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Abstract—Multi-access edge computing (MEC) is seen as
a vital component of forthcoming 6G wireless networks,
aiming to support emerging applications that demand high
service reliability and low latency. However, ensuring the
ultra-reliable and low-latency performance of MEC networks
poses a significant challenge due to uncertainties associated
with wireless links, constraints imposed by communication
and computing resources, and the dynamic nature of net-
work traffic. Enabling ultra-reliable and low-latency MEC
mandates efficient load balancing jointly with resource allo-
cation. In this paper, we investigate the joint optimization
problem of offloading decisions, computation and communi-
cation resource allocation to minimize the expected weighted
sum of delivery latency and energy consumption in a non-
orthogonal multiple access (NOMA)-assisted MEC network.
Given the formulated problem is a mixed-integer non-linear
programming (MINLP), a new multi-agent federated deep
reinforcement learning (FDRL) solution based on double deep
Q-network (DDQN) is developed to efficiently optimize the of-
floading strategies across the MEC network while accelerating
the learning process of the Internet-of-Thing (IoT) devices.
Simulation results show that the proposed FDRL scheme can
effectively reduce the weighted sum of delivery latency and
energy consumption of IoT devices in the MEC network and
outperform the baseline approaches.

I. INTRODUCTION

The 6G wireless cellular network must support a wide
range of new applications with ultra-high reliability and
low latency service requirements [1], [2]. Among these
emerging applications include, connected and autonomous
vehicles (CAVs), extended reality (XR), Internet-of-Things
(IoT) networks with strict quality-of-service (QoS) require-
ments on the end-to-end (E2E) latency (e.g., 1 ms) and re-
liability (e.g., 10−8 packet loss probability) [3]. Moreover,
given the constrained computational power and limited
battery capacity of IoT devices, meeting predefined task
deadlines that require significant resources often becomes
unfeasible for these devices. To meet such stringent service
requirements, multi-access edge computing (MEC) is an
attractive solution to significantly reduce service latency
by enabling base stations (BSs) to process computing tasks
(e.g., XR rendering) for user equipment (UE), e.g., IoT
devices, directly within the radio access network (RAN)
without relying on remote cloud servers [4], [5].

While promising, ensuring a consistent performance over
a MEC network is challenging due to random wireless
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channel variations, stochastic task arrival, as well as het-
erogeneity of edge computing servers and computing tasks.
Additionally, considering the constrained resources of IoT
devices and edge servers, such as limited bandwidth and
computing capabilities, the MEC-supported network is sus-
ceptible to becoming overwhelmed, resulting in dropped
computing tasks and poor QoS. Hence, it is imperative
to develop innovative solutions that jointly optimize the
offloading decisions and efficiently allocate edge computing
resources for processing tasks from IoT devices within the
MEC framework.

Recently, the majority of existing research [4]–[9] has
tackled the challenge of joint decision-making on of-
floading, communication, and allocation of computational
resources in ultra-reliable and low-latency MEC (URLL
MEC) utilizing methodologies from the field of optimiza-
tion theory. The power allocation for delivery latency re-
duction in a device-to-device (D2D) enabled MEC scenario
is studied in [9]. In fact, the authors propose a new
power allocation algorithm to minimize the total latency
while guaranteeing the task computing deadline. However,
these algorithms have commonly suffered from issues of
scalability, time inefficiency, and high computational over-
head. Instead of relying on model-based methods, model-
free approaches that leverage machine learning (ML) in
combination with the computing capabilities of UEs and
BSs can provide new opportunities for enabling URLL
MEC.

