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Abstract. Time series data plays a significant role in many research
fields since it can record and disclose the dynamic trends of a phe-
nomenon with a sequence of ordered data points. Time series data is
dynamic, of variable length, and often contains complex patterns, which
makes its analysis challenging especially when the amount of data is
limited. In this paper, we propose a multi-view feature construction
approach that can generate multiple feature sets of different resolu-
tions from a single dataset and produce a fixed-length representation
of variable-length time series data. Furthermore, we propose a multi-
encoder-decoder Transformer (MEDT) architecture to effectively analyze
these multi-view representations. Through extensive experiments using
multiple benchmarks and a real-world dataset, our method shows signif-
icant improvement over the state-of-the-art methods.

Keywords: Multivariate Time Series Classification · Multi-view Learn-
ing, Multi-Encoder-Decoder Transformer.

1 Introduction

Time series data provides a clear and dynamic way to record the evolution
of different variables of a phenomenon over time. In dynamic scenarios, time
becomes a crucial dimension for complete recording, and time series data can
represent an ordered sequence of features based on time, efficiently captures the
dynamic relationship within evolving phenomena. Currently, time series data is
widely used in various fields, such as Biology, Physics, Meteorology and Sport
Medicine, there are still a few significant challenges in time series data analysis.
Although many studies providing strong solutions to deal with time series data,
such as [7, 2, 4, 9], there are still some limits and challenges in the field:

Time series analysis is very sensitive to the quality of data. Since the pre-
diction is based on the dynamic trend of the relationship between features and
time, it would have a significant impact to the model if erroneous data points
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existed. To solve this, we assume that any time series events consist of a set of
time units with similar characteristics, we define them as atomic units of the
data (more details in Section 4.1). These units are always repeated among the
whole sequence of time series data since they are basic and key building blocks
constituting the data. With a representation using a set of basic atomic units,
noise and outliers can be reduced significantly, and only key characteristics of
data can be kept in the new representation. The proposed method can extract
and construct atomic units from the original sequences of time series data[4],
which can significantly reduce the negative impacts caused by the data qual-
ity and make the prediction processing more robust compared to the current
methods.

Time series data is often recorded in variable length. Considering the char-
acteristics of time series data, it is hard to begin and finish the recording of
phenomena concurrently for different individuals. For example, when we mon-
itor people’s activities during the day, we don’t know how long each activity
will last, and it is impossible to perform all actions in the same time period. In
such cases, it is incompatible for use with traditional machine learning models
due to its variable-length features. To deal with this issue, there are two com-
mon techniques used frequently: cutting off or padding the period with the same
length for all records [9, 10] or using fixed length sliding windows to represent
the original data [23]. However, both of these methods will cause information
loss due to the cut-off process. In contrast to these, the proposed method can
keep maximum information by constructing a high-level summarization of the
original variable-length time series data based on the extracted atomic units
contained within the data. The atomic units serve as basic building blocks in
data. The summarization of atomic units can provide a fix-length representation
of the original variable-length time series data.

Time series data requires high computation cost. To make a time series
dataset into a suitable input for a machine learning algorithm, the sliding win-
dows technique is currently the most popular one, however, there is a significant
limit of the sliding windows technique - the amount of data would increase
rapidly depending on the width of a window and the length of a moving step,
which means the cost of computation also would increase rapidly. Our proposed
atomic based method can provide an adaptive choice of the size to fix the re-
source of computation. We are able to serve more flexibility by extracting fixed
number of atomic units and building a new representation based on it, for exam-
ple, we can reducing the number of features to a fixed number and decrease the
complexity of computation significantly while producing competitive prediction
results.

In summary, we propose an innovative feature construction approach that
can generate multiple feature sets of different resolutions from a single dataset
and produce a fixed-length representation of variable-length time series data.
By applying the extracted atomic units from the original data, it allows the
proposed model providing a competitive solution of noise, variable-length and
computation cost. Our model, Multi-Encoder-Decoder Transformer (MEDT),
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attempts to encapsulate and utilize all global information about the time series
data. These multiple feature sets provide multiple views on the same data and
are fed into a multi-encoder-decoder Transformer architecture, which is inspired
by multilingual neural translation. Our main contributions are as follows:

– We propose a novel multi-view feature construction approach to deal with
variable-length time series data and noise. In order to keep as much as global
information from the original time series data, our method can construct
multiple sets of fixed length features representation based on atomic units
of data. These multi-view representations capture information of different
granularity from original data and produce more robust results.

