Topology-Aware Uncertainty for Image Segmentation
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Abstract

Segmentation of curvilinear structures such as vasculature and road networks is
challenging due to relatively weak signals and complex geometry/topology. To
facilitate and accelerate large scale annotation, one has to adopt semi-automatic
approaches such as proofreading by experts. In this work, we focus on uncertainty
estimation for such tasks, so that highly uncertain, and thus error-prone structures
can be identified for human annotators to verify. Unlike most existing works,
which provide pixel-wise uncertainty maps, we stipulate it is crucial to estimate
uncertainty in the units of topological structures, e.g., small pieces of connections
and branches. To achieve this, we leverage tools from topological data analysis,
specifically discrete Morse theory (DMT), to first capture the structures, and then
reason about their uncertainties. To model the uncertainty, we (1) propose a
joint prediction model that estimates the uncertainty of a structure while taking
the neighboring structures into consideration (inter-structural uncertainty); (2)
propose a novel Probabilistic DMT to model the inherent uncertainty within each
structure (intra-structural uncertainty) by sampling its representations via a perturb-
and-walk scheme. On various 2D and 3D datasets, our method produces better
structure-wise uncertainty maps compared to existing works. Code available at
https://github.com/Saumya-Gupta-26/struct-uncertainty

1 Introduction

Curvilinear segmentation is an essential initial step in various medical and non-medical applications,
involving the precise extraction of fine-scale structures, such as blood vessels, nerves, and other
elongated objects [20, [32]. For example, extraction of retinal vasculature is an essential precursor
to understanding disease progression and assessing therapeutic effects [14]. In civil engineering,
road network and railway track segmentation can support urban planning and transportation system
optimization [44]. Despite the success of deep learning [5} 16} 24} 36]], automatic segmentation of thin
structures remains challenging due to their relatively low visibility and complex topology. Existing
segmentation methods often make topological errors such as broken connections or missing branches.

As a cost-efficient alternative, in many applications, one employs semi-automatic techniques, e.g.,
iterative proofreading by human annotators [22]. On the other hand, proofreading of complex fine-
scale structures can be extremely time-consuming [52]]. This necessitates a better strategy to direct
the annotators’ attention towards locations that are more error-prone. Following the classic active
learning principle [[17, 531159], we may estimate the uncertainty [18]] and concentrate on the locations
where a neural network is the least certain.

Despite many existing studies on segmentation uncertainty [11} 150} 58], most existing uncertainty
estimation methods do not apply to curvilinear structure segmentation. Existing methods typically
generate pixel-wise uncertainty maps. Such maps highlight pixels along the boundary of all structures,
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Figure 1: Motivating examples for structure-wise uncertainty. In the segmentation result (c), orange
highlights a false positive structure, and pink highlights a false negative. Methods (d)-(f) are
uncertainty estimates of the prediction in (c). PHiSeg [4] assigns pixels along boundaries as uncertain.
Hu et al. [27]] captures uncertainty at a structural level, but produces overconfident maps (assigns zero
uncertainty to many structures). Ours produces better structure-wise uncertainty estimates: both the
highlighted false positive/negative structures have high uncertainty.

regardless of their width or thickness (see Fig.[T[d)). This offers limited information for human
annotators; a desirable uncertainty map should instead highlight the error-prone “structures”, e.g.,
small vessels/branches or short stretches of roads that tend to be disconnected or missed.

In this paper, we propose a new topology-aware uncertainty estimation method that highlights error-
prone structures as a whole (such as in Fig.[T(f)). By highlighting structures with high uncertainty,
our method empowers annotators to accept or reject/correct structural proposals efficiently, thus
streamlining the proofreading process. To capture the uncertainty of a given segmentation network’s
prediction at a structural level, we require the realization of two key components: a) decompose the
prediction into a set of constituent structures, including false positives and false negatives, and b)
estimate uncertainties of all the structures. Furthermore, we need to consider two types of structural
uncertainty, intra-structural and inter-structural. The intra-structural uncertainty of a structure is due
to its intrinsic composition, e.g., geometry, intensity, and the segmentation network’s confidence.
The inter-structural uncertainty is more contextual; it is due to interactions between neighboring
structures. Our method explicitly models the two types of uncertainty.

Given a segmentation model, our method uses its likelihood map (Fig.[2]i)) plus the input image to
estimate structural uncertainties. First, we obtain a structural decomposition of the prediction, i.e., a
collection of one-pixel-wide pieces/structures (see Fig.[2[ii)). Each structure represents a potential
branch/connection according to the segmentation model. We employ the principles of the classic
discrete Morse theory (DMT) [1342]]. Intuitively, DMT treats the likelihood function as a terrain
function and extracts landscape features, e.g., mountain ridges or valleys, as structures. Note we are
capturing all possible structures visible in the likelihood map, including the ones that do not appear
in the segmentation due to low probability.