In this regard, the body of work in [10]–[13] presents sev-
eral new schemes based on deep neural networks (DNNs)
and deep reinforcement learning (DRL) to optimize the
network performance for URLL MEC applications. The
authors in [11] propose a resource allocation technique us-
ing multi-agent DRL in a vehicle-to-vehicle communication
network. In [12], the authors present a DRL-based compu-
tation and communication resource allocation scheme in a
MEC railway IoT network. In [14], the authors develop a
joint task, spectrum and transmit power allocation method
based on multi-stack RL to minimize the computational
and transmission latency in a MEC network. However,
a significant drawback of many DRL algorithms is their
centralization, leading to scalability issues as the number
of devices increases. Additionally, finding an optimal policy
becomes computationally complex, especially with the ex-
ponential growth of the state and action spaces. Moreover,
centralized learning demands IoT devices to share their data
to train a global model, potentially compromising privacy.

Recently, distributed learning algorithms that enable
users to collaboratively build a unified learning model
while conducting local training [15] are developed. One
of the most promising distributed learning frameworks is



federated learning (FL) which preserves the data privacy by
avoiding data uploading to the parameter server (PS) [16],
[17]. In FL scheme, each device utilizes its individual local
dataset for training and subsequently transfers its respective
local model to the PS for global aggregation. In particular,
FL improves collaboration among agents and enhances the
scalability of network resource management algorithms.
In this regard, the problem of joint power allocation and
resource allocation for URLL communications in vehicular
networks is investigated in [18]. The authors propose a
novel distributed scheme based on FL in order to estimate
the tail distribution of the queue lengths. However, the
constraint of energy consumption of each user in the
network is not considered.

More recently, several research studies have delved into
the challenge of reducing latency and energy consumption
for IoT devices within the context of a FL system [19]–[21].
For instance, in [19], the authors investigate the problem
of jointly optimizing resource and learning performance to
reduce communication costs and improve learning perfor-
mance in wireless FL systems. The authors in [21] focus
on optimizing various aspects of FL, including weight com-
pression, convergence analysis and iteration reduction over
IoT networks. However, none of the mentioned research
works applied FL to enhance the effectiveness in solving
a real-world wireless resource allocation problem. In [22],
the authors employ FL to facilitate the learning process in
DRL, wherein individual local DRL models were trained
and subsequently merged collaboratively to construct a
comprehensive global DRL model. However, the authors
modeled the network as a queuing system without explicitly
ensuring QoS for users’ tasks and allocation of computation
resources.

The main contribution of this paper is a novel framework
to optimize the reliability of the MEC IoT network by
minimizing joint delivery latency and energy consumption
of IoT devices using federated DRL (FDRL). In particu-
lar, we design a non-orthogonal multiple access (NOMA)
model of heterogeneous network with multiple BSs and
multiple IoT devices to dynamically optimize offloading
decisions, base station assignment, and channel resource
allocation in a decentralized manner across the RAN, while
accounting for the constraints of the wireless network and
edge computing servers. Given that the proposed problem
is a mixed integer non-linear programming (MINLP) and
difficult to solve, a new algorithm is developed to jointly
solve the offloading decision problem, computing resource
and transmit power allocation across the MEC network.
Mainly, we first reformulate our problem as a multi-agent
DRL problem and solve it using double deep Q-network
(DDQN). To enhance both the quality and speed of learning
of the proposed algorithm, we integrate FL at the end of
each episode. Utilizing FL results in a framework that is
both privacy-preserving and scalable, establishing a context
for cooperation among agents. Extensive simulation results
are carried out to show the superiority of the proposed al-
gorithm through comparisons with those existing schemes.
Results indicate that the proposed scheme considerably
outperforms the benchmarks under multiple performance
metrics.

The rest of the paper is organized as follows. Section II

presents the system model. Section III and IV describe the
problem formulation and the proposed solution. Simulation
results are provided in Section V and conclusions are
presented in Section VI.

II. SYSTEM MODEL

We consider an MEC heterogeneous network based on
NOMA consisting of a set M of M IoT devices with
limited computation and energy resources and a set N of
N BSs as shown in Fig. 1. At each time t, device m
needs to process one of the tasks in its queue and can
either execute its task locally or offload it to a nearby BS
n. Specifically, we use xm,n ∈ {0, 1} to indicate the IoT
device offloading decisions. When xm,n = 0, represents the
IoT device uses local processing, Otherwise, the it uploads
to BS for processing. Meanwhile, NOMA transmission
scheme applies successive interference cancellation (SIC)
receivers at the receiving end to realize multi-user detection.
Next, we explain the transmission and computing latencies
in details.

