Argus: All your (PHP) Injection-sinks are belong to us.

Rasoul Jahanshahi
Boston University
rasoulj@bu.edu

Abstract

Injection-based vulnerabilities in web applications such
as cross-site scripting (XSS), insecure deserialization, and
command injection have proliferated in recent years, exposing
both clients and web applications to security breaches. Current
studies in this area focus on detecting injection vulnerabilities
in applications. Crucially, existing systems rely on manually
curated lists of functions, so-called sinks, to detect such
vulnerabilities. However, current studies are oblivious to the
internal mechanics of the underlying programming language.
In such a case, existing systems rely on an incomplete set of
sinks, which results in disregarding security vulnerabilities.
Despite numerous studies on injection vulnerabilities, there
has been no study that comprehensively identifies the set of
functions that an attacker can exploit for injection attacks.

This paper addresses the drawbacks of relying on manually
curated lists of sinks to identify such vulnerabilities. We devise
a novel generic approach to automatically identify the set of
sinks that can lead to injection-style security vulnerabilities.
To demonstrate the generality, we focused on three types of in-
jection vulnerabilities: XSS, command injection, and insecure
deserialization. We implemented a prototype of our approach
in a tool called Argus to identify the set of PHP functions that
deserialize user-input, execute operating system (OS) com-
mands, or write user-input to the output buffer. We evaluated
our prototype on the three most popular major versions of the
PHP interpreter. Argus detected 284 deserialization functions
that allow adversaries to perform deserialization attacks, an
order of magnitude more than the most exhaustive manually
curated list used in related work. Furthermore, we detected 22
functions that can lead to XSS attacks, which is twice the num-
ber of functions used in prior work. To demonstrate that Argus
produces security-relevant findings, we integrated its results
with three existing analysis systems — Psalm and RIPS, two
static taint analyses, and FUGIO, an exploit generation tool.
The modified tools detected 13 previously unknown deserial-
ization and XSS vulnerabilities in WordPress and its plugins,
of which 11 have been assigned CVE IDs and designated as
high-severity vulnerabilities.

Manuel Egele
Boston University
megele @bu.edu

1 Introduction

Inrecent years, web applications have become an inseparable
part of users’ daily online lives, providing the means for com-
munication, news, media, and financial services. The plethora
of sensitive information held by the databases behind such web
applications becomes a lucrative target for cyber-criminals.
In 2017, Symantec reported that one in every 13 web requests
was malicious [4]. Furthermore, the ever-increasing number of
discovered vulnerabilities exposes web applications as well as
their users to security breaches [10]. Without loss of generality,
we focused on PHP as it powers 77% of all live websites [28].

Injection vulnerabilities (e.g., command injection, insecure
deserialization, or XSS) are the most common category of
application vulnerabilities in web applications [10]. To exploit
such injection vulnerabilities attackers provide malicious
inputs to the web application, compromising both the backend
systems as well as the clients. The root cause of an injection vul-
nerability is passing insufficiently sanitized attacker-controlled
user-input to sensitive APIs. Depending on the injection vul-
nerability type, the sensitive APIs differ. For instance, PHP’s
echo is recognized as a sensitive API for XSS attacks, while
unserialize plays the same role for insecure deserialization.
Despite these differences, at their core, injection vulnerabilities
are data-flow problems where untrusted user-input is accepted
at information sources (e.g., HTTP request parameters),
propagated throughout the web application’s execution, and
finally reaching sensitive sinks (e.g., echo or unserialize).

Existing systems proposed different approaches to detect
or exploit injection vulnerabilities using static, dynamic, or
hybrid analysis of web applications. Several approaches rely
on static taint analysis to track unsanitized user-input to a
predefined list of sensitive APIs in order to detect different
types of injection vulnerabilities [1, 7-9, 21, 32, 42, 42].
Similar to static approaches, prior work also relied on dynamic
and hybrid techniques to identify injection vulnerabilities or
generate exploits for already detected ones [25,27].

Despite the effectiveness of prior work in detecting security
vulnerabilities, all existing systems possess one common flaw:

They rely on a manually curated or predefined list of sensitive
APIs to identify injection vulnerabilities. The accuracy of man-
ually curated lists for sensitive APIs depend on the documenta-
tion for the programming language and the expertise of the ana-
lyst who identifies the sensitive APIs. As is often the case with
human involvement, the listings are not comprehensive which
leads to undetected injection vulnerabilities (i.e., false nega-
tives) in web applications. This intuition is not merely hypothet-
ical; our results show, incomplete lists of sensitive sink APIs
are commonplace and further lead to false negative results.

Consider, as an example, the vulnerability type of insecure
deserialization. Insecure deserialization occurs when an
application deserializes untrusted data, such as user-input or
generally attacker-controlled data. This vulnerability allows
an adversary to manipulate the control-flow of a vulnerable ap-
plication by injecting a malicious serialized object. As applica-
tions commonly interact with objects after deserializing them,
an attacker-controlled object can lead to attacks, including
arbitrary code execution. Existing studies of insecure deserial-
ization and PHP object injection focus on detection [7, 24, 37]
and automated exploit generation [9, 27]. RIPS [7] and
Psalm [37] detect PHP object injection (POI) vulnerabilities
by statically tracking user-inputs to the unserialize API
function in PHP applications. Dahse et al. [9] presented the first
automated approach to generating POI exploits by tracking
the flow of user-input to invocations of the unserialize APL
While Dahse et al.’s approach identifies POI vulnerabilities,
FUGIO [27] utilizes a fuzzing approach to generate a concrete
exploit object for an already detected POI vulnerability.

Deserialization in PHP is the consequence of invoking PHP
API functions that perform deserialization either explicitly
or implicitly. For consistency, we use the term PHP API to
refer to the set of functions provided by the PHP runtime
that can be directly invoked by web applications. Explicit
deserialization APIs are described throughout the PHP
manual [12]. One can identify the functions of this group by
studying or analyzing the PHP documentation to curate a list
of explicit deserialization functions — this approach was taken
by RIPS [7], Psalm [37], FUGIO [27], and Dahse et al. [9].
However, implicit deserialization functions are not described
in the PHP manual, and are therefore more challenging to
identify. First described by Thomas for PHP in [36], implicit
deserialization happens if the PHP interpreter transparently
deserializes data consumed by certain APIs. For example,
Thomas found that the stream wrapper for the PHP archive
(PHAR) format implicitly deserializes metadata, which led
to the identification of multiple PHAR-based deserialization
vulnerabilities in popular web applications and libraries such
as WordPress and TCPDF (details in Section 2.4). Crucially,
implicit deserialization functions are equally as potent for
adversaries as explicit ones. However, implicit deserialization
APIs are not documented publicly, and the number and identity
of these functions depend on the implementation of the PHP
interpreter (i.e., the set of deserialization APIs varies with

the PHP version). This implies that in order to identify the set
of implicit deserialization functions featured by a given PHP
version, one must analyze the implementation of the interpreter
itself. The same claim also applies to other injection-type
vulnerabilities, such as XSS and command injection.

To improve on the error-prone manual efforts on identi-
fying injection APIs, this paper provides a systematic and
principled approach to inferring a comprehensive set of APIs
that can lead to XSS, command injection, or insecure deseri-
alization. To this end, we design, implement, and evaluate an
automated approach called Argus to identify the list of APIs
that deserialize user-input, execute OS commands, or write to
the output buffer. For consistency, we use the term , deseri-
alization, output and exec API to refer to the set of PHP APIs
that perform deserialization, write to the output buffer, or exe-
cute OS commands, which can lead to an insecure deserializa-
tion, XSS, and command injection vulnerability, respectively.
We demonstrate that by incorporating Argus’ resulting sink
list into existing systems, those systems produce significantly
higher-quality results (i.e., more detected vulnerabilities and
exploits). Our key observation is that there is precisely one
function inside the PHP interpreter that deserializes data —
php_var_unserialize. Crucially, php_var_unserialize
is at the core for all explicit and implicit deserialization APIs.
Consequently, we argue that the correct way to identify the
set of deserialization APIs is to subject the PHP interpreter to
program analysis. In cases of XSS vulnerabilities, a PHP API
such as echo prints its argument to the output buffer, which
contains the HTML response sent back to the user’s browser.
Our observation shows that there is one function inside the
PHP interpreter responsible for writing to the output buffer
called php_output_write. Similarly, the set of exec APIs will
eventually invoke the execve system call in order to execute
the OS command. For brevity, we use the term vulnerability
indicator functions (VIF) throughout the text to refer to the
functions php_var_unserialize, php_output_write, and
the functions inside the PHP interpreter that directly invoke
the execve system call or use its front-ends in C (e.g., exec
family).

Argus detects the set of deserialization, exec, and output
APIs through an automated hybrid static-dynamic program
analysis of the PHP interpreter. Specifically, Argus first gen-
erates the call-graph for a given PHP interpreter. Subsequently,
Argus performs a reachability analysis to identify the set of
PHP API functions whose invocation can trigger either dese-
rialization or output API in the interpreter (i.e., reach the VIF).
Using this approach, Argus detected more than 280 functions
(in PHP 7.2) that deserialize their arguments and 22 functions
whose invocation writes their arguments to the output buffer.

We demonstrate the security impact of Argus by integrating
its findings as the set of injection-sinks into three PHP analysis
tools; Psalm [37] and RIPS [1] (static taint analyses to identify
POI, command injection, and XSS vulnerabilities) and FU-
GIO [27] (a POI exploit generation system). When evaluating

Psalm with the extended list of injection-sinks on over 1,900
popular PHP applications and plugins, our evaluation yielded
10 times more potential for insecure deserialization compared
to Psalm’s default implementation (which exclusively reported
false positives). Furthermore, we integrated Argus’ list of dese-
rialization sinks into FUGIO and discovered proof-of-concept
exploits for 12 previously unknown deserialization vulnerabil-
ities on the same data set. In summary, this paper makes the
following contributions:

* We draw attention to the importance of accurately and
comprehensively detecting APIs in PHP that lead to
injection vulnerabilities such as insecure deserialization,
XSS, and command injeciton.

We design and implement a novel automated analysis
and prototype (called Argus) to identify the set of
deserialization, exec, and output APIs applicable to any
version of the PHP interpreter.

L]

Evaluating Argus on the three most popular PHP versions
identifies over 280 deserialization APIs, at least an order
of magnitude more than the most extensive manually
curated list used by prior work (i.e., 26 sinks in FUGIO).
An adversary can leverage a call to any of these APIs to
exploit a PHP application. Argus also detects 22 output
APIs, which is twice the number of APIs that were used
in the past to detect XSS vulnerabilities. In addition,
Argus detects 9 exec APIs which can be used to detect
command injection vulnerabilities by Psalm and RIPS.

In order to demonstrate the real-world impact of
these findings, we incorporated our results into three
existing analysis tools, Psalm, RIPS, and FUGIO. Our
refinements of the sink-lists used by these tools led to the
identification of 13 previously unknown POI and XSS
vulnerabilities. Of course, we responsibly disclosed all
our findings to the corresponding developers. As such,
11 of the detected POI vulnerabilities have been assigned
CVE IDs (CVSS scores between 7.2 and 8.8), and seven
vulnerabilities have already been patched.

2 Background and Motivation

In this section, we describe XSS, command injection, and
deserialization in PHP and how these vulnerabilities arise (e.g.,
implicitly from file operations). This background allows us
to shed light on our results and put the evaluation presented in
Section 4 in context. Finally, we elaborate on our assumptions
about XSS and insecure deserialization attacks on PHP
applications and our motivation to design an automated
approach to identify a comprehensive set of deserialization,
exec, and output functions in an interpreter.