– We develop a multi-encoder-decoder Transformer model to effectively anal-
yse these multiple feature sets for time series classification since these multi-
ple views describe the same underlying phenomenon, inspired by multilingual
neural translation (e.g., different languages encode the same semantics).

– We provide more flexibility in the number of features, which can help reduce
the complexity of computation and provide a more efficient method for time
series prediction. By constructing selected number of new features summa-
rizing original data, computation could decreases with a simple fixed length
data input, while prediction quality improves.

2 Related Works

Numerous time series data analysis methods have been proposed. Recent meth-
ods include HIVE-COTE (Lines et al., 2018) [1], ROCKET (Dempster et al.,2020)
[2], and TS-CHIEF(Shifaz et al., 2020) [3], which are considered to be the state-
of-the-art when tackling time series classification problems. Other popular meth-
ods include CNN-based deep learning models such as REsNet (Fawaz et al.,
2019b) [11] and InceptionTime (Fawaz et al., 2019a) [8]. However, these methods
are computationally costly and complex and often fail to produce good results for
datasets containing numerous samples of lengthy time series data. Dempster et
al. (2021) [28] introduce a fast MiniRocket method which is 75 times faster than
original Rocket. Gao et al. (2022) [29] provides a reinforcement learning frame-
work for multivariate time series classification which can identify interpretable
patterns without using neural network. Although these methods show improve-
ments either on speed or accuracy. However, it is hard to find a method which
can provide consistent and competitive accuracy versus other SOTA methods.

Currently, there are a lot of transformer based publications of time series
analysis. Transformer, although initially proposed for natural language trans-
lation and having demonstrated remarkable results in various NLP tasks, have
found applications in time series tasks while also providing for efficient compu-
tation. In contrast to other popular sequential data classification methods, the
classical Transformer model presented by Vaswani et al. (2017) [5] is based ex-
clusively on the attention mechanism. The attention mechanism tends to global
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dependencies between input and output, while the architecture of the Trans-
former model allows for greater parallelization, resulting in a significantly more
efficient and accurate classification [5]. Li et al. (2019) [13] and Wu et al. (2020)
[14] have employed full encoder-decoder transformer architectures for univari-
ate time series forecasting, outperforming traditional statistical methods and
RNN-based models. Ma et al. (2019) applied transformers for the imputation
of missing values in multivariate time series, showcasing their effectiveness in
handling the data. Hao et al. (2020) [27] provides a 2-step attention-based CNN
model which designs an attention mechanism to extract memories across all
time steps and then applies another attention mechanism for variable selec-
tion. The work presented by Zerveas et al. (2021) [7] introduces a transformer-
based framework for unsupervised representation learning of multivariate time
series. This methodology leverages unlabeled data by pre-training a transformer
model with an input denoising objective. Zhou et al. (2020) [12] introduced a
Transformer-based architecture with two symmetric language-specific encoders.
This Multi-Encoder-Decoder Transformer architecture effectively captures indi-
vidual language attributes and employs a language-specific multi-head attention
mechanism in the decoder module.

Our approach shows significant improvement over the state-of-the-art meth-
ods, as it performs feature extraction on variable-length time series data, learning
to construct multiple robust fixed-length representations of the original informa-
tion, with the different representations serving as inputs to the Multi-Encoder-
Decorder Transformer model, leveraging the architecture’s efficiency to capture
maximal information from each feature set.

