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Abstract

Multiplex Immunohistochemistry (mIHC) is a cost-e↵ective and accessible method for
in situ labeling of multiple protein biomarkers in a tissue sample. By assigning a dif-
ferent stain to each biomarker, it allows the visualization of di↵erent types of cells within
the tumor vicinity for downstream analysis. However, to detect di↵erent types of stains in
a given mIHC image is a challenging problem, especially when the number of stains is high.
Previous deep-learning-based methods mostly assume full supervision; yet the annotation
can be costly. In this paper, we propose a novel unsupervised stain decomposition method
to detect di↵erent stains simultaneously. Our method does not require any supervision, ex-
cept for color samples of di↵erent stains. A main technical challenge is that the problem is
underdetermined and can have multiple solutions. To conquer this issue, we propose a novel
inversion regulation technique, which eliminates most undesirable solutions. On a 7-plexed
IHC images dataset, the proposed method achieves high quality stain decomposition results
without human annotation.
Keywords: Color deconvolution, Deep learning, Multiplex, Immunohistochemistry, Un-
supervised.

1. Introduction

Multiplex Immunohistochemistry (mIHC) is a tissue imaging technique that allows simul-
taneous detection of multiple biomarkers in the same tissue section. Multiplex imaging has
become an important tool in diagnostic pathology and cancer immunotherapy. It enables
the study of cell composition, cellular function and cell-cell interactions, not to mention,
allowing a more in depth comprehension and profiling of the tumor microenvironment (Ilié
et al., 2018; Johnson et al., 2018; Remark et al., 2016; Tan et al., 2020). While there are
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Figure 1: An mIHC image and the corresponding unsupervised stain decomposition. Sam-
ples from the di↵erent biomarkers are shown. The CD20 sample is from a di↵erent
image since it is not present in this view. The yellow staining looks like olive yel-
low because of the interaction with the blue nuclei staining.

various multiplex imaging technologies, brightfield mIHC is a cost e↵ective and accessible
method that can be captured in a single step with traditional brightfield light microscopy.
Moreover, it does not require any special software or visualization tools, making biomarker
research and profiling more accessible (Tan et al., 2020). MIHC o↵ers simultaneous staining
of 5+ biomarkers (Tan et al., 2020; Fassler et al., 2020; Hofman et al., 2019; Dixon et al.,
2015). Unlike more expensive multiplex imaging techniques, e.g., multiplex immunofluores-
cence, mIHC does not o↵er separate channels for di↵erent biomarkers. It rather provides
a single image with all the biomarkers visualized together, see Figure 1 (left). The simul-
taneous staining in mIHC images can o↵er insights into the tumor microenvironment that
are not obtainable with singly stained IHC images but it still requires much manual ef-
fort to analyze. Visual inspection is both challenging and time consuming for pathologists,
especially with increasing number of stains.

To analyze the images at a large scale, this process needs to be automated. The im-
ages need to be decomposed into individual biomarker maps before any spatial analysis or
quantification can take place (Compare the left- and right-hand sides in Figure 1). To that
end, digital analysis methods are essential to automate the stain unmixing, i.e., extracting
masks corresponding to di↵erent biomarkers (Van Herck et al., 2021) to use them for tumor
microenvironment analysis (Fassler et al., 2020).

Color deconvolution is the unmixing of stains into separate stain concentration maps.
Several unsupervised color deconvolution methods (Ruifrok and Johnston, 2001; Vahadane
et al., 2016; Macenko et al., 2009) have been successfully deployed for the analysis of up
to two biomarkers, such as hematoxylin and eosin (H&E). Extending to a larger number of
stains involves solving an under-determined linear equation system, which can have many
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Figure 2: InverseAE architecture and training. The model’s output is conditioned on the
input mIHC image and the target reference stain. It is trained with a reconstruc-
tion loss and an inverse reconstruction loss.

undesired solutions. To address this issue, in (Chen and Chefd’hotel, 2014; Chen and
Srinivas, 2015), a lasso regression model is proposed to select a sparse set of stains at
each pixel. The results, however, are not satisfying, mostly because these methods treat
di↵erent pixels independently, and fail to consider the contextual information. In (Duggal
et al., 2017) dual-stained images are implicitly deconvolved for downstream classification
tasks, but the deconvolution channels are not guaranteed to accurately correspond to the
di↵erent stains. Commercial tools such as HALO can unmix up to 4-colored chromogenic
stains (Thommen et al., 2018). More recently, (Abousamra et al., 2020) proposed a weakly
supervised deep learning approach for stain decomposition. Its performance depends on
manual annotations of cell centers, which can be very time consuming.

