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ABSTRACT
The Dynamic PicoProbe at Argonne National Laboratory is under-
going upgrades that will enable it to produce up to 100s of GB of
data per day. While this data is highly important for both fundamen-
tal science and industrial applications, there is currently limited
on-site infrastructure to handle these high-volume data streams.
We address this problem by providing a software architecture ca-
pable of supporting large-scale data transfers to the neighboring
supercomputers at the Argonne Leadership Computing Facility. To
prepare for future scientific workflows, we implement two instruc-
tive use cases for hyperspectral and spatiotemporal datasets, which
include: (i) off-site data transfer, (ii) machine learning/artificial intel-
ligence and traditional data analysis approaches, and (iii) automatic
metadata extraction and cataloging of experimental results. This in-
frastructure supports expected workloads and also provides domain
scientists the ability to reinterrogate data from past experiments to
yield additional scientific value and derive new insights.
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1 INTRODUCTION
Experimental facilities around the world rely on computational
infrastructure to support scientific discovery. Such infrastructure is
present at all levels of the “experimental stack”, including: precise
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SC-W 2023, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0785-8/23/11. . . $15.00
https://doi.org/10.1145/3624062.3624614

control of instrumentation for atomic-scale measurement, captur-
ing and analyzing big data in real-time, and publishing such data for
the broader research community to access. An increasingly impor-
tant design pattern within this paradigm, “closing the loop,” seeks
to tighten the gap between experiment and computation, thereby
increasing the efficiency of the research process and accelerating
the rate of discovery. Machine learning and artificial intelligence
(ML/AI) play a lead role in this pattern as the underlying compu-
tational agents that, in many scenarios, are able to optimize a set
of experimental measurements toward an objective. To achieve
this vision, there is a need for robust, open-source, modular soft-
ware components to realize end-to-end experimental workflows
and open the door for computationally mediated science.

In this work, we describe our approach to developing such in-
frastructure for the Dynamic PicoProbe Analytical Electron-optical
Beam Line / Microscope (Sec. 2.1) at Argonne National Laboratory
(ANL). The Dynamic PicoProbe is undergoing a set of upgrades, and
upon completion is expected to produce 100s of GB of data per day
during steady-state operation. In the long term, future state-of-the-
art detectors (which will further extend scientific capabilities) will
generate up to 65 GB of data per second (≈200 TB/hour). To prepare
for these intensive data streams, we employed Globus automation
services [7, 25] to develop a pair of data flows for transferring ex-
perimental data (hyperspectral and spatiotemporal images) from
the Dynamic PicoProbe site to the Polaris supercomputer at the
Argonne Leadership Computing Facility (ALCF) for analysis and
cataloging, as illustrated in Fig. 1. In addition to transferring data
into a permanent store at ALCF, we provide a simple access portal
for researchers to view experimental analyses to help guide the next
set of experimental measurements and easily share their findings.
We leveraged the Globus Search service and the Django Globus
Portal Framework (DGPF) [16] to make data Findable, Accessible,
Interoperable, and Reusable (FAIR) [31].

This work presents computational infrastructure to facilitate au-
tomated data transfer from the Dynamic PicoProbe to the Argonne
Leadership Computing Facility (ALCF) in order to:

• Provide a crucial data storage solution for experimental data
that would quickly overwhelm on-site computing resources.

• Use high performance computing to (i) analyze hyperspectral
data, and (ii) leverage ML/AI on spatiotemporal data streams
to extract/summarize scientifically meaningful information
from high-volume and high-velocity data streams.

• Produce a FAIR search index and user portal to catalog ex-
periment metadata and data products to support scientific
campaigns over extended durations and with multiple users.
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Figure 1: A high-level vision to support computationally mediated science at the Dynamic PicoProbe. (1) High-dimensional data
is generated by the Dynamic PicoProbe. (2) Data is transferred from on-site computers to more powerful computing clusters
(e.g., ALCF’s Polaris) to perform hyperspectral analysis using traditional approaches and metadata tracking to enable scientists
to later reinterrogate data. (3) The hyperspectral data is used as input to ML/AI approaches to: (i) discover interesting patterns in
the data, (ii) characterize the data distribution, (iii) segment and detect features in the data to assist in calibrating measurement,
(iv) perform error correction by alerting the Dynamic PicoProbe operator to calibration problems. (4) The data analysis and
metadata are synthesized into an actionable summary to assist domain scientists in performing the measurement(s) (i.e.,
experiment) of interest. In this work, we present steps (2) and (3) as different flow use cases, rather than a single unified flow.

