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Abstract

Injection-based vulnerabilities in web applications such

as cross-site scripting (XSS), insecure deserialization, and

command injection have proliferated in recent years, exposing

both clients and web applications to security breaches. Current

studies in this area focus on detecting injection vulnerabilities

in applications. Crucially, existing systems rely on manually

curated lists of functions, so-called sinks, to detect such

vulnerabilities. However, current studies are oblivious to the

internal mechanics of the underlying programming language.

In such a case, existing systems rely on an incomplete set of

sinks, which results in disregarding security vulnerabilities.

Despite numerous studies on injection vulnerabilities, there

has been no study that comprehensively identifies the set of

functions that an attacker can exploit for injection attacks.

This paper addresses the drawbacks of relying on manually

curated lists of sinks to identify such vulnerabilities. We devise

a novel generic approach to automatically identify the set of

sinks that can lead to injection-style security vulnerabilities.

To demonstrate the generality, we focused on three types of in-

jection vulnerabilities: XSS, command injection, and insecure

deserialization. We implemented a prototype of our approach

in a tool called Argus to identify the set of PHP functions that

deserialize user-input, execute operating system (OS) com-

mands, or write user-input to the output buffer. We evaluated

our prototype on the three most popular major versions of the

PHP interpreter. Argus detected 284 deserialization functions

that allow adversaries to perform deserialization attacks, an

order of magnitude more than the most exhaustive manually

curated list used in related work. Furthermore, we detected 22

functions that can lead to XSS attacks, which is twice the num-

ber of functions used in prior work. To demonstrate that Argus

produces security-relevant findings, we integrated its results

with three existing analysis systems – Psalm and RIPS, two

static taint analyses, and FUGIO, an exploit generation tool.

The modified tools detected 13 previously unknown deserial-

ization and XSS vulnerabilities in WordPress and its plugins,

of which 11 have been assigned CVE IDs and designated as

high-severity vulnerabilities.

1 Introduction

In recent years, web applications have become an inseparable

part of users’ daily online lives, providing the means for com-

munication, news, media, and financial services. The plethora

of sensitive information held by the databases behind such web

applications becomes a lucrative target for cyber-criminals.

In 2017, Symantec reported that one in every 13 web requests

was malicious [4]. Furthermore, the ever-increasing number of

discovered vulnerabilities exposes web applications as well as

their users to security breaches [10]. Without loss of generality,

we focused on PHP as it powers 77% of all live websites [28].

Injection vulnerabilities (e.g., command injection, insecure

deserialization, or XSS) are the most common category of

application vulnerabilities in web applications [10]. To exploit

such injection vulnerabilities attackers provide malicious

inputs to the web application, compromising both the backend

systems as well as the clients. The root cause of an injection vul-

nerability is passing insufficiently sanitized attacker-controlled

user-input to sensitive APIs. Depending on the injection vul-

nerability type, the sensitive APIs differ. For instance, PHP’s

echo is recognized as a sensitive API for XSS attacks, while

unserialize plays the same role for insecure deserialization.

Despite these differences, at their core, injection vulnerabilities

are data-flow problems where untrusted user-input is accepted

at information sources (e.g., HTTP request parameters),

propagated throughout the web application’s execution, and

finally reaching sensitive sinks (e.g., echo or unserialize).

Existing systems proposed different approaches to detect

or exploit injection vulnerabilities using static, dynamic, or

hybrid analysis of web applications. Several approaches rely

on static taint analysis to track unsanitized user-input to a

predefined list of sensitive APIs in order to detect different

types of injection vulnerabilities [1, 7–9, 21, 32, 42, 42].

Similar to static approaches, prior work also relied on dynamic

and hybrid techniques to identify injection vulnerabilities or

generate exploits for already detected ones [25, 27].

Despite the effectiveness of prior work in detecting security

vulnerabilities, all existing systems possess one common flaw:



They rely on a manually curated or predefined list of sensitive

APIs to identify injection vulnerabilities. The accuracy of man-

ually curated lists for sensitive APIs depend on the documenta-

tion for the programming language and the expertise of the ana-

lyst who identifies the sensitive APIs. As is often the case with

human involvement, the listings are not comprehensive which

leads to undetected injection vulnerabilities (i.e., false nega-

tives) in web applications. This intuition is not merely hypothet-

ical; our results show, incomplete lists of sensitive sink APIs

are commonplace and further lead to false negative results.

Consider, as an example, the vulnerability type of insecure

deserialization. Insecure deserialization occurs when an

application deserializes untrusted data, such as user-input or

generally attacker-controlled data. This vulnerability allows

an adversary to manipulate the control-flow of a vulnerable ap-

plication by injecting a malicious serialized object. As applica-

tions commonly interact with objects after deserializing them,

an attacker-controlled object can lead to attacks, including

arbitrary code execution. Existing studies of insecure deserial-

ization and PHP object injection focus on detection [7, 24, 37]

and automated exploit generation [9, 27]. RIPS [7] and

Psalm [37] detect PHP object injection (POI) vulnerabilities

by statically tracking user-inputs to the unserialize API

function in PHP applications. Dahse et al. [9] presented the first

automated approach to generating POI exploits by tracking

the flow of user-input to invocations of the unserializeAPI.

While Dahse et al.’s approach identifies POI vulnerabilities,

FUGIO [27] utilizes a fuzzing approach to generate a concrete

exploit object for an already detected POI vulnerability.

Deserialization in PHP is the consequence of invoking PHP

API functions that perform deserialization either explicitly

or implicitly. For consistency, we use the term PHP API to

refer to the set of functions provided by the PHP runtime

that can be directly invoked by web applications. Explicit

deserialization APIs are described throughout the PHP

manual [12]. One can identify the functions of this group by

studying or analyzing the PHP documentation to curate a list

of explicit deserialization functions – this approach was taken

by RIPS [7], Psalm [37], FUGIO [27], and Dahse et al. [9].

However, implicit deserialization functions are not described

in the PHP manual, and are therefore more challenging to

identify. First described by Thomas for PHP in [36], implicit

deserialization happens if the PHP interpreter transparently

deserializes data consumed by certain APIs. For example,

Thomas found that the stream wrapper for the PHP archive

(PHAR) format implicitly deserializes metadata, which led

to the identification of multiple PHAR-based deserialization

vulnerabilities in popular web applications and libraries such

as WordPress and TCPDF (details in Section 2.4). Crucially,

implicit deserialization functions are equally as potent for

adversaries as explicit ones. However, implicit deserialization

APIs are not documented publicly, and the number and identity

of these functions depend on the implementation of the PHP

interpreter (i.e., the set of deserialization APIs varies with

the PHP version). This implies that in order to identify the set

of implicit deserialization functions featured by a given PHP

version, one must analyze the implementation of the interpreter

itself. The same claim also applies to other injection-type

vulnerabilities, such as XSS and command injection.

To improve on the error-prone manual efforts on identi-

fying injection APIs, this paper provides a systematic and

principled approach to inferring a comprehensive set of APIs

that can lead to XSS, command injection, or insecure deseri-

alization. To this end, we design, implement, and evaluate an

automated approach called Argus to identify the list of APIs

that deserialize user-input, execute OS commands, or write to

the output buffer. For consistency, we use the term , deseri-

alization, output and exec API to refer to the set of PHP APIs

that perform deserialization, write to the output buffer, or exe-

cute OS commands, which can lead to an insecure deserializa-

tion, XSS, and command injection vulnerability, respectively.

We demonstrate that by incorporating Argus’ resulting sink

list into existing systems, those systems produce significantly

higher-quality results (i.e., more detected vulnerabilities and

exploits). Our key observation is that there is precisely one

function inside the PHP interpreter that deserializes data –

php_var_unserialize. Crucially, php_var_unserialize

is at the core for all explicit and implicit deserialization APIs.

Consequently, we argue that the correct way to identify the

set of deserialization APIs is to subject the PHP interpreter to

program analysis. In cases of XSS vulnerabilities, a PHP API

such as echo prints its argument to the output buffer, which

contains the HTML response sent back to the user’s browser.

Our observation shows that there is one function inside the

PHP interpreter responsible for writing to the output buffer

calledphp_output_write. Similarly, the set of exec APIs will

eventually invoke the execve system call in order to execute

the OS command. For brevity, we use the term vulnerability

indicator functions (VIF) throughout the text to refer to the

functions php_var_unserialize, php_output_write, and

the functions inside the PHP interpreter that directly invoke

the execve system call or use its front-ends in C (e.g., exec

family).

Argus detects the set of deserialization, exec, and output

APIs through an automated hybrid static-dynamic program

analysis of the PHP interpreter. Specifically, Argus first gen-

erates the call-graph for a given PHP interpreter. Subsequently,

Argus performs a reachability analysis to identify the set of

PHP API functions whose invocation can trigger either dese-

rialization or output API in the interpreter (i.e., reach the VIF).

Using this approach, Argus detected more than 280 functions

(in PHP 7.2) that deserialize their arguments and 22 functions

whose invocation writes their arguments to the output buffer.

We demonstrate the security impact of Argus by integrating

its findings as the set of injection-sinks into three PHP analysis

tools; Psalm [37] and RIPS [1] (static taint analyses to identify

POI, command injection, and XSS vulnerabilities) and FU-

GIO [27] (a POI exploit generation system). When evaluating



Psalm with the extended list of injection-sinks on over 1,900

popular PHP applications and plugins, our evaluation yielded

10 times more potential for insecure deserialization compared

to Psalm’s default implementation (which exclusively reported

false positives). Furthermore, we integrated Argus’ list of dese-

rialization sinks into FUGIO and discovered proof-of-concept

exploits for 12 previously unknown deserialization vulnerabil-

ities on the same data set. In summary, this paper makes the

following contributions:

• We draw attention to the importance of accurately and

comprehensively detecting APIs in PHP that lead to

injection vulnerabilities such as insecure deserialization,

XSS, and command injeciton.