In this work, we propose an unsupervised mIHC stain decomposition method that can
scale to a larger number of stains. Our method only requires the reference stain colors.
To properly leverage contextual information, we use a convolutional neural network au-
toencoder to generate the stain concentration maps. With an increased number of stains,
the solution is not unique. Using the sparsity prior is not the best solution as it fails to
consider the context. To this end, we propose a novel inverse-image-based regularization to
help the network learn high quality stain concentration maps. We show how di↵erent cell
types or biomarker segmentation maps can be directly inferred from the resulting concen-
tration maps. On a 7-plex mIHC images dataset, we show the e↵ectiveness of our proposed
approach, achieving evaluation scores very close to the supervised method (Abousamra
et al., 2020) (⇠ 94% of the supervised f-score on average). Our code is available here:
https://github.com/ShahiraAbousamra/MIHC-InverseAE
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2. Related Work

Stain unmixing/decomposition is a classical problem that has been studied extensively
on histological images, e.g., H&E. Ruifrok and Johnston (2001) were the first to use the
optical density color representation to address the problem. The decomposition problem is
transformed into solving a linear equation system. Di↵erent decomposition methods have
been proposed (Macenko et al., 2009; Alsubaie et al., 2016, 2017; Vahadane et al., 2016;
Hidalgo-Gavira et al., 2018; Pérez-Bueno et al., 2020).

Recent years have witnessed rapid advancement of staining technology; one may acquire
simultaneous staining of more than 2 biomarkers in the same tissue section. See example
in Figure 1. However, with mIHC allowing 5+ simultaneous stains (Tan et al., 2020), stain
unmixing becomes more challenging and new methods are needed to handle a large number
of stains. Chen and Chefd’hotel (2014) extended the work of (Ruifrok and Johnston, 2001)
to support more than 2 biomarkers. With more than 2 biomarkers, the optical-density-
based linear equation system is underdetermined. To address the issue, lasso regression
was proposed. Nevertheless, directly enforcing a sparsity prior is not su�cient, especially
for higher number of stains, mainly because the sparsity prior fails to consider contextual
information of each pixel. (Chen and Srinivas, 2015) further adds constraints on the lasso
regression to model co-staining. Abousamra et al. (2020) proposes to use weak supervision
in the form of dot annotations that are transformed into superpixels (Achanta et al., 2012)
to overcome the underdetermined nature of the problem. They train a convolutional au-
toencoder to estimate the concentration maps and show the e↵ectiveness of the method in
decomposing 6 simultaneous stained mIHC images. Their method, however, still requires
a large amount of annotations, which can be prohibitive in practice. For completeness, we
also refer to methods that directly incorporate color deconvolution into downstream tasks
(Duggal et al., 2017; Lahiani et al., 2018), e.g., tissue segmentation.

3. Background

MIHC images are obtained by histologic detection of multiple protein biomarkers. In this
section we describe the linear relationship of stain concentrations under Beer Lambert law.
This is the basis for most stain unmixing methods including ours.

Optical Density (OD). Optical density measures the absorbance of light as it passes
through a medium. The optical density at a pixel i is the negative log of its normalized
RGB values, [ri, gi, bi]T 2 [0, 1]3 :

yi = [� log(ri),� log(gi),� log(bi)]
T . (1)

The stains and their concentrations are linearly related in the OD space. Assume
a given set of m stain vectors, whose OD vectors are represented by the matrix S =
[s1, s2, · · · , sm] 2 R3⇥m, where sj 2 R3 is the OD vector of the jth stain. By Beer Lambert
Law (BL) (Lambert, 1760), for any pixel i, the optical density yi and its stain concentra-
tion vector ci satisfy a linear relationship, i.e., yi = S · ci, where ci 2 Rm denotes the
concentrations of the di↵erent stains at pixel i. Generalizing to an image with n pixels, we
get:

Y = [y1, · · · ,yn] = S ·C (2)
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Figure 3: Sample mIHC patches, our corresponding unsupervised stain decomposition, and
the superpixel labels derived from the dot annotations. The superpixel labels are
obtained using the algorithm in (Achanta et al., 2012).

in which Y 2 R3⇥n is the optical density matrix of all the pixels in the image and
C = [c1, · · · , cn] 2 Rm⇥n is the corresponding stains’ concentrations matrix.