A. Over-the-Air Transmission Latency and Energy Con-
sumption

If the IoT device m decides to offload its task, it should
first transmit it to the BS through wireless channels. Due
to the wireless fading channel, some packets may not be
decoded successfully at the BS, hence, re-transmission is
needed. With this in mind, the transmission latency is given
by:

τairm,n =

J∑
j=1

⌈
Im

rm,n,j

⌉
, (1)

where ⌈.⌉ is the ceiling function, J − 1 is the number of
re-transmissions, and Im is the size of the task (in bits). In
(1), rm,n,j represents the transmission data rate for the j-th
transmission is calculated as follows:

rm,n,j = ω log2 (1 + γm,n,j) , (2)

where ω is the channel bandwidth. Moreover, γm,n,j is the
signal-to-interference-plus-noise-ratio (SINR) and is given
by

γm,n,j =
GmGnPmhm,n,jLm,n∑

m′ ̸=m Pm′,n + σ2
n

, (3)

where Pm, Pm′,n, and σ2
n denote, respectively, the transmit

power of IoT device m, the received power from an inter-
fering IoT device m′, and the noise power. Gm and Gn are
the antenna gains for IoT device m and BS n, respectively.
In addition, hm,n,j , and Lm,n represent, respectively, the
Rayleigh fading channel gain for the j-th transmission and
path loss between IoT device m and BS n. The channel
gain hm,n,j is considered flat-fading over the bandwidth ω
and constant during the transmission of one packet.

In addition, energy consumption of device m, while
offloading its task to the BS n is given as follows

Eair
m,n = τairm,nPm

=
ImPm

ω log2

(
1 +

GmGnPmhm,n,jLm,n∑
m′ ̸=m Pm′,n+σ2

n

) . (4)
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Fig. 1. System Model.

B. Computing Latency at Edge Computing Servers

Computing latency refers to the time needed for execut-
ing a task at an edge computing server within the MEC
network. The execution time of a task depends on the data
to be processed and the tasks submitted, therefore, it can
be modeled as a random variable [23]. For instance, the
execution time for performing the object detection highly
depends on the quality or level of details in the captured
images, as well as the type (GPU vs. CPU) and processing
resources (e.g., processing bandwidth) of the edge server.

Let fmax denote the maximum computing-cycle fre-
quency of edge processors for each BS. If device m offloads
its task to the edge server the computation latency would be
τ comp
m,n = cm

fedge
m,n

, where cm and fedge
m,n denote the CPU cycle

requirement of the task and average computation capacity
of edge server, respectively. From the standpoint of an
IoT device, the energy expended to process a task when
offloaded to an edge server includes the energy used for
task transfer. Hence, the overall energy utilization for edge
computing would be equal to Eair

m,n.
In addition, if device m decides to process its task locally,

the latency and energy consumption for local computation
would vary based on the computation resources allocated
for task processing at time t, denoted by f loc

m . Therefore,
the local latency and energy consumption for the device are
modeled as follows:

τ locm =
cm
f loc
m

,

Eloc
m = ζm

(
f loc
m

)2
,

(5)

where ζ is a constant coefficient which depends on the chip
architecture in devices. It’s important to note that higher
resource utilization, whether in terms of transmit power
or computation capacity, reduces the delivery latency at
the cost of higher energy consumption. Hence, managing
this trade-off requires careful handling through efficient
offloading decision-making and precise optimization of
both local computation and offloading strategies.

