branch to the corresponding handler as exemplarily shown in
Figure 2. In case a HAL function does not require complex
logic to be executed in a handler function, SURGEON patches
the function inline (low-fidelity HAL). For example, peripheral
initialization functions can typically just return with a value
that indicates successful initialization. Additionally, we instru-
ment the previously identified basic blocks in the firmware.
For each basic block, we identify instructions that are not
program counter (PC)-relative and can thus be relocated
without affecting their semantic validity. We replace the first
such instruction with an unconditional branch to a trampoline
at an unused location in the address space. This trampoline
1) saves firmware context according to the Arm calling con-
ventions, 2) executes instrumentation code, 3) restores context,
4) executes the original instruction(s) replaced by a branch,
and 5) finally branches back to the original code location.
Figure 3 provides an example of an instrumented control flow.
We use this mechanism to reproducibly simulate time in the
re-hosted environment. We advance a virtual clock by adding
callbacks into the instrumentation code. Virtual timekeeping
is required in order to reproducibly trigger interrupts in the
firmware at fixed intervals. Through this instrumentation, the
reproducibility of time as perceived by the re-hosted firmware
only depends on the reproducibility of the control flow and
executed basic blocks in the firmware. As we detail in one of
our exemplary use cases in Section V-B, an analyst can add
additional instrumentation passes with low effort.

2) Runtime: SURGEON’s runtime is implemented in C to
provide us with full control over the address space layout
and performance-critical optimizations. The runtime is linked
statically to prevent the dynamic loader from loading li-
braries at addresses we do not control. All code, data and
runtime variables such as stack and heap are located in the
vendor-reserved region of the Arm Cortex-M memory map
(0xE0100000-0xFFFFFFFF) [7]. This approach ensures
no collisions with addresses used by re-hosted firmware. After
loading the firmware binary at its expected addresses into the
virtual address space, the runtime branches to the firmware’s

Fig. 3. SURGEON adds instrumentation in trampolines.

entry point and from there on natively executes the PUT.

Besides loading the firmware and handing over control, the
runtime contains emulation code for architectural features, trap
handlers for the trap-and-emulate approach where required,
and handlers for HAL functions. The runtime contains the
callback functions that are invoked in the trampolines inserted
during static binary instrumentation. This includes, for ex-
ample, the code incrementing the virtual clock that provides
time to the firmware. The trap handlers are implemented via
Linux signal handlers. A svc instruction replaced with a
bkpt during rewriting causes Linux to deliver a SIGTRAP
signal to the process. In the corresponding signal handler,
SURGEON’s runtime emulates Arm’s hardware-implemented
exception entry routine in software, branches to the Interrupt
Service Routine (ISR) in the firmware responsible for handling
the software interrupt, and upon return from that routine
emulates an exception return routine.

Finally, the runtime contains the handlers for HAL functions
interacting with peripherals in the firmware. Our prototype
provides a developer with two implementation options for
HAL handlers. First, our runtime incorporates a Python in-
terpreter and a native module exposing the same API as im-
plemented in HALucinator [16] to Python code. Consequently,
an analyst can leverage HALucinator’s existing HAL handlers
for peripheral emulation and quickly prototype new handlers
in Python. Second, our prototype also supports calling into
native handlers. This approach enables direct branches into
the handlers from the HAL functions in the firmware binary
when following the original function’s prototype thanks to the
Arm Architecture Procedure Call Standard (AAPCS) [10]. In
this case, the function’s arguments have already been set up
by the HAL function’s caller, and are not affected by the
direct branch. When the handler returns, control flow continues
directly at the HAL function’s call site just as if the original
HAL function had returned. In contrast to the Python handlers,
this implementation does not require saving and restoring the
firmware’s context before and after branching into the Python
interpreter in addition to the interpreter’s own overhead in
comparison to native code. During our experiments described
in Section V, we observed an on average 5x speedup by using
native handlers instead of Python-based implementations. We,
therefore, conclude that leveraging HALucinator’s existing

HAL handlers in Python provides an excellent base for quick
prototyping, but an analyst should implement handlers natively
for performance-critical use cases.

V. APPLICATIONS OF SURGEON

Transplantation is a flexible and versatile approach to dy-
namic analysis. In our prototype implementation, we leverage
SURGEON to re-host Arm Cortex-M firmware into a Linux
user space process executing on Arm Cortex-A CPU cores.
We describe how SURGEON can be leveraged by an analyst
for debugging with off-the-shelf user space debugging tools in
Section V-A. SURGEON through its native user-space nature
greatly simplifies such a use case in comparison to interfacing
with emulators or real hardware. Furthermore, we extend the
basic binary rewriter with a pass that adds coverage instru-
mentation for fuzzing, and show that transplantation enables
fuzzing with high performance in comparison to emulation-
based fuzzers. We detail this use case in Section V-B.

A. Debugging Embedded Firmware

SURGEON simplifies debugging embedded firmware by
enabling an analyst to use common user space debuggers for
this task. More specifically, an analyst invokes SURGEON’S
runtime with the re-hosted firmware through the GDB de-
bugger, and steps through the re-hosted firmware like any
other user space program. Debugging transplanted firmware
benefits from multiple differences to on-device or emulator-
based debugging. First, transplantation improves observability
of memory corruption bugs. The user space nature of software
transplanted with SURGEON causes accesses to unmapped
memory or with incorrect permissions to result in a segmen-
tation fault. This behavior provides a clear signal for the pres-
ence of a bug. On real hardware, the absence of fine-grained
memory protection via an MMU may mask illegal memory
accesses and cause any effects of such an unintended access, if
present at all, to only surface much later in the execution of the
firmware [51]. Even the presence of a Memory Protection Unit
(MPU) does not necessarily improve upon the observability
of memory corruption bugs, since usage of MPUs in COTS
firmware is low and their implementation often incorrect [75].