Solving the Linear Equation. The stain mixing was first modeled by (Ruifrok and John-
ston, 2001) using Beer Lambert Law. Given the reference stains matrix S, they proposed
to recover the stain concentrations by solving the linear equation system, Equation (2). In
practice, stain color vectors are obtained by sampling representative pixels of each stain and
the background tissue. The background color vector prevents the background tissue from
getting erroneously computed as a mixture of other stains. For higher than 2-plex staining
i.e., when the stain matrix S consists of m > 3 stain vectors (2 stains and the background),
the linear equation system is underdetermined and does not have a unique solution.

4. Method: InverseAE for Unsupervised Stain Decomposition

In this work we propose InverseAE, an unsupervised deep-learning stain decomposition
method. We assume that at each pixel there is a dominant stain which should be assigned
to that pixel in the final stain segmentation maps. Hence, our proposed method is de-
signed so that it results in meaningful stain concentration maps from which the dominant
stain/biomarker at each pixel can be inferred directly. It only requires the set of multiplex
stained images and the set of reference stains color vectors.

We use an autoencoder to generate the estimated stain concentration maps bC for an
input image Y , based on the given stain vectors S. The autoencoder is trained with the
reconstruction loss: Lrecon( bC) = MSE(Y , S · bC) that is aimed to solve Equation (2). It
compares the image Y with the reconstructed image from the estimated concentration maps
S · bC using the mean squared error. When the number of stain vectors m > 3, Equation (2)
becomes an underdetermined system of equations with possibly infinite number of solutions.
We observe that when we train the autoencoder with only the reconstruction loss, the model
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may (and oftentimes tends to) converge to suboptimal solutions because of the under-
determined nature of the optical density based linear equation system, Equation (2). To
that end, we propose the inverse reconstruction regularizer to impose additional constraints.

4.1. Inversion Regulation

The inverse reconstruction regularizer implements a constrained training mechanism by
promoting a solution –estimated concentration maps bC– that satisfies both the image and
its inverse. We use the term inverse of an image or inverted image to refer to the image
formed from the pixels’ complement color vectors, i.e. for an arbitrary pixel with normalized
RGB color vector [r, g, b]T , its inverted color vector is [1�r, 1�g, 1�b]T , and its inverted
optical density is yinverse = [� log(1�r),� log(1�g),� log(1�b)]T . Similarly, Sinverse is the
inverted optical density for the stain matrix S. To regularize the solution of Equation (2),
we add the inverted equations into the system.

For each pixel: yinverse = Sinverse · c, (3)

For the image: Yinverse = Sinverse ·C, (4)

Therefore, the inverse reconstruction regularization loss is defined as:

Linverse( bC) = MSE(Yinverse,Sinverse · bC). (5)

And the overall loss function becomes:

Lunsup( bC) = �1Lrecon( bC) + �2Linverse( bC) (6)

Where �1 and �2 are constant weight values. In other words, the model is trained to gen-
erate concentration maps bC that when combined with the stain matrix S, reconstructs the
input image Y , and meanwhile, when combined with the inverted stain matrix Sinverse, re-
constructs the inverted image Yinverse. We show in the experiments how this regularization
pushes the prediction towards good solutions, that is, at any location, the stain correspond-
ing to the observed dominant color gets the highest concentration. This allows us to infer
high quality stain segmentation maps and achieve evaluation scores close to the supervised
solution. We next describe the intuition behind the inversion regulation.

This choice of inverse as a regulator is not random. A suitable regulator requires 2 prop-
erties: (I) a solution exists that satisfies both the original image and the regulator, (II) the
regulator adds constraints that limit the solution space by eliminating suboptimal solutions
and promoting desired solutions. These properties prompt our choice of the inverse. First,
there is a special relationship between a color and its complement (or inverse). When an ob-
ject absorbs light of a particular color, we perceive the object as having the complementary
color, and vice versa. Indeed, the relationship can be stated quantitatively. A color and
its inverse share the same saturation in the HSL color space (see Appendix B for details).
Saturation measures the departure of a hue from white (Agoston, 2005) and thus correlates
with the amount of pigment present, i.e., its concentration. These observations suggest that
a color and its inverse can share a same concentration vector, with regard to the original
stains and the inverse stains, respectively. In other words, the same c can satisfy both
y = S · c and yinverse = Sinverse · c. This is the desired property I.
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Table 1: F-score of stain segmentations with respect to dot annotations on 96 patches from
42 cases. Shown in bold and underlined are the best and second best F-scores in
each column, respectively.