III. MULTI-OBJECTIVE PROBLEM
FORMULATION

The main goal of this paper is to minimize the latency of
completing task and energy consumption at the same time
by jointly accounting the offloading decisions, BS selection
and channel resource allocation made by IoT devices. The

long-term expected weighted sum of latency and energy
consumption between each IoT device m and BS n, is
formulated as follows:

τm,n

(
P, f loc, fedge,x

)
=

E

[
lim
t→∞

1

t

t∑
i=0

(1− xm,n,i)τ
loc
m,i + xm,n,i(τ

comp
m,n,i + τairm,n,i)

]
,

(6)
and

Em,n

(
P, f loc, fedge,x

)
=

E

[
lim
t→∞

1

t

t∑
i=0

(1− xm,n,i)E
loc
m,i + xm,n,iE

air
m,n,i

]
,

(7)

where P, f loc, fedge and x represent the vectors of transmit
powers, local computing resource allocation, edge server
computation resource allocation, local computing and edge
offloading decision, respectively.

For any given device m at time t, we model the decision-
making problem (DMP), expressed as:

min
P,f loc,fedge,x

U = τm,n + λEm,n

subject to:

C1 : (1− xm,n)E
loc
m + xm,nE

air
m,n ≤ Emax,

C2 : (1− xm,n)τ
loc
m + xm,n(τ

air
m,n + τ comp

m,n ) ≤ τth,

C3 : f loc
m ≤ Fmax,

C4 :
∑

m∈M
fedge
m,n ≤ fmax,

C5 : xm,n ∈ {0, 1}, ∀m ∈ M, ∀n ∈ N ,

(8)

where λ is a weighting factor. Constraint C1 represents
the restriction on the energy resource of the device and
that energy utilization should not exceed Emax. Constraint
C2 expresses that total time for processing the task must
meet the maximum latency threshold determined by QoS
requirement regardless of whether it is following local
processing or offloading to BS processing. Constraints C3
and C4 indicate the local computation capacity with the
maximum threshold Fmax and the sum of the computation
frequency allocated to IoT devices should not exceed the
maximum computation frequency of the MEC server fmax.
The constraints C5 indicates that the decision variables of
the problem are all binary indicators.

The proposed optimization problem in (8) is a MINLP,
hence, it is difficult to solve. Next, we develop a new
efficient algorithm to solve this problem.

IV. PROPOSED FEDERATED DDQN ALGORITHM
When addressing the joint optimization problem in multi-

user scenarios, various challenges come to light.
• The significant mobility observed in IoT devices

results in frequent and unpredictable shifts within
the communication channel. This dynamic variability
poses a considerable challenge for IoT devices, imped-
ing their ability to effectively make optimal real-time
decisions.

• Due to constrained resources, the decision made by
each individual IoT device holds a consequential in-
fluence on the selection and actions of other devices
within the network, meaning that optimal decision-
making by one device not only affects its own resource



Algorithm 1 Proposed FDRL for Joint Offloading Decision
and Computing and Communication Resource Allocation
(Training Phase)
Input: N , M, t = 0
Output: P, f loc, fedge,x

1: Initialize the global model ϕglobal, the online and target
networks for each agent m.

2: while (maximum number of iterations is not reached)
do

3: ϕonline
m = ϕtarget

m = ϕglobal
m ,

4: Using (13), choose the set of participating devices,
K.

5: for each device m in K do
6: for each time step t if |Im| > 0 do
7: Compute offloading decision, x, using ϕonline

m ,
8: Interact with environment and solve (9) or (10)

applying KKT conditions,
9: Save the experience P, f loc and fedge in replay

memory Om,n,t,
10: Train the local model on Om,n,t,
11: Transmit ϕonline

m to the PS,
12: end for
13: end for
14: update ϕglobal

m using (14) and distribute it to all
selected devices in the next round.

15: end while

allocation and performance but also ripples through the
network, influencing the decisions and performance of
other devices.

• As the number of IoT devices grows in the network,
the offloading decision complexity increases exponen-
tially. This escalating complexity underscores the need
for scalable and efficient approaches to address the
evolving demands of IoT networks.

To address the issues mentioned above, we propose a
multi-agent DDQN algorithm to solve the secure offload-
ing and computing and communication resource allocation
problem. The details of the algorithm are elaborated in the
following section.