Second, transplantation with SURGEON allows an analyst
to reproducibly execute the same code multiple times. For
example, the analyst cannot fully control the timing and order
of interrupts on real hardware. Consequently, the control flow
of each execution of the firmware may differ across executions.
SURGEON with its reproducible virtual clock based on basic-
block instrumentation ensures the same timing and order of
interrupts for each execution of the transplanted firmware
and hence prevents heisenbugs which cannot be reproducibly
observed across executions.

Finally, debugging via Linux’ ptrace API that GDB uses
speeds up finding potential issues in comparison to emulator-
based or on-device debugging. More specifically, our approach
can make use of the host CPU’s hardware-supported break-
points and memory watchpoints while executing code at native
speed. Leveraging an emulator on the other hand requires the

emulator to check every instruction for memory accesses to
watchpoints defined by the analyst in software, greatly slowing
down execution speeds and therefore hindering the analyst
from efficient and fast debugging. Additionally, emulators may
provide limited GDB server stub implementations, or none
at all. For example, the Unicorn ISA emulator [57] used
by hal-fuzz and Fuzzware by default does not come with a
GDB server implementation at all. Therefore, any debugging
features need to be implemented on top of the emulator by an
analyst. Similarly, on-device debugging requires the presence
of debug interfaces such as JTAG which are commonly omitted
in COTS devices. SURGEON meanwhile enables usage of the
full spectrum of GDB’s features through user space debugging.

B. EmbedFuzz

As a proof of concept for the flexibility of the transplan-
tation approach, we implement EmbedFuzz, an extension of
SURGEON to embedded firmware fuzzing. Previous work such
as P2IM [23], the fuzzing-oriented version of HALucinator
hal-fuzz [16], Fuzzware [59] or Hoedur [60] are based on
emulators and require extensive modifications to emulators,
existing fuzzing engines, or both. SURGEON on the other hand
thanks to its native user-space nature can be combined with
off-the-shelf fuzzers such as AFL++ [24], [33]. In addition,
native execution on the host CPU removes any overhead
stemming from cross-ISA instruction translation and other
side effects of emulation such as software-based address
translation.

As mentioned in Section IV-1, SURGEON enables an ana-
lyst to easily specify additional instrumentation passes. We
leverage this fact to add coverage instrumentation to each
basic block in the target firmware for coverage-guided fuzzing.
As an optimization, we also add a command-line flag to
our runtime allowing the analyst to choose whether to only
execute the re-hosted firmware once or in a fork server mode
compatible with AFL++. With those minimal additions to
SURGEON, EmbedFuzz enables high-speed fuzzing without
emulation overheads with an unmodified version of AFL++.

To demonstrate EmbedFuzz’s capabilities, we evaluate our
implementation on 10 real-world MCU firmware binaries
introduced in P2IM [23]. We run fuzzing campaigns for
EmbedFuzz and the state-of-the-art firmware fuzzers Fuzz-
ware [59] and P2IM. Hal-fuzz [16] and SafireFuzz [62] both
lack crucial architectural features which are present in this
firmware data set such as support for software interrupts
via the svc instruction. Due to these incompatibilities, we
could not run fuzzing campaigns with these systems. In
order to showcase the potential performance impact of ISA
emulators, we also run fuzzing campaigns where the re-
hosted firmware is emulated via gemu—-user. We conduct ten
24-hour fuzzing campaigns per fuzzer and report minimum,
average and maximum numbers for our evaluation results. We
execute EmbedFuzz natively on a SolidRun Honeycomb board
built around an NXP Layerscape LX2160A processor featuring
16 Arm Cortex-A72 cores [54] and 32GB of RAM. The
dependencies of the other evaluated fuzzers require running

Console

Drone Gateway Heat Press

il =0 300
200 400
o 40 80
& 150 300 200 60
g 200 *
100 20
& 201 gl i 100
50 100 - 20 T =5
_ e I - — =
PLC Reflow Oven Robot Soldering Iron Steering Control
10 250
80
250
i 25 ; * 200 150 +
9 200
@ 60
a 20 150
@ 150 100
9 oo 15 40 100
) L —_— 50
50 10 20 50
—_ —_— —— ol — = —
0 5
S & ¢ S & & & JORF IS S @& & S & &
& & & & & & & & & & & F
& o & S AR 5 o <& S AR S o &
N SV N 4 N N S < S
v £ v N d 3 g 3 v 3
& & &"AV & < & R & é@" e
& & & & & © < & <&

Fig. 4. Box plot of fuzzing executions per second (i.e., throughput) on real-world firmware binaries across ten 24 hour runs.

on the Intel x86-64 ISA. Hence, we conduct the fuzzing
campaigns for the emulated version of EmbedFuzz, Fuzzware
and P2IM on servers based on Intel’s Xeon Gold 5128 [36]
and 64GB of RAM. Both systems run Ubuntu 22.04.