2.1 PHP interpreter and Cross-site Scripting

A cross-site scripting (XSS) vulnerability is an injection
vulnerability that allows an attacker to compromise the
interactions of the victim with a vulnerable application [21].
This vulnerability allows the attacker to execute malicious
scripts in the victim’s web browser by including malicious
code in a legitimate web application.

In the life-cycle of a request sent to a web-server such as
Apache or Nginx, the PHP interpreter plays an important role
in providing the output shown to the user. When a web-server
receives a request for a PHP script, the web-server invokes the
PHP interpreter to determine the output. The PHP interpreter
executes the PHP script, which can include interaction with
a database, the file system, or the underlying operating system.
After the execution of the script, the PHP interpreter provides
the output in the form of HTML to the web-server. The output
is then sent back to the user as the response.

Thus, the PHP interpreter determines the response that
the web-server sends back to users. In order for a PHP script
to assemble the response, the PHP interpreter provides a set
of built-in functions (i.e., PHP API), which PHP scripts can
use. One of the APIs that is used to modify the response of a
web-server is echo. This function accepts one or more strings,
which are then sent verbatim to the output buffer. However,
the set of APIs that can modify the response of a web-server
is not limited to only one API. According to prior work such
as RIPS [7], there are 12 functions in the PHP interpreter that
can modify the output buffer.

In a cross-site scripting attack, the attacker is able to modify
the response that is sent back to the user’s browser. If an
attacker has control over the arguments passed to an API
such as echo, an XSS attack is a certainty. This capability of
the echo APl is provided by an internal function of the PHP
interpreter, which allows APIs to write into the output buffer
(i.e., the HTML response). An analysis of the source-code of
the PHP interpreter reveals that all write opration to the output
buffer goes through a function called php_output_write. As
aresult, all invocations of the php_output_write by the PHP
APIs can modify the response sent back to the web-server,
which is the superset of all the APIs identified in prior work.

2.2 PHP interpreter and command injection

Command injection in PHP applications occurs when a ma-
licious actor gains the ability to execute arbitrary commands
(e.g., through a shell) [3]. Command injection attacks result
in a range of consequences, such as compromised data confi-
dentiality and integrity or unauthorized access to the system
hosting the application. An attacker can leverage the exploited
application to execute a malicious payload and gain access to
additional resources.

Asmentionedin Section 2.1, in the life-cycle of arequest, the
PHP interpreter executes a PHP script. During this execution,

the PHP interpreter communicates with the resources through
the operating system to determine the output.

The operating system provides mediated access to resources
through the system call API. Applications such as the PHP
interpreter can access OS resources by invoking system call
APIs. A PHP interpreter executes OS commands by invoking
the execve system call orits wrappers in the C libraries, such as
the family of execv functions [22]. Consequently, a command
injection attack only occurs when the PHP application uses
a PHP API that invokes the execve system call and passes
insufficiently sanitized user-input. As a result, a PHP APl is
part of the Exec API if its underlying implementation invokes
the execve system call.

2.3 PHP Object Injection

PHP object injection (POI) is a security vulnerability that
leverages insecure deserialization in PHP applications. To
exploit such a vulnerability, an adversary must control the
properties of an insecurely deserialized object. By exploiting
a POI vulnerability, an attacker can potentially hijack the
program’s execution by controlling the properties used in
automatic calls to the __wakeup and __destruct methods.

The snippet in Listing | presents a PHP script that contains
a deserialization vulnerability. We observe that at Line 9,
user-input is passed to the unserialize function without
sanitization. In order to exploit this vulnerability, the attacker
needs to satisfy two conditions.

* There needs to be at least one class in the application
which implements the class methods __ wakeup or
__destruct to carry out the attack.

* All of the classes used in the exploit need to be defined (or
the application must support automatic loading of classes)
when the unserialize function is called on Line 9.

Exploiting a POI vulnerability is inherently a code-reuse
attack, where an attacker recombines the already existing code
to achieve a malicious outcome by introducing a malicious
object. To exploit a POI vulnerability the attacker needs to
identify the user-defined functions and methods (i.e., gadgets)
in the PHP app that can be used to achieve his goals [27]. As an
example, we describe how an attacker can choose the gadgets

to link and perform a remote code execution attack in Listing 1.

Looking at Listing 1, the script defines two classes prior to the
deserialization: Example and Exec. The destructor of class
Example calls a function named getValue from the variable
obj. If an attacker sets the variable obj to an object of class
Exec, then the destructor will call the class method getValue
at Line 7. Looking at the implementation of class Exec, the
method getValue invokes the function system on the _cmd
property. Hence, the attacker can run an arbitrary command
be setting the value of the _cmd. The code snippet in Listing 3
contains the exploit for the vulnerability in Listing 1.

class Example {
protected $obj;
function __destruct () {
return $this->obj->getValue();} }
class Exec {
private $_cmd;
function getValue () {
system (Sthis->_cmd); }
Suser_data = unserialize ($
file_exists ($_POST['file']

)

Listing 1: A deserialization vulnerability leading to
arbitrary code execution. An adversary can execute any
command by crafting a PHP object which modifies the
value of _cmd property.

SO0 NN R W

—_

}
0ST['data'l);

2.4 Stream Wrappers

In this section, we explain the concept of PHP stream wrappers
and how an attacker can abuse stream wrappers to cause a
PHP object injection. A stream in the PHP interpreter is a
generalization of a data source which implements a set of
common file operation functions such as fopen and copy.
PHP Stream wrappers allow developers to use consistently-
named file-related functions such as fopen for different
types of file resources. The types of resources are identified
analogous to URL schemes and can vary from classic local
files (e.g., /etc/passwd), network reachable resources (e.g.,
https://example.com/text), to PHAR archive types
(e.g.,phar://usr/share/app.phar). Importantly, once the
resource’s type is identified, the PHP interpreter, maps each
type to a corresponding stream wrapper which allows the
application developer to transparently perform (supported)
file operations on the resource (e.g., read, seek, etc.).

PHP Archives (phar) allow developers to package an
entire PHP application in a single file. To interact with phar
files, PHP provides a built-in stream wrapper. Each phar file
contains the following sections:

e Stub: A PHP file that instructs the interpreter how to
load the application.

* Manifest: Includes the number of files in the phar, as
well as the file permissions, type of compression, and
serialized metadata. The metadata includes a description
for the existing files in the archive in a serialized format.

* Contents: The content of files in the phar archive.
* Signature: An optional signature for the file’s integrity.

Exploiting phar wrappers. Thomas in [36] demonstrated
how an attacker can exploit an invocation of a file operation
API and perform a PHP object injection. He showed that
the PHP interpreter deserializes the metadata upon any file
operation on a phar file. Considering the aforementioned
information, an adversary can achieve arbitrary code execution
by leading the PHP interpreter to perform file operations (e.g.,
file_exists)ona phar file with a malicious metadata field.

The second part of Listing 3 shows how an attacker can
generate a phar file with malicious metadata (set on Line 12).
Looking at the snippet in Listing |, we observe that the PHP
script checks the existence of a file by passing an unsanitized
user-input at line 10. In order to exploit the vulnerability at
Line 10 of Listing 1, the attacker can set the $POST variable
filetophar://path-to-malicious-phar-file.

2.5 Observations, Motivation and Assump-
tions

Our work is motivated by the error-prone human efforts to
aggregate lists of deserialization, exec, and output APIs in
PHP. Consider the case of CVE-2022-2437, an insecure de-
serialization vulnerability that Argus identified in the popular
Feed Them Social WordPress plugin (detailed discussion in
Section 4.3.1). This vulnerability exists because of the im-
plicit (i.e., undocumented) deserialization performed by the
get_meta_tags PHP API function. As this API is missing
from all sink lists of prior systems, the vulnerability went unno-
ticed. Argus automatically identified this function (along with
over 280 others) as a deserialization API, and by incorporating
this knowledge in existing POI analysis systems these systems
readily detected and created POC exploits for this vulnerability.

As mentioned in the introduction, Argus’ analysis relies on
a key observation regarding the invocation of deserialization,
exec, or output APIs inside the PHP interpreter. In the case
of deserialization, the PHP interpeter uses its own template
and formatting for serialized data. The PHP interpeter uses
a customized yacc [20] parser to first parse the serialized
data and then perform the deserialization. Our analysis of
the PHP source-code shows that there is only one function
inside the PHP interpeter, which uses the yacc parser. Hence,
there is only one function responsible for deserialization:
php_var_unserialize. In the case of output APIs, we
analyzed the source-code of the PHP interpreter. Specifically,
we analyzed the underlying implementation of output APIs
such as echo and print_r and identified the set of invoked
functions inside the interpreter. For a more comprehensive
study of the output APIs, we executed the official PHP testsuite
and analyzed all the function traces for each output API that
leads to writing to the output buffer (i.e., using the write
system call). Similar to our observation for deserialization,
the PHP interpreter uses the output module and specifically
the function php_output_write inside this module to write
to the output buffer (i.e., the HTML response).

Many implicit deserialization and output APIs are vulner-
able if an attacker can invoke them on a malicious file (e.g.,
PHAR archives). For such attacks to succeed, the malicious
file must reside on the web application’s file system. Thus,
to demonstrate exploitability, we assume an attacker already
uploaded a malicious file to the underlying web-server. Note
that, while this assumption is realistic (see Section 5 for a
more detailed explanation), the assumption purely exists to

demonstrate exploitability and is orthogonal to Argus’ goal
of identifying deserialization and output APIs.

3 System Design

In this section, we discuss the salient characteristics of our ap-
proach — Argus —and how it identifies the set of deserialization,
exec, and output PHP APIs. Figure | illustrates the overall
process. First, Argus combines static and dynamic analysis
techniques to generate a call-graph of a PHP interpreter in
Step @ Subsequently, for Step @, Argus uses the call-graph
to perform a reachability analysis to determine the set of
API functions that invoke the VIFs. Furthermore, Step @
discusses the validation mechanism in Argus to confirm the
injection-sinks. Finally, we discuss how we incorporate Argus’
results into existing program analyses to detect and exploit
previously unknown vulnerabilities.

3.1 Call-graph Generation

In Step @, Argus generates a call-graph for the PHP
interpreter. To achieve this, Argus performs a static analysis
on the PHP interpreter to generate the initial call-graph, which
it then refines using dynamic execution traces.