3 Problem Formulation

In this section, we formulate the problem solved in this paper in a mathematical
way. Time series features record the data in ordered sequences of points over
time, such as the gait force and the moving activities being recorded based on a
sequence of time slots. We assume a time series sample X can be represented by
|T | ordered data points where T is the full-time period. In this case, each sample
of records can be written as X = {xt1 , xt2 , . . . xti ; ti ∈ T}, where xti represents
all features of X at time ti, and a time series data set D with N features can be
written as D = {X1, X2, . . . Xn;n ∈ N}. So the main problem can be formulated
as follows [4]:

f(X1, X2 . . . , Xn) : D → C (1)

where D is the input time series data and C is the class labels.
For the length of a sample Xi ∈ D, in most cases, it will vary individually,

which means |Xn| ≠ |Xm| where n,m ∈ N . It is impossible to find a model f to
handle inconsistent dimensional data.

Our solution is to extract a set of atomic units A by applying a data-driven
summarized method E(X) : D → A, where A = {a1, a2 . . . ak} and k will be a
fixed value. Given the set A, it allows us to construct a new fixed-dimensional
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summarized data D′ based on the atomic units contained in it. The samples X ′

in the new data D′ can be represented by the set of atomic units A. Now, it will
be able to apply a clustering method f on the summarized data D′.

4 Methodology

In contrast to the existing methods, the proposed algorithm is applicable to both
fixed and variable length time series data. The algorithm consists of the following
phases:

– Feature Construction: Summarizing the variable-length time series data and
constructing a fixed-length representation based on its atomic units.

– Multi-view Representation: Constructing multiple representations of the orig-
inal dataset, each with varying number of features.

– Classification: Applying our Multi-Encoder-Decoder Transformer (MEDT)
model to classify multivariate time series data instances.

4.1 Feature Construction

In time series data, there are always some repeated events that happen over
time. The biggest challenge in the field is how to find patterns and relationships
between these repeated events and time steps. In our study, we introduce the
term of atomic units (Definition 1) which constitutes these events [4].

Definition 1. Atomic Unit
Suppose a time series data is split into a sequence of small time periods, we
assume that there are some repeated common characteristics among the sequence,
this kind of common characteristics are named as atomic units.

Atomic units are the basic building block of a time series data. They appear
in time series data repeatedly and play a significant role in representation. Ac-
cording to the different resolutions (number of features) required, we apply the
Gaussian Mixture Model to extract a set of atomic units for each resolution. The
new representations are ratio features built by each set of atomic units.

Gaussian Mixture Model (GMM) is a probability-based unsupervised clus-
tering technique which is formed by several single Gaussian distributions[19].
With these individual Gaussian distributions, we can simply simulate the time
series events by clustering the atomic units set A over time steps (Tk). Suppose
we have time series data D and features Xn, the GMM clustering method is
applied to find the best individual distribution of each atomic unit, then we are
able to construct new ratio features based on the GMM clustering results.

Considering the time steps as the basic elements of a time series event, we
can define a set of the distributions pk(x) over all time steps. And clustering
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each step into one of our designed atomic units following the distribution pk(x).
We calculate the probability µ of each time step belongs to a atomic unit[4],
where

µk(x) =
πkN(x∥µk, σk)

σlπlN(x∥µlσl)
(2)

The best matching atomic unit will be assigned based on the calculation of
argmaxµk(x) over all potential atomic units.

After pairing the time steps and atomic units by calculating argmaxµk(x), we
can construct a fix-length ratio feature to represent the original high dimensional
time series events, where

rk =
|Ak|
|A|

(3)

The ratio can be calculated with the number of the atomic unit over the total
number of atomic units. Then the time series D and be summarized as a vector
[ |A1|

|A ], |A2|
|A| . . . |Ak|

A ].

4.2 Multi-view Representation

Our feature construction approach can represent time series data with an ar-
bitrary number of features. Since the created ratio features have a very low
level of collinearity, we can generate multiple summarizations of the source data
with different resolutions, which convert the source data into a set of multi-view
representations based on atomic units.

Inspired by the idea of multilingual model [24], we create multiple represen-
tations with different numbers of features to describe single time series data.
These representations are considered as multiple views of the data. We believe
multi-view representations can help capture more information under different
granularity [25, 26]. To take as much as patterns in multi-view representations,
we proposed a multi-encoder-decoder transformer model which uses multiple
views as inputs.