Next, we estimate uncertainties for all these structures. Existing uncertainty estimation approaches
often sample multiple hypotheses and calculate the variance across them [16] 33} 167]. However, this
principle is not feasible in our problem; with IV structures, the space of all their combinations is of
exponential size (2V). Sampling from such a space is very challenging. An alternative is to make
independent uncertainty estimation on each structure. However, this is also suboptimal as it ignores
inter-structural uncertainty. Fig. 2Jvi) shows three false positive structures. Treating all structures
independently will incorrectly assign the horizontal structure with low uncertainty (see Fig. 2|vii)).

We propose a joint inference model (i.e., a graph neural network [57]) to jointly predict uncertainties
on all the structures. This joint inference framework avoids explicit enumeration/sampling over the
exponential size space of hypotheses. It also takes into account the inter-structural uncertainty. In
Fig. [2[(viii), our method correctly assigns high uncertainties to all three false positive structures. To
supervise the training process, we use the attenuation loss proposed in [29] to learn the uncertainty.
As there is no ‘uncertainty label’, it is implicitly learned from the loss function.

An important contribution in this paper is a novel Probabilistic DMT modeling the intra-structural
uncertainty, due to the geometry, topology, as well as the segmentation model’s confidence. The
classic DMT cannot capture the inherent uncertainty of a structure; it produces a single representation
for the structure, i.e., a one-pixel-wide skeleton. However, this skeleton is computed in a deterministic
manner. Such deterministic computation is rigid and fails to capture possible variations of a structure.

Instead, our Probabilistic DMT (Prob. DMT) represents each structure as sample skeletons drawn
from an underlying generative process guided by the likelihood map (the skeleton resulting from the
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Figure 2: (a) Intra-structural uncertainty: In the likelihood map (i), we highlight a false negative (FN)
structure missed by the segmentation network. In (ii), we show the skeletons representing structures
from classic DMT. In (iii), we highlight the GT (green) and the incorrect DMT skeleton (red) for the
FN structure. In (iv), we show skeleton samples by Prob. DMT (blue); (b) Inter-structural uncertainty
(inter): a retinal image with very weak signal (v). The likelihood map (vi) shows three potential false
positive (FP) structures, two vertical and one horizontal. Without inter-structural uncertainty (vii),
the horizontal structure has high confidence. With inter-structural uncertainty (viii), the horizontal
structure gets higher uncertainty influenced by the two vertical structures.

original DMT being one of the samples). As illustrated in Fig. 2[iii), the original DMT generates
a skeleton that significantly deviates from the true structure due to the uncertainty inherent in the
likelihood. In contrast, Prob. DMT effectively captures potential variations (Fig. 2iv)), offering
valuable insights into the impact of uncertainty on the structural composition. The greater the
variation, the greater the intra-structural uncertainty. During training, we repeatedly sample skeletons
for each structure, and feed the samples to the joint inference model for uncertainty prediction. Indeed,
as shown in Fig. [J[iv), sampling multiple skeletons also leads to a better chance of uncovering the
true structure. This observation inspires us to use the uncertainty estimation method to re-calibrate
the original segmentation model and achieve even better segmentation performance.

We note that the method in [27] (which we refer to as Hu et al.) also used DMT to decompose
structures and estimate their uncertainty. However, this method used the classic DMT to deterministi-
cally generate skeletons, and thus failed to model intra-structural uncertainty. Furthermore, instead
of joint inference, the method sampled from all configurations; and to reduce the computational
burden, it pruned the exponential-sized configuration space using a saliency measure called persis-
tence [9,162]169]. The pruning was very coarse, thus resulting in suboptimal uncertainty estimation.
As illustrated in Fig.[T[e), Hu et al. produces overconfident maps; most structures, including many
false negatives and false positives, are assigned zero uncertainty. In contrast, our method produces
much better uncertainty estimates (Fig.[T(f)), owing to the proper modeling of both intra-structural
and inter-structural uncertainties.

We summarize the main contributions of this paper as follows:

1. We propose a novel method to estimate the uncertainty of a given segmentation network at a
structural level.

2. We propose Probabilistic DMT, a probabilistic method to generate structural variations and
to capture intra-structural uncertainty.

3. We propose a joint prediction model on all the structures in order to capture inter-structural
uncertainty.

Empirical evaluation shows that our method achieves much better uncertainty estimates on both 2D
and 3D datasets, outperforming existing methods.