Method CD3 CD4 CD8 CD16 CD20 Tumor Mean
PseudoInv 0.158 0.208 0.441 0.267 0.265 0.403 0.290

Nearest Neighbor 0.223 0.168 0.734 0.277 0.106 0.357 0.311
LassoReg 0.456 0.501 0.801 0.050 0.223 0.389 0.404

UNet (supervised) 0.496 0.496 0.835 0.699 0.144 0.405 0.513
ColorAE (supervised) 0.639 0.585 0.829 0.728 0.353 0.573 0.618

InverseAE 0.644 0.530 0.813 0.632 0.327 0.556 0.584

Table 2: Evaluation of concentration maps using SSIM score on single stain images.
Method CD3 CD4 CD8 CD16 CD20 Tumor Mean
ColorAE 0.893 0.886 0.897 0.657 0.876 0.834 0.841
InverseAE 0.935 0.881 0.879 0.682 0.881 0.800 0.843

Second, in the HSL color space, a color and its inverse have contrasting luminosity, i.e.
when the luminosity of a color is L, the luminosity of its inverse is 1� L, see Appendix B.
We can define the absorbance power of a color as the average of the minimum and max-
imum of its red, green, and blue light absorbance. Then, by definition, its luminosity is
inversely correlated with its absorbance power. As a result, since a color and its inverse
have contrasting luminosity, they also have contrasting absorbance powers. This property
allows inversion regulation to eliminate a large portion of the undesired solution space and
promote good sparse solutions (property II ). We discuss this in more detail in Appendix C.

We have shown how the inversion regulation brings special properties that are essential
to converge to good solutions and hence, get high accuracy stain segmentation maps. Using
the inverse reconstruction loss on a mIHC dataset with m = 8 stain vectors, we observe
that it pushes the prediction towards the desired solution, that is, at any location, the stain
corresponding to the observed dominant color gets the highest concentration. Figure 2
shows an overview of the model architecture and training.

5. Experiments

We performed experiments with 7-plex mIHC stained pancreatic cancer tissue. The 7 bio-
markers include immune cell biomarkers: CD3 (yellow), CD4 (teal), CD8 (purple), CD16
(black), CD20 (red), a tumor biomarker (brown), in addition to hematoxylin as a nuclear
counterstain (blue). The training dataset consisted of 240 patches of size 400 ⇥ 400 at 20x
divided into training and validation. See Appendix A for more details on the training and
inference, including how we obtain stain segmentations from the estimated concentration
maps. Next, we present our experiments for evaluating the predicted segmentation maps
and for evaluating the quality of the raw concentration maps. An ablation study of the
e↵ect of di↵erent components on the model is in Appendix D.1. Additional quantitative
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and qualitative results are in Appendix D. A discussion of the results, limitations, future
work, and impact is presented in Appendix E.

Evaluation with Dot Annotations. We tested the model on 96 patches of size 1200 ⇥
1920 from 42 cases. These test patches have manual dot annotations for each biomarker
where each dot marks the approximate center of a cell. The dot annotations are expanded
to superpixels (Achanta et al., 2012) for visualization of the ground truth labels in Figure 3
and Figure 6. We compute the F-score for the predicted semantic segmentation maps
for each biomarker, based on whether or not the generated segments intersect with the
dot annotations of the corresponding biomarker. Details of F-score computation are in
Appendix A. Table 1 shows the F-score results. We compare our method InverseAE to the
supervised models: ColorAE and UNet (Ronneberger et al., 2015), and to the unsupervised
methods: LassoReg (Chen and Chefd’hotel, 2014), PseudoInv. which is an extension of
(Ruifrok and Johnston, 2001) to support a stain matrix with > 3 stains using matrix pseudo
inverse, and Nearest Neighbor, which basically assigns the stain with the closest Euclidean
distance to the pixel color value. See Appendix A for a description of the baselines. From
Table 1, InverseAE outperforms all other unsupervised methods, coming at close second
after ColorAE. Figure 3 shows sample results from InverseAE, and in Appendix D.6 we
show sample results comparing against the baselines. A further discussion of the results is
presented in Appendix E.