3.1.1 Static Analysis of the PHP Interpreter

To construct the call-graph, Argus analyzes the PHP interpreter.
The PHP interpreter’s core consists of approximately 120K
lines of C code. Additionally, the interpreter relies on exten-
sions to deliver features such as image processing, database
communication, and communication protocols such as LDAP
and IMAP. These extensions are free to augment the PHP API,
including adding additional injection-sinks, and frequently
do so. For example, in a standard PHP deployment, the GD
graphics library, the PDO database communication extension,
and the FTP extension are provided as separate libraries and
all add additional injection-sinks to the runtime. To complicate
matters further, extensions can be written in different
programming languages (e.g., [6,41]), provide their own build
environments, and are usually simply loaded by the interpreter
as shared dynamic libraries. However, injection vulnerabilities
can arise from any API provided by the runtime, including
APIs provided by the core interpreter and those provided by
extensions. As such, it is imperative to analyze the interpreter’s
core along with the code that comprises the extensions. At first
glance, the open source nature of the PHP interpreter would
suggest a source-based analysis to infer the call-graph. How-
ever, the variety of frameworks, languages, and build systems
used for extensions would require an analysis catering to all
these characteristics. Thus, instead of deriving call-graph in-
formation from various interconnected source-based analyses,
Argus instead performs its call-graph analysis on the compiled

PHP Tests List of identified VIFs
A A

User Input

Sourc:

e y ~ (. ~

(1) (2 "
I:IIZIIZI I:IIZIIZI Reachability

000 00oo0

AN -
[P [Excoution Traces |

uftrace

T
Interpreter

X
Sinks—)E:p

Taint Analysis

Q PHP APIs

:435 Exploit Objects
A

<

Generate @

Validation Template

Hooks'
PHP

Exploit Generation

A
»
Set of APIs that
invoke the V/F's

—

Argus

Existing Program Analyses

Figure 1: Argus performs a hybrid static-dynamic analysis on the PHP interpreter to generate a call-graph. Next, Argus identifies
a comprehensive set of output, exec, and deserialization APIs through reachability analysis and validation tests. The output of
Argus can be used to improve the existing program analysis tools to identify POI and XSS vulnerabilities.

binaries of the interpreter and its extensions. To facilitate this
analysis, we build the runtime and include debug symbols.
The call-graph analysis (in Figure 1) first disassembles
the PHP interpreter and all of its shared libraries using the
objdump tool. Argus builds the call-graph by adding a node
for each binary symbol in the disassembled PHP interpreter.
Subsequently, Argus performs a linear scan over the interpreter
and library disassembly. For every call instruction, E draws
an edge in the call-graph from the caller (i.e., the currently ana-
lyzed symbol) to the callee (i.e., the target of the call). This anal-
ysis works well for direct calls and calls to symbols provided by
extensions. That is, direct calls will invoke symbols that have
corresponding names in the debug information. Argus handles
calls to imported symbols by launching the PHP interpreter
with the LD_DEBUG=binding environment variable set to in-
fer symbol binding information from extension libraries. The
LD_DEBUG option allows Argus to resolve the external symbols
to the library and address where the symbols are implemented.
Unfortunately, indirect calls (e.g., those that are used to imple-
ment the concept of stream wrappers) elide this analysis.

3.1.2 Refining Call-graph using Dynamic Analysis

Argus uses dynamic analysis to handle indirect calls in the
PHP interpreter and refine the statically generated call-graph
created in the previous step. For instance, PHP’s fopen can
be used to access local or remote files over protocols such as
HTTP, HTTPS, or FTP. Depending on the argument passed to
fopen, the PHP interpreter decides which stream wrapper (see
Section 2.4) should handle the underlying resource. Internally,
PHP stream wrappers rely on function pointers to dispatch
operations (e.g., fread ()) to functions that handle the proto-
col corresponding to the opened resource. The static analysis
in Argus cannot handle such cases implemented in the PHP
interpreter and runtime. To address this issue, Argus improves
the statically generated call-graph by tracing the execution of

the PHP interpreter while executing its high-quality test-suite
(i.e., the PHP test-suite achieves 70% function coverage on
average for our dataset of three different PHP interpreters).
Argus then uses this dynamic information and adds any edges
not already detected by the static analysis to the call-graph.

To achieve this, we compile the PHP interpreter with the -pg
flag. This flag instruments each function with two additional
hook functions at the entry and exit of each function, which al-
low Argus to perform dynamic tracing [35]. The first function
call occurs just after each function entry, which invokes the
function ___cyg_profile_func_enter. The next function
call invokes the function __cyg_profile_func_exit before
exiting each function. After the recompilation of the PHP
interpeter, Argus uses the uftrace tool [23] (in Figure 1)
to implement both hook functions and record dynamic traces.
Finally, Argus executes the PHP unit tests while uftrace
records the execution traces for each test-case.

After recording the execution traces, Argus iterates over the
sequence of invoked functions by each test-case and examines
the statically generated call-graph for the missing edges. For
every invoked function during the dynamic analysis, Argus
draws an edge between the pair of functions in the execution
trace if there is no edge representing the recorded invocation.

At the end of this step, Argus has assembled a static
call-graph of the PHP interpreter and refined it using
dynamically-collected traces of PHP unit tests.

3.2 Reachability Analysis

In Step @, Argus performs a reachability analysis on the
generated call-graph, which requires the identification of
sources and sinks on the call-graph. In this analysis, Argus
identifies the set of PHP APIs that reach the VIF functions.
‘We define VIFs as the minimal set of PHP internal functions,
that user-input must pass through to trigger a vulnerability. As

stated in Section |, the PHP interpreter uses a single internal
function that is responsible for all deserialization operations,
called php_var_unserialize (VIF). The PHP interpreter
uses a custom parser to parse serialized strings, which are then
converted to PHP objects. Our analysis of this custom parser
across PHP’s source-code yielded a single deserialization
function inside the PHP interpreter. In the case of output
APIs that write to an output buffer, we observed a similar
pattern during our analysis of PHP’s code, where the function
php_output_write is exclusively responsible for outputting
the buffer. As mentioned in Section 2.2, any PHP API that
executes an OS command requires the execve system call. As
aresult, in order to identify the functions inside the PHP inter-
preter (VIFs) for command injection, Argus needs to identify
the functions that call the execve system call. To achieve this,
we leveraged Saphire [3], to identify functions that invoke the
execve system call. We marked these functions as the VIFs
for the exec APIs. These PHP internal functions are php_exec,
zif_shell_exec, zif_popen, phpdbg_do_sh, php_mail,
zif_pentl_exec, _php_imap_mail, and zif_proc_open.
With the VIF identified, Argus labels all API functions in the
call-graph as sources.

Unfortunately, the symbols for API functions are indis-
tinguishable from those of internal functions, and text-based
techniques that parse documentation are rarely, if ever,
accurate. However, a running PHP process must be aware
of any and all APIs exposed to the web applications running
on top of it. Thus, to identify the set of APIs, Argus uses a
PHP extension that, once loaded into the PHP interpreter,
iterates over all available APIs. Specifically, the extension
firstinvokes PHP’s get_defined_functions API to obtain
the list of all API functions. Unfortunately, the results of
get_defined_functions cannot be directly mapped to the
call-graph. The reason is that the name of an API function
available to a web application is commonly different from the
name of the symbol that implements the actual functionality.
For example, the session_decode PHP APl is implemented
by a function called zif_session_decode. Unfortunately,
the zif prefix is not a consistent pattern. As the nodes in
the call-graph correspond to symbol names rather than API
names, the API names have to be translated. To this end, the
extension leverages an interpreter-internal data structure (i.e.,
executor_globals.function_table), which maps API
names to the names of the functions that implement the APIs’
functionalities. Finally, the extension relays this information
to Argus, which labels the symbols that map to API functions
in the call-graph accordingly.

Once all APIs are labeled as sources, Argus traverses
the call-graph for each source node and follows any call
edges captured in the graph. Argus identifies an API as a
deserialization, exec, or output API if this traversal includes
the graph node corresponding to its VIF function.

3.3 Validation

The reachability analysis presented above might inappro-
priately label an API as an injection-sink if the underlying
implementation in the runtime performs input sanitization or
filtering. Thus, Step @ filters APIs and only passes those that
propagate their input to VIF unmodified. To this end, Argus
automatically generates PHP snippets to test each identified
API for this characteristic. More specifically, these snippets
contain a class definition (i.e., test) that, if deserialized (i.e.,
its __wakeup method is invoked), prints the content of one of
its properties (i.e., msg) as a success message. Subsequently,
the template calls the API in question with a serialized test
object that has msg set to “SUCCESS”. Thus, if the execution
of the PHP snippet prints the success message, Argus validates
that the API in question passes the input argument unmodified
to VIF, and hence the API is for sure a deserialization API. For
each API, the validation step iterates over various patterns of
passing inputs including explicit (e.g., serialized data) and im-
plicit (e.g., Phar file). When one input leads to deserialization
which invokes our test function and prints out the "SUCCESS”
message, Argus marks the API as a deserialization API. The
psuedo-code in Listing 4 (Appendix B) shows the process of
validating the reachable APIs identified.

As our evaluation in Section 4 will show, Argus confirmed
284 deserialization APIs in the PHP interpreter, which
warranted an automated validation step. However, the number
of confirmed output APIs in the PHP interpreter is an order
of magnitude less (i.e., 22), which prompted us to manually
validate whether the invocation of the API with user-input can
cause an XSS attack. To this end, we created a Docker container
with a running Nginx web-server for each PHP interpreter
version. For each output API, we created a PHP template that
invokes the API and passes a constant user-input containing a
Javascript snippet (i.e., <script>alert (1) </script>). We
visited the generated PHP template with a browser, and if the
browser displays a dialog, Argus marks the tested API as an
output APIL. In case of the exec APIs, we manually validated
the set of PHP APIs that execute commands in the PHP
interpreter. For each exec API, we created a PHP script that
invokes the API and passes a constant user-input containing an
OS command (i.e., 1s —1h which lists the directory content).
The PHP interpreter under test executes each of the generated
PHP scripts, and if the PHP script prints out the directory
information, Argus marks the PHP API as an exec APL

3.4 Extend Security Analysis Tools

Argus’ results comprise a comprehensive list of injection-sinks.
This is in contrast with the exclusively manually-crafted lists of
injection-sink used by all existing XSS and POI detection and
automatic exploit generation systems. Thus, to demonstrate the
value of Argus’ principled approach, we extend three existing

program analysis tools, Psalm [37], RIPS [7], and FUGIO [27]
as examples of downstream analysis that benefit from our work.

3.4.1 Psalm and RIPS Extension

Psalm and RIPS are two static analysis tools featuring code
refactoring and taint analysis [37]. For the taint analysis,
Psalm and RIPS attempt to find unwanted flows between
user-controlled inputs (e.g., $_GET variables) and a set of sink
functions (e.g., system). The set of sink functions in Psalm
and RIPS differs depending on the type of vulnerability that
the user is trying to detect. For instance, to identify insecure
deserialization, they exclusively consider unserialize as a
sink for the core PHP interpreter.

As shown in previous reports [36] and in our evaluation,
relying on incomplete lists of sinks results in false negatives
(i.e., missed detections). To extend the static analysis tools, we
modify the list of taint sinks to include all deserialization, exec,
and output APIs identified by Argus.

3.4.2 FUGIO Extension

FUGIO is an automatic exploit generation tool which uses a
combination of static and dynamic analysis to generate a proof
of concept exploit for previously known POI vulnerabilities.
In the first step, FUGIO submits requests to a target web
application where request parameters (e.g., GET, POST,
and COOKIE values) contain serialized data. During the
processing of these requests, FUGIO hooks the invocation
of deserialization APIs and verifies if the passed arguments
correspond to the parameters supplied in the request. To
this end, FUGIO hooks a subset of 27 PHP deserialization
APIs —the explicit unserialize API along with 26 implicit
APIs first mentioned by Thomas [36]. If FUGIO detects that
parameters are indeed forwarded to deserialization APIs,
its second step will attempt to morph the parameter into a
complete POP chain, forming a POC exploit. While FUGIO’s
second step (i.e, the exploit generation itself), is independent
of our work, the first step (i.e., recognizing the invocation of
vulnerable deserialization APIs) is directly affected by the
(in-)completeness of the list of deserialization APIs.

To extend FUGIO, we integrated the set of deserialization
APIs identified by Argus such that FUGIO hooks all these
APIs in its first analysis step. The extended FUGIO intercepts
a comprehensive set of PHP APIs which allows it to identify
and exploit previously unknown POI vulnerabilities (see
Section 4.3.2 for details).