Our code, ML/AI model, and datasets are open-source and freely
available on GitHub1.

2 METHODS
2.1 Dynamic PicoProbe
Upgrades to the Dynamic PicoProbe [32] at ANL will enable multi-
modal, multi-dimensional, and in-situ characterization of dynamic
events at interfaces in environmental media. Its capabilities will
include temporally resolved (< 3 ms) [18] and sub-atomic (∼ 50
pm) [24] hyperspectral imaging during in-situ/operando operations
in high-vacuum, cryogenic, liquid, and/or gaseous environments
of macromolecular/ionic species of beam-sensitive and soft/hard
matter systems. The Dynamic PicoProbe features: (i) a 30-300 kV
monochromated, aberration-corrected 50 pm electron probe; (ii)
sub-atomic imaging capabilities; (iii) high energy resolution elec-
tron spectroscopy (< 30meV); and (iv) the𝑋𝑃𝐴𝐷 , the world’s highest
collection efficiency hyperspectral x-ray detector array (∼4.5 sR).

The Dynamic PicoProbe is controlled by a host computer run-
ning Windows 10. Commands are issued through a GUI and haptic
control panel. Data from the instrument are relayed back to the host
computer for interactive control and visualization from four Linux

1https://github.com/ramanathanlab/PicoProbeDataFlow

and two Windows 10 systems that control data acquisition. Win-
dows 10 and macOS user workstations facilitate data processing,
external data transfers, and data backups of user-curated images
and data products (e.g., hyperspectral images). Currently, user ma-
chines are equipped with a 1 Gbps switch that handles external
data transfers. Upgrades are underway to route data directly from
the data acquisition system to the Argonne National Laboratory
backbone, which runs at up to 200 Gbps on-site.

2.2 Data Flow Infrastructure
This section describes the computational infrastructure that we use
to transfer, analyze, and publish experimental data in near real-time.
Each data flow in this work comprises three distinct processing
steps: (i) Data Transfer with Globus, (ii) Data Analysis, whereby
data products are analyzed, plots are produced, and experiment
metadata are extracted, and (iii) Data Publication, in which the
generated plots and experiment metadata are published to a Globus
Search index. We use the term “flow” as a shorthand to describe
a data flow in which multiple stages of computation run serially
across heterogeneous resources and locations. We implement our
flows in Python by using the Globus Architecture for Data-Intensive
Experimental Research (Gladier) software package [25].
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2.2.1 Data Transfer. Before a data flow can begin, new data pro-
duced from an experiment must be automatically recognized and
used to invoke the flow. While the scientific use cases highlighted
here (Sec. 3.1, 3.2) focus on user-curated data files, we can apply
the same design principles to process data files written directly
by the experimental instrument software. To support automatic
data transfers, we developed a cross-compatible Python applica-
tion for Windows 10, macOS, and Linux that uses the watchdog
package [15] to start a new flow when files are created on the
user machine (Sec. 2.1). Our application is very lightweight as the
task logic, orchestration, and fault tolerance are managed by Glad-
ier/Globus automation services. This software stack allows scaling
the number of concurrent flows (as supported by the available net-
working infrastructure) to keep pace with the data-velocity. We also
provide an automatic checkpointing mechanism to avoid undesired
flow repeats in cases where a user needs to resume experimentation
after interruption, e.g., if the user computer needs to be rebooted
or the user resumes a set of experiments on a subsequent day.

