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Abstract— Dynamic analysis of microcontroller-based embed-
ded firmware remains challenging. The general lack of source
code availability for Commercial-off-the-shelf (COTS) firmware
prevents powerful source-based instrumentation and prohibits
compiling the firmware into an executable directly runnable by
an analyst. Analyzing firmware binaries requires either acquisi-
tion and configuration of custom hardware, or configuration of
extensive software stacks built around emulators. In both cases,
dynamic analysis is limited in functionality by complex debugging
and instrumentation interfaces and in performance by low exe-
cution speeds on Microcontroller Units (MCUs) and Instruction
Set Architecture (ISA) translation overheads in emulators.

SURGEON provides a performant, flexible, and accurate re-
hosting approach for dynamic analysis of embedded firmware.
We introduce transplantation to transform binary, embedded
firmware into a Linux user space process executing natively
on compatible high-performance systems through static binary
rewriting. In addition to the achieved performance improvements,
SURGEON scales horizontally through process instantiation and
provides the flexibility to apply existing dynamic analysis tool-
ing for user space processes without requiring adaptations to
firmware-specific use cases. SURGEON’s key use cases include
debugging binary firmware with off-the-shelf tooling for user
space processes and fuzz testing.

I. INTRODUCTION

MCU-based embedded systems are ubiquitous and enable

a plethora of applications such as medical and health-related

applications [25], [53], [58], [71], smart home and infras-

tructural use cases [40], or industrial production and control

systems [19]. The lack of Memory Management Unit (MMU)-

based memory isolation, the prevalence of memory-unsafe lan-

guages such as C/C++, as well as exposure of such devices to

the Internet make them an attractive target for malicious actors

and security researchers. These properties consequently call

for thorough testing and analysis of such embedded firmware

to mitigate the potentially fatal impact of vulnerabilities on

the physical world.

Static analysis of software suffers from high false positive

rates for vulnerability detection [29], [39], [43]. This approach

becomes even more challenging when analyzing binary-only

firmware where source-based information such as type infor-

mation is lost during compilation. Hence, dynamic analysis

techniques build a cornerstone of modern software analysis.

Such techniques include fuzz testing, dynamic taint tracking,

symbolic execution, or simple execution in a debugger to

gather runtime information about the analyzed software.

However, COTS embedded devices commonly lack the

debug interfaces required for introspection into the firmware’s

execution. Even if such interfaces are available, low-power

MCUs come with limited on-device compute resources and

restrict the horizontal scalability of dynamic analysis through

the necessity of acquiring and configuring additional hardware.

Consequently, re-hosting embedded firmware into a virtual

environment has been proven a viable option for dynamic

analysis applications [16], [22], [23], [50], [51], [59], [60],

[62], [72], [74]. Yet, re-hosting approaches based on emulation

of CPU instructions in emulators such as QEMU [11] or

Unicorn [57] incur significant emulation overheads.

We introduce transplantation, a novel re-hosting technique

that executes MCU firmware at the native speed of a more

powerful host CPU. Transplantation leverages the key insight

that embedded ISAs such as Arm Thumb2 used in Arm

Cortex-M based microcontrollers overlap with desktop-grade

ISAs as employed in Arm Cortex-A processors. Based on this

insight, transplantation (i) employs lightweight static binary

rewriting to transform bare-metal embedded firmware into a

Linux user space program, and (ii) natively executes the rewrit-

ten firmware alongside a minimal transplantation runtime as a

user space process on server-grade hardware. Transplantation

only necessitates small adjustments to the target binary to

account for semantic differences in target and host ISA,

replicate the target’s address space appropriately, and intercept

peripheral accesses. Our prototype implementation SURGEON

accounts for these requirements, and leverages High-level

Modeling (HLM) as introduced by HALucinator [16] for

peripheral emulation.

Through transplantation, SURGEON provides (i) flexibility,

ease of use, and scalability through execution as a user

space process, (ii) high execution speeds due to the native

execution of instructions on high-performance CPUs with

clock speeds in the range of multiple gigahertz (GHz) in-

stead of at maximum a few hundred megahertz (MHz) as

is the case on the original MCU, and (iii) precise periph-

eral emulation through analyst-provided peripheral models.

We make SURGEON available as open-source software at

https://github.com/HexHive/SURGEON.
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II. BACKGROUND

In order to motivate the need for transplantation-based em-

bedded firmware analysis, we provide background information

on dynamic binary analysis. By summarizing the topic of re-

hosting, we bridge the gap between dynamic binary analysis in

a generic sense and software analysis for embedded firmware.