Figure 4 shows the fuzzing throughput for the aforemen-
tioned four types of fuzzing campaigns. Fuzzing throughput
is crucial for fuzzing campaigns, and transplantation helps to
improve execution performance when re-hosting targets that
would otherwise require running in an emulator. EmbedFuzz
exhibits at least on-par throughput and up to 8x speedup in
comparison to Fuzzware and P2IM. The comparison of native
and emulated execution of our runtime and firmware shows on
average seven times higher fuzzing throughput. Notable excep-
tions to these improvements are the Reflow Oven and Solder-
ing Iron firmware. The Reflow Oven firmware heavily utilizes
time measurements during which the firmware loops until
an internal counter reaches a certain value. P2IM’s QEMU-
based virtual clock implementation handles such cases better
than those of Fuzzware and EmbedFuzz, resulting in higher
throughput. The Soldering Iron firmware on the other hand is
based on FreeRTOS [3] which leverages software interrupts
via svc for switching between tasks at high frequency. Our
trap-and-emulate approach described in Section IV-1 causes
overheads due to context switches in and out of the host kernel
during trap dispatching, reducing the potential performance
advantage of EmbedFuzz in this specific case.

We provide the coverage over the 24-hour fuzzing cam-
paigns for the firmware dataset we evaluate in Figure 5.
EmbedFuzz achieves higher coverage than P2IM in all ten
cases, and is on par with or improves upon Fuzzware in
5 out of 10 cases. For Fuzzware, we exclude basic blocks
below the HAL when calculating the coverage for a fair
comparison with EmbedFuzz. Due to the HLM approach of
handling peripherals, any code beneath the HAL functions
redirected to the handlers in our runtime is not reachable
by the fuzzer. For all the firmware, EmbedFuzz quickly
achieves its maximum coverage before stagnating. Manual
investigation revealed conditional guards that are difficult to
bypass with brute-force guessing. Overcoming hurdles such as
magic values and checksums is out of scope for this paper and

can be added on top of EmbedFuzz by an analyst thanks to
the flexibility in instrumentation passes and peripheral handler
implementations described in Section IV. Beyond the perfor-
mance improvements, transplantation also improves upon the
observability of firmware crashes. As explained in the previous
section, the user space nature of transplanted firmware causes
memory accesses with missing or incorrect permissions to
result in a segmentation fault, crashes the process and is
used by the fuzzer as a signal for a potential bug. During
our fuzzing campaigns with EmbedFuzz, SURGEON simplified
triaging and debugging crashes based on the advantages of
transplantation for debugging described in Section V-A.

VI. DISCUSSION

Even though transplantation as a concept and its implemen-
tation in SURGEON as highlighted in the previous sections
provide analysts with a performant and flexible way of dy-
namically analyzing MCU firmware binaries, we acknowledge
limitations to its current implementation. In the following, we
discuss those limitations and provide potential paths forward
for alternative or additional approaches.

High-level Modeling: Transplantation in general does
not dictate how the target software communicates with the
outside world. In our implementation of SURGEON, we focus
on re-hosting Arm Cortex-M firmware which communicates
with other devices via hardware peripherals. We model those
peripherals following HALucinator’s [16] idea of HLM and
inherit limitations of this approach. Notably, we require re-
hosted firmware to leverage HAL libraries or similar high-level
APIs in order for SURGEON to intercept and emulate periph-
eral accesses at this interface. Furthermore, SURGEON does
not require source code for the full firmware for successful
re-hosting. However, we require source code availability for
the HAL libraries in order to correctly identify the locations of
HAL functions in the binary either through provided symbols
or HALucinator’s LibMatch approach. The latter correlates
HAL functions compiled from source code with code in the
firmware binary to locate HAL functions’ entry points.

We argue that the general availability of Hardware Ab-
straction Layer (HAL) library source code through MCU

—e— EmbedFuzz

CNC Console

Fuzzware e Fuzzware_no_HAL -

P2IM

Drone Gateway Heat Press

BB Coverage

T —

PLC Reflow Oven

Robot Soldering Iron Steering Control

BB Coverage

20% £
% %
i

00:00 600 1200 18:00 2400 00:00 600 12:00 18:00 2400 00:00 600
Time (hh:mm) Time (hh:mm)

1200
Time (hh:mm)

18:00 2400 0000 600 1200 18:00 2400 0000 600 1200 1800 24:00
Time (hh:mm) Time (hh:mm)

Fig. 5. Code coverage over time for real-world firmware binaries across ten 24 hour trials. The median percentage of uniquely discovered basic blocks, as

well as the minima and maxima for each trial are illustrated.

vendor SDKs results in widespread use in real-world deploy-
ments. Therefore, High-level Modeling (HLM) enables reuse
of peripheral models across firmware as long as they share a
HAL implementation that is already supported in SURGEON.
Implementation effort of peripheral handlers is hence reduced
to a one-time undertaking with great reusability.

The general principle of transplantation permits alternative
implementations. For example, an analyst could leave the
MMIO region unmapped in the process’s virtual address space
so that MMIO accesses cause segmentation faults. The pe-
ripherals backing the accessed MMIO registers could then be
emulated by dispatching from a signal handler in the process to
the corresponding emulation logic based on the address that
was read from or written to. However, the context switches
for signal dispatching could prevent such an approach from
applying to use cases with high-performance requirements
such as fuzzing.

Generality of transplantation: SURGEON’s transplan-
tation approach benefits from performance improvements
through native execution instead of emulation. As described in
Section III, this requires a host CPU compatible with the target
CPU’s ISA. In our implementation, we re-host Arm Cortex-M
firmware into a user space process running on Arm Cortex-A
CPUs. Our implementation is also compatible with firmware
targeting Arm Cortex-R systems as long as it does not leverage
a MMU. Our implementation replicates the firmware’s physi-
cal address space in the process’s virtual address space which
is incompatible with the virtual addressing enabled by an
MMU in the target system, which would require an additional
software-based address translation layer.