2 Related work

Topology-guided image segmentation. Several works focus on maintaining the correct connectivity
or topology of thin structures. Topology-aware loss functions [45, 60, [7}, 26} [70, 21} 25]] impose
per-pixel constraints to improve topological integrity. Discrete Morse theory has also been used to
improve the topological awareness of segmentation networks [28, 9} 110,154,169, 3|]. These approaches
use topological tools to improve segmentation at a pixel level, which is a weaker constraint compared
to the structural level. In contrast, our method performs joint reasoning directly over the structures.

Uncertainty quantification. In recent years, there has been significant work on uncertainty quan-
tification (UQ) of deep neural networks [1} (19} 35]. Here we review UQ techniques tailored for
semantic segmentation. Pixel-wise uncertainty: Semantic segmentation is a per-pixel classification
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Figure 3: An overview of the proposed method M. The given segmentation network Fy has
frozen weights. Probabilistic DMT decomposes the likelihood into structures, and samples skeleton
representations of each. A graph is then constructed over the structures to perform joint reasoning of
their uncertainty. The training is supervised by comparing with the GT (via the loss Ly ¢, red arrow).

task and naturally most UQ methods produce per-pixel uncertainty estimates. In [29]], the authors
propose a Bayesian framework using MC dropout [15]] and a learned loss attenuation to respectively
capture model and data uncertainty. Recent methods have turned to generative models to generate
multiple hypotheses, and the per-pixel variance across the hypotheses is treated as uncertainty. Some
works in this direction are an ensemble of M networks [33], a single network with M heads [56]],
Prob.-UNet [31], and PHiSeg [4]. Prob.-UNet integrates a conditional variational autoencoder [61]]
with UNet [55], generating multiple hypotheses via latent variable sampling. PHiSeg extends this by
introducing latent variables at every UNet level, thereby producing more diverse samples. Structure-
wise uncertainty: Methods such as [40, 58] compute structure (volume) uncertainty by averaging over
the pixel-wise uncertainty estimates. The method closest to ours is Hu et al. [27]]. It is a generative
model derived from Prob.-UNet where the latent variable has meaning in topology (specifically, a
global persistence threshold). This threshold severely limits the structure space, overlooking several
false positive/negative structures. Thus they tend to produce overconfident uncertainty estimates.

3 Method

Given a trained segmentation network, our goal is to capture the uncertainty of its prediction at
a structural level. Note that we do not modify the network in any way; instead, we propose an
external module that reasons the uncertainty of each structure in the segmentation. Fig. [3|provides
an overview of our method. Let Fy denote the trained segmentation network, and My denote our
proposed external uncertainty quantification framework. My takes as input the likelihood map of Fy
and the input image. It generates a set of structures, and estimates an uncertainty value for each of
them. During training, My is trained by comparing with the ground truth (GT) annotation.

My consists of two primary modules to capture intra-structural and inter-structural uncertainty. The
first module, Probabilistic DMT (Prob. DMT), generates structures based on the likelihood map. For
each structure, it samples a set of skeletons representing different variations. Details are provided in
Sec. The second module jointly predicts the uncertainties of all the structures. At each training
iteration, it takes one sample skeleton for each structure, plus the likelihood map and input image, as
input. Details are described in Sec. Throughout the sections, we consider one data sample (z, y)
where z is an input image and y is the segmentation GT. The likelihood map is f = Fyp(x).

3.1 Modelling the structural space

In this section, we first describe how DMT obtains the constituent structures of a likelihood map.
Then we propose our Prob. DMT formulation to capture intra-structural uncertainty.



Discrete Morse theory. Consider the likelihood map f generated from the segmentation network
Fy. We wish to decompose f into a set of structures, capturing not only the salient structures but
also the faint ones. In the segmentation map, salient and faint structures broadly correspond to true
positive and false negative structures. In Fig. [[b), we highlight the false negative (FN) structures.
These structures are missed in the segmentation, but will be captured by DMT (Fig. [4(d)).

DMT treats the likelihood map f as a terrain function, decomposing
itinto a Morse complex consisting of critical points, paths connecting
them, patches in between paths, and volumes enclosed by patches
(for 3D images). Critical points are locations w with zero gradients
(Vf(w) = 0), i.e., minima, maxima, or saddle points. Paths, called
V-paths, are routes connecting critical points via the non-critical
ones. A V-path connecting a saddle point to a maxima is called a
stable manifold. These stable manifolds are the underlying terrain’s
mountain ridges, and delineate structures of interest. In Fig. Elkc), we
show the locations of saddles and maximas in the Morse complex,
and in Fig. [d[d), we show the union of all the stable manifolds
connecting them. In this paper, we only focus on the zero- and one-
dimensional Morse structures, i.e., the union of all stable manifolds
and their associated saddle and maxima. We call the collection of
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Figure 4: Orange indicates

such structures the Morse skeleton.