A. Dynamic Binary Analysis

Static analysis of software on both source code or binary

artifacts lacks runtime information about control flow and

internal state from concrete executions. Consequently, static

analysis commonly over-approximates potential control flow.

Due to this over-approximation and the lack of information

on runtime state build-up such as the layout of variables on

the heap, static analysis frequently incurs high false positive

rates [29], [39], [43].

Dynamic analysis, in contrast, gathers insights about the

Program Under Test (PUT)’s behavior during execution. In-

strumentation for dynamic analysis can be introduced at source

level (e.g., ASAN [63] or AFL++ [24]), binary level (e.g.,

RetroWrite [20], QEMU [11] or Valgrind [52]), or through

hardware tracing features (e.g., Intel Processor Trace [37] or

Arm CoreSight [8]). Dynamic binary analysis potentially only

covers the actually executed subset of all the code present

in the PUT. However, dynamic analysis techniques provide

an analyst with insights into the runtime state of an actual

execution of the target. As an example, fuzz testing [28], [67]

has proven to be an effective means of discovering numerous

bugs in software ranging from user space programs over

Operating System (OS) kernels and hypervisors to different

types of firmware [12], [14], [24], [47], [59], [61], [70].

While an analyst can leverage kernel-provided APIs such as

ptrace and perf to gain insights into a user space process’

behavior, such interfaces are not available when analyzing

bare-metal firmware. Furthermore, instead of relying on the

kernel for I/O operations through system calls, MCU firmware

directly accesses hardware peripherals to communicate with

the outside world. For these reasons, dynamic analysis for

embedded firmware commonly leverages re-hosting, which we

elaborate on in the following.

B. Re-hosting

Re-hosting is the process of building a virtual environ-

ment for a given firmware image that sufficiently models

the firmware’s hardware dependencies [22]. The goal of this

process is to design this virtual environment in a way that

the behavior of re-hosted firmware in this environment is

representative of executions on the real hardware.

In a re-hosted environment, three main components need

to be modeled with sufficient precision to achieve the desired

representativeness: (i) the ISA, (ii) hardware peripherals, and

(iii) additional hardware-specific behavior. This requirement

stems from the inherent differences between a system based

on an embedded MCU and the analyst’s host system.

First, MCUs typically implement simple ISAs such as

Arm’s M-profile [66], PowerPC [55], or RISC-V [21] to

achieve small chip area and low power consumption. Analysts’

host systems however may be built around commodity desktop

CPUs, commonly implementing the x86(-64) ISA. For this

reason, existing re-hosting approaches commonly leverage

emulators such as QEMU [11] or Unicorn [57] for ISA

translation [16], [23], [50], [59], [60], [74]. This approach

introduces emulation overheads through ISA translation and

software-based address translation between the target and

host address spaces. Recently, SafireFuzz [62] exploited com-

patibilities between Arm Cortex-M and Cortex-A’s ISAs to

fuzz embedded firmware with high performance. However,

SafireFuzz ignores any remaining incompatibilities between

the ISAs, lacks modeling of additional MCU-specific behavior,

and thus threatens correctness of instruction execution and

system modeling. Transplantation as shown in Section III en-

sures semantic correctness of instructions and proper modeling

of the target system in a re-hosted environment.

Second, a re-hosted firmware’s peripherals must be modeled

to account for the firmware’s I/O operations. Re-hosting sys-

tems either employ Memory-mapped Input/Output (MMIO)-

based peripheral modeling or High-level Modeling (HLM)

for this purpose. In the first case, the re-hosting system

aims to model real peripherals’ behavior and handles memory

accesses to the MMIO region accordingly. On the one hand,

hardware-in-the-loop systems forward memory accesses to the

MMIO region via debug probes to real hardware [41], [50],

[72], which hinders scalability due to the reliance on actual

hardware. Systems emulating peripherals in software through

heuristic or symbolic-execution-based approximations [23],

[59], [60], [74] on the other hand incur imprecisions in

the peripheral modeling process. HLM, as introduced by

HALucinator [16] and employed by other systems [62], in

contrast intercepts control flow in the firmware at a pre-defined

higher level such as the Hardware Abstraction Layer (HAL)

API. Instead of accurately mimicking complex real hardware’s

behavior, only the HAL API’s behavior with known semantics

needs to be replicated. As code calling into HAL libraries is

oblivious to the logic executing beneath the HAL, replacing

HAL functions with developer-provided emulation code does

not affect the semantics of the firmware’s application logic.