4.3 Multi-Encoder-Decoder Transformer (MEDT) Classification

We propose a modified architecture of the model - one where each encoder-
decoder pair will take as input two different representations of the same dataset.
After constructing new features, we may choose to represent the original dataset
with two new datasets of n and m features, passing each individually into either a
single encoder or an additional decoder. For example, we may choose to construct
two representations - one with 10 and another 20 with features. Thus, we would
feed either the 10 or the 20 feature dataset into either the encoder or the decoder.
If we decide to construct 8 different representations of the original dataset, we
may choose to have 4 encoder-decoder pairs. The output of an encoder, along
with the output of a decoder, passes through dense layers and a softmax layer,
producing the final output of the Multi-Encoder-Decoder Transformer (MEDT).

The detailed architecture of the model is presented in Figure 1.
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Fig. 1. Multi-Encoder-Decoder Transformer (MEDT) Architecture

5 Experiments

Our model is evaluated on the physical activities dataset [16] and 5 real-world
datasets from the UEA multivariate time series classification (MTSC) archive
[15]. We compare the performance of our model to the other four state-of-art
methods.

5.1 Experiments using Multivariate Time Series Data Benchmarks

We evaluate our method on 5 multivariate time series datasets from the Univer-
sity of East Anglia (UEA) Multivariate archive. We select the data from different
domains, such as human activity, motion classification, and audio spectra classi-
fication, with various dimensions (from 3 to 1345), length (from 29 to 1751), and
number of classes (from 2 to 26). We use 4 fixed-length datasets and 1 variable-
length dataset in this study to show the robust and competitive performance of
our method. The details are shown in Table 1.
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Table 1. Multivariate Time Series Datasets

Dataset Train Test Dimensions Length Classes
DuckDuckGeese 50 50 1345 270 5

Heartbeat 204 205 61 405 2
Handwriting 150 850 3 152 26

EthanolConcentration 261 263 3 1751 4
JapaneseVowels* 270 370 12 29 9

*: Variable-length dataset

Baseline:
We compare our performance with the plain transformer using single view and

four state-of-art multi-variable time series classification methods: Vanilla Trans-
former (TF) [5], Rule Transformer (RT) [6], Time Series Transformer (TST) [7],
Complexity Measures and Features for Multivariate Time Series (CMFMTS) [9],
RandOM Convolutional KErnal Transform (ROCKET) [2, 10].

Results:
In this section, we show the experiment results of our proposed method and

compare it with other current classification algorithms. The original training and
testing splits are used. Our method presents a competitive performance in most
cases and in the first rank of average ranking, the details of results are shown in
Table 2.

Our method (MEDT) shows the best performance in DuckDuckGeese and
Heartbeat datasets. The DuckDuckGeese has the highest dimensions which is
1345, because of this, some competitors didn’t provide results on this dataset,
for instance, it is too large to run with the vanilla TF model. For other datasets,
although our method stands at the second place among all models, it provides a
very close performance to the best one. The JapaneseVowels dataset has variable-
length time steps for each sample, and due to this issue, two of the competitors
do not include it in their studies. Our proposed MEDT method presents the
best overall average rank among all methods listed, which shows a solid good
performance of it.

Table 2. Performance in Accuracy for Multivariate datasets

Dataset TF RT20% TST(pre-train) CMFMTS ROCKET MEDT
DuckDuckGeese − 18.0% − 51.0% − 51.99%

Heartbeat 72.66% 73.17% 77.6% 76.8% 72.68% 78.05%
Handwriting 3.76% 26.24% 35.9% 27.4% 21.88% 28.5%

EthanolConcentration 25.81% 41.44% 32.6% 26% 27.38% 33.46%
JapaneseVowels* 93.4% − 99.7% 83.7% − 98.8%

Average Rank 5.25 3 1.75 3.4 4.67 1.6
*: Variable-length dataset
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5.2 Experiment using a real-world Physical Activities Dataset

The physical activities dataset includes a variety of activities from 184 child par-
ticipants between 8 years old and 15 years old. The original data was published
in [16]. Table 3 shows the detailed distribution for the related activities of each
class.