• We design and implement a novel automated analysis

and prototype (called Argus) to identify the set of

deserialization, exec, and output APIs applicable to any

version of the PHP interpreter.

• Evaluating Argus on the three most popular PHP versions

identifies over 280 deserialization APIs, at least an order

of magnitude more than the most extensive manually

curated list used by prior work (i.e., 26 sinks in FUGIO).

An adversary can leverage a call to any of these APIs to

exploit a PHP application. Argus also detects 22 output

APIs, which is twice the number of APIs that were used

in the past to detect XSS vulnerabilities. In addition,

Argus detects 9 exec APIs which can be used to detect

command injection vulnerabilities by Psalm and RIPS.

• In order to demonstrate the real-world impact of

these findings, we incorporated our results into three

existing analysis tools, Psalm, RIPS, and FUGIO. Our

refinements of the sink-lists used by these tools led to the

identification of 13 previously unknown POI and XSS

vulnerabilities. Of course, we responsibly disclosed all

our findings to the corresponding developers. As such,

11 of the detected POI vulnerabilities have been assigned

CVE IDs (CVSS scores between 7.2 and 8.8), and seven

vulnerabilities have already been patched.

2 Background and Motivation

In this section, we describe XSS, command injection, and

deserialization in PHP and how these vulnerabilities arise (e.g.,

implicitly from file operations). This background allows us

to shed light on our results and put the evaluation presented in

Section 4 in context. Finally, we elaborate on our assumptions

about XSS and insecure deserialization attacks on PHP

applications and our motivation to design an automated

approach to identify a comprehensive set of deserialization,

exec, and output functions in an interpreter.

2.1 PHP interpreter and Cross-site Scripting

A cross-site scripting (XSS) vulnerability is an injection

vulnerability that allows an attacker to compromise the

interactions of the victim with a vulnerable application [21].

This vulnerability allows the attacker to execute malicious

scripts in the victim’s web browser by including malicious

code in a legitimate web application.

In the life-cycle of a request sent to a web-server such as

Apache or Nginx, the PHP interpreter plays an important role

in providing the output shown to the user. When a web-server

receives a request for a PHP script, the web-server invokes the

PHP interpreter to determine the output. The PHP interpreter

executes the PHP script, which can include interaction with

a database, the file system, or the underlying operating system.

After the execution of the script, the PHP interpreter provides

the output in the form of HTML to the web-server. The output

is then sent back to the user as the response.

Thus, the PHP interpreter determines the response that

the web-server sends back to users. In order for a PHP script

to assemble the response, the PHP interpreter provides a set

of built-in functions (i.e., PHP API), which PHP scripts can

use. One of the APIs that is used to modify the response of a

web-server is echo. This function accepts one or more strings,

which are then sent verbatim to the output buffer. However,

the set of APIs that can modify the response of a web-server

is not limited to only one API. According to prior work such

as RIPS [7], there are 12 functions in the PHP interpreter that

can modify the output buffer.

In a cross-site scripting attack, the attacker is able to modify

the response that is sent back to the user’s browser. If an

attacker has control over the arguments passed to an API

such as echo, an XSS attack is a certainty. This capability of

the echo API is provided by an internal function of the PHP

interpreter, which allows APIs to write into the output buffer

(i.e., the HTML response). An analysis of the source-code of

the PHP interpreter reveals that all write opration to the output

buffer goes through a function called php_output_write. As

a result, all invocations of the php_output_write by the PHP

APIs can modify the response sent back to the web-server,

which is the superset of all the APIs identified in prior work.

2.2 PHP interpreter and command injection

Command injection in PHP applications occurs when a ma-

licious actor gains the ability to execute arbitrary commands

(e.g., through a shell) [3]. Command injection attacks result

in a range of consequences, such as compromised data confi-

dentiality and integrity or unauthorized access to the system

hosting the application. An attacker can leverage the exploited

application to execute a malicious payload and gain access to

additional resources.

As mentioned in Section 2.1, in the life-cycle of a request, the

PHP interpreter executes a PHP script. During this execution,



the PHP interpreter communicates with the resources through

the operating system to determine the output.

The operating system provides mediated access to resources

through the system call API. Applications such as the PHP

interpreter can access OS resources by invoking system call

APIs. A PHP interpreter executes OS commands by invoking

theexecve system call or its wrappers in the C libraries, such as

the family of execv functions [22]. Consequently, a command

injection attack only occurs when the PHP application uses

a PHP API that invokes the execve system call and passes

insufficiently sanitized user-input. As a result, a PHP API is

part of the Exec API if its underlying implementation invokes

the execve system call.

2.3 PHP Object Injection

PHP object injection (POI) is a security vulnerability that

leverages insecure deserialization in PHP applications. To

exploit such a vulnerability, an adversary must control the

properties of an insecurely deserialized object. By exploiting

a POI vulnerability, an attacker can potentially hijack the

program’s execution by controlling the properties used in

automatic calls to the __wakeup and __destructmethods.

The snippet in Listing 1 presents a PHP script that contains

a deserialization vulnerability. We observe that at Line 9,

user-input is passed to the unserialize function without

sanitization. In order to exploit this vulnerability, the attacker

needs to satisfy two conditions.

• There needs to be at least one class in the application

which implements the class methods __wakeup or

__destruct to carry out the attack.

• All of the classes used in the exploit need to be defined (or

the application must support automatic loading of classes)

when the unserialize function is called on Line 9.

Exploiting a POI vulnerability is inherently a code-reuse

attack, where an attacker recombines the already existing code

to achieve a malicious outcome by introducing a malicious

object. To exploit a POI vulnerability the attacker needs to

identify the user-defined functions and methods (i.e., gadgets)

in the PHP app that can be used to achieve his goals [27]. As an

example, we describe how an attacker can choose the gadgets

to link and perform a remote code execution attack in Listing 1.

Looking at Listing 1, the script defines two classes prior to the

deserialization: Example and Exec. The destructor of class

Example calls a function named getValue from the variable

obj. If an attacker sets the variable obj to an object of class

Exec, then the destructor will call the class method getValue

at Line 7. Looking at the implementation of class Exec, the

method getValue invokes the function system on the _cmd

property. Hence, the attacker can run an arbitrary command

be setting the value of the _cmd. The code snippet in Listing 3

contains the exploit for the vulnerability in Listing 1.

1 class Example {

2 protected $obj;

3 function __destruct() {

4 return $this ->obj->getValue();} }

5 class Exec {

6 private $_cmd;

7 function getValue() {

8 system($this ->_cmd); } }

9 $user_data = unserialize($_POST['data']);

10 file_exists($_POST['file']);

Listing 1: A deserialization vulnerability leading to

arbitrary code execution. An adversary can execute any

command by crafting a PHP object which modifies the

value of _cmd property.

2.4 Stream Wrappers

In this section, we explain the concept of PHP stream wrappers

and how an attacker can abuse stream wrappers to cause a

PHP object injection. A stream in the PHP interpreter is a

generalization of a data source which implements a set of

common file operation functions such as fopen and copy.

PHP Stream wrappers allow developers to use consistently-

named file-related functions such as fopen for different

types of file resources. The types of resources are identified

analogous to URL schemes and can vary from classic local

files (e.g., /etc/passwd), network reachable resources (e.g.,

https://example.com/text), to PHAR archive types

(e.g., phar://usr/share/app.phar). Importantly, once the

resource’s type is identified, the PHP interpreter, maps each

type to a corresponding stream wrapper which allows the

application developer to transparently perform (supported)

file operations on the resource (e.g., read, seek, etc.).

PHP Archives (phar) allow developers to package an

entire PHP application in a single file. To interact with phar

files, PHP provides a built-in stream wrapper. Each phar file

contains the following sections:

• Stub: A PHP file that instructs the interpreter how to

load the application.

• Manifest: Includes the number of files in the phar, as

well as the file permissions, type of compression, and

serialized metadata. The metadata includes a description

for the existing files in the archive in a serialized format.

• Contents: The content of files in the phar archive.

• Signature: An optional signature for the file’s integrity.

Exploiting phar wrappers. Thomas in [36] demonstrated

how an attacker can exploit an invocation of a file operation

API and perform a PHP object injection. He showed that

the PHP interpreter deserializes the metadata upon any file

operation on a phar file. Considering the aforementioned

information, an adversary can achieve arbitrary code execution

by leading the PHP interpreter to perform file operations (e.g.,

file_exists) on a phar file with a malicious metadata field.



The second part of Listing 3 shows how an attacker can

generate a phar file with malicious metadata (set on Line 12).

Looking at the snippet in Listing 1, we observe that the PHP

script checks the existence of a file by passing an unsanitized

user-input at line 10. In order to exploit the vulnerability at

Line 10 of Listing 1, the attacker can set the $POST variable

file to phar://path-to-malicious-phar-file.

2.5 Observations, Motivation and Assump-

tions

Our work is motivated by the error-prone human efforts to

aggregate lists of deserialization, exec, and output APIs in

PHP. Consider the case of CVE-2022-2437, an insecure de-

serialization vulnerability that Argus identified in the popular

Feed Them SocialWordPress plugin (detailed discussion in

Section 4.3.1). This vulnerability exists because of the im-

plicit (i.e., undocumented) deserialization performed by the

get_meta_tags PHP API function. As this API is missing

from all sink lists of prior systems, the vulnerability went unno-

ticed. Argus automatically identified this function (along with

over 280 others) as a deserialization API, and by incorporating

this knowledge in existing POI analysis systems these systems

readily detected and created POC exploits for this vulnerability.