SURGEON’s transplantation approach can certainly be ex-
tended to other architectures as well. For example, the Pow-
erPC ISA is featured both in MCUs (e.g., NXP’s line of

MPC5xxx MCUs [55]) as well as high-performance server
CPUs (e.g., IBM’s Power10 CPUs [35]). The same holds for
the RISC-V ISA, which is employed by multiple manufactur-
ers and chip designers such as SiFive, Espressif or Alibaba’s
T-Head both for embedded MCU and high-performance server
designs [21], [65], [68]. User space software purely running
in a virtual address space can also be instrumented and run
on a higher-performance CPU, for example by leveraging the
compatibility of 32bit and 64bit code on CPUs based on
Intel’s x86 ISA. As an example, memTrace [56] hides memory
tracing instrumentation for 32bit x86 binaries in the upper
part of a 64bit process’s address space, since only the lowest
4GB are addressable by 32-bit executables. However, in other
cases such as firmware targeting the XTensa or AVR embedded
ISAs, transplantation is not applicable due to the lack of high-
performance CPUs supporting the corresponding ISA.

Transplantation relies on the host CPU supporting a superset
of the target CPU’s features. Our implementation of SURGEON
currently does not support Arm Cortex-M specific features
such as Memory Protection Units (MPUs). SURGEON could
be extended to support such features by emulating them in
software at a performance cost.

SURGEON’s static binary rewriting approach only targets
code known at instrumentation time. If firmware dynamically
loads additional code modules through peripherals or employs
self-modifying code, our rewriter cannot target such code and
is therefore unable to instrument it.

VII. RELATED WORK

Similar to our prototype implementation of SURGEON,
SafireFuzz [62] proposes executing Arm Cortex-M firmware
natively on Arm Cortex-A CPUs. However, SafireFuzz’s dy-
namic binary rewriting approach at runtime is purely targeting

fuzzing use cases, whereas SURGEON’s combination of static
binary rewriting and a minimal runtime generically transplants
firmware into a Linux user-space process for any dynamic
analysis use case such as debugging or dynamic data flow
analysis. Furthermore, SafireFuzz executes any instruction as-
is without ensuring semantic equivalence on the host CPU.
Such an implementation threatens the semantic correctness of
executed code, and we deem this system consequently not
suitable for the analysis of firmware that contains any of the
instructions described in Section III.

Para-rehosting [46] relies on source code availability and
compiles embedded firmware source code together with man-
ually implemented peripheral handlers into a user space binary.
However, firmware source code for COTS IoT devices is
typically not made publicly available by the manufacturer.
SURGEON in contrast works on firmware binaries and hence
inherently supports more targets.

Other dynamic analysis approaches for embedded firmware
are commonly built on top of ISA emulators such as
QEMU [11] and Unicorn [57] and mainly differ in their ap-
proach to handling peripheral accesses. Hardware-in-the-loop
solutions [15], [17], [30], [41], [42], [45], [50], [69], [72] em-
ulate the target firmware’s ISA and forward peripheral access
via debug interfaces to the actual MCU. This approach suffers
from communication overheads with the MCU through debug
probes and is limited in scalability due to acquisition and
configuration requirements of additional hardware. SURGEON
emulates peripherals in software and scales by instantiating
additional lightweight Linux user space processes.

Symbolically [13], [32], [59], [60], [64], [74] or heuristi-
cally [23], [31], [49] modeling peripheral behavior based on
MMIO accesses enable fully automated firmware re-hosting.
However, both approaches risk over-approximating peripheral
capabilities as previously discussed by Fasano et al. [22].
Further, these solutions require costly upfront analysis of pe-
ripheral behavior before starting the intended dynamic analysis
task. SURGEON in its current implementation requires a one-
time developer effort for implementing peripheral handlers at
the HAL level but provides higher accuracy thanks to domain-
expert knowledge during implementation.

Finally, other re-hosting approaches model peripherals in
software at the kernel level, communicating with user space
software through a generic POSIX API [14], [18], [38], [44],
[73]. These systems target Linux-based firmware and leverage
both kernel and user space and are hence not compatible
with SURGEON’s current focus on bare metal MCU firmware.
Such Linux-based firmware is not suitable for re-hosting via
transplantation because transplantation leverages the host’s
MMU for efficiently replicating the target’s physical address
space in a host process’s virtual address space. Linux-based
firmware leveraging an MMU itself requires another layer of
indirection for virtual address translation in software, which
is outside of the scope of this paper.

10

VIII. CONCLUSION

SURGEON is the first general-purpose re-hosting system
for targets such as MCU firmware running the targets at
native speed. We introduce fransplantation as a novel concept
for re-hosting, providing a fast alternative to emulation-based
approaches while at the same time simplifying the software
stack for arbitrary dynamic analysis use cases. Transplanta-
tion leverages compatibilities of low-power target and high-
performance host ISAs, such as Arm Cortex-M and Cortex-A,
respectively, and addresses any remaining incompatibilities
in software. Our SURGEON prototype employs and expands
upon High-level Modeling (HLM) for peripheral modeling. We
generically re-host MCU firmware, both for single-execution
use cases such as debugging as well as high-performance use
cases requiring rapid successive executions of the firmware
such as fuzzing. EmbedFuzz as a fuzzing-oriented extension
of SURGEON outperforms state-of-the-art fuzzers in terms of
performance by a factor of up to eight times the fuzzing
throughput. In our design and implementation, we stress the
importance of semantically correct execution of target in-
structions which SURGEON achieves through transplantation.
Consequently, SURGEON is a fast, flexible, and precise re-
hosting system for arbitrary dynamic analysis use cases.