The raw sensor recordings were cut into 12-second windows and generated
model-based features with domain knowledge. Our method is feature-agnostic,
so we use one of the most popular features, the percentile features, following
the previous study in [17, 18]. The 10th, 25th, 50th, 75th, and 90th percentiles
are used in the summarization process to generate more robust features. The
minimum and maximum are excluded to reduce potential outliers. Since the
window length is 12 seconds and the resolution of the data is 1 second, in this
case, the nearest points (2nd, 3rd, 6th, 9th, and 11th) are used for the features[4].

Table 3. The activity classes in each coarse categories
and the number of 12-second windows recorded in the classes and categories.

Category and Class Number of Windows

Sedentary
Lying Rest 14755

16475Playing Computer Games 860
Reading 860

Light Household and Games
Light Cleaning 840

2505Sweeping 865
Workout Video 800

Moderate-Vigorous Household and Sports Wall Ball 845 1570Playing Catch 725

Walk
Brisk Track Walking 1210

3775Slow Track Walking 1000
Walking Course 1565

Run Track Running 485 485

Results:
To compare the performance of our algorithm, we run the baseline model with

identical hyperparameters, single view without summarization, same training
and testing split. The results show that our summarized model completely out-
performs the baseline classification model. Our model presents a good perfor-
mance of overall accuracy at 93.24%, while, the baseline model has much lower
accuracy at 86.30%. Typically, the baseline model requires much more time in
the training. The training process takes 29372 seconds on the baseline model, but
only half of that, 14981 seconds, on our proposed model with summarize mech-
anism. The confusion matrix of both models is presented in Fig. 2 and 3. In the
assessment of sensitivity (Sens) and specificity (Spec), our MEDT model consis-
tently outperforms across all sub-categories. Especially, in minor sub-categories
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such as LHH, MtV and Run, our method exhibits a superior level of sensitivity
performance in comparison to the baseline model.

Fig. 2. The Confusion Matrix of MEDT model

Fig. 3. The Confusion Matrix of Baseline Model

6 Conclusion

Although time series data offers insights into dynamic trends through collec-
tions of ordered data points, prevalent machine learning methods for time se-
ries are presenting challenges when dealing with noise, variable-length data and
large data. We introduce a new approach utilizing GMM that provides fixed-
length multi-view representations of variable-length time series data, allowing
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for compatibility with any classical machine learning methods. Leveraging this
algorithm, we construct multiple representations from the original dataset, ap-
plying them to a Multi-Encoder-Decoder Transformer (MEDT) architecture for
a comprehensive, multi-view classification approach. Through extensive experi-
ments using multiple benchmarks and a real-world dataset, our method shows
significant improvement compared to the state-of-the-art methods.

7 Acknowledgement

This material is based upon work partially supported by the National Institutes
of Health under grant NIH 1R01DK129428-01A1 and National Science Founda-
tion under NSF grants 2008202 and 2334665. Any opinion, findings, and conclu-
sions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the funding agencies.

References

1. Lines, Jason, Sarah Taylor, and Anthony Bagnall. "Time series classification with
HIVE-COTE: The hierarchical vote collective of transformation-based ensembles."
ACM Transactions on Knowledge Discovery from Data (TKDD) 12.5 (2018): 1-35.

2. Dempster, Angus, François Petitjean, and Geoffrey I. Webb. "ROCKET: exception-
ally fast and accurate time series classification using random convolutional kernels."
Data Mining and Knowledge Discovery 34.5 (2020): 1454-1495.

3. Shifaz, Ahmed, et al. "TS-CHIEF: a scalable and accurate forest algorithm for time
series classification." Data Mining and Knowledge Discovery 34.3 (2020): 742-775.

4. Amaral, Kevin, et al. "SummerTime: Variable-length Time Series Summarization
with Application to Physical Activity Analysis." ACM Transactions on Computing
for Healthcare 3.4 (2022): 1-15.

5. Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information
processing systems 30 (2017).