A. Sketch of double deep Q-network

Given the aforementioned challenges, employing tradi-
tional optimization methods to address the dynamic opti-
mization problem described in equation (8) is not feasible.
Model-free DRL is a useful tool for handling the DMP and
learning the optimal solutions in dynamic environments.
Hence, the DMP is formulated as a Markov Decision
Process (MDP). Particularly, we model our problem as a
multi-agent DDQN problem. For each device (DRL agent),
we have following components:

• State space: the state space for each agent m, denoted
by sm, is defined as
sm = {Im, hm,n, Im, cm, Emax, Fmax}, where Im is
the length of the task queue of device m.

• Action space: The action space of agents, denoted by
A, includes the offloading decisions depending on the
current state.

• Cost function: The objective function defined in (8)
depends on the value of Pm and fedge

m,n when offloading

TABLE I
SIMULATION PARAMETERS

Notation Parameter Value
N Number of BSs 5
M Number of IoT devices 30
Pm Transmit power of a IoT device 10 mW

Gn,Gm Antenna gains 1
fmax Computing frequency 30 GHz
N0 Noise power spectral density −90 dBm/Hz
ω Total system bandwidth 50 MHz
τth Service latency requirement 10-100 ms [1]

to edge server and f loc
m if local computation is selected.

Hence, in order to accurately capture the benefits of
a specific offloading decision within the cost function,
it is imperative to carefully optimize these variables.
Therefore, when device m performs its task locally,
i.e., xm,n = 0, the cost would be calculated by solving
the following optimization problem:

min
f loc
m

τ locm + λEloc
m

subject to: C1, C2, C3.
(9)

If device m offloads its task to the BS, i.e., xm,n = 1,
the transmit power and computing frequency at the
edge server would be optimized by solving the fol-
lowing optimization problem:

min
Pm,fedge

m,n

(τ comp
m,n + τairm,n) + λEair

m,n

subject to: C1,C2,C4.
(10)

It’s important to note that both equations (9) and (10)
represent convex optimization problems with respect to the
variables f loc

m and Pm, fedge
m,n , respectively. These types

of optimization problems can be effectively solved using
standard software tools, e.g., Karush-Kuhn-Tucker (KKT)
conditions. After finding the optimal computing and com-
munication resource allocation vectors, f loc, P and fedge,
we feed them into the DDQN framework as the immediate
cost function. After the DDQN agent is trained through this
process for one training round, we apply a FL framework
where each IoT device will train its DDQN models, share
and update their models with PS.

B. DDQN training phase

Consider the immediate cost of each IoT device m ob-
tained from the solution of the (9) and (10) as costm(s, a).
Using Bellman equation, the action-state value is:

Qm(s, a) = costm(s, a)+γ
∑
s′∈S

Wss′(a)max
a′∈A

Q∗
m (s′, a′) ,

(11)
where S,Wss′(a), and 0 < γ < 1 are the set of states,
the transition probability function, and the discount factor,
respectively. Our goal by using DDQN is to find a solution
to minimize the state-action function Q∗

m (s′, a′). Each
agent m has two neural networks working alongside each
other, one called online network with parameters ϕonline

m

and the other called target network with parameters ϕtarget
m .

At each training iteration the target value for training the
online network in device m is calculated as:

Zm = costm(s, a) + γQm(s′,max
a′∈A

Q∗
m(s′, a′;ϕonline

m ), ϕtarget
m )

(12)
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Fig. 2. The convergence property of the FDRL algorithm.

To overcome related issues regarding to train a DRL agent
in a centralized manner such as scalability and privacy
and to improve the overall performance gains, we propose
FDRL that empowers each agent to train its own local
model, using its own local data. Then these local models
are sent to a PS to be combined together. This process
continues until a certain criterion is met.