IX. ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their feedback on
the paper. This work was supported, in part, by the European
Research Council (ERC) under the European Union’s Horizon
2020 research and innovation program (grant agreement No.
850868), DARPA HRO001119S0089-AMP-FP-034, and NSF
CNS-1942793.

REFERENCES
[1] “Capstone: The Ultimate Disassembly Framework,” accessed: January
2024. [Online]. Available: https://www.capstone-engine.org/
“Keystone: The Ultimate Assembler.” [Online]. Available:
/Iwww.keystone-engine.org/
Amazon Web Services, Inc, “FreeRTOS,” accessed: July 2022. [Online].
Available: https://www.freertos.org/
N. Amit, D. Tsafrir, A. Schuster, A. Ayoub, and E. Shlomo, “Virtual
CPU Validation,” in Proceedings of the 25th Symposium on Operating
Systems Principles. Monterey California: ACM, Oct. 2015, pp. 311-
3217.
Ampere Computing, “Ampere® Altra®,” 2022. [Online]. Available:
https://amperecomputing.com/processors/ampere-altra/
Apple Inc., “Mac — Apple,” 2022, accessed: July 2022. [Online].
Available: https://www.apple.com/mac/
Arm Limited, “Armv7-M Architecture Reference Manual,” Tech. Rep.,
2021. [Online]. Available: https://developer.arm.com/documentation/
ddi0403/ee/Nang=en
, “Arm CoreSight Architecture Specification,” Tech. Rep., 2022.
[Online]. Available: https://developer.arm.com/documentation/ihi0029/f/
7ang=en
——, “Cortex-M Series Processors,” 2022, accessed: January 2022.
[Online]. Available: https://developer.arm.com/ip-products/processors/
cortex-m
, “Procedure Call Standard for the Arm® Architecture,” Tech. Rep.,
Oct. 2022. [Online]. Available: https://github.com/ARM-software/abi-aa
F. Bellard, “QEMU, a fast and portable dynamic translator,” in Proceed-
ings of the Annual Conference on USENIX Annual Technical Conference,
ser. ATEC *05. USA: USENIX Association, 2005, p. 41.

[2] https:
[3]

[4]

[5]
[6]
[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

A. Bulekov, B. Das, S. Hajnoczi, and M. Egele, “Morphuzz:
Bending (input) space to fuzz virtual devices,” in 31st USENIX
Security Symposium, USENIX Security 2022, Boston, MA, USA,
August 10-12, 2022, K. R. B. Butler and K. Thomas, Eds.
USENIX Association, 2022, pp. 1221-1238. [Online]. Available: https:
/Iwww.usenix.org/conference/usenixsecurity22/presentation/bulekov

C. Cao, L. Guan, J. Ming, and P. Liu, “Device-agnostic Firmware
Execution is Possible: A Concolic Execution Approach for Peripheral
Emulation,” in Annual Computer Security Applications Conference.
Austin USA: ACM, Dec. 2020, pp. 746-759.

D. D. Chen, M. Egele, M. Woo, and D. Brumley, “Towards Automated
Dynamic Analysis for Linux-based Embedded Firmware,” in Proceed-
ings 2016 Network and Distributed System Security Symposium. San
Diego, CA: Internet Society, 2016.

J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C.
Lau, M. Sun, R. Yang, and K. Zhang, “IoTFuzzer: Discovering
memory corruptions in IoT through app-based fuzzing,” in 25th Annual
Network and Distributed System Security Symposium, NDSS 2018,
San Diego, California, USA, February 18-21, 2018. The Internet
Society, 2018. [Online]. Available: http://wp.internetsociety.org/ndss/
wp-content/uploads/sites/25/2018/02/ndss2018_01A-1_Chen_paper.pdf
A. A. Clements, E. Gustafson, T. Scharnowski, P. Grosen, D. Fritz,
C. Kruegel, G. Vigna, S. Bagchi, and M. Payer, “HALucinator:
Firmware Re-hosting Through Abstraction Layer Emulation,” in 29th
USENIX Security Symposium, USENIX Security 2020, August 12-14,
2020, S. Capkun and F. Roesner, Eds. USENIX Association, 2020,
pp. 1201-1218. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity20/presentation/clements

N. Corteggiani, G. Camurati, and A. Francillon, “Inception: System-
Wide Security Testing of Real-World Embedded Systems Software,” in
27th USENIX Security Symposium, USENIX Security 2018, Baltimore,
MD, USA, August 15-17, 2018, W. Enck and A. P. Felt, Eds.
USENIX Association, 2018, pp. 309-326. [Online]. Available: https:
/Iwww.usenix.org/conference/usenixsecurity 18/presentation/corteggiani
A. Costin, A. Zarras, and A. Francillon, “Automated dynamic firmware
analysis at scale: A case study on embedded web interfaces,” in
Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security, AsiaCCS 2016, Xi’an, China, May 30 - June
3, 2016, X. Chen, X. Wang, and X. Huang, Eds. = ACM, 2016, pp.
437-448.

Digi-Key, “MCUs in Industrial Automation,” May 2013. [Online]. Avail-
able: https://www.digikey.com/en/articles/mcus-in-industrial-automation
S. Dinesh, N. Burow, D. Xu, and M. Payer, “RetroWrite: Statically
instrumenting COTS binaries for fuzzing and sanitization,” in 2020 IEEE
Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA,
May 18-21, 2020. 1IEEE, 2020, pp. 1497-1511.