In summary, Argus generates a call-graph for the PHP
interpreter by leveraging hybrid static-dynamic analysis. Fur-
thermore, Argus performs a reachability analysis to identify
a comprehensive set of deserialization, exec, and output APIs
in the PHP interpreter, and optionally validates APIs that pass
their inputs unchecked to the underlying VIF deserialization,
exec, and output functions. We augmented three existing

detection and exploit generation systems as examples that
demonstrate the security impact of Argus’ results.

Our implementation of the call-graph analysis for the PHP
interpreter consists of approximately 700 LoC of Python and
C code. In addition, we implemented our extensions to Psalm
and FUGIO with less than 600 LoC of PHP.

4 Evaluation

In this section, we evaluate Argus along two orthogonal dimen-
sions. First, we focus on identifying deserialization, exec, and
output APIs in the three most popular major versions of the
PHP interpreter. The reason for evaluating different interpreter
versions is that the number and names of deserialization, exec,
and output APIs are implementation and version dependent,
calling for an automated solution such as Argus. In the second
thrust of the evaluation, we assess how Argus’ analysis results
improve the accuracy of three example PHP security analysis
systems — Psalm, RIPS, and FUGIO. To cover these two dimen-
sions, our evaluation answers the following research questions:
RQ1: In terms of call-graph generation, how precise is the
call-graph generated by Argus compared to existing call-graph
generation tools such as Joern (Section 4.2.1)?

RQ2: On the interpreter’s call-graph, how many PHP APIs
reach the VIF functions (Section 4.2.2), and how many of
the reachable APIs pass their arguments to VIF unmodified
(Section 4.2.3)?

RQ3: How does the number and identity of deserialization,
exec, and output APIs change across PHP versions and what
are the reasons for the observed changes (Section 4.2.4)?
RQ4: How do Argus’ results improve the current state-of-the-
art PHP security analysis that target injection vulnerabilities?
Does Argus’ comprehensive list of injection-sinks lead
to the identification of previously unknown POI and XSS
vulnerabilities (Section 4.3)?

4.1 Evaluation Dataset

Our evaluation dataset for Argus is divided into two categories
corresponding to the two evaluation dimensions. For our
experiments on the PHP interpreter, we evaluated Argus on the
three most popular major versions (i.e., versions 5, 7, and 8)
of the PHP interpreter. As of June 2023, PHP engines of these
versions power 99.8% of all live PHP websites, according
to W3Tech data [28]. Furthermore, PHP seven is used by
65.2% of all live websites using PHP, which makes it by far
the most popular PHP engine [28]. Our second dataset is
used to evaluate the benefit of Argus’ results to existing POI,
command injection, and XSS detection systems as well as
exploit generation systems. As these systems operate on the
code of web applications, rather than the PHP interpreter,
we aggregated a dataset corresponding to that purpose. We
collected the most popular PHP applications and plugins from
a variety of sources. On the one hand, we downloaded the 60

most popular PHP applications based on the reported popular-
ity provided by W3Tech [28]. On the other hand, we recognize
that large web applications frequently feature a plugin model
that allows administrators to customize their sites. As such,
we also collected the most downloaded plugins for the popular
WordPress, Drupal, and Typo3 web applications from their
respective repositories. Overall, we collected 1,977 PHP
artifacts (i.e., web applications and plugins). Table 3 provides
a detailed breakdown in the first two columns.

4.2 Analysis of the PHP Interpreter

As the PHP language and ecosystem evolves, the interpreter
must provide support and functionality accordingly. Unsur-
prisingly, this evolution also affects the number and identity
of the injection-sink functions provided by different versions
of the PHP interpreter. To assess these changes, we evaluate
Argus on three different versions of the PHP interpreter
(versions 5.6, 7.2, 8.0) as detailed in Table 2.

PHP interpreter | Argus Joern Argus-Joern Joern- Argus
PHP 5.6 56,504 31,065 26,024 585
PHP 7.2 68,410 39,560 30,620 1770
PHP 8.0 47,653 33,555 16,636 2538

Table 1: Argus outperforms Joern in terms of detected edges
for analyzing the PHP interpreter. The second and third
columns show the number of detected edges by each tool. The
last two columns report the comparison between the number
of detected edges (i.e., subtraction of matching edges).

4.2.1 Argusvs. Joern

Argus uses the call-graph of the PHP interpreter in order
to identify injection-sink functions, rendering call-graph
generation a crucial step for Argus. For our first evaluation, we
investigate the generated call-graphs by Argus and compare
the results with Joern, an open-source code analysis tool [19].
During this evaluation, we analyze the PHP interpreter and
generate the call-graph using both Argus and Joern. We then
compare the generated call-graphs by both tools based on the
number of detected edges.

We compared the generated call-graphs in two dimensions:
1) a quantitative comparison of the call-graphs for the number
of missing edges, and 2) a qualitative evaluation to investigate
the effect of missing edges on identifying injection-sink
functions. Our evaluation of the call-graphs generated by
Argus and Joern is listed in Table 1. This comparison shows
that the call-graph generated by Joern misses 24,426 edges that
are included in the call-graphs generated by Argus, on average.
There are also cases where Argus misses edges that Joern can
detect. However, the number of missing edges by Argusis 15
times less than the number of edges missed by Joern.

For the second part of this evaluation, we investigated the
missing edges in the call-graphs of both Argus and Joern.
Compared to Argus which analyzes the binary, Joern is a

source-code analysis tool. Hence, the compile-time aspects are
an important source for the differences between the generated
call-graphs by Argus and Joern. In the case of Argus, the
missing edges are related to cases of preprocessor directives
and compiler optimizations (i.e., these missing edges do not
exit in the binary and cannot be exercised). For example, the
preprocessor decides to keep or remove blocks of code based
on directive conditions (e.g., #1fdef); hence, the compiled
version of the same source-code can lead to a different
binary artifact depending on the condition. As a result, Argus
analyzed a version of the PHP interpreter where some function
calls were removed due to preprocessor directives, compared
to Joern. Furthermore, the analysis of the missing edges by
Argus shows that the invoked functions are related to memory
management in C, such as free and malloc. Our analysis
shows that the missing edges do not affect the ability of
Argus to detect injection-sink functions since the memory
management functions in this case are the leaves in the
call-graph and do not affect the reachability analysis.

In the case of Joern, the missing edges are mostly related
to function pointers in the PHP interpreter. As mentioned in
Sections 2.4 and 3.1.2, the PHP interpreter extensively uses
function pointers in order to implement its functionality. Jo-
ern’s call-graph analysis misses the set of indirect calls inside
the PHP interpreter, which includes function pointers related
to stream wrappers for different file types. Consequently,
Joern is not able to detect indirect calls to the PHAR module
from any file operation APIs such as fopen, and using such a
call-graph would lead to missing all file operation APIs, which
lead to insecure deserialization.

4.2.2 Reachable APIs

Next, we look into the reachability analysis of Argus and the
number of PHP APISs that invoke the VIF in the analyzed PHP
interpreters. The first set of sub-columns in Table 2 labeled as
Detected for both injection vulnerabilities shows the number of
APIs that Argus identified as reaching VIF for the three differ-
ent PHP versions. As the table shows, the number of deserializa-
tion APIs for versions 5 and 7 is similar, and two orders of mag-
nitude larger than for version 8. We discuss the difference in the
number of reachable deserialization APIs in Section 4.2.4. Fur-
thermore, the number of output and exec APIs for the analyzed
PHP versions is almost constant across all three versions.

In our evaluation of Argus’ call-graph generation, we
explored the contribution of both of our dynamic and static
analysis. This analysis demonstrates the advantages of
using both static and dynamic analysis while generating the
call-graph. To demonstrate the effectiveness, we looked into
the number of injection-sinks that Argus can detect by only
using the statically generated call-graph. To achieve this, we
performed a reachability analysis on the statically generated
call-graph of the PHP interpreter before augmenting the
call-graph with dynamic information (Step A-2). The numbers

Version Deserialization API XSS-leading API Exec API

Detected Validated Detected Validated Detected Validated
PHP5.6 | 419(61) 281(67%) 54(51) 22 (41%) 10 (10) 9(90%)
PHP7.2 | 425(63) 284 (67%) 52(48) 22 (42% 10 (10) 9(90%)
PHP 8.0 | 20(13) 13 (65%) 46 (39) 22 (48%) 10(10) 9(90%)

Table 2: Our analysis of PHP interpreter shows PHP in-
terpreters prior to version 8.0, contained more than 300
PHP functions that deserialize their arguments, execute
OS command, or write to output buffer. The numbers in
parentheses of Detected sub-columns show the number of
APIs detected using only the statically generated call-graph.

in parentheses in the sub-column Detected for Table 2 show
the number of reachable APIs while using only the statically
generated call-graph. As an example, we can see that the
difference in the number of detected APIs for PHP 5.6 when
only using the statically generated call-graph is six times less
than when incorporating the dynamic analysis information.
Similar to Joern, the missing edges in Argus’ static only
call-graph relate to function pointers of stream handlers in
the PHP interpeter. These results emphasize the benefit of
including dynamic analysis to refine the static call-graph.

While using dynamic analysis improves the result of Argus,
using only dynamic analysis to generate a call-graph has
its own drawbacks. One such drawback is the coverage of
dynamic analysis. If the dynamic analysis does not cover all
possible functionality of each PHP API, it leads to missing
the identification of an injection PHP API. In our evaluation of
Argus, we quantified this aspect of dynamic analysis on PHP
5.6 and 8.0. During this evaluation, Argus only used dynamic
traces of running PHP high quality unit tests (i.e., 70% line
coverage) to generate the call-graph for the PHP interpreter.
Next, Argus performs its reachability analysis to identify the
injection APIs. Our experiments on PHP 5.6 showed that
using only dynamic analysis leads to missing 11 and 5 APIs,
which leads to insecure deserialization and XSS. A similar
observation holds true for PHP 8.0, which misses 4 insecure
deserialization and 7 XSS APIs. As a result, Argus uses a
hybrid static-dynamic call-graph generation, since there are
drawbacks in both static and dynamic call-graph generations
as shown in the aforementioned analyses.

4.2.3 Validated APIs

The second set of sub-columns labeled Validated in Table 2
shows the number of APIs that Argus successfully validated
to directly pass their input argument to VIF. That is, if an
adversary can control input to any of these APIs, the existence
of an injection vulnerability (i.e., insecure deserialization
or XSS) is a certainty. Validated APIs are a strict subset
of reachable APIs. The table shows that Argus was able
to consistently validate around 66%, 43%, and 83% of the
deserialization, output, and exec APIs, respectively. A closer
look at the reachable APIs that failed the validation test
shows that either the user is not in control of the input to

the VIF or the input is sanitized. For instance, Argus detects
the function highlight_string reaches the output VIF
function (i.e., php_output_write), however, the input is
sanitized by replacing "<" with "&1t;". As a result, the
attacker’s input does not cause an XSS attack and the function
highlight_string fails the validation test. In case of dese-
rialization, the SplTempFileObject::__construct opens
a temporary file object that the user cannot control. As a result,
an attacker cannot trick the API to open a malicious PHAR
file and validation failed. Table 5 (in the Appendix) contains
the complete list of deserialization APIs for PHP versions
analyzed. Note that the set of APIs in version 7.2 is a strict
superset of the APIs in version 5.6. The table also highlights
the APIs that still show deserialization capabilities in version
8.0 by typesetting their names in bold. As shown in Table 2, all
three versions of the PHP interpreter have 22 validated output
APIs, which are exactly the same among all the versions.