As mentioned in the introduction, Argus’ analysis relies on

a key observation regarding the invocation of deserialization,

exec, or output APIs inside the PHP interpreter. In the case

of deserialization, the PHP interpeter uses its own template

and formatting for serialized data. The PHP interpeter uses

a customized yacc [20] parser to first parse the serialized

data and then perform the deserialization. Our analysis of

the PHP source-code shows that there is only one function

inside the PHP interpeter, which uses the yacc parser. Hence,

there is only one function responsible for deserialization:

php_var_unserialize. In the case of output APIs, we

analyzed the source-code of the PHP interpreter. Specifically,

we analyzed the underlying implementation of output APIs

such as echo and print_r and identified the set of invoked

functions inside the interpreter. For a more comprehensive

study of the output APIs, we executed the official PHP testsuite

and analyzed all the function traces for each output API that

leads to writing to the output buffer (i.e., using the write

system call). Similar to our observation for deserialization,

the PHP interpreter uses the outputmodule and specifically

the function php_output_write inside this module to write

to the output buffer (i.e., the HTML response).

Many implicit deserialization and output APIs are vulner-

able if an attacker can invoke them on a malicious file (e.g.,

PHAR archives). For such attacks to succeed, the malicious

file must reside on the web application’s file system. Thus,

to demonstrate exploitability, we assume an attacker already

uploaded a malicious file to the underlying web-server. Note

that, while this assumption is realistic (see Section 5 for a

more detailed explanation), the assumption purely exists to

demonstrate exploitability and is orthogonal to Argus’ goal

of identifying deserialization and output APIs.

3 System Design

In this section, we discuss the salient characteristics of our ap-

proach – Argus – and how it identifies the set of deserialization,

exec, and output PHP APIs. Figure 1 illustrates the overall

process. First, Argus combines static and dynamic analysis

techniques to generate a call-graph of a PHP interpreter in

Step 1 . Subsequently, for Step 2 , Argus uses the call-graph

to perform a reachability analysis to determine the set of

API functions that invoke the VIFs. Furthermore, Step 3

discusses the validation mechanism in Argus to confirm the

injection-sinks. Finally, we discuss how we incorporate Argus’

results into existing program analyses to detect and exploit

previously unknown vulnerabilities.

3.1 Call-graph Generation

In Step 1 , Argus generates a call-graph for the PHP

interpreter. To achieve this, Argus performs a static analysis

on the PHP interpreter to generate the initial call-graph, which

it then refines using dynamic execution traces.

3.1.1 Static Analysis of the PHP Interpreter

To construct the call-graph, Argus analyzes the PHP interpreter.

The PHP interpreter’s core consists of approximately 120K

lines of C code. Additionally, the interpreter relies on exten-

sions to deliver features such as image processing, database

communication, and communication protocols such as LDAP

and IMAP. These extensions are free to augment the PHP API,

including adding additional injection-sinks, and frequently

do so. For example, in a standard PHP deployment, the GD

graphics library, the PDO database communication extension,

and the FTP extension are provided as separate libraries and

all add additional injection-sinks to the runtime. To complicate

matters further, extensions can be written in different

programming languages (e.g., [6, 41]), provide their own build

environments, and are usually simply loaded by the interpreter

as shared dynamic libraries. However, injection vulnerabilities

can arise from any API provided by the runtime, including

APIs provided by the core interpreter and those provided by

extensions. As such, it is imperative to analyze the interpreter’s

core along with the code that comprises the extensions. At first

glance, the open source nature of the PHP interpreter would

suggest a source-based analysis to infer the call-graph. How-

ever, the variety of frameworks, languages, and build systems

used for extensions would require an analysis catering to all

these characteristics. Thus, instead of deriving call-graph in-

formation from various interconnected source-based analyses,

Argus instead performs its call-graph analysis on the compiled





stated in Section 1, the PHP interpreter uses a single internal

function that is responsible for all deserialization operations,

called php_var_unserialize (VIF). The PHP interpreter

uses a custom parser to parse serialized strings, which are then

converted to PHP objects. Our analysis of this custom parser

across PHP’s source-code yielded a single deserialization

function inside the PHP interpreter. In the case of output

APIs that write to an output buffer, we observed a similar

pattern during our analysis of PHP’s code, where the function

php_output_write is exclusively responsible for outputting

the buffer. As mentioned in Section 2.2, any PHP API that

executes an OS command requires the execve system call. As

a result, in order to identify the functions inside the PHP inter-

preter (VIFs) for command injection, Argus needs to identify

the functions that call the execve system call. To achieve this,

we leveraged Saphire [3], to identify functions that invoke the

execve system call. We marked these functions as the VIFs

for the exec APIs. These PHP internal functions are php_exec,

zif_shell_exec, zif_popen, phpdbg_do_sh, php_mail,

zif_pcntl_exec, _php_imap_mail, and zif_proc_open.

With the VIF identified, Argus labels all API functions in the

call-graph as sources.

Unfortunately, the symbols for API functions are indis-

tinguishable from those of internal functions, and text-based

techniques that parse documentation are rarely, if ever,

accurate. However, a running PHP process must be aware

of any and all APIs exposed to the web applications running

on top of it. Thus, to identify the set of APIs, Argus uses a

PHP extension that, once loaded into the PHP interpreter,

iterates over all available APIs. Specifically, the extension

first invokes PHP’s get_defined_functionsAPI to obtain

the list of all API functions. Unfortunately, the results of

get_defined_functions cannot be directly mapped to the

call-graph. The reason is that the name of an API function

available to a web application is commonly different from the

name of the symbol that implements the actual functionality.

For example, the session_decode PHP API is implemented

by a function called zif_session_decode. Unfortunately,

the zif prefix is not a consistent pattern. As the nodes in

the call-graph correspond to symbol names rather than API

names, the API names have to be translated. To this end, the

extension leverages an interpreter-internal data structure (i.e.,

executor_globals.function_table), which maps API

names to the names of the functions that implement the APIs’

functionalities. Finally, the extension relays this information

to Argus, which labels the symbols that map to API functions

in the call-graph accordingly.

Once all APIs are labeled as sources, Argus traverses

the call-graph for each source node and follows any call

edges captured in the graph. Argus identifies an API as a

deserialization, exec, or output API if this traversal includes

the graph node corresponding to its VIF function.

3.3 Validation

The reachability analysis presented above might inappro-

priately label an API as an injection-sink if the underlying

implementation in the runtime performs input sanitization or

filtering. Thus, Step 3 filters APIs and only passes those that

propagate their input to VIF unmodified. To this end, Argus

automatically generates PHP snippets to test each identified

API for this characteristic. More specifically, these snippets

contain a class definition (i.e., test) that, if deserialized (i.e.,

its __wakeupmethod is invoked), prints the content of one of

its properties (i.e., msg) as a success message. Subsequently,

the template calls the API in question with a serialized test

object that has msg set to “SUCCESS”. Thus, if the execution

of the PHP snippet prints the success message, Argus validates

that the API in question passes the input argument unmodified

to VIF, and hence the API is for sure a deserialization API. For

each API, the validation step iterates over various patterns of

passing inputs including explicit (e.g., serialized data) and im-

plicit (e.g., Phar file). When one input leads to deserialization

which invokes our test function and prints out the ”SUCCESS”

message, Argus marks the API as a deserialization API. The

psuedo-code in Listing 4 (Appendix B) shows the process of

validating the reachable APIs identified.

As our evaluation in Section 4 will show, Argus confirmed

284 deserialization APIs in the PHP interpreter, which

warranted an automated validation step. However, the number

of confirmed output APIs in the PHP interpreter is an order

of magnitude less (i.e., 22), which prompted us to manually

validate whether the invocation of the API with user-input can

cause an XSS attack. To this end, we created a Docker container

with a running Nginx web-server for each PHP interpreter

version. For each output API, we created a PHP template that

invokes the API and passes a constant user-input containing a

Javascript snippet (i.e., <script>alert(1)</script>). We

visited the generated PHP template with a browser, and if the

browser displays a dialog, Argus marks the tested API as an

output API. In case of the exec APIs, we manually validated

the set of PHP APIs that execute commands in the PHP

interpreter. For each exec API, we created a PHP script that

invokes the API and passes a constant user-input containing an

OS command (i.e., ls -lhwhich lists the directory content).

The PHP interpreter under test executes each of the generated

PHP scripts, and if the PHP script prints out the directory

information, Argus marks the PHP API as an exec API.

3.4 Extend Security Analysis Tools

Argus’ results comprise a comprehensive list of injection-sinks.

This is in contrast with the exclusively manually-crafted lists of

injection-sink used by all existing XSS and POI detection and

automatic exploit generation systems. Thus, to demonstrate the

value of Argus’ principled approach, we extend three existing



program analysis tools, Psalm [37], RIPS [7], and FUGIO [27]

as examples of downstream analysis that benefit from our work.

3.4.1 Psalm and RIPS Extension

Psalm and RIPS are two static analysis tools featuring code

refactoring and taint analysis [37]. For the taint analysis,

Psalm and RIPS attempt to find unwanted flows between

user-controlled inputs (e.g., $_GET variables) and a set of sink

functions (e.g., system). The set of sink functions in Psalm

and RIPS differs depending on the type of vulnerability that

the user is trying to detect. For instance, to identify insecure

deserialization, they exclusively consider unserialize as a

sink for the core PHP interpreter.

As shown in previous reports [36] and in our evaluation,

relying on incomplete lists of sinks results in false negatives

(i.e., missed detections). To extend the static analysis tools, we

modify the list of taint sinks to include all deserialization, exec,

and output APIs identified by Argus.

3.4.2 FUGIO Extension

FUGIO is an automatic exploit generation tool which uses a

combination of static and dynamic analysis to generate a proof

of concept exploit for previously known POI vulnerabilities.

In the first step, FUGIO submits requests to a target web

application where request parameters (e.g., GET, POST,

and COOKIE values) contain serialized data. During the

processing of these requests, FUGIO hooks the invocation

of deserialization APIs and verifies if the passed arguments

correspond to the parameters supplied in the request. To

this end, FUGIO hooks a subset of 27 PHP deserialization

APIs – the explicit unserializeAPI along with 26 implicit

APIs first mentioned by Thomas [36]. If FUGIO detects that

parameters are indeed forwarded to deserialization APIs,

its second step will attempt to morph the parameter into a

complete POP chain, forming a POC exploit. While FUGIO’s

second step (i.e, the exploit generation itself), is independent

of our work, the first step (i.e., recognizing the invocation of

vulnerable deserialization APIs) is directly affected by the

(in-)completeness of the list of deserialization APIs.