Espressif Systems, “ESP SoCs,” Dec. 2023. [Online]. Available:
https://www.espressif.com/en/products/socs

A. Fasano, T. Ballo, M. Muench, T. Leek, A. Bulekov, B. Dolan-
Gavitt, M. Egele, A. Francillon, L. Lu, N. Gregory, D. Balzarotti, and
W. Robertson, “SoK: Enabling Security Analyses of Embedded Systems
via Rehosting,” in Proceedings of the 2021 ACM Asia Conference on
Computer and Communications Security. Virtual Event Hong Kong:
ACM, May 2021, pp. 687-701.

B. Feng, A. Mera, and L. Lu, “P2IM: Scalable and hardware-
independent firmware testing via automatic peripheral interface
modeling,” in 29th USENIX Security Symposium, USENIX Security
2020, August 12-14, 2020, S. Capkun and F. Roesner, Eds.
USENIX Association, 2020, pp. 1237-1254. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity20/presentation/feng
A. Fioraldi, D. Maier, H. Eiffeldt, and M. Heuse, “AFL++: Combining
Incremental Steps of Fuzzing Research,” in I4th USENIX Workshop on
Offensive Technologies, WOOT 2020, August 11, 2020, Y. Yarom and
S. Zennou, Eds. USENIX Association, Aug. 2020. [Online]. Available:
https://www.usenix.org/conference/woot20/presentation/fioraldi

N. Five, “Withings Body Cardio Teardown,” Jan. 2017, accessed:
January 2022. [Online]. Available: https://www.ifixit.com/Teardown/
Withings+Body+Cardio+Teardown/74987

X. Ge, B. Niu, R. Brotzman, Y. Chen, H. Han, P. Godefroid, and
W. Cui, “HyperFuzzer: An Efficient Hybrid Fuzzer for Virtual CPUs,”
in Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security. Virtual Event Republic of Korea: ACM,
Nov. 2021, pp. 366-378.

11

(27]

(28]

[29]

[30]

(31]

[32]

[37]

[38]

(39]

[40]

[41]

[42]

[43]

[44]

Ghidra Contributors, “Ghidra Software Reverse Engineering
Framework,” National Security Agency, Nov. 2022. [Online]. Available:
https://github.com/NationalSecurity Agency/ghidra

P. Godefroid, “Fuzzing: Hack, art, and science,” Communications of the
ACM, vol. 63, no. 2, pp. 70-76, Jan. 2020.

Z. Guo, T. Tan, S. Liu, X. Liu, W. Lai, Y. Yang, Y. Li, L. Chen,
W. Dong, and Y. Zhou, “Mitigating false positive static analysis warn-
ings: Progress, challenges, and opportunities,” IEEE Transactions on
Software Engineering, pp. 1-37, 2023.

E. Gustafson, M. Muench, C. Spensky, N. Redini, A. Machiry,
Y. Fratantonio, D. Balzarotti, A. Francillon, Y. R. Choe, C. Kruegel,
and G. Vigna, “Toward the Analysis of Embedded Firmware Through
Automated Re-Hosting,” in 22nd International Symposium on Research
in Attacks, Intrusions and Defenses, RAID 2019, Chaoyang District,
Beijing, China, September 23-25, 2019. USENIX Association, 2019,
pp. 135-150. [Online]. Available: https://www.usenix.org/conference/
raid2019/presentation/gustafson

L. Harrison, H. Vijayakumar, R. Padhye,
M. Grace, “PARTEMU: Enabling dynamic analysis of real-
world TrustZone software using emulation,” in 29th USENIX
Security Symposium, USENIX Security 2020, August 12-14, 2020,
S. Capkun and F. Roesner, Eds. USENIX Association, 2020,
pp. 789-806. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity20/presentation/harrison

G. Hernandez, F. Fowze, D. J. Tian, T. Yavuz, and K. R. B. Butler, “Fir-
mUSB: Vetting USB device firmware using domain informed symbolic
execution,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017, B. M. Thuraisingham, D. Evans,
T. Malkin, and D. Xu, Eds. ACM, 2017, pp. 2245-2262.

M. Heuse, H. Eiflfeldt, A. Fioraldi, D. Maier, and J. Aydinbas, “The
AFL++ fuzzing framework,” 2022, accessed: July 2022. [Online].
Available: https://aflplus.plus/

IBM, “IBM power S1022 servers,” 2022, accessed: October 2022.
[Online]. Available: https://www.ibm.com/products/power-s1022

——, “IBM powerl0: Engineered for agility,” 2022, accessed: January
2022. [Online]. Available: https://www.ibm.com/it-infrastructure/power/

K. Sen, and

powerl0
Intel Corporation, “Intel® Xeon® Gold 5218 Processor
Product Specification,” 2017, accessed: January 2022. [On-

line]. Available: https://ark.intel.com/content/www/us/en/ark/products/
192444/intel-xeon-gold-5218-processor-22m-cache-2-30-ghz.html
——, Intel® 64 and IA-32 Architectures Software Developer’s
Manual. Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A,
3B, 3C, 3D and 4, Jun. 2021. [Online]. Available:
https://software.intel.com/content/www/us/en/develop/download/intel-
64-and-ia-32-architectures-sdm-combined- volumes- 1-2a-2b-2c-2d-3a-
3b-3c-3d-and-4.html

M. Jiang, L. Ma, Y. Zhou, Q. Liu, C. Zhang, Z. Wang, X. Luo, L. Wu,
and K. Ren, “ECMO: Peripheral Transplantation to Rehost Embedded
Linux Kernels,” in Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security. Virtual Event Republic
of Korea: ACM, Nov. 2021, pp. 734-748.

B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in 2013
35th International Conference on Software Engineering (ICSE). San
Francisco, CA, USA: IEEE, May 2013, pp. 672-681.