When a new file is detected, the Python application starts a
Globus flow. Upon flow start, files are transferred from the user
computer to ALCF’s Eagle storage system, a 100 petabyte Lustre file
system. In our example use cases, the files are written in the Electron
Microscopy Dataset (EMD) format, a subset of the Hierarchical
Data Format version 5 (HDF5) format that efficiently stores high
dimensional microscopy data (including hyperspectral images and
spatiotemporal images) in a standardized, efficient, binary format.
Provisions are also incorporated to use other cross-platform formats
such as the proposed ISO standard HMSA format [22], as well as
additional formats used in the scientific community. The data is
moved by using the Globus Transfer service, a cloud-hosted solution
for copying data rapidly and reliably between Globus Connect
endpoints. Transfer leverages the OAuth-based Globus Auth to
identify and authenticate users to ensure data is moved securely.

2.2.2 Data Analysis. Once the EMD files arrive on the Eagle file
system, two computational steps are performed: (i) image process-
ing, and (ii) experiment metadata extraction.

For image processing, we employ Globus Compute [6], a feder-
ated function-as-a-service platform for secure and reliable remote
computation, to request a compute node on ALCF’s Polaris su-
percomputer and thus avoid overwhelming the login nodes. The
Globus Compute model employs user-deployed endpoint agents
on remote resources to perform tasks. A user may submit Python
functions for execution by specifying the function body, arguments,
and the endpoint on which the code is to be executed. The Globus
Compute service securely routes the task to the endpoint, where it
may either provision batch resources or perform the task locally
before results are returned to the user via the Compute service. In
our case, the endpoint is configured to acquire compute nodes on
the Polaris supercomputer by using the PBS scheduler.

Next, the EMD file is parsed to extract experiment metadata by
using the HyperSpy Python package [8]. The metadata includes
sample collection date and time; acquisition instrument (i.e., micro-
scope) details, such as stage and detector positions, beam energy,
and magnification; and other information, such as software version-
ing. To increase the end-to-end efficiency of the flow, we combine
metadata extraction and the image processing steps into a single

Globus Compute function which avoids reading the EMD file twice
and minimizes flow orchestration overhead.

2.2.3 Data Publication. Data publication is achieved by creating
and registering the data and associated metadata (defined by us-
ing an extensible schema based on DataCite [5]) with a Globus
Search index. Globus Search is a cloud-hosted service that builds
on ElasticSearch to enable users to create, populate, and manage
indices of searchable metadata. Search provides a fully-featured
free-text search model along with fine-grained security and access
control to facilitate visibility-filtered query results that restrict data
discoverability to authorized users. The publication process is a
light-weight action that transmits the JSON metadata, extracted
during the Data Analysis step (Sec. 2.2.2), to the Search service, and
can be performed on a Polaris login node.

Metadata and results are then visualized by using a Django
Globus Portal Framework (DGPF) data portal. DGPF combines the
Django web framework with Globus to create a customizable data
portal based on the Modern Research Data Portal, a design pat-
tern for providing secure, scalable, and high performance access
to research data. DGPF portals can be used to dynamically display
records in a Globus Search index while leveraging the trusted au-
thentication systems to render data and results hosted on remote
Globus Connect endpoints. DGPF catalogs have been used to index
millions of datasets consisting of many terabytes of data. In this
work, we enable researchers to search their experimental data and
results by the time and date of the associated experiment.

3 RESULTS
We present results for two scientific use cases, (i) hyperspectral
imaging, and (ii) spatiotemporal imaging, showcasing the generated
results from each application via a user portal display. We also
provide a brief vignette that illustrates the current performance
hurdles and suggests areas for improvement.

3.1 Hyperspectral Imaging Data Flow
The hyperspectral image is processed as a 3-dimensional tensor
containing pixel-width, pixel-height, and hyperspectral data. The
hyperspectral data comprises spectroscopic information about both
the atomic elemental composition present in the sample at a given
pixel location, as well as the electron scattering/image data. We
generate a plot for users by taking a sum along the spectroscopy
dimension to compute the intensity of the sample at each pixel,
depicted in Fig. 2.A. We also generate a plot of the entire sample’s
spectrum by summing the image over each of the pixel dimensions,
as shown in Fig. 2.B. This spectrum conveys information about
the aggregate atomic composition present throughout the sample.
These plots are automatically rendered in the DGPF data portal
along with the extracted experimental metadata: see Fig. 2.C.