For the set of Exec APIs, Argus correctly detected one PHP
API that reaches the exec VIFs. However, the user-input does
notinfluence the executed command (i.e., a false positive). This
PHP API, named error_log, provides the option of sending
the error logs through email using the mail functionality in
the PHP interpreter. The mail functionality in PHP in turn
allows users to execute OS commands by passing an extra ar-
gument. However, user-input does not influence the arguments
passed to the mail function in the error_log APL Further-
more, compared to RIPS, Argus’ set of exec APIs does not
include three PHP APIs. The first API, expect_popen, is not
packaged with PHP source-code. The expect extension is
installed through PECL package management, which is not in-
stalled by default on Debian. In addition, installing the PHP
interpreter using Debian’s apt package tool, does not install
PECL package management. As a result, Argus cannot detect a
PHP API that is not installed and compiled with the PHP in-
terpreter. The other two APIs are w32api_invoke_function
and w32api_register_function, which are conditionally
compiled and solely available in the PHP interpreter for the
Windows OS. Since our evaluation environment relied on the
Linux OS, these two APIs were not included in the compiled
version of the PHP interpreter. While Argus did not detect any
exec APIs beyond RIPS, Argus identified two exec APIs that
are not listed in Psalm; mail and mb_send_mail.

4.2.4 Reasons for Differences

Comparing the results for PHP 5.6 with those from 7.2 reveals
three additional deserialization APIs (all of which Argus
validated). The reason for this increase is the addition of
support for the BMP image format in PHP 7.2°s GD standard
graphics library. Specifically, the new createimagefrombmp
and imagebmp functions serve as implicit (i.e., undocumented)
deserialization APIs. The last implicit deserialization API
missing from PHP 5.6 is the ftp_append API which is sup-
ported in PHP versions 7.2 and above. All deserialization APIs

Prevalence of Validated APIs
1000000

100000
10000

1000

=
=

e

Output APIs Exec
APIs

%

File
Hash

File m
0ooP
)]ail

The number of invocations (log-scale)
Phar

Process s—

Database
Image
Session

Database
Closure
Iterator
Error
General

(Tommunica(ion
Deserialization

Deserialization APIs

®mWeb Apps Drupal Plugins ®Typo3 Plugins ®WordPress Plugins

Figure 2: The prevalence of validated APIs in real-world
applications.

available in version 5.6 also exist in version 7.2. In contrast
to the small change of deserialization APIs between versions
5.6 and 7.2, the drop from 284 to merely 13 deserialization
APIs in version 8.0 is significant. As discussed in Section 2.4,
prior to version 8.0, any file operation on a phar archive
results in the implicit deserialization of the archive’s metadata.
Fortunately, the PHP developers recognized the negative
security consequences this behavior entails in 2020 and voted
unanimously to change the default behavior of the phar stream
wrapper [11]. Thus, since PHP 8.0 metadata in phar archives
is only deserialized upon an explicit call to the getMetadata
function in the Phar module, and not implicitly on any file op-
eration on the archive. While this change certainly benefits the
security of web applications, PHP 8.x is still not widely used
by PHP-powered websites (less than 5% at the time of writ-
ing) [28]. The challenging process of migration prevents most
web applications from easily adopting PHP 8 (see details in
Section 5). Therefore, most websites still rely on older versions
of the PHP interpreter that include 284 deserialization APIs.

4.2.5 Qualitative Analysis of Identified APIs

In this experiment, we assess the prevalence of deserialization
and output APIs in our dataset of applications. It is crucial to
investigate how many of the identified APIs are actively used
in PHP applications since the validated APIs are at the core
of injection vulnerabilities. For this evaluation, we grouped
different categories of validated APIs listed in Table 5 for
different sets of injection vulnerabilities. Figure 2 shows
the number of invocation for each API category. As shown
in Figure 2, in the case of deserialization APIs, we observe
more usage for categories such as file operations and image
processing APIs. Similarly, in the case of output APIs, the
applications in our dataset often use more error handling APIs
as well as general output APIs such as echo compared to
categories such as Database, Closure, and Iterator APIs.
Furthermore, we enumerate the set of distinct applications
that invoke at least one of the newly identified vulnerable APIs.

For our dataset of 1,977 applications, 1,355 (i.e., 69%) and
1,218 (i.e., 62%) of applications invoke at least one newly
identified deserialization and output APIs, respectively.

Finally, we looked into the pre-condition required for an
attacker to exploit each of the newly detected vulnerable APIs.
The first pre-condition is that the attacker needs to upload a
malicious file to the server hosting the vulnerable application
prior to passing malicious arguments to the vulnerable APIs.
The second pre-condition is that there should not be a static
prefix for file operation APIs, so that an attacker can specify
PHAR as the stream wrapper. In the case of deserialization
APIs, there are 273 APIs (i.e., 96%) that require a file upload
and lack of static prefix pre-conditions prior to exploitation.
Furthermore, five APIs (i.e., 23%) from the set of output APIs
require the pre-condition of file upload prior to XSS exploita-
tion. The APIs that have pre-conditions are indicated in Table 5
in the Appendix. In our evaluation, we enumerated the number
of newly identified sinks that PHP applications in our dataset
invoke. In the case of deserialization APIs, the most common
used API in our dataset was the function copy which requires
the pre-conditions mentioned above. However, the most
common output API used in our dataset was class_alias
API, which does not require any pre-conditions. In case of
exec APIs, we did not perform any qualitative analysis, since
Argus did not detect any new APIs compared to RIPS.

4.3 Extending Prior Security Analysis Tools

Argus’ value arises from the comprehensive list of output,
exec, and deserialization APIs it identifies within a PHP
interpreter. To demonstrate the security relevance of this
information, we extend two PHP security analysis systems
— Psalm and RIPS, both static data flow analysis systems,
and FUGIO, a dynamic automatic exploit generation system
targeting POI vulnerabilities.

4.3.1 Psalm and RIPS Extension

Psalm and RIPS are two static analysis tools for PHP
applications, providing taint analysis and code refactoring
capabilities [37]. Taint analysis operates based on a set of
configuration files that specify the taint sources and sinks in
the PHP application. For our evaluation, we downloaded the
latest available versions of both Psalm' and RIPS” at the time
of writing from their GitHub repositories.

Psalm’s taint analysis identifies exactly one PHP API func-
tion as a taint sink for insecure deserialization: unserialize.
Furthermore, Psalm includes six functions as taint sinks
for XSS vulnerabilities. Argus identified and confirmed
283 and 16 additional sinks that are missing in Psalm
related to deserialization and XSS, respectively. To improve
Psalm’s taint analysis, we extended the set of taint sinks for

IPsalm 4.x-dev @832fc35d8da6e5bb60f059ebf5cb68 1bdec2dbas
2master@ccdd2a56dbc0077cbffd08d4aadb14af0809831d

Repo. Group #of Apps Deserialization XSS Command Inj.

P P+A | R R+A P P+A R R+A || P P+A | R R+A
Web Apps 60 35 354 | 58 511 3687 3693 | 538 544 |1 25 32 |14 14
Drupal plugins 521 0 0 40 47 1 1 8 8 0 0 0 0
Typo3 plugins 400 0 13 22 80 43 43 35 35 0 0 0 0
WordPress plugins 996 28 289 | 253 1386 || 1658 1667 | 3707 3747 4 4 4 4
Total 1977 ‘ 63 656 ‘ 373 825 H 5,389 5,404 ‘ 4,288 4,334 H 29 36 ‘ 18 18

Table 3: Extending static analysis tools such as Psalm (Labeled as P) and RIPS (Labeled as R) using Argus’ results (Labeled

as A) improved their detection rate.

both XSS and insecure deserialization to include the APIs
Argus identified for PHP 7.2. Subsequently, we performed
a comparative evaluation between upstream Psalm, and our
modified version incorporating the APIs identified by Argus
on the set of 1,977 PHP artifacts described in Section 4.1.

Our findings in Table 3 show a significant increase (i.e., over
10X) in the number of detected insecure deserialization vulner-
abilities by the extended version of Psalm. To compare the qual-
ity of the results produced by upstream Psalm and our extended
version, we manually analyzed all 656 insecure deserialization
reports. As Psalm is a static analysis, we expect the results to
contain false positives. Furthermore, as the extended version
features 284 times as many deserialization sinks, itis unsurpris-
ing that it reports 10 times as many potential vulnerabilities.
However, what we did not expect is that all 63 reports (i.e.,
100%) arising from upstream Psalm are false positives. False
positives can arise from web applications that sanitize inputs
or, more prevalent in our POI vulnerability analysis, arise from
the fact that the application sets a fixed prefix for file-paths. A
“fixed” file-path-prefix, even if it is derived from an API such
as dirname essentially thwarts any attack that relies on the
phar module, as the attacker will no longer be able to specify
the phar: // prefix that triggers the stream wrapper. In order
to analyze Psalm’s results, we investigated the reason behind
the false positives in Psalm’s taint analysis. To achieve this,
we randomly chose 50 reported deserialization vulnerabilities
by Psalm, analyzed the report, and reviewed the source-code
of the application. Our investigation shows 49 cases of false
positives, where 31 false positives were reported due to over-
approximation in Psalm’s taint analysis as well as not detecting
the sanitization process. Furthermore, 18 false positives were
reported due to the fact that the pre-condition was not met. In
all these cases, tainted variables had a hard-coded prefix passed
to vulnerable APIs, meaning that an attacker cannot trigger
the phar module by specifying the phar:// prefix. Psalm’s
variable-level taint analysis only taints entire variables and
hence cannot differentiate variables with a hard-coded prefix.
Finally, one reported case was a true positive.

We confirmed that our extension to Psalm’s taint analysis
detected 12 previously unknown POI vulnerabilities (i.e., 2%
true positives) in our dataset (see Table 4). We categorized
the POI vulnerabilities into three groups: (i) unauthenticated,
(ii) authenticated, and (iii) CSRF to Phar. The first two types
are authenticated and unauthenticated Phar deserialization,

which refers to the required privilege in order to exploit
the POI vulnerabilities. In the case of an unauthenticated
deserialization vulnerability, the attacker can reach and
exploit the vulnerable functionality in the application without
providing any administrator credentials for the vulnerable
application. The last vulnerability type is CSRF to Phar
deserialization, where a malicious actor tricks an administrator
of a WordPress app into performing an action such as clicking
on a link leading to Phar deserialization.

In addition, we confirmed that the extended Psalm detected
one previously unknown XSS vulnerability in the core of the
WordPress web application. As we will show in Section 4.3.2,
FUGIO generated POC exploits for all 12 POI reports
supporting the notion that these are actual vulnerabilities. As a
case study, we will describe three of the vulnerabilities that we
discovered among WordPress and its plugins and how Argus’
comprehensive results were necessary to detect them.

In the case of exec APIs, we only extended the list of exec
sinks for Psalm static analysis, as Argus only detected more
exec APIs compared to Psalm. According to Table 3, we ob-
served that Psalm detected more potential command injec-
tions compared to RIPS. In addition, Psalm+Argus detected
seven more command injections compared to the unmodified
Psalm. Our investigation of the newly identified vulnerabilities
showed that the cause of the vulnerabilities was passing user-
input to the PHP function mail, which was not detected by the
unmodified Psalm. Furthermore, since the applications were
using OOP, RIPS was unable to detect the tainted data-flow and
did not detect the potential command injection vulnerabilities.
However, our analysis shows that the newly identified vulner-
abilities were false positive as the applications were passing
user-input to the mail function after sufficient sanitization.