A. Joshi, “Philips hue: Setup and teardown,” 2013, accessed: January
2022. [Online]. Available: https://allthingscc.wordpress.com/2013/01/
21/philips-hue-setup-and-teardown/

M. Kammerstetter, D. Burian, and W. Kastner, “Embedded security
testing with peripheral device caching and runtime program state ap-
proximation,” in [0th International Conference on Emerging Security
Information, Systems and Technologies (SECUWARE), 2016.

M. Kammerstetter, C. Platzer, and W. Kastner, “Prospect: Peripheral
proxying supported embedded code testing,” in Proceedings of the
9th ACM Symposium on Information, Computer and Communications
Security. Kyoto Japan: ACM, Jun. 2014, pp. 329-340.

H. J. Kang, K. L. Aw, and D. Lo, “Detecting false alarms from
automatic static analysis tools: How far are we?” in Proceedings of
the 44th International Conference on Software Engineering. Pittsburgh
Pennsylvania: ACM, May 2022, pp. 698-709.

M. Kim, D. Kim, E. Kim, S. Kim, Y. Jang, and Y. Kim, “FirmAE:
Towards large-scale emulation of IoT firmware for dynamic analysis,” in

[45]

[46]

(471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

ACSAC ’20: Annual Computer Security Applications Conference, Virtual
Event / Austin, TX, USA, 7-11 December, 2020. ACM, 2020, pp. 733—
745.

K. Koscher, T. Kohno, and D. Molnar, “SURROGATES: Enabling
near-real-time dynamic analyses of embedded systems,” in 9th USENIX
Workshop on Offensive Technologies, WOOT ’15, Washington, DC,
USA, August 10-11, 2015, A. Francillon and T. Ptacek, Eds.
USENIX Association, 2015. [Online]. Available: https://www.usenix.
org/conference/woot15/workshop-program/presentation/koscher

W. Li, L. Guan, J. Lin, J. Shi, and F. Li, “From Library Portability to
Para-rehosting: Natively Executing Microcontroller Software on Com-
modity Hardware,” in Proceedings 2021 Network and Distributed System
Security Symposium. Virtual: Internet Society, 2021.

Q. Liu, F. Toffalini, Y. Zhou, and M. Payer, “ViDeZZo: Dependency-
aware virtual device fuzzing,” in 44th IEEE Symposium on Security and
Privacy, SP 2023, San Francisco, CA, USA, May 21-25, 2023. 1EEE,
2023, pp. 3228-3245.

L. Martignoni, S. McCamant, P. Poosankam, D. Song, and P. Maniatis,
“Path-Exploration Lifting: Hi-Fi Tests for Lo-Fi Emulators,” in Pro-
ceedings of the Seventeenth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
ser. ASPLOS XVII. New York, NY, USA: Association for Computing
Machinery, 2012, pp. 337-348.

A. Mera, B. Feng, L. Lu, and E. Kirda, “DICE: Automatic emulation
of DMA input channels for dynamic firmware analysis,” in 42nd IEEE
Symposium on Security and Privacy, SP 2021, San Francisco, CA, USA,
24-27 May 2021. 1EEE, 2021, pp. 1938-1954.

M. Muench, D. Nisi, A. Francillon, and D. Balzarotti, “Avatar?: A multi-
target orchestration platform,” in Proceedings 2018 Workshop on Binary
Analysis Research, vol. 18. San Diego, CA: Internet Society, 2018.
M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D. Balzarotti,
“What You Corrupt Is Not What You Crash: Challenges in Fuzzing
Embedded Devices,” in Proceedings 2018 Network and Distributed
System Security Symposium. San Diego, CA: Internet Society, 2018.
N. Nethercote and J. Seward, “Valgrind: A Framework for Heavyweight
Dynamic Binary Instrumentation,” in Proceedings of the 2007 ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation - PLDI "07. San Diego, California, USA: ACM Press, 2007,
p. 89.

NOVO Engineering, “Embedded Design for an Automated Insuline
Delivery System.” [Online]. Available: https://novoengineering.com/
portfolio/insulin-pump-controller-embedded/

NXP Semiconductors, “NXP Layerscape LX2160A, LX2120A,
LX2080A Data Sheet,” 2020, accessed: January 2022.
[Online]. Available: https://www.nxp.com/products/processors-
and-microcontrollers/arm-processors/layerscape-processors/layerscape-
1x2160a-1x2120a-1x2080a- processors: LX2160A

——, “MPC5xxx microcontrollers,” 2022, accessed: January
2022. [Online]. Available: https://www.nxp.com/products/processors-
and-microcontrollers/power-architecture/mpcSxxx-microcontrollers:
POWER_ARCH_5XXX

M. Payer, E. Kravina, and T. R. Gross, “Lightweight Memory
Tracing,” in 2013 USENIX Annual Technical Conference (USENIX ATC
13). San Jose, CA: USENIX Association, Jun. 2013, pp. 115-126.
[Online]. Available: https://www.usenix.org/conference/atc13/technical-
sessions/presentation/payer

N. A. Quynh and D. H. Vu, “Unicorn: Next generation cpu emulator
framework,” BlackHat USA, vol. 476, 2015. [Online]. Available:
https://www.unicorn-engine.org

I. Roseman, “Omnipod DASH
2022. [Online]. Available:
insulin-pump- teardown/

T. Scharnowski, N. Bars, M. Schloegel, E. Gustafson, M. Muench,
G. Vigna, C. Kruegel, T. Holz, and A. Abbasi, “Fuzzware: Using
Precise MMIO Modeling for Effective Firmware Fuzzing,” in 31st
USENIX Security Symposium (USENIX Security 22). Boston, MA:
USENIX Association, Aug. 2022. [Online]. Available: https://www.
usenix.org/conference/usenixsecurity22/presentation/scharnowski