3.2 Spatiotemporal Imaging Data Flow
As a hierarchical file format, EMD files can store many forms of
microscopy data. In this use case, each EMD file stores a multi-
dimensional spatiotemporal image tensor, where the first axis stores
the time dimension and the inner axes store the pixel-width and
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Figure 2: The DGPF interactive user portal allows researchers to quickly access experimental results and metadata backed by
Globus Search. Here we show (A) a hyperspectral image of a polyamide organic film treated to capture heavy metals from
water [20], (B) its corresponding spectrum, and (C) metadata indicating the microscope settings used to collect the data as well
as the atomic composition of the sample.

pixel-height of the image signal. Here, we investigate a spatiotem-
poral image with 600 frames showing the motion of gold nanopar-
ticles on a carbon background. Notably, an additional hyperspec-
tral dimension (Sec. 3.1) could be added which would result in a
4-dimensional tensor, vastly increasing the data volume of each
file—we leave this use case to future work.

In order to prepare for such data streams, we demonstrate ML/AI
approaches to automatically track scientifically meaningful infor-
mation about sample contents. Specifically, we train a YOLOv8 [10]
model to detect and track gold nanoparticles/nanostructures as they
move. Before training a YOLOv8 model, hand-labeled bounding

boxes must be drawn around the prediction targets (in this case, a
single label type representing the gold nanoparticles). As the dataset
presented in this work has 600 time steps, we select every 50th step
for hand-labeling with Roboflow [9], yielding a total of nine train-
ing, three validation, and one testing 640×640 image(s). We further
augmented the training set by using horizontal and vertical flips,
as well as random cropping up to 20% maximum zoom. We then
fine-tuned the YOLOv8s model (11.2M parameters) in Google Colab
for 100 epochs with stochastic gradient descent, with a batch size
of 16 and a learning rate of 0.01, on a Tesla T4 GPU. Our model
achieves a mean Average Precision with an Intersection over Union
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Figure 3: Spatiotemporal data is preprocessed so that each
time step is input to a fine-tuned YOLOv8 model to track
locations of gold nanoparticles. The bounding boxes (orange)
have a confidence score and can be used to count the number
of nanoparticles likely to be in a sample, helping to charac-
terize changes in the sample as a function of time.

(IoU) range of 50–95% (mAP50-95) of 0.791 on the training set and
0.801 on the validation set.

We employ the fine-tuned YOLOv8 model for efficient inference
within the spatiotemporal imaging data flow by first converting
incoming EMD files to MP4 video format, followed by calling the
inference routine in a subprocess. We performed inference on a Po-
laris compute node with an NVIDIA A100 GPU and output an anno-
tated MP4 file containing the predicted gold nanoparticle bounding
boxes, as illustrated in Fig. 3.

3.3 Performance Evaluation
To provide a controlled environment for testing our data flow in-
frastructure, we employ an application that periodically copies a
file into the transfer directory of the Dynamic PicoProbe user com-
puter to simulate data generation during an actual experiment. We
configure the experiments based on the approximate time it takes
each transfer to complete. Thus, over the course of an hour, we
automatically start a new flow every 30 and 120 seconds for the hy-
perspectral and spatiotemporal use cases, respectively. The Globus
services allow parallel flow execution that enables us to start new
flows even when previous ones are still running. We summarize
the performance metrics for our use cases in Table 1. Note that the
file size in the hyperspectral use case (91 MB) is much smaller than
the spatiotemporal counterpart (1200 MB), which leads to many
more hyperspectral flow runs completing within the allotted hour.
The maximum runtimes are associated with the first flows, as they
have to request a compute node on Polaris and cache the Python
libraries required for analysis. Subsequent flows are able to reuse
nodes already provisioned to the previous flows.