Third, MCU-specific hardware behavior such as configur-

ing, dispatching and handling interrupts needs to be replicated

in a re-hosting environment as well. Such functionality in

certain cases can already be provided by an underlying system

emulator such as QEMU [11] but in other cases needs to be

accounted for by the developer of a re-hosting platform if the

underlying emulator does not support such functionality out

of the box as is the case for example with Unicorn [57].

III. TRANSPLANTATION

Transplantation is a versatile, performant, and easy-to-use

alternative to existing re-hosting approaches. Our key insight

is that significant overlaps between certain embedded MCU

ISAs and the ISAs supported by server-grade CPUs enable

straightforward cross-ISA translation. Exemplarily, the ISA

implementation of Arm’s Cortex-M lineup of microcontrollers
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is highly compatible with the ISA implementation employed

in the Cortex-A lineup of CPUs as used in mobile, desktop,

and server-grade processors [5], [6], [54]. This observation

allows natively executing the majority of code of a Cortex-M

based MCU firmware in a Linux user space process on a

Cortex-A CPU, removing the requirements of ISA emulators

and the complexity added by such a layer of indirection. In

the following, we describe the challenges that re-hosting faces

and showcase how transplantation addresses these challenges

to provide flexible and performant re-hosting of embedded

firmware. We describe SURGEON, our prototype of a trans-

plantation system, and its potential use cases in Sections IV

and V. Throughout the rest of the paper, we use the term

target system to refer to the MCU-based system the binary

was originally intended to be executed on, and host system

for the system the re-hosted environment is running on.

A. Challenges

Challenge 1 – Representation of the Physical Address

Space: MCU firmware statically links all code and global data.

MCUs then map this firmware, its heap and stack as well as

MMIO-mapped peripherals and control registers into a single

flat physical address space. Those different memory regions

for ROM, RAM or MMIO are placed at fixed, architecture-

determined locations in this physical address space. Re-hosting

solutions must account for the corresponding address space

structure to accurately model the firmware’s expected execu-

tion environment.

Hardware-in-the-loop, pure emulation, and HLM ap-

proaches all introduce a complex and expensive emulation

layer. This layer imposes a software-based address translation

for every access to the address space, and dispatches to differ-

ent emulator logic based on which region in the address space

is accessed. For example, accessing the MMIO region requires

peripheral-specific handling of loads and stores, whereas ac-

cessing RAM requires only Memory Protection Unit (MPU)

access permission checks. In summary, all accesses must

respect the original MCU’s physical address space layout.

Challenge 2 – MCU Architectural Features: MCUs differ

architecturally compared to a CPU’s user space mode. Such

differences include, e.g., execution modes, interrupt controllers

(Arm’s Nested Vectored Interrupt Controller (NVIC)), banked

registers, or hardware-supported exception entry and return

routines not present in a Linux process. Especially this last

example presents a significant difference between Arm Cor-

tex-M MCUs and an unprivileged Cortex-A user space context.

Loading a value into the program counter register always

triggers a branch to that location in user space, while load-

ing a magic value (0xFFFFFFF1 to 0xFFFFFFFD) instead

triggers a hardware-implemented exception return routine on

Arm Cortex-M. Re-hosting must account for such features.

Previous hardware-in-the-loop [50], [72], HLM [16] or purely

emulation-based [23], [59] re-hosting solutions commonly

emulate the corresponding logic, managing complex CPU state

solely in software. Other approaches executing MCU firmware

in user space ignore this challenge altogether [46], [62].

Challenge 3 – Peripheral Handling: MCU firmware

interacts with the outside world using peripherals. A re-

hosting environment must handle peripheral accesses with

varying degrees of accuracy, depending on the analyses to

be conducted and how the results of those analyses map

to the real hardware. Hardware-in-the-loop approaches are

commonly the most accurate due to their usage of ”real”

peripherals. Pure emulation provides high accuracy using the

peripheral’s MMIO interface. However, this approach suffers

from significant engineering efforts to correctly implement the

vast diversity of available peripherals [22]. HLM leverages

the HAL layer of peripherals to reduce the engineering effort

for peripheral emulation. However, as a consequence, this

approach does not execute low-level peripheral specific code

beneath the HAL layer. The HAL interface provides informa-

tion about the semantics of data being passed in and out of

the firmware from and to peripherals, allowing highly accurate

modeling of those interfaces. Peripheral modeling based on

symbolic modeling or automated peripheral behavior inference

exposes a higher degree of automation but fails to guarantee

the same level of accuracy as HLM.