By default, DMT generates stable manifolds in a completely de-
terministic manner, failing to take into account the intra-structural

FN structures; (c) shows sad-
dle points (red) and maximas
(blue), and omits minimas; (d)

shows the union of the stable
manifolds of the saddle points.

uncertainty in the likelihood f. Therefore, these stable manifolds
may fail to correctly delineate the true structure, as shown in Fig. [5]

Probabilistic DMT. To account for the inherent uncertainty, we

explicitly model the structure as a collection of samples from an underlying generative process. The
skeleton from the original DMT is just one possibility out of many. The method is achieved via a
perturb-and-walk algorithm, in which we iteratively perturb the likelihood map, and regenerate the
skeleton.

The rationale is that the likelihood map is a  Likelihood f DMT: e
weighted aggregation of all possible skeleton
representations. To inverse the aggregation and
recover these skeletons is challenging. Instead,
we follow the classic perturb-and-map princi-
ple, which was used to efficiently sample from
a complex discrete graphical model distribution
[51) 23} 34]. We randomly perturb the likeli-
hood function. For each perturbed likelihood,
we compute a skeleton as a sample. See Fig.[3]
for an illustration. The sampled skeletons will
reflect the uncertainty properly. For a structure
that is less salient in the likelihood map, the sam-
ple skeletons will have large variations, generat-
ing a large uncertainty. For a salient structure in
the likelihood map, the sample skeletons will be less variant, resulting in a low uncertainty.

Prob. DMT: é(#1) Prob. DMT é#2)

region of |
structural

uncertainty

GT

intermediate steps

Figure 5: Structures (#1,#2) sampled from the dis-
tribution. Green arrow is path chosen using Q(c¢’);
red arrow is next step w/o considering Q4 (c’).

Assume a given likelihood function f and one of its structures, represented by a V-path e connecting
a saddle-maximum pair (cs, ¢,,). We generate a sample skeleton of the structure by first perturbing
the likelihood with random noise. Next, we generate a path connecting c; and ¢,,,. Recall in the
original DMT, the skeleton is generated by following the mountain ridge. In other words, we start
from the saddle point, and “walk” towards the maximum. At every step, we always walk to the
neighboring pixel with the highest likelihood value. In Prob. DMT, we follow the same principle on
the perturbed likelihood. However, the noisy perturbation of likelihood can cause the path to grow
astray. Therefore, we additionally apply a distance-based regularizer to guide the walk towards the
target c,,,. We describe the process in detail below.

Let e denote the structure obtained by following the V-path between (c;, ¢, ) in the original DMT. In
order to generate its sample skeleton é, we first draw a likelihood f;, from a distribution centered on f



as f,, ~ f + r. This process is independent of the perturbation model r used, and we use a Gaussian
model in this work. As the variance of the Gaussian model is unknown, we use Bayesian probability
theory to sample the variance from the Inverse Gamma distribution (its conjugate prior [48]).

Once we obtain f,,, we regenerate the path between (cs, ¢,,). We take inspiration from random
walk [37] as well as probability regularized walk [46] to generate the variant structure € from f,,.
Our walk algorithm continuously grows é starting from ¢, and ending at c¢,,, one pixel at a time.
The algorithm considers both the terrain f,, and the distance to the destination c¢,, to ensure path
completeness. During the walk, given the current pixel location ¢, the next location ¢’ is chosen
as ¢’ = argmax(Q(c’)), where, ¢’ € neighborhood(c)ﬂ and Q(¢) = vQq(cd) + (1 — v) fn(c), and,
Qa(¢') = ooy, We begin with ¢ := ¢, and continue in this manner ¢ := ¢” till we reach ¢’} In
Fig.[5] we show a deterministic structure obtained from DMT along with sample variations produced
by our method. We demonstrate the intermediate steps in the algorithm: the red arrow denotes the
next step without considering the distance regularizer ()4, while the green arrow denotes the next
step using our formulation (). Notice how only considering f,, without Q)4 can prevent the path from
reaching c,,,. We thus require Q)4 to guide the path to completeness.

The structure é is a different realization of e, making each run of the Prob. DMT a stochastic one.
We are thus able to explicitly model the structures as samples from a probability distribution. We
also note that DMT is a special case of Prob. DMT when r = 0 and v = 0. In practice, with some
probability, we consider the original structure e from DMT over generating its variant é. Specifically,
following a Bernoulli distribution, with a small probability u we retain e, while with probability 1 —u
we sample its variant é using the perturb-and-walk algorithm outlined above. This process is done
separately and in parallel for every structure. The structures taken together form a Morse skeleton.
The output of Prob. DMT is effectively one sample skeleton from the space of Morse skeletons. We
provide further information regarding Prob .DMT in the Supplementary Material: Sec. [6]outlines the
pseudocode, Sec.[7]discusses the hyperparameters, and Sec. [9|reports its computational complexity.