To extend FUGIO, we integrated the set of deserialization

APIs identified by Argus such that FUGIO hooks all these

APIs in its first analysis step. The extended FUGIO intercepts

a comprehensive set of PHP APIs which allows it to identify

and exploit previously unknown POI vulnerabilities (see

Section 4.3.2 for details).

In summary, Argus generates a call-graph for the PHP

interpreter by leveraging hybrid static-dynamic analysis. Fur-

thermore, Argus performs a reachability analysis to identify

a comprehensive set of deserialization, exec, and output APIs

in the PHP interpreter, and optionally validates APIs that pass

their inputs unchecked to the underlying VIF deserialization,

exec, and output functions. We augmented three existing

detection and exploit generation systems as examples that

demonstrate the security impact of Argus’ results.

Our implementation of the call-graph analysis for the PHP

interpreter consists of approximately 700 LoC of Python and

C code. In addition, we implemented our extensions to Psalm

and FUGIO with less than 600 LoC of PHP.

4 Evaluation

In this section, we evaluate Argus along two orthogonal dimen-

sions. First, we focus on identifying deserialization, exec, and

output APIs in the three most popular major versions of the

PHP interpreter. The reason for evaluating different interpreter

versions is that the number and names of deserialization, exec,

and output APIs are implementation and version dependent,

calling for an automated solution such as Argus. In the second

thrust of the evaluation, we assess how Argus’ analysis results

improve the accuracy of three example PHP security analysis

systems – Psalm, RIPS, and FUGIO. To cover these two dimen-

sions, our evaluation answers the following research questions:

RQ1: In terms of call-graph generation, how precise is the

call-graph generated by Argus compared to existing call-graph

generation tools such as Joern (Section 4.2.1)?

RQ2: On the interpreter’s call-graph, how many PHP APIs

reach the VIF functions (Section 4.2.2), and how many of

the reachable APIs pass their arguments to VIF unmodified

(Section 4.2.3)?

RQ3: How does the number and identity of deserialization,

exec, and output APIs change across PHP versions and what

are the reasons for the observed changes (Section 4.2.4)?

RQ4: How do Argus’ results improve the current state-of-the-

art PHP security analysis that target injection vulnerabilities?

Does Argus’ comprehensive list of injection-sinks lead

to the identification of previously unknown POI and XSS

vulnerabilities (Section 4.3)?

4.1 Evaluation Dataset

Our evaluation dataset for Argus is divided into two categories

corresponding to the two evaluation dimensions. For our

experiments on the PHP interpreter, we evaluated Argus on the

three most popular major versions (i.e., versions 5, 7, and 8)

of the PHP interpreter. As of June 2023, PHP engines of these

versions power 99.8% of all live PHP websites, according

to W3Tech data [28]. Furthermore, PHP seven is used by

65.2% of all live websites using PHP, which makes it by far

the most popular PHP engine [28]. Our second dataset is

used to evaluate the benefit of Argus’ results to existing POI,

command injection, and XSS detection systems as well as

exploit generation systems. As these systems operate on the

code of web applications, rather than the PHP interpreter,

we aggregated a dataset corresponding to that purpose. We

collected the most popular PHP applications and plugins from

a variety of sources. On the one hand, we downloaded the 60



most popular PHP applications based on the reported popular-

ity provided by W3Tech [28]. On the other hand, we recognize

that large web applications frequently feature a plugin model

that allows administrators to customize their sites. As such,

we also collected the most downloaded plugins for the popular

WordPress, Drupal, and Typo3 web applications from their

respective repositories. Overall, we collected 1,977 PHP

artifacts (i.e., web applications and plugins). Table 3 provides

a detailed breakdown in the first two columns.

4.2 Analysis of the PHP Interpreter

As the PHP language and ecosystem evolves, the interpreter

must provide support and functionality accordingly. Unsur-

prisingly, this evolution also affects the number and identity

of the injection-sink functions provided by different versions

of the PHP interpreter. To assess these changes, we evaluate

Argus on three different versions of the PHP interpreter

(versions 5.6, 7.2, 8.0) as detailed in Table 2.

PHP interpreter Argus Joern Argus - Joern Joern - Argus

PHP 5.6 56,504 31,065 26,024 585

PHP 7.2 68,410 39,560 30,620 1770

PHP 8.0 47,653 33,555 16,636 2538

Table 1: Argus outperforms Joern in terms of detected edges

for analyzing the PHP interpreter. The second and third

columns show the number of detected edges by each tool. The

last two columns report the comparison between the number

of detected edges (i.e., subtraction of matching edges).

4.2.1 Argus vs. Joern

Argus uses the call-graph of the PHP interpreter in order

to identify injection-sink functions, rendering call-graph

generation a crucial step for Argus. For our first evaluation, we

investigate the generated call-graphs by Argus and compare

the results with Joern, an open-source code analysis tool [19].

During this evaluation, we analyze the PHP interpreter and

generate the call-graph using both Argus and Joern. We then

compare the generated call-graphs by both tools based on the

number of detected edges.

We compared the generated call-graphs in two dimensions:

1) a quantitative comparison of the call-graphs for the number

of missing edges, and 2) a qualitative evaluation to investigate

the effect of missing edges on identifying injection-sink

functions. Our evaluation of the call-graphs generated by

Argus and Joern is listed in Table 1. This comparison shows

that the call-graph generated by Joern misses 24,426 edges that

are included in the call-graphs generated by Argus, on average.

There are also cases where Argus misses edges that Joern can

detect. However, the number of missing edges by Argus is 15

times less than the number of edges missed by Joern.

For the second part of this evaluation, we investigated the

missing edges in the call-graphs of both Argus and Joern.

Compared to Argus which analyzes the binary, Joern is a

source-code analysis tool. Hence, the compile-time aspects are

an important source for the differences between the generated

call-graphs by Argus and Joern. In the case of Argus, the

missing edges are related to cases of preprocessor directives

and compiler optimizations (i.e., these missing edges do not

exit in the binary and cannot be exercised). For example, the

preprocessor decides to keep or remove blocks of code based

on directive conditions (e.g., #ifdef); hence, the compiled

version of the same source-code can lead to a different

binary artifact depending on the condition. As a result, Argus

analyzed a version of the PHP interpreter where some function

calls were removed due to preprocessor directives, compared

to Joern. Furthermore, the analysis of the missing edges by

Argus shows that the invoked functions are related to memory

management in C, such as free and malloc. Our analysis

shows that the missing edges do not affect the ability of

Argus to detect injection-sink functions since the memory

management functions in this case are the leaves in the

call-graph and do not affect the reachability analysis.

In the case of Joern, the missing edges are mostly related

to function pointers in the PHP interpreter. As mentioned in

Sections 2.4 and 3.1.2, the PHP interpreter extensively uses

function pointers in order to implement its functionality. Jo-

ern’s call-graph analysis misses the set of indirect calls inside

the PHP interpreter, which includes function pointers related

to stream wrappers for different file types. Consequently,

Joern is not able to detect indirect calls to the PHAR module

from any file operation APIs such as fopen, and using such a

call-graph would lead to missing all file operation APIs, which

lead to insecure deserialization.

4.2.2 Reachable APIs

Next, we look into the reachability analysis of Argus and the

number of PHP APIs that invoke the VIF in the analyzed PHP

interpreters. The first set of sub-columns in Table 2 labeled as

Detected for both injection vulnerabilities shows the number of

APIs that Argus identified as reaching VIF for the three differ-

ent PHP versions. As the table shows, the number of deserializa-

tion APIs for versions 5 and 7 is similar, and two orders of mag-

nitude larger than for version 8. We discuss the difference in the

number of reachable deserialization APIs in Section 4.2.4. Fur-

thermore, the number of output and exec APIs for the analyzed

PHP versions is almost constant across all three versions.

In our evaluation of Argus’ call-graph generation, we

explored the contribution of both of our dynamic and static

analysis. This analysis demonstrates the advantages of

using both static and dynamic analysis while generating the

call-graph. To demonstrate the effectiveness, we looked into

the number of injection-sinks that Argus can detect by only

using the statically generated call-graph. To achieve this, we

performed a reachability analysis on the statically generated

call-graph of the PHP interpreter before augmenting the

call-graph with dynamic information (Step A-2). The numbers



Version Deserialization API XSS-leading API Exec API

Detected Validated Detected Validated Detected Validated

PHP 5.6 419 (61) 281 (67%) 54 (51) 22 (41%) 10 (10) 9(90%)

PHP 7.2 425 (63) 284 (67%) 52 (48) 22 (42% 10 (10) 9(90%)

PHP 8.0 20 (13) 13 (65%) 46 (39) 22 (48%) 10 (10) 9(90%)

Table 2: Our analysis of PHP interpreter shows PHP in-

terpreters prior to version 8.0, contained more than 300

PHP functions that deserialize their arguments, execute

OS command, or write to output buffer. The numbers in

parentheses of Detected sub-columns show the number of

APIs detected using only the statically generated call-graph.

in parentheses in the sub-column Detected for Table 2 show

the number of reachable APIs while using only the statically

generated call-graph. As an example, we can see that the

difference in the number of detected APIs for PHP 5.6 when

only using the statically generated call-graph is six times less

than when incorporating the dynamic analysis information.

Similar to Joern, the missing edges in Argus’ static only

call-graph relate to function pointers of stream handlers in

the PHP interpeter. These results emphasize the benefit of

including dynamic analysis to refine the static call-graph.