Challenge 4 – Correct Execution of Instructions: The

execution of instructions must be semantically equivalent to

the execution on the original MCU. Semantic equivalence

comprises both the instructions’ intended action (e.g., arith-

metic operations) and potential side-effects such as setting

CPU flags. While this generally does not pose an abundant

problem, emulators and hypervisors may introduce inaccuracy

when modeling a physical CPU [4], [26], [48], impacting

semantic correctness of the re-hosting environment.

Challenge 5 – Performance and Scalability: Many dy-

namic analysis techniques benefit from high execution speeds

and horizontal scalability. For example, fuzzing benefits from

fast and massively parallelized execution due to more iterations

being executed in less time. While not all dynamic analysis

use cases strictly require these properties, a re-hosting system

aiming to be generic and applicable to a broad range of use

cases needs to take performance and scalability into account.

Hardware-in-the-loop approaches emulate the target’s ISA

and forward peripheral accesses to real hardware via debug

probes. They require dedicated MCU hardware for each run-

ning firmware instance. Thus, these approaches lack scalability

and suffer from performance degradation due to the forwarding

of accesses to the physical device. In contrast, pure emulation

and High-level Modeling (HLM) approaches do not require

dedicated hardware and scale horizontally. Unfortunately, prior

systems pay a hefty emulation tax for emulating a foreign ISA.

Challenge 6 – Introspection: Dynamic analysis requires

introspection into the Program Under Test (PUT) at runtime.

Hardware-in-the-loop, pure emulation, and HLM usually re-

quire the presence of a hardware debugging interface or mod-

ification of the emulation layer, i.e., adding a debugger stub

to enable attaching a debugger. Therefore, these approaches

result in additional engineering effort, a restricted feature set

in comparison to common interfaces for user space software,

communication overhead, or a combination of the above.
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are inserted at the beginning of each function that is to be

replaced via High-level Modeling (HLM). In the embedded

system context, this allows a transplantation system such as

SURGEON to intercept and redirect calls to HAL functions

during execution, and provides the necessary prerequisite for

successful peripheral emulation via HLM (Challenge 3). We

further describe the runtime component of this method of

emulating peripherals in Section III-B2.

2) Runtime: Our runtime first loads the target binary into its

virtual address space. In this process, the runtime ensures that

Challenge 1, the correct replication of the expected address

space layout is addressed by mapping code and data into the

virtual address space at their expected locations. The runtime’s

code and data itself are located in unused parts of the virtual

address space in order to not interfere with the Program

Under Test (PUT)’s memory ranges. Apart from this initial

loader, the runtime contains the code for emulating device-

specific behavior such as exception entry and return routines

provided by hardware in the original MCU, as well as any

handlers emulating peripheral accesses via HLM. Thereby

addressing Challenges 2 and 3, this emulation code is executed

whenever the target firmware reaches code locations that were

previously instrumented for replicating MCU-specific behavior

or peripheral accesses via HLM. After loading the PUT into

the virtual address space, the runtime hands over control to

the target program through a branch to its designated entry

point. From this point on, the re-hosted firmware executes

natively on the host CPU. This execution model provides

transplantation with the high performance stated as a goal

in Challenge 5, thanks to native code execution on a high-

performance host CPU. The re-hosted system’s state can be

easily replicated by forking the user space process, allowing

for simple horizontal scalability across cores in the host sys-

tem. Furthermore, executing natively in a user-space process

provides an analyst with a plethora of mature tooling for

introspection and analysis (Challenge 6). For example, Linux’s

ptrace API enables the analyst to debug a re-hosted PUT

with standard debuggers such as GDB without the need for

a potentially limited GDB server stub implementation in an

emulator. Additionally, this approach enables the analyst to

leverage unmodified user space tooling such as AFL++ [24].

We employ the latter for fuzzing embedded firmware as

further described in Section V-B. Transplantation consequently

provides an analyst with full flexibility in terms of applicable

user space tooling without needing to modify the tools for a

different environment in an emulator or on real hardware.