3.2 Joint estimation of structural uncertainty

The Prob. DMT module gives us a set E of structures. Our final step is to jointly reason about the
uncertainty of all of them. To achieve this, we use a regression network that takes as input each
structure e € E, and outputs whether it is a true positive and the uncertainty of Fy in predicting it.

Details of the network. Structures interact with each other in the image space and are not independent.
During uncertainty estimation, it is therefore crucial to consider their spatial context, i.e., inter-
structural uncertainty. Hence, we use Graph Neural Networks (GNN) [57], specifically Graph
Convolution Networks (GCN) [30], to jointly reason about the structures and capture the high-order
spatial interactions. In the graph, each node represents a structure, and edges between nodes exist
when corresponding structures have non-zero overlaps (typically at endpoints). The input feature
vector for each node is constructed as shown in Fig.[] For every structure, we first concatenate
[z€, f¢, m], where 2¢ comes from the original input x; f¢ from the likelihood map f (not f,,); and m
is a binary map indicating the presence of the structure. These z¢, f¢, m are smaller crops/bounding
boxes centered on the structure. After passing them through convolution blocks, we apply channel-
wise pooling to obtain a fixed-length feature vector for training. We further concatenate the persistence
value of the saddle point associated with the original DMT structure (aka stable manifold). Persistence
value (from persistent homology [[12]) is defined as the difference of function (likelihood) values
of 2 critical cells (saddle-maxima pair). It captures the importance of a structure, thus making it a
valuable feature in our framework. Note that we do not use the perturbed f,, from the Prob. DMT
method when constructing the feature vector.

Training the network. We train the regression network using the attenuation loss proposed in [29].
As there are no labels to learn uncertainty, it is implicitly learned during regression optimization. We
fix a Gaussian likelihood, and so variance 52 is used as a measure of uncertainty. The network’s head
is split into two — to predict p(e) of being a true positive structure and its associated uncertainty 53

For numerical stability, we actually predict the log variance s, = log 33 The training loss is given in
Eq.[I] The structures that we obtain from Prob. DMT may not always fully overlap with the true GT
structures, that is, some structures may only have partial overlap. We thus do not impose any hard

2For neighborhood, we use 8-connectivity for 2D, and 26-connectivity for 3D in this work.
31f the path does not reach ¢,,, we impose a maximum limit on the update steps to prevent an infinite loop.
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Figure 6: Construction of the input feature vector for each node (structure) in the GCN.

constraints in Eq. |1} instead, z. is a soft label, and is given by: z. = (>_y ®@ m)/(>_ m), where y is
the GT and © is the Hadamard product. This value simply represents the proportion of the structure
that overlaps with the GT, i.e., the fraction of the structure that is a true positive.

1|p(e) — z|*
Lua(@) = o 3 < ( +2.se) M

VecE Xp s ( )

In [29], 62 denoted the pixel-wise uncertainty of the framework’s input. In our setting, the input to
our framework is f = Fy(x), and so 62 is modeled to capture the structure-wise uncertainty inherent

in data = and model Fjy. Training 42 in this manner ensures that the network does not trivially predict
high or low uncertainty, rather, predicts an uncertainty estimate that is dependent on the input.

3.3 Proposed module M

For Eq. [I] to hold, we require My to be a probabilistic sheletons from M

network. We already show in Sec.|3.1|our formulation for

Prob. DMT. Additionally, the regressmn network is also final uncertai
inal uncertainty

probabilistic as we use MC dropout [15]]. g ey heatma,

Inference procedure. We take 7" runs of My and com-

pute the uncertainty as the mean 62 = £ ?tT_l (62);. We
similarly obtain p(e) from p(e). In Fig. [/, we illustrate
the post-processing steps to obtain the structure-wise un-
certainty heatmap. First, we obtain maps p = Up. and
§? = UG? having the same spatial resolution as the input z.
We then binarize 7, and overlay it onto the segmentation ~ Figure 7: Post-processing procedure.
map obtained from Fy. We do this because Prob. DMT

gives us one-pixel wide skeleton structures but we need to recover the structure thickness. Next,
we use shortest distance to assign uncertainty values from 42 to the pixels in the overlaid map. The
shortest distance uses paths only along the foreground pixels. In Fig.[/| we show how we obtain
the final uncertainty heatmap from the skeleton heatmap. We also note that the overlaid map is an
additional output of our method: it is an improved segmentation map that can be used instead of the
one obtained by Fy. We provide more details in Sec. [8]of the Supplementary Material.

overlaid‘map

4 Experiments

Datasets. We evaluate our method on four datasets: DRIVE [63], ROSE [39], ROADS [43]] and
PARSE 2022 Grand Challenge [38. [68]]. The DRIVE dataset contains 2D retinal vasculature; ROSE
is a 2D retinal OCTA (optical coherence tomography angiography) segmentation dataset, ROADS is
a large dataset containing aerial images, and PARSE contains 3D CT scans of pulmonary arteries.
We further describe the datasets as well as train/validation/test splits in Sec. [I0]of the Supplementary
Material.