While using dynamic analysis improves the result of Argus,

using only dynamic analysis to generate a call-graph has

its own drawbacks. One such drawback is the coverage of

dynamic analysis. If the dynamic analysis does not cover all

possible functionality of each PHP API, it leads to missing

the identification of an injection PHP API. In our evaluation of

Argus, we quantified this aspect of dynamic analysis on PHP

5.6 and 8.0. During this evaluation, Argus only used dynamic

traces of running PHP high quality unit tests (i.e., 70% line

coverage) to generate the call-graph for the PHP interpreter.

Next, Argus performs its reachability analysis to identify the

injection APIs. Our experiments on PHP 5.6 showed that

using only dynamic analysis leads to missing 11 and 5 APIs,

which leads to insecure deserialization and XSS. A similar

observation holds true for PHP 8.0, which misses 4 insecure

deserialization and 7 XSS APIs. As a result, Argus uses a

hybrid static-dynamic call-graph generation, since there are

drawbacks in both static and dynamic call-graph generations

as shown in the aforementioned analyses.

4.2.3 Validated APIs

The second set of sub-columns labeled Validated in Table 2

shows the number of APIs that Argus successfully validated

to directly pass their input argument to VIF. That is, if an

adversary can control input to any of these APIs, the existence

of an injection vulnerability (i.e., insecure deserialization

or XSS) is a certainty. Validated APIs are a strict subset

of reachable APIs. The table shows that Argus was able

to consistently validate around 66%, 43%, and 83% of the

deserialization, output, and exec APIs, respectively. A closer

look at the reachable APIs that failed the validation test

shows that either the user is not in control of the input to

the VIF or the input is sanitized. For instance, Argus detects

the function highlight_string reaches the output VIF

function (i.e., php_output_write), however, the input is

sanitized by replacing "<" with "&lt;". As a result, the

attacker’s input does not cause an XSS attack and the function

highlight_string fails the validation test. In case of dese-

rialization, the SplTempFileObject::__construct opens

a temporary file object that the user cannot control. As a result,

an attacker cannot trick the API to open a malicious PHAR

file and validation failed. Table 5 (in the Appendix) contains

the complete list of deserialization APIs for PHP versions

analyzed. Note that the set of APIs in version 7.2 is a strict

superset of the APIs in version 5.6. The table also highlights

the APIs that still show deserialization capabilities in version

8.0 by typesetting their names in bold. As shown in Table 2, all

three versions of the PHP interpreter have 22 validated output

APIs, which are exactly the same among all the versions.

For the set of Exec APIs, Argus correctly detected one PHP

API that reaches the exec VIFs. However, the user-input does

not influence the executed command (i.e., a false positive). This

PHP API, named error_log, provides the option of sending

the error logs through email using the mail functionality in

the PHP interpreter. The mail functionality in PHP in turn

allows users to execute OS commands by passing an extra ar-

gument. However, user-input does not influence the arguments

passed to the mail function in the error_log API. Further-

more, compared to RIPS, Argus’ set of exec APIs does not

include three PHP APIs. The first API, expect_popen, is not

packaged with PHP source-code. The expect extension is

installed through PECL package management, which is not in-

stalled by default on Debian. In addition, installing the PHP

interpreter using Debian’s apt package tool, does not install

PECL package management. As a result, Argus cannot detect a

PHP API that is not installed and compiled with the PHP in-

terpreter. The other two APIs are w32api_invoke_function

and w32api_register_function, which are conditionally

compiled and solely available in the PHP interpreter for the

Windows OS. Since our evaluation environment relied on the

Linux OS, these two APIs were not included in the compiled

version of the PHP interpreter. While Argus did not detect any

exec APIs beyond RIPS, Argus identified two exec APIs that

are not listed in Psalm; mail and mb_send_mail.

4.2.4 Reasons for Differences

Comparing the results for PHP 5.6 with those from 7.2 reveals

three additional deserialization APIs (all of which Argus

validated). The reason for this increase is the addition of

support for the BMP image format in PHP 7.2’s GD standard

graphics library. Specifically, the new createimagefrombmp

and imagebmp functions serve as implicit (i.e., undocumented)

deserialization APIs. The last implicit deserialization API

missing from PHP 5.6 is the ftp_append API which is sup-

ported in PHP versions 7.2 and above. All deserialization APIs
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Figure 2: The prevalence of validated APIs in real-world

applications.

available in version 5.6 also exist in version 7.2. In contrast

to the small change of deserialization APIs between versions

5.6 and 7.2, the drop from 284 to merely 13 deserialization

APIs in version 8.0 is significant. As discussed in Section 2.4,

prior to version 8.0, any file operation on a phar archive

results in the implicit deserialization of the archive’s metadata.

Fortunately, the PHP developers recognized the negative

security consequences this behavior entails in 2020 and voted

unanimously to change the default behavior of the phar stream

wrapper [11]. Thus, since PHP 8.0 metadata in phar archives

is only deserialized upon an explicit call to the getMetadata

function in the Pharmodule, and not implicitly on any file op-

eration on the archive. While this change certainly benefits the

security of web applications, PHP 8.x is still not widely used

by PHP-powered websites (less than 5% at the time of writ-

ing) [28]. The challenging process of migration prevents most

web applications from easily adopting PHP 8 (see details in

Section 5). Therefore, most websites still rely on older versions

of the PHP interpreter that include 284 deserialization APIs.

4.2.5 Qualitative Analysis of Identified APIs

In this experiment, we assess the prevalence of deserialization

and output APIs in our dataset of applications. It is crucial to

investigate how many of the identified APIs are actively used

in PHP applications since the validated APIs are at the core

of injection vulnerabilities. For this evaluation, we grouped

different categories of validated APIs listed in Table 5 for

different sets of injection vulnerabilities. Figure 2 shows

the number of invocation for each API category. As shown

in Figure 2, in the case of deserialization APIs, we observe

more usage for categories such as file operations and image

processing APIs. Similarly, in the case of output APIs, the

applications in our dataset often use more error handling APIs

as well as general output APIs such as echo compared to

categories such as Database, Closure, and Iterator APIs.

Furthermore, we enumerate the set of distinct applications

that invoke at least one of the newly identified vulnerable APIs.

For our dataset of 1,977 applications, 1,355 (i.e., 69%) and

1,218 (i.e., 62%) of applications invoke at least one newly

identified deserialization and output APIs, respectively.

Finally, we looked into the pre-condition required for an

attacker to exploit each of the newly detected vulnerable APIs.

The first pre-condition is that the attacker needs to upload a

malicious file to the server hosting the vulnerable application

prior to passing malicious arguments to the vulnerable APIs.

The second pre-condition is that there should not be a static

prefix for file operation APIs, so that an attacker can specify

PHAR as the stream wrapper. In the case of deserialization

APIs, there are 273 APIs (i.e., 96%) that require a file upload

and lack of static prefix pre-conditions prior to exploitation.

Furthermore, five APIs (i.e., 23%) from the set of output APIs

require the pre-condition of file upload prior to XSS exploita-

tion. The APIs that have pre-conditions are indicated in Table 5

in the Appendix. In our evaluation, we enumerated the number

of newly identified sinks that PHP applications in our dataset

invoke. In the case of deserialization APIs, the most common

used API in our dataset was the function copywhich requires

the pre-conditions mentioned above. However, the most

common output API used in our dataset was class_alias

API, which does not require any pre-conditions. In case of

exec APIs, we did not perform any qualitative analysis, since

Argus did not detect any new APIs compared to RIPS.

4.3 Extending Prior Security Analysis Tools

Argus’ value arises from the comprehensive list of output,

exec, and deserialization APIs it identifies within a PHP

interpreter. To demonstrate the security relevance of this

information, we extend two PHP security analysis systems

– Psalm and RIPS, both static data flow analysis systems,

and FUGIO, a dynamic automatic exploit generation system

targeting POI vulnerabilities.

4.3.1 Psalm and RIPS Extension

Psalm and RIPS are two static analysis tools for PHP

applications, providing taint analysis and code refactoring

capabilities [37]. Taint analysis operates based on a set of

configuration files that specify the taint sources and sinks in

the PHP application. For our evaluation, we downloaded the

latest available versions of both Psalm1 and RIPS2 at the time

of writing from their GitHub repositories.

Psalm’s taint analysis identifies exactly one PHP API func-

tion as a taint sink for insecure deserialization: unserialize.

Furthermore, Psalm includes six functions as taint sinks

for XSS vulnerabilities. Argus identified and confirmed

283 and 16 additional sinks that are missing in Psalm

related to deserialization and XSS, respectively. To improve

Psalm’s taint analysis, we extended the set of taint sinks for

1Psalm 4.x-dev@832fc35d8da6e5bb60f059ebf5cb681b4ec2dba5
2master@ccdd2a56dbc0077cbffd08d4aa9b14af0809831d



Repo. Group # of Apps
Deserialization XSS Command Inj.

P P+A R R+A P P+A R R+A P P+A R R+A

Web Apps 60 35 354 58 511 3687 3693 538 544 25 32 14 14

Drupal plugins 521 0 0 40 47 1 1 8 8 0 0 0 0

Typo3 plugins 400 0 13 22 80 43 43 35 35 0 0 0 0

WordPress plugins 996 28 289 253 1386 1658 1667 3707 3747 4 4 4 4

Total 1977 63 656 373 825 5,389 5,404 4,288 4,334 29 36 18 18

Table 3: Extending static analysis tools such as Psalm (Labeled as P) and RIPS (Labeled as R) using Argus’ results (Labeled

as A) improved their detection rate.

both XSS and insecure deserialization to include the APIs

Argus identified for PHP 7.2. Subsequently, we performed

a comparative evaluation between upstream Psalm, and our

modified version incorporating the APIs identified by Argus

on the set of 1,977 PHP artifacts described in Section 4.1.

Our findings in Table 3 show a significant increase (i.e., over

10X) in the number of detected insecure deserialization vulner-

abilities by the extended version of Psalm. To compare the qual-

ity of the results produced by upstream Psalm and our extended

version, we manually analyzed all 656 insecure deserialization

reports. As Psalm is a static analysis, we expect the results to

contain false positives. Furthermore, as the extended version

features 284 times as many deserialization sinks, it is unsurpris-

ing that it reports 10 times as many potential vulnerabilities.