IV. SURGEON: RE-HOSTING VIA TRANSPLANTATION

We present SURGEON, a transplantation-based re-hosting

system targeting Arm Cortex-M embedded firmware. Our pro-

totype re-hosts such firmware into a Linux user space process

natively executing on Arm Cortex-A chips. In the following,

we provide details on the implementation of SURGEON’s two

main components, the Static Binary Instrumentation (SBI)

engine as well as our runtime component.

1) Static Binary Instrumentation: We implement SUR-

GEON’s SBI engine in Python, leveraging Capstone [1] and

Keystone [2] for disassembling and assembling code, respec-

tively. As a first step, we employ Ghidra [27] to identify basic

block boundaries for potential instrumentation during static

binary rewriting. We feed the set of identified basic blocks as

well as a list of explicit instrumentation targets to the SBI

engine, which in turn leverages this information to instru-

ment the given firmware binary. Our instrumentation engine

supports multiple instrumentation passes with different targets

and granularity. In a first pass, our SBI engine addresses

semantic incompatibilities between the target and host ISAs. In

our prototype, we re-host Arm Cortex-M MCU firmware into

an Arm Cortex-A CPU Linux user space process. While the

majority of instructions can be executed as-is, a small number

of instructions require dedicated handling. We categorize these

instructions as follows:

Modifying MCU-specific CPU state: The instructions

msr and mrs copy information from general-purpose registers

to model-specific registers and vice versa, respectively. If

possible, we rewrite those instructions to only change argu-

ments with semantic equivalence (e.g., model the Cortex-M

Application Program Status Register (APSR) with Cortex-A’s

Current Program Status Register (CPSR)). Otherwise, we

emulate their behavior in other instructions (e.g., copies

to/from unused floating point registers for modeling banked

stack pointer registers). Where complex logic prevents direct

replacement, we replace the instruction with a branch to

emulation code or, if dictated by space limitations, a bkpt

instruction to trap-and-emulate in our runtime.

Software interrupts: The svc instruction on both Arm

Cortex-M and Cortex-A causes a software interrupt to be

raised. Whereas the firmware expects the corresponding in-

terrupt handler to be executed, such a software interrupt in

a Linux user space process causes a transition to the kernel

and execution of a syscall. In order to execute the firmware’s

interrupt handler and not issue unexpected syscalls during

dynamic analysis, we replace svc instructions with bkpt

instructions and pass control on to the interrupt handler from

our runtime’s trap handler triggered as a result of the bkpt.

Coprocessor accesses: On Arm MCUs, up to 16 co-

processors can be defined for adding features to the main

processor. Any instruction executing on the main CPU is also

streamed to a coprocessor and executed on the coprocessor if

necessary [7]. Hardware floating point support implemented

on a coprocessor does not require special handling by SUR-

GEON, since the corresponding floating point instructions are

transparently executed on the floating-point implementation of

the host Cortex-A CPU. In our experiments (see Section V),

we did not encounter custom coprocessors. In case a custom

coprocessor is employed, the instructions for coprocessor data

processing (cdp/cdp2), moving data from Arm registers to

the coprocessor and vice versa (mcr/mcr2, mcrr/mcrr2,

mrc/mrc2, mrrc/mrrc2) and loading and storing data

from or to memory (ldc/ldc2, stc/stc2) need to be

rewritten. Depending on the coprocessor’s functionality, those
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HAL_UART_Receive:
ldrb.w  r3, [r0, #58]

  uxtb    r3, r3
  cmp     r3, #32
  ...

HAL_UART_Receive:
b.w   uart_recv_handler
uxtb  r3, r3

  cmp   r3, #32
  ...

Fig. 2. HAL function entry points are replaced with branches to our handlers.
The remainder of the function stays unmodified but is not executed anymore.

instructions are rewritten inline with equivalent functionality,

or in case of space limitations are replaced with a call or trap

into the runtime for emulation.

After the pass ensuring semantic fidelity, we leverage both

generic basic block instrumentation as well as explicitly spec-

ified instrumentation points. We instrument the entry points of

HAL functions to dispatch to HAL handlers in our runtime.

This instrumentation pass simply replaces the function pro-

logue of a HAL function in the firmware with an unconditional

branch to the corresponding handler as exemplarily shown in

Figure 2. In case a HAL function does not require complex

logic to be executed in a handler function, SURGEON patches

the function inline (low-fidelity HAL). For example, peripheral

initialization functions can typically just return with a value

that indicates successful initialization. Additionally, we instru-

ment the previously identified basic blocks in the firmware.