Evaluation with Ground Truth Concentration Maps. We assessed the quality of
the concentration maps of the trained InverseAE and ColorAE models compared to 2-plex
SOTA stain decomposition method (Vahadane et al., 2016) on a set of IHC 2-plex images
using structure similarity index (SSIM). The 2-plex images were stained with one of the
immune/tumor biomarkers plus hematoxylin. The results are in Table 2. Interestingly, the
SSIM scores for InverseAE are often better than those for ColorAE showing that it better
captures the continuous values of the concentration maps. Additional evaluations of the
quality of the generated concentration maps are in Section D.3

6. Conclusion

While brightfield mIHC is a cost e↵ective and accessible multiplex imaging method, it does
not o↵er separate channels for di↵erent biomarkers. Furthermore, existing unsupervised
stain decomposition methods do not scale well with the increase in number of multiplexed
stains. This makes brightfield mIHC impractical compared to more expensive multiplex
imaging methods. In this work, we have tackled the problem of stain decomposition in
mIHC images and shown the e�cacy of our proposed approach on mIHC images with 7
simulataneous stains. Our unsupervised approach, ‘InverseAE ’ , allows pathologists to
get accurate results while relieving them from the burden of annotation. We propose a
novel training regularizer for stain decomposition, ‘inversion regulation’, to create additional
constraints during training that limit the solution space. Hence InverseAE learns to capture
the correct cell types, and the resulting stain concentration maps are representative of the
underlying staining. Consequently, InverseAE enables high quality stain segmentation maps
which are essential for downstream analysis.
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Appendix A. Training and Implementation Details

Training Details. InverseAE has a similar backbone network architecture to ColorAE.
They are both shallow autoencoders with around 200K trainable parameters. The main
di↵erence is that InverseAE is conditional on the input target stain. The constant weight
values �1 and �2 in Equation 6 are both set to 1 in our experiments. The training dataset
consists of 60 annotated patches from 6 whole slide images. The size of the patches is
1200 ⇥ 1920 at 40x. 40 Patches from 4 cases were used for training and the remaining 20
patches from the other 2 cases were used for validation. For training, the images are resized
to 20x and cut up into 400 ⇥ 400 overlapping patches, resulting in a total of 240 labeled
training patches.

Models Compared. We train our proposed method InverseAE on the 240 patches, with-
out annotation. We compare to the unsupervised approaches:
(1) LassoReg : the unsupervised lasso regression method described in (Chen and Chefd’hotel,
2014) which is designed to work on images with 4+ multiplex staining. We used L1 norm
weight � = 10�3.
(2) PseudoInv : an extension of (Ruifrok and Johnston, 2001) for color deconvolution that
solves the equation C = S�1 ⇥ Y for more than 3 stain vectors using pseudo inverse of S.
(3) Nearest Neighbor baseline which basically assigns the stain with the closest Euclidean
distance to the pixel color value.
Additionally, we use the dot annotations to train with weak supervision:
(4) ColorAE : the weakly supervised method in (Abousamra et al., 2020).
(5) UNet : a supervised deep learning model based on UNet model architecture (Ronneberger
et al., 2015). Di↵erent from previous methods, UNet’s output is not stain concentration
maps but rather likelihood maps. For each pixel, the output is the probability that the pixel
belongs to each stain class. Superpixel annotation maps (Achanta et al., 2012) derived from
the dot labels are used as the ground truth labels.

Stain Segmentation Maps Inference. The ultimate goal is to get a semantic segmenta-
tion map of the stains. Such a map would reflect the presence of di↵erent biomarkers or cell
types to utilize in downstream analysis. The resulting concentration from our unsupervised
solution can be used directly to do just that without further annotation or training. Each
stain has a minimum concentration value below which the stain can be excluded from the
competition for the dominating stain. During inference, each stain concentration map is
thresholded using hysteresis thresholding and then an argmax function is applied to select
the stain with the maximal concentration at each location. The resulting segmentation map
has a single stain prediction at each pixel, reflecting the predicted dominant stain at each
location. The hysteresis thresholding ensures that for each stain we only get regions where
there is high confidence in the presence of that stain and then expand it to cover the larger
cell area. The threshold parameters are fixed for each stain and are empirically selected on
a small held out set. See sample results in Figure 3.

F-score Computation. We computed the F-score for each biomarker/cell type, as follows:
a true positive is a predicted stain segment that intersects with an annotation dot, a false
positive is a segment that doesn’t intersect with any annotation dot, a false negative is an
annotation dot that does not intersect with any predicted segment.
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Appendix B. RGB to HSL Conversion.