Case Study - Feed Them Social

The detected vulnerability in Feed Them Social is an
unauthenticated insecure deserialization which resides in the
functionality of the module’s Twitter feed. The Twitter feed in
this plugin retrieves and shows the content of tweets including
any referenced media on a WordPress page. Whenever a tweet
contains a URL, the plugin attempts to retrieve the URL’s
title, image, and description to display on the WordPress
page. To do this, the plugin uses the function get_meta_tags
with unsanitized user-input directly from the tweet to retrieve
the metadata of the specified URL. Listing 2 shows the
simplified version of this vulnerability in this plugin, where the

unsanitized user-input is passed to the implicit deserialization
APl get_meta_tags online 4.

In order to exploit this vulnerability, an attacker sets the
fts_url request parameter to the path of a phar file with
malicious metadata. When the plugin tries to read and parse the
metadata of the passed URL, it will automatically deserialize
the metadata of the malicious phar file. get_meta_tagsisan
implicit deserialization API identified by Argus and not taken
into consideration by prior work demonstrating the necessity
of Argus’ comprehensive analysis.

1 function fts_twitter_share_url_check () {

2 Stwitter_url=$_REQUEST['fts_url'];

3

4 Stags=get_meta_tags (Stwitter_url);}

Listing 2: The feed them social plugin passes unsanitized
user-input to the function get_meta_tags.

According to the history of the RIPS git repository, the latest
modification to its static analysis was nine years ago [7]. A
concern that is also raised by the authors of RIPS is that it does
not support new features added to the PHP interpreter, such
as object-oriented programming (i.e., OOP). Despite its age,
Table 3 shows that the extension of RIPS (i.e., RIPS+Argus)
leads to identifying more potential vulnerabilities. Further
investigation into RIPS’ analysis shows that it raises warnings
related to the use of OOP in 1,760 applications (i.e., 89% of
our dataset), which leads to false negatives. The reason behind
false negatives is that RIPS [7] is not able to track tainted data
(i.e., data from $_GET and $_POST parameters) to and from
objects instantiated from classes in the PHP applications. In
addition, due to the complex and large codebase for some
applications in our dataset, RIPS was not able to complete
the analysis for 135 applications (i.e., 7% of the dataset).
As explained, we identified several drawbacks to the RIPS
analysis that have implications for its vulnerability detection.
In order to demonstrate these implications, we analyzed the
results of RIPS+Argus to identify whether it was able to
identify the vulnerabilities discovered by Psalm+Argus. Our
analysis shows that RIPS+Argus only identified eight out of
the 13 vulnerabilities (i.e., 60%) listed in Table 4.

4.3.2 FUGIO Extension

FUGIO [27] is an automatic exploit generator for previously
identified deserialization vulnerabilities in PHP applications.
FUGIO’s exploit generation hooks a set of predefined deserial-
ization functions while sending serialized objects as request to
the web application under test. Our analysis of FUGIO shows
that FUGIO hooks into 26 file operation functions in the PHP
interpreter as well as the unserialize function to intercept
deserialization of user-input. Similar to Psalm, FUGIO
obtained the list of hooked functions through manual analysis
of PHP documentation and prior works such as Thomas [36].
For our evaluation, we downloaded FUGIO from its GitHub
repository at https://www.github.com/WSP-LAB/FUGIO.

One should note that FUGIO states that it is not a vulnera-
bility detection tool. Rather its core contribution is to generate
exploits for already known deserialization vulnerabilities [27],
such as those identified by Psalm. As a result, we evaluated
FUGIO on the 12 vulnerabilities that our extended version of
Psalm detected. To extend FUGIO, we modified its source code
to hook the comprehensive set of deserialization API functions
identified by Argus. The last two columns in Table 4 show
the results of extending FUGIO using Argus when generating
exploits for the discovered vulnerabilities by Psalm+Argus.

As a dynamic analysis system, FUGIO requires a runtime
environment. To this end, we created an experimental
environment for WordPress plugins consisting of Nginx, PHP
7.2, MySQL 8, and WordPress 5.4. FUGIO creates attacks by
stitching together so-called gadgets into a POP-chain. How-
ever, WordPress alone does not contain any gadgets that could
be used for remote code execution attacks. In practice, admin-
istrators customize their WordPress installations using plugins
and themes. Thus to ensure that FUGIO has gadgets to work
with, we installed the latest versions of the top ten most popular
plugins in WordPress in our experimental environment [39].
During our experiment, FUGIO without Argus’ results does
not hook into the image functions listed in Table 5. As a
result, FUGIO was unable to generate an exploit for two of the
discovered vulnerabilities in Table 4. However, the extended
FUGIO+Argus successfully generated exploits for all the dis-
covered vulnerabilities listed in Table 4. On this small sample,
this indicates the comprehensive set of sinks provided by Argus
leads to a 20% increase in the number of generated exploits.

WebApp__ Plugin Vuln. Type CVE Function
Xoops - Tmagecreatefrombmp
get_meta_tags

|

LSS S S S S S 1 E
=

EERERRE RN
-

B N N A NN RE

CVE-2022-2437
CVE-2022-2441 is_executable
CVE-2022-2434 file_exists
CVE-2022-2433 file_exists
CVE-2022-2438 file_exists
CVE-2022-2446 is_dir
CVE2022:2444 Jopert
CVE-2022:2439 Jile_exisis
CVE-2022-2440 unlink
CVE 20222442 Jile_exisis
CVE-2022-2436 file_exists

B Teadfile

Feed them Social

19| tof = —

String locator
Ajax load more
Broken Tink checker

* “wpeditor
Visualizer
Easy digital download
Theme Editor
WPvivid Backup
Download manager

P ENENESENENENEN ENENEN RS RN

bl
|| 2] | o]]] |] | 19

| 3<| 3x| 3| 3<| 3| 3<| 3| 3| 3| 3| | | |
] 3¢| 3| 3| 3| 3| 3| 3| 3| 3| x| x| | x| =

Total

b
3|
I~

Table 4: We verified the reports of Psalm+Argus by discov-
ering 13 previously unkown POI and XSS vulnerabilities.
The vulnerability types 1, 2, and 3 refers to Unauthenticated
Phar deserialization, CSRF to Phar deserialization, and
Authenticated Phar deserialization, respectively.

Disclosure. We responsibly reported all the vulnerabilities
to their corresponding developer teams and notified the Word-
Press plugin review team of our findings. Seven teams already
patched their WordPress plugins, and WordFence assigned
CVE numbers to the vulnerabilities as shown in Table 4.

Artifact Availability: Argus is open-source and available
at https://github.com/BUseclab/Arqgus. We provide
the source-code of our tool along with the instructions for
reproducing the experiments. These artifacts were major
components of our evaluation and we believe that they can
be useful for future research in this space.

5 Discussion

In this section, we discuss the limitations, challenges, and
observations of Argus.

Completeness: Argus does not guarantee completeness in
its analysis of the PHP interpreter as well as the identified set
of deserialization, exec, and output APIs. Argus relies on the
call-graph of the PHP interpreter for its analysis, which uses a
hybrid static-dynamic analysis. As mentioned in Sections 2.4
and 3.1.2, the PHP interpreter extensively uses indirect calls,
such as function pointers, which challenges any static analysis,
including Argus. In order to minimize the drawbacks of
indirect calls in the generated call-graph by Argus, we use the
official unit tests of the PHP interpreter for its dynamic analy-
sis, features a 70% line coverage over the PHP interpreter. As a
result, Argus uses a hybrid static-dynamic approach to reduce
the drawbacks of each technique. However, Argus cannot
guarantee the completeness of its analysis due to the challenges
of analyzing a complex codebase such as the PHP interpreter.

Reachability: Argus relies on a reachability analysis on
the call-graph to identify the serialization, exec, and output
APIs in the PHP interpreter. The reachability analysis does not
reason about any sanitization or filtering the PHP interpreter
might perform. Hence, the reachability of an API to VIF does
not necessarily imply that an attacker can exploit the API.
However, we perform a validation step to verify the output of
the reachability analysis. While it seems more pertinent to per-
form a data-flow analysis than a reachability analysis, we argue
that Argus needs to reason about the PHP interpreter and its ex-
tensions thatitis linked against. Ignoring additional challenges
to practicality (e.g., extensions relying on non-C code), our
analysis needs to scale to millions of lines of code across PHP
(one million lines of C code alone). Needless to say, resolving
function pointers is still a prominent challenge for existing
data-flow analysis, including the state-of-the-art SVF tool [33],
which leads to imprecise control-flow graphs. As a result, we
opted for a reachability analysis and subsequent validation
in Argus to identify injection-sinks in the PHP interpreter.

Validation: During the validation step, Argus determines
whether user-input gets passed to the VIF function in-
side the PHP interpeter (i.e., php_var_unserialize and
php_output_write) unmodified. The presence of sanitiza-
tion logic for a specific API does not necessarily mean the API
cannot be exploited by attackers. Saner [2] demonstrates that
sanitization logic might be implemented incorrectly. In this
paper, Argus only reports the set of APIs that pass arguments
unmodified to a VIF, which means that Argus’ results are a
lower bound of vulnerable APIs. Analyzing the correctness of
sanitization logic is an orthogonal research challenge, which
we consider outside the scope of this paper.

VIF identification: The foundation of Argus’ analysis is
based on our key observation that an underlying function is
responsible for performing the action of either deserializing
user-input or writing user-input to output buffers (i.e., the

HTML response). In the case of XSS and insecure deserializa-
tion, there is one VIF for Argus to start the reachability analysis
from. However, other types of injection vulnerabilities, might
require the identification of multiple VIFs. In the case of
command injection, there are eight VIFs which we could
directly obtain from Saphire. Similarly, supporting SQL
injection would require the identification of multiple VIFs.
The reason is that the PHP interpreter supports a variety of
database engines (e.g., SQLite, MySQL, Oracle, etc.) through
individual extensions which can communicate SQL statements
to the respective back-end. Owing to this diversity, the SQL
injection VIFs are located in different database extensions and
require individual identification. However, once a VIF for a
given database extension is identified, Argus can immediately
identify the set of (SQL injection) vulnerable API functions
for the corresponding database engine.

The efforts and time required by analysts to identify the set
of VIFs for each vulnerability vary, depending on the type of
vulnerability. This process starts by identifying the cause of the
vulnerability using analysis tools (e.g., command injection and
XSS) or manual inspection of the code. The manual inspection
contains reasoning about the cause of the vulnerability (e.g., the
serialization format) and detecting the parser function inside
the PHP interpreter that uses the serialization format. In the
case of XSS, we use analysis tools to understand how the PHP
interpreter prints user-input to the output buffer. To this end, we
inspected the sequence of function calls in the PHP interpreter
that involve printing to the output buffer. On average, it took
less than 10 hours to analyze the PHP interpreter to identify the
process of deserializing and printing user-input. For command
injection vulnerabilities, any API that can invoke the execve
system call is a potential exec API. Considering that, Argus
uses prior research, Saphire [3] to analyze and enumerate the
set of VIFs that invoke execve system call. For this analysis,
we spent less than four hours preparing Saphire’s environment
and running its analysis, as well as inspecting the source code
of PHP to identify the mechanism of command injection.