Baselines. We broadly split our comparison baselines into three types: a) Standard vessel seg-
mentation methods: UNet [55], Deep VesselNet [66], and CS2-Net [47]; b) Pixel-wise uncertainty
estimation methods: Prob.-UNet [31]], and PHiSeg [4]]; c) Structure-wise uncertainty estimation
method: Hu et al. [27]. Implementation details are provided in Sec. [T1] of the Supplementary
Material.

Evaluation metrics. To evaluate the quality of uncertainty quantification, we use Expected Cal-
ibration Error (ECE) [49] and Reliability Diagrams (RD) [8]. Furthermore, we also evaluate
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Figure 8: Qualitative results compared to the uncertainty baselines. We show uncertainty estimates in
the form of a heatmap. Green highlights false negatives and yellow highlights false positives. Row 1:
DRIVE; Row 2: ROSE; Row 3: ROADS; Row 4: PARSE (3D render).
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Figure 9: Reliability diagrams of samples from each dataset.

the segmentation on metrics such as DICE [71]], cIDice [60], ARI [2]], VOI [41], Betti Number
error [26] and Betti Matching error [64]. We include clDice, ARI, VOI, Betti Number and Betti
Matching as they are topology-based metrics and hence are sensitive to the performance on thin
structures. Detailed definitions are present in Sec.[I2]of the Supplementary Material.

4.1 Results

Tab. [T]shows the quantitative results against uncertainty methods, and Tab. 2] shows the quantitative
results on different backbone architectures. We show the respective qualitative results in Fig. [§|and
Fig.[I0} In Fig.[9] we plot the Reliability Diagrams. We also perform the unpaired t-test [63] (95%
confidence interval) to determine the statistical significance. Each table reports the mean and standard
deviations for every metric, with statistically significant better performances in bold and numerically
better (but not significant) performances in italics. For all the probabilistic methods, the average of
five runs was used. For our method, we generated the structure-wise uncertainty estimates and the
segmentation map by following the steps outlined in the ‘Inference procedure’ in Sec.[3.3] Due to
space constraints, results on two metrics Betti Number and Betti Matching are reported in Sec. [T3]of
the Supplementary Material. We discuss the remaining performances below.

Performance of uncertainty estimation. Tab. [I]shows that our method outperforms others on both
ECE and segmentation metrics. Fig.[0]displays RDs, with our method following the ideal line much
closely compared to others. This is because we explicitly model the distribution of the structures,
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Figure 10: Qualitative results over different segmentation backbones. Green highlights false negatives.
Row 1: DRIVE; Row 2: ROSE; Row 3: ROADS; Row 4: PARSE.

Table 1: Comparison against uncertainty baselines (all use UNet [S5] as the backbone)

Dataset Method ECE (%)] Dicet clDicet ARIT VOIL|

= Prob.-UNet [31] 8.3316 £ 0.0043  0.7779 & 0.0219  0.7663 4+ 0.0492  0.7759 £ 0.0532  0.3560 + 0.0203
= PHiSeg [4] 7.9316 £ 0.0032  0.7851 £0.0295  0.7712 £ 0.0497  0.7767 = 0.0497  0.3527 £ 0.0308
I~ Hu et al. [27] 8.0883 £ 0.0036  0.7866 + 0.0141 0.7725 £0.0392  0.7768 £ 0.0403  0.3489 + 0.0286
) Ours 4.1633 £ 0.0043  0.7976 £+ 0.0195  0.7974 £ 0.0372  0.7996 + 0.0301  0.3322 + 0.0229
Prob.-UNet [31]  7.2795 £ 0.0022  0.7378 £ 0.0284  0.6485 + 0.0258  0.7219 4+ 0.0538  0.7769 £ 0.0146

% PHiSeg [4] 7.0875 £ 0.0036  0.7415 £ 0.0267  0.6552 £ 0.0236  0.7309 4+ 0.0425  0.7638 £ 0.0128
8 Hu et al. [27] 6.9243 £+ 0.0033  0.7429 + 0.0132  0.6598 +0.0172  0.7506 £ 0.0302  0.7616 £ 0.0123
Ours 3.9904 £ 0.0041  0.7593 £ 0.0171  0.6782 £ 0.0119  0.7837 + 0.0314  0.7403 + 0.0239