For each basic block, we identify instructions that are not

program counter (PC)-relative and can thus be relocated

without affecting their semantic validity. We replace the first

such instruction with an unconditional branch to a trampoline

at an unused location in the address space. This trampoline

1) saves firmware context according to the Arm calling con-

ventions, 2) executes instrumentation code, 3) restores context,

4) executes the original instruction(s) replaced by a branch,

and 5) finally branches back to the original code location.

Figure 3 provides an example of an instrumented control flow.

We use this mechanism to reproducibly simulate time in the

re-hosted environment. We advance a virtual clock by adding

callbacks into the instrumentation code. Virtual timekeeping

is required in order to reproducibly trigger interrupts in the

firmware at fixed intervals. Through this instrumentation, the

reproducibility of time as perceived by the re-hosted firmware

only depends on the reproducibility of the control flow and

executed basic blocks in the firmware. As we detail in one of

our exemplary use cases in Section V-B, an analyst can add

additional instrumentation passes with low effort.

2) Runtime: SURGEON’s runtime is implemented in C to

provide us with full control over the address space layout

and performance-critical optimizations. The runtime is linked

statically to prevent the dynamic loader from loading li-

braries at addresses we do not control. All code, data and

runtime variables such as stack and heap are located in the

vendor-reserved region of the Arm Cortex-M memory map

(0xE0100000-0xFFFFFFFF) [7]. This approach ensures

no collisions with addresses used by re-hosted firmware. After

loading the firmware binary at its expected addresses into the

virtual address space, the runtime branches to the firmware’s

func:
  ldr    r0, [pc, #4]

add.w  r0, #1
  mov.w  pc, lr
.word: 0x01234567

  func:
    ldr    r0, [pc, #4]
    b.w    tramp_func
    mov.w  pc, lr
  .word: 0x01234567
  ...

  tramp_func:
    <context save>
    <instrumentation>
    <context restore>

add.w  r0, #1
    b.w    func+8

Fig. 3. SURGEON adds instrumentation in trampolines.

entry point and from there on natively executes the PUT.

Besides loading the firmware and handing over control, the

runtime contains emulation code for architectural features, trap

handlers for the trap-and-emulate approach where required,

and handlers for HAL functions. The runtime contains the

callback functions that are invoked in the trampolines inserted

during static binary instrumentation. This includes, for ex-

ample, the code incrementing the virtual clock that provides

time to the firmware. The trap handlers are implemented via

Linux signal handlers. A svc instruction replaced with a

bkpt during rewriting causes Linux to deliver a SIGTRAP

signal to the process. In the corresponding signal handler,

SURGEON’s runtime emulates Arm’s hardware-implemented

exception entry routine in software, branches to the Interrupt

Service Routine (ISR) in the firmware responsible for handling

the software interrupt, and upon return from that routine

emulates an exception return routine.

Finally, the runtime contains the handlers for HAL functions

interacting with peripherals in the firmware. Our prototype

provides a developer with two implementation options for

HAL handlers. First, our runtime incorporates a Python in-

terpreter and a native module exposing the same API as im-

plemented in HALucinator [16] to Python code. Consequently,

an analyst can leverage HALucinator’s existing HAL handlers

for peripheral emulation and quickly prototype new handlers

in Python. Second, our prototype also supports calling into

native handlers. This approach enables direct branches into

the handlers from the HAL functions in the firmware binary

when following the original function’s prototype thanks to the

Arm Architecture Procedure Call Standard (AAPCS) [10]. In

this case, the function’s arguments have already been set up

by the HAL function’s caller, and are not affected by the

direct branch. When the handler returns, control flow continues

directly at the HAL function’s call site just as if the original

HAL function had returned. In contrast to the Python handlers,

this implementation does not require saving and restoring the

firmware’s context before and after branching into the Python

interpreter in addition to the interpreter’s own overhead in

comparison to native code. During our experiments described

in Section V, we observed an on average 5x speedup by using

native handlers instead of Python-based implementations. We,

therefore, conclude that leveraging HALucinator’s existing
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HAL handlers in Python provides an excellent base for quick

prototyping, but an analyst should implement handlers natively

for performance-critical use cases.

V. APPLICATIONS OF SURGEON

Transplantation is a flexible and versatile approach to dy-

namic analysis. In our prototype implementation, we leverage

SURGEON to re-host Arm Cortex-M firmware into a Linux

user space process executing on Arm Cortex-A CPU cores.