Precondition: Furthermore, our evaluation identified two
sets of injection-sink APIs for PHP: 1) APIs that operates
directly on the value of their arguments and 2) APIs that oper-
ate on malicious files. As mentioned in Section 2.4, the phar
stream wrapper in the PHP interpreter only operates on local
phar files. As a result, to exploit any APIs in the latter category,
the attacker needs to upload the phar file prior to invoking the
insecure deserialization. Therefore, in order to confirm the
detected vulnerabilities, we made the assumption that the at-
tacker had already uploaded the malicious phar file to the web
application’s server. We argue that this assumption is realistic
since there are a plethora of approaches where an attacker can
upload malicious phar files, which include exploiting arbitrary
file upload vulnerabilities [16, 17]. Furthermore, web applica-
tions and their plugins provide upload functionality for many
purposes, such as uploading plugins, profile pictures, and PDF
files, which an attacker can exploit.

Finally, as our evaluation demonstrates, the PHP developers
noticed the security consequences of automatic deserialization
of phar files and fixed this issue in PHP 8.0 (released in
November 2020). However, the PHP usage statistics indicate
that, at the time of writing, only 10.75% of all websites that
rely on PHP actually operate on PHP 8.0 [28]. The reason for
this low adoption rate is probably that transitioning to PHP
8.0 is a non-trivial procedure for most PHP-powered websites.
The major changes in the PHP interpreter 8.0 compared to
previous versions lead to backward incompatiblilities [13]
which can potentially cause fatal errors in the web applications.
The challenge of (in-)compatibility is evidenced by the most
popular PHP application — WordPress. Although efforts
within the WordPress project to support PHP version 8.0
began on December 2020, WordPress still warns users that
even its latest stable version (released in May 2023) is not
fully compatible with version 8 yet [40]. While the PHP
interpreter has addressed the threat arising from the automatic
deserialization of phar files in version 8, history suggests
that web sites relying on older versions of PHP are likely to
remain publicly accessible on the Internet for the foreseeable
future. These will continue to include the over 280 vulnerable
deserialization APIs provided by their PHP runtimes.

6 Related Work

In this section, we review the related literature on detecting se-
curity vulnerabilities or defending against malicious behavior.
Deserialization in PHP Application: In light of new attack
scenarios introduced by Esser, new research has emerged on
detecting deserialization vulnerabilities and detecting such
attacks on PHP applications. RIPS [7] performs an intra-
procedural data flow analysis to detect injection vulnerabilities,
including POI. Dahse [9] proposed an automatic approach to
identify gadget chains to exploit POI vulnerabilities. Further-
more, FUGIO [27] introduced an automatic exploit generation
tool to create exploit objects for POI vulnerabilities. In an or-
thogonal and complementary direction, our work detects the
set of PHP API functions that lead to insecure deserialization,
command injection, or XSS. Crucially, prior works rely on an
exclusively manually curated list of sinks for taint analysis or
exploit generation tools. Unlike prior work, Argus performs an
automatic analysis to identify the set of PHP API functions that
lead to injection vulnerabilities such as insecure deserialization.
In our evaluation, we showed how our results directly improved
prior work in detecting previously unknown vulnerabilities.
Deserialization on Other Platforms: Deserialization
vulnerabilities threaten various platforms such as Java, Python,
and .NET. The research in this area focuses on detecting
such vulnerabilities or defending against deserialization
attacks. SerialDetector [30] leverages call-graph analysis
to identify injection vulnerabilities in .NET libraries. The
key difference between SerialDetector and Argus is that
we aim to detect functions at the PHP interpreter level,

whereas SerialDetector finds new object injection patterns
at the library level (i.e., as part of the web application rather
than the application framework). Tanaka presents attacking
patterns in Python’s Pickle library, which lead to denial of
service (DoS) attack [34]. Look-ahead object input stream
(LAOIS) is a defense mechanism against Java deserialization
vulnerabilities, allowing the type check of the serialized
stream before deserialization, as implemented in Apache’s
Common IO library [5] and Java Serialization Filtering [26].
Other Vulnerabilities: There are multiple studies on de-
tecting vulnerabilities in PHP applications. Several approaches
rely on taint analysis to track unsanitized data and detect injec-
tion vulnerabilities [1,7,8,21,32,38,42]. Dynamic analysis
and hybrid techniques also play an important role in detection
and defense systems [3, 14, 15, 18, 25, 29, 31]. Prior works
exclusively analyze the web application code and many rely
on hand-crafted list of sinks. Argus analyzes the underlying
PHP interpreter and generates these lists in a principal manner
which could improve existing systems, as demonstrated in
our evaluation. Compared to defense mechanisms, Argus
takes a more proactive approach in order to detect injection
vulnerabilities rather than defend against such POI attacks.

7 Conclusion

In this paper, we proposed Argus, an automated static-dynamic
analysis approach to identify the set of PHP API functions that
deserialize, execute, or output their arguments in a PHP appli-
cation. Argus statically analyzes the PHP interpreter and its
modules to generate a call-graph. Next, we refine the statically
generated call-graph by using the recorded dynamic trace of the
publicly available unit test of the PHP interpreter. Argus then it-
erates over the call-graph and identifies a comprehensive set of
PHP APIs that can invoke the internal deserialization, execute
OS command, or output functions. In our experiments on three
of the most popular versions of the PHP interpreter, we discov-
ered more than 300 functions that can deserialize user-input,
execute OS command, or write user-input to an output buffer,
expanding prior knowledge by an order of magnitude. We draw
attention toward the fact that prior works rely on a purely ad-
hoc curated list of functions for their static or dynamic analysis,
whereas Argus automatically generates a comprehensive list.
In addition, we demonstrate that Argus’ findings are highly
security relevant. Our findings show that, extending Psalm by
Argus’ results, we detected 13 previously unknown XSS and
deserialization vulnerabilities in PHP applications.

Acknowledgements

We thank our anonymous shepherd and the reviewers for their
helpful feedback. This work was supported by the National
Science Foundation (NSF) under grant CNS-2211576.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Michael Backes, Konrad Rieck, Malte Skoruppa, Ben
Stock, and Fabian Yamaguchi. Efficient and flexible
discovery of php application vulnerabilities. In IEEE
European symposium on Security and Privacy, 2017.

Davide Balzarotti, Marco Cova, Vika Felmetsger, Nenad
Jovanovic, Engin Kirda, Christopher Kruegel, and
Giovanni Vigna. Saner: Composing static and dynamic
analysis to validate sanitization in web applications. In
IEEE Symposium on Security and Privacy, 2008.

Alexander Bulekov, Rasoul Jahanshahi, and Manuel
Egele. Saphire: Sandboxing PHP applications with
tailored system call allowlists. In Proceedings of the
30th USENIX Security Symposium, 2021.

G. Cleary, M. Corpin, O. Cox, H. Lau, B. Nahorney,
D. O’Brien, B. O’Gorman, J. Power, S. Wallace, P. Wood,
and Wueest C. Internet security threat report. Technical
Report 23, Symantec Corporation, 2018.

Apache Commons. ValidatingObjectInputStream.
https://github.com/apache/commons-oi,2021.

copernica. A c++ library for developing PHP extension.
http://www.php-cpp.com/documentation/, 2022.

Johannes Dahse and Thorsten Holz. Simulation of built-
in php features for precise static code analysis. In Net-
work and Distributed Systems Security Symposium,2014.

Johannes Dahse and Thorsten Holz. Static detection of
second-order vulnerabilities in web applications. In Pro-
ceedings of the 23rd USENIX Security Symposium,2014.

Johannes Dahse, Nikolai Krein, and Thorsten Holz.
Code reuse attacks in php: Automated pop chain
generation. In Proceedings of the 21st ACM Conference
on Computer and Communications Security, 2014.

edgescan Corporation. 2022 vulnerability statistics
report. Technical Report 7, edgescan Corporation, 2022.

The PHP Group. PHP:rfc phar stop autoloading
metadata. https://wiki.php.net/rfc/phar_stop_
autoloading_metadata, 2020.

The PHP Group. @ PHP: PHP Manual. https:
//www.php.net /manual/en/index.php, 2022.

The PHP Group. PHP:The Backward Incompatible
Changes. https://www.php.net/manual/en/
migration80.incompatible.php, 2022.

W. Halfond, A. Orso, and P. Manolios. Wasp: Protecting
web applications using positive tainting and syntax-
aware evaluation. [EEE Transactions on Software
Engineering, 2008.

[15]

[16]

[17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

Byron Hawkins and Brian Demsky. Zenids: Intro-
spective intrusion detection for php applications. In
Proceedings of the 39th International Conference on
Software Engineering, 2017.

Jin Huang, Yu Li, Junjie Zhang, and Rui Dai. Uchecker:
Automatically detecting php-based unrestricted file
upload vulnerabilities. In 49th Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks, 2019.

Jin Huang, Junjie Zhang, Jialun Liu, Chuang Li, and
Rui Dai. Ufuzzer: Lightweight detection of php-based
unrestricted file upload vulnerabilities via static-fuzzing
co-analysis. In 24th International Symposium on
Research in Attacks, Intrusions and Defenses, 2021.

Rasoul Jahanshahi, Adam Doupé, and Manuel Egele.
You shall not pass: Mitigating sql injection attacks on
legacy web applications. In Proceedings of the 15th ACM
Asia Conference on Computer and Communications
Security, 2020.

Joern. The Bug Hunter’s Workbench.
//joern.io, 2023.

https:

Stephen C Johnson et al. Yacc: Yet another compiler-
compiler, volume 32. Bell Laboratories Murray Hill, NJ,
1975.

Nenad Jovanovic, Christopher Kruegel, and Engin Kirda.
Pixy: A static analysis tool for detecting web application
vulnerabilities. In IEEE Symposium on Security and
Privacy, 2006.

Michael Kerrisk. The Linux Programming Interface.
https://www.man7.org/linux/man-pages/man3/
exec.3.html, 2022.

Namhyung Kim. Function graph tracer for c/c++/rust.
https://github.com/namhyung/uftrace, 2022.

Nikolaos Koutroumpouchos, Georgios Lavdanis, Eleni
Veroni, Christoforos Ntantogian, and Christos Xenakis.
Objectmap: Detecting insecure object deserialization.
In Proceedings of the 23rd Pan-Hellenic Conference on
Informatics, 2019.

Anh Nguyen-Tuong, Salvatore Guarnieri, Doug Greene,
Jeff Shirley, and David Evans. Automatically Hardening
Web Applications Using Precise Tainting. In Security
and Privacy in the Age of Ubiquitous Computing, 2005.

OpenJDK. Jep 290: Filter incoming serialization data.
https://openjdk.org/jeps/290,2021.

Sunnyeo Park, Daejun Kim, Suman Jana, and Sooel Son.
FUGIO: Automatic exploit generation for PHP object

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

injection vulnerabilities. In Proceedings of the 31st
USENIX Security Symposium, 2022.

Q-Success. Usage Statistics and Market Share of PHP for
Websites. https://w3techs.com/technologies/
details/pl-php,2022.

Prateek Saxena, David Molnar, and Benjamin Livshits.
Scriptgard: Automatic context-sensitive sanitization
for large-scale legacy web applications. In Proceed-
ings of the 18th ACM Conference on Computer and
Communications Security, 2011.

Mikhail Shcherbakov and Musard Balliu. Serialdetector:
Principled and practical exploration of object injection
vulnerabilities for the web. In Network and Distributed
Systems Security Symposium, 2021.

Sooel Son, Kathryn S. McKinley, and Vitaly Shmatikov.
Diglossia: detecting code injection attacks with precision
and efficiency. In Proceedings of the 20th ACM Confer-
ence on Computer and Communications Security, 2013.

Sooel Son and Vitaly Shmatikov. Saferphp: Finding
semantic vulnerabilities in php applications. In
Proceedings of the ACM SIGPLAN 6th Workshop on
Programming Languages and Analysis for ecurity, 2011.