» Prob.-UNet [31] 8.4318 £0.0042  0.7194 + 0.0418  0.8058 = 0.0615  0.7350 £ 0.0494  0.5602 + 0.0308
i PHiSeg [4] 7.9331 £ 0.0038  0.7203 £ 0.0366  0.8113 &£ 0.0521 0.7392 £ 0.0416  0.5559 + 0.0295
=} Hu et al. [27] 7.8034 £ 0.0029  0.7275 £ 0.0361 0.8282 £ 0.0493  0.7314 £ 0.0391 0.5644 + 0.0239
~ Ours 4.1442 £ 0.0031  0.7461 £ 0.0364  0.8496 + 0.0455  0.7601 + 0.0349  0.5463 + 0.0218
= Prob.-UNet [31]  9.9918 £ 0.0069  0.6002 £ 5.7751 0.6179 £ 0.0804  0.6523 £ 0.0654  0.8923 & 0.0417
@ PHiSeg [4] 9.9280 £ 0.0077  0.5910 £ 3.0858  0.6080 £ 0.0743  0.6512 % 0.0521 0.8839 £ 0.0297
= Hu et al. [27] 7.7891 £ 0.0075  0.6044 £ 2.3583  0.6153 £ 0.0724  0.6537 4+ 0.0363  0.8803 £ 0.0318
~ Ours 4.0289 £ 0.0073  0.6190 £ 3.0826  0.6221 £ 0.0613  0.6658 + 0.0461  0.8701 + 0.0332

thereby quantifying the uncertainty of the segmentation network. In Fig.[8] we also see that our
method generates better fidelity structure-wise uncertainty maps compared to Hu et al. Our heatmaps
assign non-zero uncertainty to several false positives/negatives in the backbone UNet’s outputs. This
is because we reason about every structure while Hu et al. limits the structure space via pruning.

Performance over different backbones. Tab.[2|and Fig.|[10|show that our method is backbone-
agnostic. It consistently improves the segmentation quality and produces high fidelity uncertainty
maps for each of the underlying networks. This validates the practical applicability of our method.

Performance of proofreading. One of the motivations of this work Proafreading: cIDice vs #clicks

is to streamline the proofreading process. Structure-wise uncertainty "o ours
can be used as a guide, with a user having to simply accept/rejecta  ©.72| —— Huetal.
structure. We conduct experiments on the ROSE dataset and simulate g 470

user interaction with our method and Hu et al.’s. The user is given & 068

each method’s final segmentation map, and inspects structures in

decreasing order of uncertainty (till 0.5). Each uncertain structure is ~ **°

subjected to a yes/no decision, which is denoted as one ‘click’. The 0oz 50 7S 100 125
results are in Fig. Our findings are consistent with the observation

that Hu et al. assigns zero uncertainty to many structures; thus their
margin of improvement is limited and saturates quickly.

Figure 11: Proofreading.