We include here the formulas for obtaining saturation and lightness from RGB for their
relevance. The complete conversion algorithm including hue can be found in (Agoston,
2005). To convert from a normalized RGB color (r, g, b) to HSL space, we first define the
variables M and m that represent the maximum and minimum of (r, g, b), respectively :

M = max(r, g, b) (7)

m = min(r, g, b) (8)

The formula for luminosity L:

L =
1

2
(M +m) (9)

The formula for saturation S:

S =

(
0 if L = 0 or L = 1.
M�m

1�|2L�1| otherwise.
(10)

For the inverted color (r0, g0, b0) = (1� r, 1� g, 1� b), the formulas become:

M 0 = 1�m (11)

m0 = 1�M (12)

L0 = 1� L (13)

S 0 =

(
0 if L0 = 0 or L0 = 1.
M

0�m
0

1�|2L0�1| otherwise.
=

(
0 if L = 0 or L = 1.
M�m

1�|2L�1| otherwise.
= S (14)

Appendix C. Inversion Regulation Eliminates Many Undesired Solutions

We assume that at each pixel there is a dominant stain which should be assigned to that
pixel in the final stain segmentation maps. If we consider the luminosity component in
the HSL color space, when the luminosity of a color is L, the luminosity of its inverse is
1 � L, see Appendix B. Now, if we define the absorbance power of a color as the average
of the minimum and maximum of its red, green, and blue light absorbance, then by def-
inition (Agoston, 2005), its luminosity is inversely correlated with it’s absorbance power.
As a result, since a color and its inverse have opposite luminosity, they also have opposite
absorbance powers. We show here how this property allows us to eliminate a large part of
the undesired solution space by employing the inverse regulation.

BL allows a color to be made up of multiple colors added together weighted by their
concentrations. Consequently, in the OD space, a pixel’s color can be composed by the
addition of multiple stains -other than the true stain present at that pixel- as long as
their red, green, and blue OD (absorbance) values sum up to the color’s red, green, and
blue OD (absorbance) values, respectively. This is an undesired solution. However, this
solution will not hold in the inverse space as long as no stain is a function of another by a
multiplicative factor. We can see this by a simple example: A stain vector representing white
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or the background tissue will have very low absorbance, for instance (250, 250, 250)RGB =)
(0.01, 0.01, 0.01)OD. By BL, it can be added to any color without modifying the color’s OD.
Nevertheless, in the inverse space, this does not hold because the complement color has high
absorbance (OD): (5, 5, 5)inv�RGB =) (1.7, 1.7, 1.7)inv�OD. As a result, it will modify the
OD of any pixel it is added to its mixture and thus it cannot be added blindly. Another
example, consider the 3 stain vectors:
SARGB = (250, 100, 100) =) SAOD ' (0.0, 0.4, 0.4)
SBRGB = (250, 250, 100) =) SBOD ' (0.0, 0.0, 0.4)
SCRGB = (250, 100, 250) =) SCOD ' (0.0, 0.4, 0.0)
By BL, SA can be expressed as a linear combination of SB and SC.

SAOD = SBOD + SCOD (15)

Now if we examine the same stains in the inverse space:
SAinv�RGB = (5, 155, 155) =) SAinv�OD ' (1.7, 0.2, 0.2)
SBinv�RGB = (5, 5, 155) =) SBinv�OD ' (1.7, 1.7, 0.2)
SCinv�RGB = (5, 155, 5) =) SCinv�OD ' (1.7, 0.2, 1.7)
Equation 15 does not hold in the inverse space.

SAinv�OD 6= SBinv�OD + SCinv�OD (16)

This illustrates how the inverse regulation helps to avoid many such undesired solutions
and promote good solutions.

Appendix D. Additional Experiments

D.1. Ablation Study: Model Design Choices

Here we present ablation studies on the design choices for our unsupervised model In-
verseAE. In Table 3 we present the F-score results on the 96 annotated patches using
variations from our proposed method. First, the results show the importance of the inverse
reconstruction loss. Without it (rows 1-3), the predicted maps are not representative of
the stains visually present in the mIHC image. This is clear from the very low F-scores.
Second, replacing the inverse reconstruction loss with a L1 sparsity constraint (row 2) is
not su�cient to get representative concentration maps. We notice sparsity in the predic-
tion, nevertheless the prediction is not correlated with the observed stains. We find the
dominating stains in the prediction are mostly CD3’s yellow and CD8’s purple, while the
tumor (brown) and the CD16 (black) biomarkers are missing, as evidenced by their zero
F-score in the table. Third, instead of the inverse regulation loss, we use the inverted im-
ages and stains as data augmentation (row 3). We observe that we get slightly improved
performance compared to the L1 sparisity constraint (row 2), however it also su↵ers from
missing biomarkers in the predicted concentration maps. Finally, without the conditional
autoencoder (row 4) i.e., predicting all the stains at once without target stains conditional
input, the scores are lower and the model does not generalize well. The conditional input
prevents the model from overfitting and allows the model to better capture the target stains
in the image.
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Table 3: Ablation study on unsupervised model design InverseAE, evaluated with F-score
of stain segmentations with respect to dot annotations on 96 patches from 42 cases.