However, what we did not expect is that all 63 reports (i.e.,

100%) arising from upstream Psalm are false positives. False

positives can arise from web applications that sanitize inputs

or, more prevalent in our POI vulnerability analysis, arise from

the fact that the application sets a fixed prefix for file-paths. A

“fixed” file-path-prefix, even if it is derived from an API such

as dirname essentially thwarts any attack that relies on the

phar module, as the attacker will no longer be able to specify

the phar:// prefix that triggers the stream wrapper. In order

to analyze Psalm’s results, we investigated the reason behind

the false positives in Psalm’s taint analysis. To achieve this,

we randomly chose 50 reported deserialization vulnerabilities

by Psalm, analyzed the report, and reviewed the source-code

of the application. Our investigation shows 49 cases of false

positives, where 31 false positives were reported due to over-

approximation in Psalm’s taint analysis as well as not detecting

the sanitization process. Furthermore, 18 false positives were

reported due to the fact that the pre-condition was not met. In

all these cases, tainted variables had a hard-coded prefix passed

to vulnerable APIs, meaning that an attacker cannot trigger

the phar module by specifying the phar:// prefix. Psalm’s

variable-level taint analysis only taints entire variables and

hence cannot differentiate variables with a hard-coded prefix.

Finally, one reported case was a true positive.

We confirmed that our extension to Psalm’s taint analysis

detected 12 previously unknown POI vulnerabilities (i.e., 2%

true positives) in our dataset (see Table 4). We categorized

the POI vulnerabilities into three groups: (i) unauthenticated,

(ii) authenticated, and (iii) CSRF to Phar. The first two types

are authenticated and unauthenticated Phar deserialization,

which refers to the required privilege in order to exploit

the POI vulnerabilities. In the case of an unauthenticated

deserialization vulnerability, the attacker can reach and

exploit the vulnerable functionality in the application without

providing any administrator credentials for the vulnerable

application. The last vulnerability type is CSRF to Phar

deserialization, where a malicious actor tricks an administrator

of a WordPress app into performing an action such as clicking

on a link leading to Phar deserialization.

In addition, we confirmed that the extended Psalm detected

one previously unknown XSS vulnerability in the core of the

WordPress web application. As we will show in Section 4.3.2,

FUGIO generated POC exploits for all 12 POI reports

supporting the notion that these are actual vulnerabilities. As a

case study, we will describe three of the vulnerabilities that we

discovered among WordPress and its plugins and how Argus’

comprehensive results were necessary to detect them.

In the case of exec APIs, we only extended the list of exec

sinks for Psalm static analysis, as Argus only detected more

exec APIs compared to Psalm. According to Table 3, we ob-

served that Psalm detected more potential command injec-

tions compared to RIPS. In addition, Psalm+Argus detected

seven more command injections compared to the unmodified

Psalm. Our investigation of the newly identified vulnerabilities

showed that the cause of the vulnerabilities was passing user-

input to the PHP function mail, which was not detected by the

unmodified Psalm. Furthermore, since the applications were

using OOP, RIPS was unable to detect the tainted data-flow and

did not detect the potential command injection vulnerabilities.

However, our analysis shows that the newly identified vulner-

abilities were false positive as the applications were passing

user-input to the mail function after sufficient sanitization.

Case Study - Feed Them Social

The detected vulnerability in Feed Them Social is an

unauthenticated insecure deserialization which resides in the

functionality of the module’s Twitter feed. The Twitter feed in

this plugin retrieves and shows the content of tweets including

any referenced media on a WordPress page. Whenever a tweet

contains a URL, the plugin attempts to retrieve the URL’s

title, image, and description to display on the WordPress

page. To do this, the plugin uses the function get_meta_tags

with unsanitized user-input directly from the tweet to retrieve

the metadata of the specified URL. Listing 2 shows the

simplified version of this vulnerability in this plugin, where the



unsanitized user-input is passed to the implicit deserialization

API get_meta_tags on line 4.

In order to exploit this vulnerability, an attacker sets the

fts_url request parameter to the path of a phar file with

malicious metadata. When the plugin tries to read and parse the

metadata of the passed URL, it will automatically deserialize

the metadata of the malicious phar file. get_meta_tags is an

implicit deserialization API identified by Argus and not taken

into consideration by prior work demonstrating the necessity

of Argus’ comprehensive analysis.

1 function fts_twitter_share_url_check() {

2 $twitter_url=$_REQUEST['fts_url'];

3 // ...

4 $tags=get_meta_tags($twitter_url);}

Listing 2: The feed them social plugin passes unsanitized

user-input to the function get_meta_tags.

According to the history of the RIPS git repository, the latest

modification to its static analysis was nine years ago [7]. A

concern that is also raised by the authors of RIPS is that it does

not support new features added to the PHP interpreter, such

as object-oriented programming (i.e., OOP). Despite its age,

Table 3 shows that the extension of RIPS (i.e., RIPS+Argus)

leads to identifying more potential vulnerabilities. Further

investigation into RIPS’ analysis shows that it raises warnings

related to the use of OOP in 1,760 applications (i.e., 89% of

our dataset), which leads to false negatives. The reason behind

false negatives is that RIPS [7] is not able to track tainted data

(i.e., data from $_GET and $_POST parameters) to and from

objects instantiated from classes in the PHP applications. In

addition, due to the complex and large codebase for some

applications in our dataset, RIPS was not able to complete

the analysis for 135 applications (i.e., 7% of the dataset).

As explained, we identified several drawbacks to the RIPS

analysis that have implications for its vulnerability detection.

In order to demonstrate these implications, we analyzed the

results of RIPS+Argus to identify whether it was able to

identify the vulnerabilities discovered by Psalm+Argus. Our

analysis shows that RIPS+Argus only identified eight out of

the 13 vulnerabilities (i.e., 60%) listed in Table 4.

4.3.2 FUGIO Extension

FUGIO [27] is an automatic exploit generator for previously

identified deserialization vulnerabilities in PHP applications.

FUGIO’s exploit generation hooks a set of predefined deserial-

ization functions while sending serialized objects as request to

the web application under test. Our analysis of FUGIO shows

that FUGIO hooks into 26 file operation functions in the PHP

interpreter as well as the unserialize function to intercept

deserialization of user-input. Similar to Psalm, FUGIO

obtained the list of hooked functions through manual analysis

of PHP documentation and prior works such as Thomas [36].

For our evaluation, we downloaded FUGIO from its GitHub

repository at https://www.github.com/WSP-LAB/FUGIO.

One should note that FUGIO states that it is not a vulnera-

bility detection tool. Rather its core contribution is to generate

exploits for already known deserialization vulnerabilities [27],

such as those identified by Psalm. As a result, we evaluated

FUGIO on the 12 vulnerabilities that our extended version of

Psalm detected. To extend FUGIO, we modified its source code

to hook the comprehensive set of deserialization API functions

identified by Argus. The last two columns in Table 4 show

the results of extending FUGIO using Argus when generating

exploits for the discovered vulnerabilities by Psalm+Argus.

As a dynamic analysis system, FUGIO requires a runtime

environment. To this end, we created an experimental

environment for WordPress plugins consisting of Nginx, PHP

7.2, MySQL 8, and WordPress 5.4. FUGIO creates attacks by

stitching together so-called gadgets into a POP-chain. How-

ever, WordPress alone does not contain any gadgets that could

be used for remote code execution attacks. In practice, admin-

istrators customize their WordPress installations using plugins

and themes. Thus to ensure that FUGIO has gadgets to work

with, we installed the latest versions of the top ten most popular

plugins in WordPress in our experimental environment [39].

During our experiment, FUGIO without Argus’ results does

not hook into the image functions listed in Table 5. As a

result, FUGIO was unable to generate an exploit for two of the

discovered vulnerabilities in Table 4. However, the extended

FUGIO+Argus successfully generated exploits for all the dis-

covered vulnerabilities listed in Table 4. On this small sample,

this indicates the comprehensive set of sinks provided by Argus

leads to a 20% increase in the number of generated exploits.

Web App Plugin Vuln. Type CVE Function P P+A R R+A F F+A

Xoops - 1 - imagecreatefrombmp 7 X 7 7 7 X

WordPress

Feed them Social 1 CVE-2022-2437 get_meta_tags 7 X 7 X 7 X

ImageMagick 2 CVE-2022-2441 is_executable 7 X 7 X X X

String locator 2 CVE-2022-2434 file_exists 7 X 7 X X X

Ajax load more 2 CVE-2022-2433 file_exists 7 X 7 X X X

Broken link checker 3 CVE-2022-2438 file_exists 7 X 7 X X X

wp editor 3 CVE-2022-2446 is_dir 7 X 7 7 X X

Visualizer 3 CVE-2022-2444 fopen 7 X 7 7 X X

Easy digital download 3 CVE-2022-2439 file_exists 7 X 7 X X X

Theme Editor 3 CVE-2022-2440 unlink 7 X 7 X X X

wPvivid Backup 3 CVE-2022-2442 file_exists 7 X 7 X X X

Download manager 3 CVE-2022-2436 file_exists 7 X 7 7 X X

- XSS - readfile 7 X 7 7 - -

Total - - - 0 13 0 8 10 12

Table 4: We verified the reports of Psalm+Argus by discov-

ering 13 previously unkown POI and XSS vulnerabilities.

The vulnerability types 1, 2, and 3 refers to Unauthenticated

Phar deserialization, CSRF to Phar deserialization, and

Authenticated Phar deserialization, respectively.

Disclosure. We responsibly reported all the vulnerabilities

to their corresponding developer teams and notified the Word-

Press plugin review team of our findings. Seven teams already

patched their WordPress plugins, and WordFence assigned

CVE numbers to the vulnerabilities as shown in Table 4.