We describe how SURGEON can be leveraged by an analyst

for debugging with off-the-shelf user space debugging tools in

Section V-A. SURGEON through its native user-space nature

greatly simplifies such a use case in comparison to interfacing

with emulators or real hardware. Furthermore, we extend the

basic binary rewriter with a pass that adds coverage instru-

mentation for fuzzing, and show that transplantation enables

fuzzing with high performance in comparison to emulation-

based fuzzers. We detail this use case in Section V-B.

A. Debugging Embedded Firmware

SURGEON simplifies debugging embedded firmware by

enabling an analyst to use common user space debuggers for

this task. More specifically, an analyst invokes SURGEON’s

runtime with the re-hosted firmware through the GDB de-

bugger, and steps through the re-hosted firmware like any

other user space program. Debugging transplanted firmware

benefits from multiple differences to on-device or emulator-

based debugging. First, transplantation improves observability

of memory corruption bugs. The user space nature of software

transplanted with SURGEON causes accesses to unmapped

memory or with incorrect permissions to result in a segmen-

tation fault. This behavior provides a clear signal for the pres-

ence of a bug. On real hardware, the absence of fine-grained

memory protection via an MMU may mask illegal memory

accesses and cause any effects of such an unintended access, if

present at all, to only surface much later in the execution of the

firmware [51]. Even the presence of a Memory Protection Unit

(MPU) does not necessarily improve upon the observability

of memory corruption bugs, since usage of MPUs in COTS

firmware is low and their implementation often incorrect [75].

Second, transplantation with SURGEON allows an analyst

to reproducibly execute the same code multiple times. For

example, the analyst cannot fully control the timing and order

of interrupts on real hardware. Consequently, the control flow

of each execution of the firmware may differ across executions.

SURGEON with its reproducible virtual clock based on basic-

block instrumentation ensures the same timing and order of

interrupts for each execution of the transplanted firmware

and hence prevents heisenbugs which cannot be reproducibly

observed across executions.

Finally, debugging via Linux’ ptrace API that GDB uses

speeds up finding potential issues in comparison to emulator-

based or on-device debugging. More specifically, our approach

can make use of the host CPU’s hardware-supported break-

points and memory watchpoints while executing code at native

speed. Leveraging an emulator on the other hand requires the

emulator to check every instruction for memory accesses to

watchpoints defined by the analyst in software, greatly slowing

down execution speeds and therefore hindering the analyst

from efficient and fast debugging. Additionally, emulators may

provide limited GDB server stub implementations, or none

at all. For example, the Unicorn ISA emulator [57] used

by hal-fuzz and Fuzzware by default does not come with a

GDB server implementation at all. Therefore, any debugging

features need to be implemented on top of the emulator by an

analyst. Similarly, on-device debugging requires the presence

of debug interfaces such as JTAG which are commonly omitted

in COTS devices. SURGEON meanwhile enables usage of the

full spectrum of GDB’s features through user space debugging.

B. EmbedFuzz

As a proof of concept for the flexibility of the transplan-

tation approach, we implement EmbedFuzz, an extension of

SURGEON to embedded firmware fuzzing. Previous work such

as P2IM [23], the fuzzing-oriented version of HALucinator

hal-fuzz [16], Fuzzware [59] or Hoedur [60] are based on

emulators and require extensive modifications to emulators,

existing fuzzing engines, or both. SURGEON on the other hand

thanks to its native user-space nature can be combined with

off-the-shelf fuzzers such as AFL++ [24], [33]. In addition,

native execution on the host CPU removes any overhead

stemming from cross-ISA instruction translation and other

side effects of emulation such as software-based address

translation.

As mentioned in Section IV-1, SURGEON enables an ana-

lyst to easily specify additional instrumentation passes. We

leverage this fact to add coverage instrumentation to each

basic block in the target firmware for coverage-guided fuzzing.

As an optimization, we also add a command-line flag to

our runtime allowing the analyst to choose whether to only

execute the re-hosted firmware once or in a fork server mode

compatible with AFL++. With those minimal additions to

SURGEON, EmbedFuzz enables high-speed fuzzing without

emulation overheads with an unmodified version of AFL++.