C. Federated DRL Scheme

Training FDRL agents is completed in three steps. First,
small subset of M IoT devices, denoted by K = 1, ...,K
is selected to contribute in FL based on the following
criterion:

max
m∈M

Variance

(
dmPmax

Fmax

)
, (13)

where dm represents the distance of device from BS. Then,
each selected IoT devices use DDQN to train their local
models and send the weights of online network, ϕonline

m , to
the PS. Finally, the PS aggregates the models using FedAvg
[24] and forms a single global model that would be then
transmitted to all selected devices. The model aggregation
is given as:

ϕglobal =

∑
m∈K ϕonline

m

|K|
(14)

The proposed algorithm is summarized in Algorithm 1.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the
proposed scheme for reliability optimization in the MEC
network shown in Fig. 1. The packet size of each IoT
devices is selected randomly from a uniform distribution
with a range [1, 10] kbits. Simulation parameters are
summarized in Table I. We compare the performance of
the proposed method with two baseline approaches. The
first baseline approach, hereinafter referred to as “Baseline
1”, uses simple distributed DDQN without any aggregation
(non-federated) to solve the proposed problem. The second
baseline, hereinafter referred to as “Baseline 2”, is the state-
of-art centralized deep Q-network (DQN) scheme where
there is a centralized entity that makes decisions based on
the collective information from all agents. The performance
was evaluated by averaging the results over sufficiently
large Monte Carlo runs.

Figure. 2 shows the convergence of the proposed FDRL
algorithm versus the number of epochs for different system
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parameters. From Fig. 2, we observe that the proposed
algorithm has a fast convergence rate, and can converge
within reasonably small number of epochs for all the
simulated cases.

Figure. 3 compares the utility function for the proposed
approach with the baseline methods, versus the computing-
cycle frequency of each MEC. Simulation results show
that the utility function declines as the computing capacity
increases for all three methods. The results in Fig. 3
also indicate that the proposed scheme surpasses the other
two methods. For example, for fedge = 25 GHz , the
performance gain is up to 24% and 38%, respectively,
compared to baseline schemes 1 and 2 when N = 5 BSs
and M = 30 IoT devices.



Figure. 4 illustrates how the utility function is affected
by the allocation of different bandwidth. As the bandwidth
increases, the utility function decreases due to the fact
that each IoT device requires to dedicate small amount of
power to achieve higher transmission rates. Therefore, both
delivery latency and energy consumption are reduced. The
results in Fig. 4 indicate the superior performance of the
presented scheme compared to the baseline methods. For
instance, in a MEC network with assigned bandwidth ω =
40 MHz, the performance gains yielded by the proposed
algorithm are up to 15% and 27%, respectively, compared
to baseline methods 1 and 2.

In Fig. 5, the utility function versus the network size
is shown for the proposed approach and the two baseline
methods. It is clear that the utility function increases as
more IoT devices exist in the network. The results in Fig.
5 highlights that the proposed scheme can yield up to 13%
and 30% performance gain, when M = 40, compared to
the baseline 1 and 2, respectively. Furthermore, Fig. 5 also
shows the scalability of the proposed method. For example,
with the utility function of 0.9, the proposed scheme can
support up to 60 IoT devices, which is 18% and 33% higher
compared to baselines 1 and 2, respectively.

VI. CONCLUSIONS

In this paper, we addressed a joint latency and energy
minimization problem for the NOMA-assisted MEC IoT
network to guarantee the reliability of the network. Con-
sidering the strict QoS requirement for the IoT devices,
the problem was formulated by jointly optimizing the
offloading decisions, computing recourse allocation and
transmit power control. To solve the proposed MINLP, we
have developed a new algorithm that adopted FL, DDQN,
and optimization theory called FDRL. More specifically,
DDQN is used to determine the offloading decisions of the
IoT devices. Given the offloading decisions, the computing
capacity or transmit power of the devices is optimized to
minimize the utility function. Then, we feed the results into
the DDQN framework as the immediate cost function to
optimize the offloading decisions. To improve the learning
speed of IoT devices, we use FL at the end of each round.
Simulation results have confirmed the effectiveness of the
proposed scheme to those comparative algorithms.
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