Artifact Availability: Argus is open-source and available

at https://github.com/BUseclab/Argus. We provide

the source-code of our tool along with the instructions for

reproducing the experiments. These artifacts were major

components of our evaluation and we believe that they can

be useful for future research in this space.



5 Discussion

In this section, we discuss the limitations, challenges, and

observations of Argus.

Completeness: Argus does not guarantee completeness in

its analysis of the PHP interpreter as well as the identified set

of deserialization, exec, and output APIs. Argus relies on the

call-graph of the PHP interpreter for its analysis, which uses a

hybrid static-dynamic analysis. As mentioned in Sections 2.4

and 3.1.2, the PHP interpreter extensively uses indirect calls,

such as function pointers, which challenges any static analysis,

including Argus. In order to minimize the drawbacks of

indirect calls in the generated call-graph by Argus, we use the

official unit tests of the PHP interpreter for its dynamic analy-

sis, features a 70% line coverage over the PHP interpreter. As a

result, Argus uses a hybrid static-dynamic approach to reduce

the drawbacks of each technique. However, Argus cannot

guarantee the completeness of its analysis due to the challenges

of analyzing a complex codebase such as the PHP interpreter.

Reachability: Argus relies on a reachability analysis on

the call-graph to identify the serialization, exec, and output

APIs in the PHP interpreter. The reachability analysis does not

reason about any sanitization or filtering the PHP interpreter

might perform. Hence, the reachability of an API to VIF does

not necessarily imply that an attacker can exploit the API.

However, we perform a validation step to verify the output of

the reachability analysis. While it seems more pertinent to per-

form a data-flow analysis than a reachability analysis, we argue

that Argus needs to reason about the PHP interpreter and its ex-

tensions that it is linked against. Ignoring additional challenges

to practicality (e.g., extensions relying on non-C code), our

analysis needs to scale to millions of lines of code across PHP

(one million lines of C code alone). Needless to say, resolving

function pointers is still a prominent challenge for existing

data-flow analysis, including the state-of-the-art SVF tool [33],

which leads to imprecise control-flow graphs. As a result, we

opted for a reachability analysis and subsequent validation

in Argus to identify injection-sinks in the PHP interpreter.

Validation: During the validation step, Argus determines

whether user-input gets passed to the VIF function in-

side the PHP interpeter (i.e., php_var_unserialize and

php_output_write) unmodified. The presence of sanitiza-

tion logic for a specific API does not necessarily mean the API

cannot be exploited by attackers. Saner [2] demonstrates that

sanitization logic might be implemented incorrectly. In this

paper, Argus only reports the set of APIs that pass arguments

unmodified to a VIF, which means that Argus’ results are a

lower bound of vulnerable APIs. Analyzing the correctness of

sanitization logic is an orthogonal research challenge, which

we consider outside the scope of this paper.

VIF identification: The foundation of Argus’ analysis is

based on our key observation that an underlying function is

responsible for performing the action of either deserializing

user-input or writing user-input to output buffers (i.e., the

HTML response). In the case of XSS and insecure deserializa-

tion, there is one VIF for Argus to start the reachability analysis

from. However, other types of injection vulnerabilities, might

require the identification of multiple VIFs. In the case of

command injection, there are eight VIFs which we could

directly obtain from Saphire. Similarly, supporting SQL

injection would require the identification of multiple VIFs.

The reason is that the PHP interpreter supports a variety of

database engines (e.g., SQLite, MySQL, Oracle, etc.) through

individual extensions which can communicate SQL statements

to the respective back-end. Owing to this diversity, the SQL

injection VIFs are located in different database extensions and

require individual identification. However, once a VIF for a

given database extension is identified, Argus can immediately

identify the set of (SQL injection) vulnerable API functions

for the corresponding database engine.

The efforts and time required by analysts to identify the set

of VIFs for each vulnerability vary, depending on the type of

vulnerability. This process starts by identifying the cause of the

vulnerability using analysis tools (e.g., command injection and

XSS) or manual inspection of the code. The manual inspection

contains reasoning about the cause of the vulnerability (e.g., the

serialization format) and detecting the parser function inside

the PHP interpreter that uses the serialization format. In the

case of XSS, we use analysis tools to understand how the PHP

interpreter prints user-input to the output buffer. To this end, we

inspected the sequence of function calls in the PHP interpreter

that involve printing to the output buffer. On average, it took

less than 10 hours to analyze the PHP interpreter to identify the

process of deserializing and printing user-input. For command

injection vulnerabilities, any API that can invoke the execve

system call is a potential exec API. Considering that, Argus

uses prior research, Saphire [3] to analyze and enumerate the

set of VIFs that invoke execve system call. For this analysis,

we spent less than four hours preparing Saphire’s environment

and running its analysis, as well as inspecting the source code

of PHP to identify the mechanism of command injection.

Precondition: Furthermore, our evaluation identified two

sets of injection-sink APIs for PHP: 1) APIs that operates

directly on the value of their arguments and 2) APIs that oper-

ate on malicious files. As mentioned in Section 2.4, the phar

stream wrapper in the PHP interpreter only operates on local

phar files. As a result, to exploit any APIs in the latter category,

the attacker needs to upload the phar file prior to invoking the

insecure deserialization. Therefore, in order to confirm the

detected vulnerabilities, we made the assumption that the at-

tacker had already uploaded the malicious phar file to the web

application’s server. We argue that this assumption is realistic

since there are a plethora of approaches where an attacker can

upload malicious phar files, which include exploiting arbitrary

file upload vulnerabilities [16, 17]. Furthermore, web applica-

tions and their plugins provide upload functionality for many

purposes, such as uploading plugins, profile pictures, and PDF

files, which an attacker can exploit.



Finally, as our evaluation demonstrates, the PHP developers

noticed the security consequences of automatic deserialization

of phar files and fixed this issue in PHP 8.0 (released in

November 2020). However, the PHP usage statistics indicate

that, at the time of writing, only 10.75% of all websites that

rely on PHP actually operate on PHP 8.0 [28]. The reason for

this low adoption rate is probably that transitioning to PHP

8.0 is a non-trivial procedure for most PHP-powered websites.

The major changes in the PHP interpreter 8.0 compared to

previous versions lead to backward incompatiblilities [13]

which can potentially cause fatal errors in the web applications.

The challenge of (in-)compatibility is evidenced by the most

popular PHP application – WordPress. Although efforts

within the WordPress project to support PHP version 8.0

began on December 2020, WordPress still warns users that

even its latest stable version (released in May 2023) is not

fully compatible with version 8 yet [40]. While the PHP

interpreter has addressed the threat arising from the automatic

deserialization of phar files in version 8, history suggests

that web sites relying on older versions of PHP are likely to

remain publicly accessible on the Internet for the foreseeable

future. These will continue to include the over 280 vulnerable

deserialization APIs provided by their PHP runtimes.

6 Related Work

In this section, we review the related literature on detecting se-

curity vulnerabilities or defending against malicious behavior.

Deserialization in PHP Application: In light of new attack

scenarios introduced by Esser, new research has emerged on

detecting deserialization vulnerabilities and detecting such

attacks on PHP applications. RIPS [7] performs an intra-

procedural data flow analysis to detect injection vulnerabilities,

including POI. Dahse [9] proposed an automatic approach to

identify gadget chains to exploit POI vulnerabilities. Further-

more, FUGIO [27] introduced an automatic exploit generation

tool to create exploit objects for POI vulnerabilities. In an or-

thogonal and complementary direction, our work detects the

set of PHP API functions that lead to insecure deserialization,

command injection, or XSS. Crucially, prior works rely on an

exclusively manually curated list of sinks for taint analysis or

exploit generation tools. Unlike prior work, Argus performs an

automatic analysis to identify the set of PHP API functions that

lead to injection vulnerabilities such as insecure deserialization.

In our evaluation, we showed how our results directly improved

prior work in detecting previously unknown vulnerabilities.

Deserialization on Other Platforms: Deserialization

vulnerabilities threaten various platforms such as Java, Python,

and .NET. The research in this area focuses on detecting

such vulnerabilities or defending against deserialization

attacks. SerialDetector [30] leverages call-graph analysis

to identify injection vulnerabilities in .NET libraries. The

key difference between SerialDetector and Argus is that

we aim to detect functions at the PHP interpreter level,

whereas SerialDetector finds new object injection patterns

at the library level (i.e., as part of the web application rather

than the application framework). Tanaka presents attacking

patterns in Python’s Pickle library, which lead to denial of

service (DoS) attack [34]. Look-ahead object input stream

(LAOIS) is a defense mechanism against Java deserialization

vulnerabilities, allowing the type check of the serialized

stream before deserialization, as implemented in Apache’s

Common IO library [5] and Java Serialization Filtering [26].

Other Vulnerabilities: There are multiple studies on de-

tecting vulnerabilities in PHP applications. Several approaches

rely on taint analysis to track unsanitized data and detect injec-

tion vulnerabilities [1, 7, 8, 21, 32, 38, 42]. Dynamic analysis

and hybrid techniques also play an important role in detection

and defense systems [3, 14, 15, 18, 25, 29, 31]. Prior works

exclusively analyze the web application code and many rely

on hand-crafted list of sinks. Argus analyzes the underlying

PHP interpreter and generates these lists in a principal manner

which could improve existing systems, as demonstrated in

our evaluation. Compared to defense mechanisms, Argus

takes a more proactive approach in order to detect injection

vulnerabilities rather than defend against such POI attacks.

7 Conclusion

In this paper, we proposed Argus, an automated static-dynamic

analysis approach to identify the set of PHP API functions that

deserialize, execute, or output their arguments in a PHP appli-

cation. Argus statically analyzes the PHP interpreter and its

modules to generate a call-graph. Next, we refine the statically

generated call-graph by using the recorded dynamic trace of the

publicly available unit test of the PHP interpreter. Argus then it-

erates over the call-graph and identifies a comprehensive set of

PHP APIs that can invoke the internal deserialization, execute

OS command, or output functions. In our experiments on three

of the most popular versions of the PHP interpreter, we discov-

ered more than 300 functions that can deserialize user-input,

execute OS command, or write user-input to an output buffer,

expanding prior knowledge by an order of magnitude. We draw

attention toward the fact that prior works rely on a purely ad-

hoc curated list of functions for their static or dynamic analysis,

whereas Argus automatically generates a comprehensive list.