Inverse Reg. Conditional AE L1 Sparsity Inv. Aug. CD3 CD4 CD8 CD16 CD20 Tumor Mean
X 0.235 0.307 0.409 0.121 0.326 0.147 0.257
X X 0.215 0.228 0.337 0.000 0.300 0.000 0.180
X X 0.407 0.411 0.716 0.000 0.117 0.000 0.275

X 0.482 0.501 0.753 0.324 0.274 0.220 0.426
X X 0.644 0.530 0.813 0.632 0.327 0.556 0.584

Table 4: Ablation study measuring the impact of Linverse in Equation 6, by fixing �1 = 1
and modifying �2.

�2 CD3 CD4 CD8 CD16 CD20 Tumor Mean
0.0 0.235 0.307 0.409 0.121 0.326 0.147 0.257
0.25 0.545 0.589 0.803 0.670 0.224 0.620 0.575
0.5 0.531 0.476 0.791 0.681 0.273 0.613 0.561
0.75 0.580 0.573 0.790 0.698 0.268 0.581 0.582
1.0 0.644 0.530 0.813 0.632 0.327 0.556 0.584
1.25 0.629 0.602 0.781 0.709 0.320 0.475 0.586
1.5 0.584 0.584 0.809 0.694 0.327 0.559 0.593
2.0 0.625 0.571 0.791 0.634 0.333 0.532 0.581

D.2. Ablation Study: Impact of �2

In Table 4, we analyze the impact of �2 (the weight of Linverse in Equation 6). We fix
�1 = 1 and train with di↵erent values of �2. We observe that adding Linverse, even with a
small weight (�2 = 0.25), can largely boost the performance compared to training without
Linverse. This shows the power of the proposed Inverse Regulation Loss. The overall
performance is quite robust/stable with regard to di↵erent �2 values. We find it interesting
that as we increase �2 from 0.25 to 2, the model has a slightly increased performance on
some immune biomarkers (e.g., CD3 and CD20), whereas its performance decreases on
tumor. We conjecture that a heavier inverse regulation loss is making more detection on
immune biomarkers by decreasing its detection preference on tumors, which is much more
frequent in tumor microenvironment.

D.3. Quality of Stain Concentration Maps

Previously we evaluated the structural similarity (SSIM) of the stain concentration maps
generated by InverseAE on 2-plex IHC images, where InverseAE model was trained on the
mIHC dataset. The SSIM scores were reported in Table 2. This test set consisted of 20
patches of size 1000 × 1000 pixels at 20x magnification. The patches were sampled from
2 WSIs per stain, that is 120 patches sampled from 12 WSIs in total. Here, we include
additional metrics: peak signal-to-noise ratio (PSNR) (psn, 2022) and learned perceptual
image patch similarity (LPIPS) (Zhang et al., 2018). The PSNR is the ratio between the
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Table 5: Evaluation of InverseAE concentration maps on single stain images with PSNR
and LPIPS scores.

Method CD3 CD4 CD8 CD16 CD20 Tumor Mean
SSIM" 0.935 0.881 0.879 0.682 0.881 0.800 0.843
PSNR" 32.83 25.78 27.15 20.97 30.83 24.47 27.01
LPIPS# 0.28 0.34 0.38 0.44 0.48 0.50 0.40

Table 6: Evaluation of InverseAE mIHC image reconstruction from generated concentration
maps using SSIM, PSNR, LPIPS, and MSE scores.