Yulei Sui and Jingling Xue. Svf: interprocedural static
value-flow analysis in llvm. In Proceedings of the 25th
international conference on compiler construction, 2016.

Kousei Tanaka and Taiichi Saito. Python deserialization
denial of services attacks and their mitigations. In
International Conference on Computational Science/In-
telligence & Applied Informatics,2018.

GCC team. Code Gen Options - using the GNU Compiler
Collection. https://gcc.gnu.org/onlinedocs/
gcc-4.4.7/gcc/Code-Gen-Options.html, 2022.

Sam Thomas. File Operation Induced Unserialziation via
the phar Stream Wrapper. In 21st Blackhat - USA, 2018.

Vimeo. Psalm - a static analysis tool for PHP.
https://psalm.dev, 2021.

Gary Wassermann and Zhendong Su. Sound and precise
analysis of web applications for injection vulnerabilities.
In Proceedings of the 28th ACM SIGPLAN Conference
on Programming Language Design and Implementation,
2007.

WordPress. Plugins Categorized as Popular. https://
wordpress.org/plugins/browse/popular/, 2022.

WordPress. Server Environment: = Make
WordPress Hosting. https://make.
wordpress.org/core/handbook/references/

[41] Zephir.

[42] Y. Zheng and X. Zhang. Path sensitive static analysis of
web applications for remote code execution vulnerability
detection. In 35th International Conference on Software

php-compatibility-and-wordpress-versions/,

2022.

https://docs.zephir-lang.comn/, 2022.

Engineering, 2013.

A PHP Object Injection

0NN AW =

—_—
W N = OO

class Exec {

private $_cmd = "ca secret"; }
class Example {
protected $obj;
function __construct ()
Sthis->obj = new Exec; } }
print urlencode (serialized(new Example));
S$phar = new Phar ('exploit.phar');

Sphar->startBuffering () ;
Sphar->setMetadata (new Example());
Sphar->stopBuffering();

Listing 3: Adversary can exploit file operations by
generating a malicious phar file.

B Validation Process

—_

[RN e e R e N

—_

12

13
14
15
16

n

Spre_code = "code

$payloads =
("phar"=>"path-to-phar-file","direct
"=>"gserialized_data",...);

n

snippet of > exploit";

$list_funcs = []

foreach($list_funcs as $func) {
if S$func {
Sref = new ReflectionFunction ($func);

foeach ($payloads as S$key => S$payload) {

$snippet

=y $ $
file_put_content

("tmp.php", $pre_code . $snippet) }
$cmd

= SPHP_BINARY."
shell_exec (Scmd) ;

tmp.php 2> /de

if (strpos(Sres, "SUC {
S$func. " 1 v

break } } }

Listing 4: Psuedo-code of the validation process in Argus

Building php extensions with zephir.

Deserialization API

Category

PHP API functions

Phar’

phar::__construct phar::unlinkArchive, phar::loadPhar, phar::setAlias, phar: :delete, phar::offsetSet, phar::setSignatureAlgorithm,
phar::isValidPharFilename, phar::buildFromlterator, phar::setDefaultStub, phar::mount, phar::getType, phar::covertToExecutable,
phar::offsetUnset, phar: :stopBuffering, phar:getATime, phar: :setStub, phar: :isLink, phar::addFromString, phar: :isFile, phar::addFile,
phar::compress, phar::extractTo, phar::hasChildren, phar::getlnode, phar:getFilelnfo, phar::decompressFiles, phar::mapPhar,
phar:isReadable, phar::addEmptyDir, phar::compressFiles, phar:getOwner, phar:getGroup, phar::offsetGet, phar::setMetadata,
phar:getPerms, phar::isExecutable, phar::loadPhar, phar::copy, phar::convertToData, phar::isWritable, phar: getSize, phar:getCTime,
phar:getMTime, phar:isDir, phar::getStub, Phar::delMetadata, PharFilelnfo::__construct, PharFilelnfo::chmod, PharFile-
Info::getContent, PharFilelnfo::getType, PharFilelnfo: :isReadable, PharFilelnfo: :isDir, PharFilelnfo: :isWritable, PharFilelnfo: :openFile,
PharFilelnfo::decompress, PharFilelnfo::compress, PharFilelnfo::getInode, PharFilelnfo::getCTime, PharFilelnfo::getMTime, PharFile-
Info::getSize, PharFilelnfo::isExecutable, PharFilelnfo::isLink, PharFilelnfo::isFile, PharFilelnfo::getATime, PharFilelnfo::getGroup,
PharFilelnfo::getPerms, PharFilelnfo::getOwner, PharFilelnfo::getFilelnfo, PharFilelnfo::setMetadata, PharFilelnfo::delMetadata,
PharData::unlinkArchive, PharData::loadPhar, phar::getMetadata, PharFilelnfo::getMetadata,

SPL

FileInfo::openFile", Filelnfo::getCTime', Filelnfo::getSize", Filelnfo::getATime', Filelnfo::getFilelnfo', Filelnfo::getGroup®,
Filelnfo::getType', Filelnfo::getPerms’, Filelnfo::getOwner', Filelnfo::isWritable®, Filelnfo::isDir', Filelnfo::getMTime", File-
Info::isReadable’, Filelnfo::getlnode®, FileInfo::isExecutable’, FileInfo::isFile®, Filelnfo::isLink®, SpiFileObject::__construct',
SplFileObject::getType, SplFileObject::isReadable’, SplFileObject::isDir", SplFileObject::openFile®, SplFileObject::getlnode’,
SplFileObject::isWritable', SplFileObject::getFilelnfo', SplFileObject::getCTime", SplFileObject::getPerms’, SplFileObject::getOwner'
SplFileObject::getGroup®, SplFileObject::getATime", SplFileObject::getGroup®, SplFileObject: :isExecutable’, SpiFileObject: :isFile'
Directorylterator::__construct!, Directorylterator::getType', Directorylterator::isReadable’, Directorylterator::isDir', Directo-
rylterator::openFile, Directorylterator::getlnode®, Directorylterator::isWritable', Directorylterator::getFilelnfo®, Directoryltera-
tor::getATime", Directorylterator::getCTime', Directorylterator::getPerms’, Directorylterator::getOwner, Directorylterator::getGroup",
Directorylterator::isLink”, Directorylterator::isFile’, Directorylterator: :isExecutable’, RecursiveDirectorylterator:: __construct’, Recur-
siveDirectorylterator::getType', RecursiveDirectorylterator: :isReadable’, RecursiveDirectorylterator::isDir", RecursiveDirectoryltera-
tor::openFile’, RecursiveDirectorylterator::getlnode’, RecursiveDirectorylterator: :isWritable', RecursiveDirectorylterator:: getFilelnfo' ,
RecursiveDirectorylterator::getCTime", RecursiveDirectorylterator::getPerms’, RecursiveDirectorylterator::getOwner', RecursiveDirec-
torylterator::getGroup®, RecursiveDirectorylterator::isLink”, RecursiveDirectorylterator::current’, RecursiveDirectorylterator: :isFile',
RecursiveDirectorylterator: :isExecutable’, RecursiveDirectorylterator: :hasChildren” | FileSystemlIterator:: __construct’, FileSystemltera-
tor::getType", FileSystemlterator::isReadable’, FileSystemlterator::isDir", FileSystemlIterator: :openFile®, FileSystemlIterator::getlnode ,
FileSystemlterator::isWritable®, FileSystemlterator::getFilelnfo', FileSystemlterator::getPerms', FileSystemlterator::getOwner",
FileSystemlIterator::getGroup®, FileSystemlterator::getATime", FileSystemlterator::current’, FileSystemlterator::getSize®, FileSystemlt-
erator::isLink", FileSystemIterator::getMTime"', FileSystemIterator::isExecutable"', FileSystemlterator: :isFile', SplQueue::unserialize,
SplStack::unserialize, SplDoublyLinkedList::unserialize, Arraylterator::unserialize, RecursiveArraylteratorunserialize, SplObject-
Storage::unserialize, ArrayObject:: __unserialize

DOM & XMLF

DOMDocument::loadHTMLFile, DOM::C14NFile, DOMDocument::load, DOMDocument::loadXML, DOMDocument:saveHTMLFile,
DOMDocument:relaxNGValidate, DOMDocument:validate, DOMDocument:save, xmlwrite_open_uri, xmlreader::open, SimpleXM-
LElement::__construct, simplexml_load_file, simplexml_load_string

File Operation’

get_meta_tags, is_dir, scandir, is_writable, is_file, opendir, file, move_uploaded_file, rmdir, filecowner, touch, gzfile, file_get_contents, mkdir,
finfo_file, fileatime, bzopen, fileperms proc_open, readgzfile, is_link, file_put_contents, finfo_buffer, gzopen, getdir, unlink, is_readable,
filegroup, finfo_open, filectime, filemtime, rename, fileinode, copy, filesize, mime_content_type, stat, filetype, fopen,readfile file_exists,
is_executable

Hash'

md5_file, hash_hmac_file, shal_file, hash_file

DataBase’

PDO::pgsqlCopyFromFile, PDO:pgsqlCopyToFile, pg_trace

Image
Processing’

imageloadfont, exifimagetype, exif _read_data, read_exif_data, exif _thumbnail, getimagesize, imagecreatefromjpeg, imagecreatefrompng,
imagecreatefromgd?2 ,imagecreatefromgif, imagecreatefromwebp, imagecreatefromgd, imagecreatefromxbm, imagecreatefrombmp, image-
createfromwbmp, imagecreatefromavif, imagejpeg, imagepng, imagegif, imagegd, imagegd2, imageavif, imagebmp, imagewbmp,imagexbm,
imagewebp

Session Function

session_decode, session_start

Communication fip_nb_put', fip_nb_get', fip_get', fip_append’, fip_put’, msg_recieve
Deserialization unserialize

Output API
Database pg_loreadall, pg_lo_read_all, odbc_result_all
File Operation’ Jfpassthru, readfile, readgzfile, gzpassthru, SplFileObject: :fpassthru
OOP class_alias
Closures Closure::bind, Closure::bindTo
Iterators Cachinglterator::offsetGet, RecursiveCachinglterator:: offsetGet
Error Handling trigger_error, user_error, die, exit
General echo, print, print_r, vprintf

Exec API

Mail mail, mb_send_mail
Process system, shell_exec, exec, proc_open, popen, pcntl_exec, passthru

Table 5: The categories of exec, output and deserialization API. The functions or category of functions specified by * require
the precondition of uploading a malicious file prior to exploitation. The functions specified in bold are the set of vulnerable
deserialization APIs in PHP 8.

	Introduction
	Background and Motivation
	PHP interpreter and Cross-site Scripting
	PHP interpreter and command injection
	PHP Object Injection
	Stream Wrappers
	Observations, Motivation and Assumptions

	System Design
	Call-graph Generation
	Static Analysis of the PHP Interpreter
	Refining Call-graph using Dynamic Analysis

	Reachability Analysis
	Validation
	Extend Security Analysis Tools
	Psalm and RIPS Extension
	FUGIO Extension

	Evaluation
	Evaluation Dataset
	Analysis of the PHP Interpreter
	Argus vs. Joern
	Reachable APIs
	Validated APIs
	Reasons for Differences
	Qualitative Analysis of Identified APIs

	Extending Prior Security Analysis Tools
	Psalm and RIPS Extension
	FUGIO Extension

	Discussion
	Related Work
	Conclusion
	PHP Object Injection
	Validation Process