T. Scharnowski, S. Worner, F. Buchmann, N. Bars, M. Schloegel,
and T. Holz, “Hoedur: Embedded firmware fuzzing using
multi-stream inputs,” in 32nd USENIX Security Symposium,
USENIX Security 2023, Anaheim, CA, USA, August 9-11,
2023, J. A. Calandrino and C. Troncoso, Eds. USENIX

insulin pump teardown,” Oct.
https://idoroseman.com/omnipod-dash-

12

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(71]

[72]

[73]

(74

[75]

Association, 2023. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity23/presentation/scharnowski

S. Schumilo, C. Aschermann, A. Abbasi, S. Worner, and T. Holz,
“Nyx: Greybox hypervisor fuzzing using fast snapshots and affine
types,” in 30th USENIX Security Symposium, USENIX Security
2021, August 11-13, 2021, M. Bailey and R. Greenstadt, Eds.
USENIX Association, 2021, pp. 2597-2614. [Online]. Available: https:
/lwww.usenix.org/conference/usenixsecurity2 1/presentation/schumilo
L. Seidel, D. Maier, and M. Muench, “Forming Faster Firmware
Fuzzers,” in USENIX Security, 2023. [Online]. Available: https:
/lwww.usenix.org/conference/usenixsecurity23/presentation/seidel

K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov,
“AddressSanitizer: A fast address sanity checker,” in 2012 USENIX
Annual Technical Conference, Boston, MA, USA, June 13-15, 2012,
G. Heiser and W. C. Hsieh, Eds. USENIX Association, 2012, pp.
309-318. [Online]. Available: https://www.usenix.org/conference/atc12/
technical-sessions/presentation/serebryany

Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna,
“Firmalice - automatic detection of authentication bypass vulnerabilities
in binary firmware,” in 22nd Annual Network and Distributed
System Security Symposium, NDSS 2015, San Diego, California, USA,
February 8-11, 2015. The Internet Society, 2015. [Online]. Avail-
able: https://www.ndss-symposium.org/ndss2015/firmalice-automatic-
detection-authentication-bypass-vulnerabilities-binary-firmware
SiFive, Inc., “RISC-V Core IP Portfolio,” Dec. 2023. [Online].
Available: https://www.sifive.com/risc-v-core-ip

STMicroelectronics, “STM32 Arm Cortex MCUs - 32-bit
Microcontrollers,” 2022. [Online]. Available: https://www.st.com/en/
microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
M. Sutton, A. Greene, and P. Amini, Fuzzing: Brute Force Vulnerability
Discovery. Pearson Education, 2007.

T-Head Semiconductor, “XuanTie Processor IP,” Jan. 2024.
[Online]. Available: https://www.t-head.cn/product/overview ?spm=
a20uz.12986968.0.0.61d3138464xuSV

S. M. S. Talebi, H. Tavakoli, H. Zhang, Z. Zhang, A. A. Sani,
and Z. Qian, “Charm: Facilitating dynamic analysis of device
drivers of mobile systems,” in 27th USENIX Security Symposium,
USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018,
W. Enck and A. P. Felt, Eds. USENIX Association, 2018,
pp. 291-307. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity 1 8/presentation/talebi

D. Vyukov and A. Konovalov, “Syzkaller: An unsupervised coverage-
guided kernel fuzzer,” Google Inc., 2022, accessed: July 2022. [Online].
Available: https://github.com/google/syzkaller/

S. Wegne, “Fitbit charge 3 teardown,” 2018, accessed: January 2022.
[Online]. Available: https://www.techinsights.com/blog/fitbit-charge-3-
teardown

J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti, “AVATAR:
A framework to support dynamic security analysis of embedded
systems’ firmwares,” in 21st Annual Network and Distributed System
Security Symposium, NDSS 2014, San Diego, California, USA,
February 23-26, 2014. The Internet Society, 2014. [Online]. Avail-
able: https://www.ndss-symposium.org/ndss2014/avatar-framework-
support-dynamic-security-analysis-embedded- systems-firmwares

Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun,
“FIRM-AFL: High-throughput greybox fuzzing of IoT firmware via
augmented process emulation,” in 28th USENIX Security Symposium,
USENIX Security 2019, Santa Clara, CA, USA, August 14-16, 2019,
N. Heninger and P. Traynor, Eds. USENIX Association, 2019,
pp- 1099-1114. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity 19/presentation/zheng

W. Zhou, L. Guan, P. Liu, and Y. Zhang, “Automatic firmware
emulation through invalidity-guided knowledge inference,” in 30th
USENIX Security Symposium, USENIX Security 2021, August 11-13,
2021, M. Bailey and R. Greenstadt, Eds. USENIX Association, 2021,
pp- 2007-2024. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity2 1/presentation/zhou

W. Zhou, Z. Jiang, and L. Guan, “Understanding MPU Usage in
Microcontroller-based Systems in the Wild,” in Proceedings 2023 Work-
shop on Binary Analysis Research. San Diego, CA, USA: Internet
Society, 2023.

	Introduction
	Background
	Dynamic Binary Analysis
	Re-hosting

	Transplantation
	Challenges
	Transplantation
	Static Binary Instrumentation
	Runtime

	Surgeon: Re-hosting via Transplantation
	Static Binary Instrumentation
	Runtime

	Applications of Surgeon
	Debugging Embedded Firmware
	EmbedFuzz

	Discussion
	Related Work
	Conclusion
	Acknowledgements
	References