Table 2: Comparison against different segmentation backbones

Dataset Method Dicet cIDice? ARIT VOI|
UNet [55] 0.7728 £ 0.0336  0.7586 + 0.0405  0.7530 £ 0.0519  0.3697 £+ 0.0329
@ UNet [55] + Ours 0.7976 + 0.0195  0.7974 + 0.0372  0.7996 + 0.0301  0.3322 + 0.0229
= Deep VesselNet [66] 0.8015 £0.0260  0.7997 £ 0.0431  0.7729 £ 0.0457  0.3413 £ 0.0256
& DeepVesselNet [66] + Ours  0.8173 £ 0.0190  0.8285 + 0.0361  0.8037 + 0.0361  0.3238 + 0.0192
R CSZ-Net [47] 0.8189 £ 0.0176  0.8125 £ 0.0413  0.8204 + 0.0495  0.3417 4 0.0203
CS2-Net [#7] + Ours 0.8301 + 0.0172  0.8367 + 0.0305  0.8495 + 0.0301  0.3243 + 0.0258
UNet [55] 0.7375 £ 0.0197  0.6453 +0.0165  0.7206 £ 0.0426  0.8488 4+ 0.0126
UNet [55] + Ours 0.7593 £+ 0.0171  0.6782 £ 0.0119  0.7837 + 0.0314  0.7403 £ 0.0239
=2 Deep VesselNet [66] 0.7653 £ 0.010  0.6634 £0.0192  0.7622 £ 0.0302  0.7426 £ 0.0163
2 DeepVesselNet [66] + Ours  0.7795 £ 0.0205  0.6873 + 0.0195  0.7936 + 0.0282  0.7164 + 0.0226
CSZ-Net [47] 0.7623 £ 0.0285  0.6799 £ 0.0127  0.7702 + 0.0322  0.7236 4 0.0157
CS?-Net [47] + Ours 0.7886 + 0.0208  0.6968 + 0.0149  0.7981 + 0.0211  0.7072 £ 0.0168
UNet [55] 0.7011 £ 0.0426  0.7918 £ 0.0679  0.7143 + 0.0526 ~ 0.5832 4 0.0345
@ UNet [55] + Ours 0.7461 £ 0.0364  0.8496 + 0.0455  0.7601 + 0.0349  0.5463 + 0.0218
?ﬁ DeepVesselNet [66] 0.7518 £0.0345  0.8248 £ 0.0574  0.7923 £ 0.0441  0.5641 £ 0.0321
=) DeepVesselNet [66] + Ours  0.7673 + 0.0324  0.8513 + 0.0519  0.8139 4 0.0464  0.5357 + 0.0329
~ CS*“-Net [47] 0.7539 4+ 0.0366  0.8341 + 0.0511 0.8197 £0.0426  0.5475 4 0.0468
CS?2-Net [47] + Ours 0.7692 + 0.0372  0.8559 + 0.0528  0.8368 £+ 0.0419  0.5261 + 0.0411
UNet [55] 0.5905 £ 3.0661  0.6104 + 0.0727  0.6509 £ 0.0852  1.9738 4 0.0414
@ UNet [55] + Ours 0.6190 £+ 3.0826  0.6221 + 0.0613  0.6658 + 0.0461  0.8701 + 0.0332
E DeepVesselNet [66] 0.7208 £ 3.0452  0.6801 £ 0.0554  0.6923 £ 0.0524  0.4907 £ 0.0701
< DeepVesselNet [66] + Ours ~ 0.7376 & 3.1863  0.6983 £ 0.0622  0.7098 £+ 0.0613  0.4711 + 0.0613
~ CS*-Net [47] 0.7630 4 3.9415  0.6918 + 0.0695  0.7138 £ 0.0695  0.4273 4+ 0.0521
CS2-Net [47] + Ours 0.7720 £ 2.8109  0.7113 £+ 0.0689  0.7343 + 0.0733  0.4078 £ 0.0642

4.2 Ablation studies

To demonstrate the efficacy of the proposed method, we conduct ablation studies of the differ-
ent components in our pipeline, as well as check the effect of changing hyperparameter values.

We alsg 1nc} ude ablatlpn studies on the Table 3: Ablation of different modules
dimensionality of the input feature vec-

tor, and size of the crops/bounding boxes DMT Reg. Net ECE (%)] cIDiceT

(which we report in Sec. [I4] of the Sup- DMT GNN 63481 £0.0082 0.7729 & 0.0304

plementary Material). All analyses are on ~ Pob.DMT  MLP 4820200046 0745 & 0.0305
Prob.DMT  GNN 41633 £ 0.0043  0.7974 = 0.0372

the DRIVE dataset using UNet [55] as the
backbone.

Ablation of different modules. We conduct ablation studies on both parts of our framework: structure
generation (DMT vs Prob. DMT), and regression network (GNN vs Multi-layer Perceptron (MLP)).
The results are in Tab. (3| Prob. DMT results in a sharp improvement in ECE compared to the original
DMT; this supports our assertion that Prob. DMT models intra-structural uncertainty. Similarly, using
GNN over MLP results in improvement. The message-passing in GNNs accounts for inter-structural
uncertainty, thus yielding higher fidelity uncertainty estimates.

Effect of hyperparameters. Our main hyperparameters are u, , 3, 7y, with u used in the Bernoulli
distribution, +y in the path-generation algorithm, and (shape «, scale 3) as prior hyperparameters of the
Inverse Gamma distribution. We achieve the best ECE when v = 0.3,v = 0.2, « = 2.0, 5 = 0.01,
however, a reasonable range always yields improvement, thus demonstrating the robustness of the
method. We provide results of testing different hyperparameter values in Sec.[I4]of the Supplementary
Material.

5 Conclusion

In this work, we propose to quantify the structure-wise uncertainty of a given segmentation network.
Our framework explicitly models structures as samples from a probability distribution, thus helping
to estimate intra-structural uncertainty. Furthermore, we incorporate inter-structural uncertainty by
jointly reasoning over the structures, resulting in better fidelity uncertainty estimates. This structure-
wise uncertainty quantification can streamline the proofreading process by reducing the time spent
finding and correcting errors. Extensive experiments show the practical applicability of our method
over different segmentation backbones and datasets. In the Supplementary Material, we further
discuss the broader impact of our work and the limitations in Sec.[I5]and Sec. [I6]respectively.
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