Method SSIM" PSNR" LPIPS# MSE#
InverseAE 0.88 28.56 0.20 101.75

maximum possible power of a signal and the power of corrupting noise that a↵ects the
fidelity of its representation. It is expressed as a logarithmic quantity in decibels using the
formula:

PSNR = 10 log10
MAX2

I

MSE
(17)

where MAXI is the maximum possible pixel value of the image and MSE is the mean
squared error. A higher PSNR indicates lower noise. LPIPS, on the other hand, computes
the similarity between the activations of two image patches for some pretrained network.
This metric has been shown to match human perception well. A low LPIPS score means
that the image patches are perceptually similar. We compute LPIPS using a pretrained
VGG network. The PSNR and LPIPS scores are reported in Table 5. The samples in
Figure 4 show that the concentration maps generated by InverseAE largely match those
generated by (Vahadane et al., 2016), except for regions with very light staining as in the
case in the tumor brown stain example.

D.4. Quality of mIHC Image Reconstruction

Here we evaluate the quality of the images reconstructed from InverseAE generated stain
concentration maps. We use the metrics SSIM, PSNR, LPIPS, and MSE, as described in
Section D.3. The scores are in Table 6. Figure 5 shows sample mIHC patches and the
corresponding reconstruction from InverseAE stain concentration maps.

D.5. Results over multiple iterations

In Table 7, we present the mean and standard deviation of InverseAE scores over 5 iterations.
For each iteration we train on patches from 2

3 of the whole slides for training and use patches
from the remaining 1

3 of the whole slides for validation. We evaluate all 5 models on the
same test set used in Table 1. The results are fairly close to the single iteration results
presented in Table 1 and the standard deviation is very small.
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Table 7: Results from training InverseAE over multiple splits, Section D.5. For each cate-
gory we report the mean and standard deviation of the F-score across 5 splits.

Method CD3 CD4 CD8 CD16 CD20 Tumor Mean
InverseAE 0.602± 0.04 0.512± 0.02 0.809± 0.00 0.671± 0.03 0.297± 0.02 0.572± 0.03 0.577± 0.01

D.6. Qualitative Results

In Figure 6, we expand the qualitative results to compare to the baseline methods. We
observe nearest neighbor method is very sensitive to variations in the staining, resulting
in various mis-classifications. LassoReg overestimates tumor (brown) and CD16 (black)
regions and often mixes them up or mistakes the background tissue for them. Pseudo
Inverse mistakes the background tissue for CD16 (black). It is worth noting that the mixup
between the background and CD16 (black) is mainly due to the fact that the 2 colors have
very close hues and mainly di↵er in luminosity. On the other hand, InverseAE and ColorAE
most resemble the superpixel (Achanta et al., 2012) labels derived from the dot annotations.

Appendix E. Discussion

We observe a variation in F-scores across di↵erent classes. More specifically, CD20 gets a
very low score. This is caused by the very low distribution of CD20 across the dataset. The
model sees less CD20 and thus tends to make more mistakes. Furthermore, with the small
population in the test set, few errors are penalized heavily by the F-score. CD4 also su↵ers
from a low training population compared to other classes, however not as low as CD20.
Another common source of errors is the tumor staining (brown color) that is sometimes so
dark that it appears as black and is thus predicted as CD16 (black stain) instead.

One limitation of our approach is that we do not model co-staining. We assume that
there is a single dominant stain at each pixel and that it is the assigned label for that pixel.
In the future, we plan to research methods to model co-staining. Moreover, we plan to
integrate ColorAE (supervised) and InverseAE (unsupervised) to achieve scalable and high
quality annotations of IHC images.

The real clinical benefit of our method lies in making multiplex IHC image analysis
practical and accurate at the same time. Multiplex imaging is mostly used to study the
tumor microenvironment by quantifying the distribution of di↵erent biomarkers and relating
the quantification to cancer diagnosis and prognosis. Our method provides an e�cient
annotation solution for these IHC images, making the quantification much more scalable.
This will potentially lead to more advanced diagnosis and treatment planning tools.

Other applications that might benefit from stain decomposition are those tasks that rely
heavily on color and can benefit from color separation. One such application that comes to
mind is aerial imaging, where color is the most prominent feature.
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Figure 4: Sample IHC patches, the corresponding pseudo ground truth stain concentration
maps obtained by (Vahadane et al., 2016), and InverseAE generated stain concen-
tration maps. For each sample, the SSIM, PSNR, and LPIPS metrics are shown
on the right.
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Figure 5: Sample mIHC patches reconstruction from InverseAE stain concentration maps.
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Figure 6: Sample stain segmentation results comparing InverseAE against the super-
pixel (Achanta et al., 2012) labels derived from the dot annotations, ColorAE,
lassoReg, pseudo inverse, and nearest neighbor methods.
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