To demonstrate EmbedFuzz’s capabilities, we evaluate our

implementation on 10 real-world MCU firmware binaries

introduced in P2IM [23]. We run fuzzing campaigns for

EmbedFuzz and the state-of-the-art firmware fuzzers Fuzz-

ware [59] and P2IM. Hal-fuzz [16] and SafireFuzz [62] both

lack crucial architectural features which are present in this

firmware data set such as support for software interrupts

via the svc instruction. Due to these incompatibilities, we

could not run fuzzing campaigns with these systems. In

order to showcase the potential performance impact of ISA

emulators, we also run fuzzing campaigns where the re-

hosted firmware is emulated via qemu-user. We conduct ten

24-hour fuzzing campaigns per fuzzer and report minimum,

average and maximum numbers for our evaluation results. We

execute EmbedFuzz natively on a SolidRun Honeycomb board

built around an NXP Layerscape LX2160A processor featuring

16 Arm Cortex-A72 cores [54] and 32GB of RAM. The

dependencies of the other evaluated fuzzers require running
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fuzzing use cases, whereas SURGEON’s combination of static

binary rewriting and a minimal runtime generically transplants

firmware into a Linux user-space process for any dynamic

analysis use case such as debugging or dynamic data flow

analysis. Furthermore, SafireFuzz executes any instruction as-

is without ensuring semantic equivalence on the host CPU.

Such an implementation threatens the semantic correctness of

executed code, and we deem this system consequently not

suitable for the analysis of firmware that contains any of the

instructions described in Section III.

Para-rehosting [46] relies on source code availability and

compiles embedded firmware source code together with man-

ually implemented peripheral handlers into a user space binary.

However, firmware source code for COTS IoT devices is

typically not made publicly available by the manufacturer.

SURGEON in contrast works on firmware binaries and hence

inherently supports more targets.

Other dynamic analysis approaches for embedded firmware

are commonly built on top of ISA emulators such as

QEMU [11] and Unicorn [57] and mainly differ in their ap-

proach to handling peripheral accesses. Hardware-in-the-loop

solutions [15], [17], [30], [41], [42], [45], [50], [69], [72] em-

ulate the target firmware’s ISA and forward peripheral access

via debug interfaces to the actual MCU. This approach suffers

from communication overheads with the MCU through debug

probes and is limited in scalability due to acquisition and

configuration requirements of additional hardware. SURGEON

emulates peripherals in software and scales by instantiating

additional lightweight Linux user space processes.

Symbolically [13], [32], [59], [60], [64], [74] or heuristi-

cally [23], [31], [49] modeling peripheral behavior based on

MMIO accesses enable fully automated firmware re-hosting.

However, both approaches risk over-approximating peripheral

capabilities as previously discussed by Fasano et al. [22].

Further, these solutions require costly upfront analysis of pe-

ripheral behavior before starting the intended dynamic analysis

task. SURGEON in its current implementation requires a one-

time developer effort for implementing peripheral handlers at

the HAL level but provides higher accuracy thanks to domain-

expert knowledge during implementation.

Finally, other re-hosting approaches model peripherals in

software at the kernel level, communicating with user space

software through a generic POSIX API [14], [18], [38], [44],

[73]. These systems target Linux-based firmware and leverage

both kernel and user space and are hence not compatible

with SURGEON’s current focus on bare metal MCU firmware.

Such Linux-based firmware is not suitable for re-hosting via

transplantation because transplantation leverages the host’s

MMU for efficiently replicating the target’s physical address

space in a host process’s virtual address space. Linux-based

firmware leveraging an MMU itself requires another layer of

indirection for virtual address translation in software, which

is outside of the scope of this paper.

VIII. CONCLUSION

SURGEON is the first general-purpose re-hosting system

for targets such as MCU firmware running the targets at

native speed. We introduce transplantation as a novel concept

for re-hosting, providing a fast alternative to emulation-based

approaches while at the same time simplifying the software

stack for arbitrary dynamic analysis use cases. Transplanta-

tion leverages compatibilities of low-power target and high-

performance host ISAs, such as Arm Cortex-M and Cortex-A,

respectively, and addresses any remaining incompatibilities

in software. Our SURGEON prototype employs and expands

upon High-level Modeling (HLM) for peripheral modeling. We

generically re-host MCU firmware, both for single-execution

use cases such as debugging as well as high-performance use

cases requiring rapid successive executions of the firmware

such as fuzzing. EmbedFuzz as a fuzzing-oriented extension

of SURGEON outperforms state-of-the-art fuzzers in terms of

performance by a factor of up to eight times the fuzzing

throughput. In our design and implementation, we stress the

importance of semantically correct execution of target in-

structions which SURGEON achieves through transplantation.

Consequently, SURGEON is a fast, flexible, and precise re-

hosting system for arbitrary dynamic analysis use cases.
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