In addition, we demonstrate that Argus’ findings are highly

security relevant. Our findings show that, extending Psalm by

Argus’ results, we detected 13 previously unknown XSS and

deserialization vulnerabilities in PHP applications.
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A PHP Object Injection

1 // PART ONE: modify properties

2 class Exec {

3 private $_cmd = "cat secret"; }

4 class Example {

5 protected $obj;

6 function __construct() {

7 $this ->obj = new Exec; } }

8 print urlencode(serialized(new Example));

9 // PART TWO: create Phar file

10 $phar = new Phar('exploit.phar');

11 $phar ->startBuffering();

12 $phar ->setMetadata(new Example());

13 $phar ->stopBuffering();

Listing 3: Adversary can exploit file operations by

generating a malicious phar file.

B Validation Process

1 $pre_code = "code snippet of the exploit";

2 $payloads = array

("phar"=>"path -to-phar -file","direct

"=>"serialized_data" ,...); // different

pattern of input to deserialize APIs

3 $list_funcs = []

// the list of functions to be validated

4 foreach($list_funcs as $func) {

5 // generate the phar file

6 if $func {

7 $ref = new ReflectionFunction($func);

8 // get the list of params using reflection

9 foeach($payloads as $key => $payload) {

10 $snippet

= "..."; // invoke $func with $payload

11 file_put_content

("tmp.php", $pre_code . $snippet) }

12 $cmd

= $PHP_BINARY." tmp.php 2> /dev/null";

13 $res = shell_exec($cmd);

14 // checking the result.

15 if (strpos($res , "SUCCESS") !== false) {

16 echo $func. " is vulnerable\n";

17 break } } }

Listing 4: Psuedo-code of the validation process in Argus



Deserialization API

Category PHP API functions

Phar† phar::__construct phar::unlinkArchive, phar::loadPhar, phar::setAlias, phar::delete, phar::offsetSet, phar::setSignatureAlgorithm,

phar::isValidPharFilename, phar::buildFromIterator, phar::setDefaultStub, phar::mount, phar::getType, phar::covertToExecutable,

phar::offsetUnset, phar::stopBuffering, phar:getATime, phar::setStub, phar::isLink, phar::addFromString, phar::isFile, phar::addFile,

phar::compress, phar::extractTo, phar::hasChildren, phar::getInode, phar:getFileInfo, phar::decompressFiles, phar::mapPhar,

phar:isReadable, phar::addEmptyDir, phar::compressFiles, phar:getOwner, phar:getGroup, phar::offsetGet, phar::setMetadata,

phar:getPerms, phar::isExecutable, phar::loadPhar, phar::copy, phar::convertToData, phar::isWritable, phar:getSize, phar:getCTime,

phar:getMTime, phar:isDir, phar::getStub, Phar::delMetadata, PharFileInfo::__construct, PharFileInfo::chmod, PharFile-

Info::getContent, PharFileInfo::getType, PharFileInfo::isReadable, PharFileInfo::isDir, PharFileInfo::isWritable, PharFileInfo::openFile,

PharFileInfo::decompress, PharFileInfo::compress, PharFileInfo::getInode, PharFileInfo::getCTime, PharFileInfo::getMTime, PharFile-

Info::getSize, PharFileInfo::isExecutable, PharFileInfo::isLink, PharFileInfo::isFile, PharFileInfo::getATime, PharFileInfo::getGroup,

PharFileInfo::getPerms, PharFileInfo::getOwner, PharFileInfo::getFileInfo, PharFileInfo::setMetadata, PharFileInfo::delMetadata,

PharData::unlinkArchive, PharData::loadPhar, phar::getMetadata, PharFileInfo::getMetadata,

SPL FileInfo::openFile†, FileInfo::getCTime†, FileInfo::getSize†, FileInfo::getATime†, FileInfo::getFileInfo†, FileInfo::getGroup†,

FileInfo::getType†, FileInfo::getPerms†, FileInfo::getOwner†, FileInfo::isWritable†, FileInfo::isDir†, FileInfo::getMTime†, File-

Info::isReadable†, FileInfo::getInode†, FileInfo::isExecutable†, FileInfo::isFile†, FileInfo::isLink†, SplFileObject::__construct†,

SplFileObject::getType†, SplFileObject::isReadable†, SplFileObject::isDir†, SplFileObject::openFile†, SplFileObject::getInode†,

SplFileObject::isWritable†, SplFileObject::getFileInfo†, SplFileObject::getCTime†, SplFileObject::getPerms†, SplFileObject::getOwner†,

SplFileObject::getGroup†, SplFileObject::getATime†, SplFileObject::getGroup†, SplFileObject::isExecutable†, SplFileObject::isFile†,

DirectoryIterator::__construct†, DirectoryIterator::getType†, DirectoryIterator::isReadable†, DirectoryIterator::isDir†, Directo-

ryIterator::openFile†, DirectoryIterator::getInode†, DirectoryIterator::isWritable†, DirectoryIterator::getFileInfo†, DirectoryItera-

tor::getATime†, DirectoryIterator::getCTime†, DirectoryIterator::getPerms†, DirectoryIterator::getOwner†, DirectoryIterator::getGroup†,

DirectoryIterator::isLink†, DirectoryIterator::isFile†, DirectoryIterator::isExecutable†, RecursiveDirectoryIterator::__construct†, Recur-

siveDirectoryIterator::getType†, RecursiveDirectoryIterator::isReadable†, RecursiveDirectoryIterator::isDir†, RecursiveDirectoryItera-

tor::openFile†, RecursiveDirectoryIterator::getInode†, RecursiveDirectoryIterator::isWritable†, RecursiveDirectoryIterator::getFileInfo†,

RecursiveDirectoryIterator::getCTime†, RecursiveDirectoryIterator::getPerms†, RecursiveDirectoryIterator::getOwner†, RecursiveDirec-

toryIterator::getGroup†, RecursiveDirectoryIterator::isLink†, RecursiveDirectoryIterator::current†, RecursiveDirectoryIterator::isFile†,

RecursiveDirectoryIterator::isExecutable†, RecursiveDirectoryIterator::hasChildren†, FileSystemIterator::__construct†, FileSystemItera-

tor::getType†, FileSystemIterator::isReadable†, FileSystemIterator::isDir†, FileSystemIterator::openFile†, FileSystemIterator::getInode†,

FileSystemIterator::isWritable†, FileSystemIterator::getFileInfo†, FileSystemIterator::getPerms†, FileSystemIterator::getOwner†,

FileSystemIterator::getGroup†, FileSystemIterator::getATime†, FileSystemIterator::current†, FileSystemIterator::getSize†, FileSystemIt-

erator::isLink†, FileSystemIterator::getMTime†, FileSystemIterator::isExecutable†, FileSystemIterator::isFile†, SplQueue::unserialize,

SplStack::unserialize, SplDoublyLinkedList::unserialize, ArrayIterator::unserialize, RecursiveArrayIteratorunserialize, SplObject-

Storage::unserialize, ArrayObject::__unserialize

DOM & XML† DOMDocument::loadHTMLFile, DOM::C14NFile, DOMDocument::load, DOMDocument::loadXML, DOMDocument:saveHTMLFile,

DOMDocument:relaxNGValidate, DOMDocument:validate, DOMDocument:save, xmlwrite_open_uri, xmlreader::open, SimpleXM-

LElement::__construct, simplexml_load_file, simplexml_load_string

File Operation† get_meta_tags, is_dir, scandir, is_writable, is_file, opendir, file, move_uploaded_file, rmdir, fileowner, touch, gzfile, file_get_contents, mkdir,

finfo_file, fileatime, bzopen, fileperms proc_open, readgzfile, is_link, file_put_contents, finfo_buffer, gzopen, getdir, unlink, is_readable,

filegroup, finfo_open, filectime, filemtime, rename, fileinode, copy, filesize, mime_content_type, stat, filetype, fopen,readfile,file_exists,

is_executable

Hash† md5_file, hash_hmac_file, sha1_file, hash_file

DataBase† PDO::pgsqlCopyFromFile, PDO:pgsqlCopyToFile, pg_trace

Image

Processing†
imageloadfont, exifimagetype, exif_read_data, read_exif_data, exif_thumbnail, getimagesize, imagecreatefromjpeg, imagecreatefrompng,

imagecreatefromgd2,imagecreatefromgif, imagecreatefromwebp, imagecreatefromgd, imagecreatefromxbm, imagecreatefrombmp, image-

createfromwbmp, imagecreatefromavif, imagejpeg, imagepng, imagegif, imagegd, imagegd2, imageavif, imagebmp, imagewbmp,imagexbm,

imagewebp

Session Function session_decode, session_start

Communication ftp_nb_put†, ftp_nb_get†, ftp_get†, ftp_append†, ftp_put†, msg_recieve

Deserialization unserialize

Output API

Database pg_loreadall, pg_lo_read_all, odbc_result_all

File Operation† fpassthru, readfile, readgzfile, gzpassthru, SplFileObject::fpassthru

OOP class_alias

Closures Closure::bind, Closure::bindTo

Iterators CachingIterator::offsetGet, RecursiveCachingIterator::offsetGet

Error Handling trigger_error, user_error, die, exit

General echo, print, print_r, vprintf

Exec API

Mail mail, mb_send_mail

Process system, shell_exec, exec, proc_open, popen, pcntl_exec, passthru

Table 5: The categories of exec, output and deserialization API. The functions or category of functions specified by † require

the precondition of uploading a malicious file prior to exploitation. The functions specified in bold are the set of vulnerable

deserialization APIs in PHP 8.
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