In addition to aggregate flow statistics, we characterize the per-
formance of the individual flow component steps (Sec. 2.2) to profile
and understand performance bottlenecks. We illustrate the runtime
statistics (in seconds) of the hyperspectral flow in Fig. 4.A, and
spatiotemporal flow in Fig. 4.B, as well as the time spent actively
processing tasks versus the overhead. The flow orchestration over-
head is significant at 49.2% of the total median runtime for the
hyperspectral flow and 21.1% for the spatiotemporal flow. This
observation is attributed to an exponential polling backoff policy
that starts at 1 second and doubles up to 10 minutes, which we
are working to improve. Outside of overhead, the file transfer time,

Table 1: Performance measured during independent 1-hour
long experiments in which files were transferred from the
Dynamic PicoProbe user computer to the Eagle filesystem.

Metric Hyperspectral Spatiotemporal

Start period (s) 30 120
Transfer volume (MB) 91 1200
Total data transfer (GB) 6.42 21.72
Min flow runtime (s) 29 195
Mean flow runtime (s) 47 224
Max flow runtime (s) 181 274
Median overhead (s) 19.5 45.2
Median overhead (%) 49.2 21.1
Total flow runs 72 18

which dominates active flow runtime, is primarily a function of the
size of the transferred files and demonstrates the need to update
on-site data transfer capabilities (currently facilitated by a 1 Gbps
switch (Sec. 2.1)) to support future detectors, which will produce up

8
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Figure 4: The itemized runtime statistics (in seconds) for
the hyperspectral flow (A) and the spatiotemporal flow (B)
measured over independent 1-hour long experiments.We use
“Active” to denote the time spent actively processing either
the Transfer, Analysis, or Publication steps. The overhead
measures the remainder of the total flow runtime not spent
actively processing the steps. We note that when multiple
flows are executed concurrently, the Transfer, Analysis, and
Publication steps execute in parallel, effectively increasing
the overall throughput of the workflow system.
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to 65 GB per second. The spatiotemporal compute phase can also
be optimized since the majority of time is spent on converting raw
EMD files to MP4 format, which involves a slow data type casting
operation from fp64 to uint8. More efficient integration with the
YOLOv8 algorithm would lead to a substantial improvement in
time-to-solution for spatiotemporal data stream analysis.

4 RELATED WORK
We distinguish in this work between computationally mediated
science and automated science. In the former, automation and in-
telligent agents augment the abilities of a human scientist by per-
forming routine tasks, automatic calibrations, and sharing in a
collaborative synergy to accelerate discovery [33]. On the other
hand, automated science seeks to create self-driving laboratories
that integrate a variety of instruments under the direction of an
ML/AI agent, which automatically steers an experimental campaign
towards discoveries using minimal human intervention [11, 26].
These directions share a common need for modular software in-
frastructure [1, 2, 17, 25, 34] to link experimental facilities to high
performance computing resources [3, 13, 27, 29].

ML/AI has been successfully applied to a variety of electron
microscopy tasks including: detecting microstructures [35], im-
age registration [14], pixel-level nanoparticle segmentation [12],
frame-level defect tracking and detection [19], and many other
applications such as particle picking [28], automated labeling [30],
denoising [4], and super-resolution reconstruction [21]. Treder et
al. [23] provide a comprehensive review of deep learning in electron
microscopy. Our work extends these efforts by establishing the in-
frastructure needed to bridge microscopes with HPC infrastructure
for online integration of computationally expensive ML/AI and
traditional analysis techniques.

5 CONCLUSION
We have presented software infrastructure that links the Dynamic
PicoProbe to supercomputing resources to (1) provide petabyte-
scale data storage, (2) enable near real-time data analysis by us-
ing ML/AI techniques, and (3) build interactive FAIR data portals
for researchers to view results and inform future experiments. We
leverage Globus automation services to implement two prototypical
science use cases (hyperspectral imaging and spatiotemporal imag-
ing), providing configurable software that decouples data analysis
steps from the limitations of on-site computers. We found transfer
times between on-site data staging systems and the supercomput-
ing facility to be the overall bottleneck in our data flows. We expect
this issue to compound as data tensor dimensions are introduced to
measure additional physical parameters such as temperature and
pressure. As such, active directions for future research include: (1)
on-site hardware upgrades, (2) data compression algorithms, and
(3) optimization of cross-site transfer settings.
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