6. O. Bahri, P. Li, S. F. Boubrahimi, and S. M. Hamdi, “Shapelet-based Temporal Asso-
ciation Rule Mining for Multivariate Time Series Classification,” IEEE Xplore, Dec.
01, 2022. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp= & arnumber=10020478
(accessed Sep. 02, 2023).

7. Zerveas, George, et al. "A transformer-based framework for multivariate time series
representation learning." Proceedings of the 27th ACM SIGKDD conference on
knowledge discovery & data mining. 2021.

8. Ismail Fawaz, Hassan, et al. "Inceptiontime: Finding alexnet for time series classi-
fication." Data Mining and Knowledge Discovery 34.6 (2020): 1936-1962.

9. Baldán, Francisco J., and José M. Benítez. "Multivariate times series classification
through an interpretable representation." Information Sciences 569 (2021): 596-614.

10. Bier, Agnieszka, Agnieszka Jastrzębska, and Paweł Olszewski. "Variable-Length
Multivariate Time Series Classification Using ROCKET: A Case Study of Incident
Detection." IEEE Access 10 (2022): 95701-95715.

11. Ismail Fawaz, Hassan, et al. "Deep learning for time series classification: a review."
Data mining and knowledge discovery 33.4 (2019): 917-963.

12. Zhou, Xinyuan, et al. "Multi-encoder-decoder transformer for code-switching
speech recognition." arXiv preprint arXiv:2006.10414 (2020).



12 Zihan Li, Wei Ding, Inal Mashukov, Scott Crouter, and Ping Chen

13. Li, Shiyang, et al. "Enhancing the locality and breaking the memory bottleneck of
transformer on time series forecasting." Advances in neural information processing
systems 32 (2019).

14. Wu, Neo, et al. "Deep transformer models for time series forecasting: The influenza
prevalence case." arXiv preprint arXiv:2001.08317 (2020).

15. Bagnall, Anthony, et al. "The UEA multivariate time series classification archive,
2018." arXiv preprint arXiv:1811.00075 (2018).

16. Crouter, Scott E., Kurt G. Clowers, and David R. Bassett Jr. "A novel method
for using accelerometer data to predict energy expenditure." Journal of applied
physiology 100.4 (2006): 1324-1331.

17. Staudenmayer, John, et al. "An artificial neural network to estimate physical activ-
ity energy expenditure and identify physical activity type from an accelerometer."
Journal of applied physiology 107.4 (2009): 1300-1307.

18. Trost, Stewart G., et al. "Artificial neural networks to predict activity type and
energy expenditure in youth." Medicine and science in sports and exercise 44.9
(2012): 1801.

19. Aitkin, Murray, and Granville Tunnicliffe Wilson. "Mixture models, outliers, and
the EM algorithm." Technometrics 22.3 (1980): 325-331.

20. Xu, Chang, Dacheng Tao, and Chao Xu. "A survey on multi-view learning." arXiv
preprint arXiv:1304.5634 (2013).

21. Dufter, Philipp, Martin Schmitt, and Hinrich Schütze. "Position information in
transformers: An overview." Computational Linguistics 48.3 (2022): 733-763.

22. Costa-jussà, Marta R., et al. "No language left behind: Scaling human-centered
machine translation." arXiv preprint arXiv:2207.04672 (2022).

23. Hota, H. S., Richa Handa, and Akhilesh Kumar Shrivas. "Time series data pre-
diction using sliding window based RBF neural network." International Journal of
Computational Intelligence Research 13.5 (2017): 1145-1156.

24. Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for
language understanding." arXiv preprint arXiv:1810.04805 (2018).

25. Li, Yingming, Ming Yang, and Zhongfei Zhang. "A survey of multi-view repre-
sentation learning." IEEE transactions on knowledge and data engineering 31.10
(2018): 1863-1883.

26. Xie, Zhuyang, et al. "Deep learning on multi-view sequential data: a survey." Ar-
tificial Intelligence Review 56.7 (2023): 6661-6704.

27. Hao, Yifan, and Huiping Cao. "A new attention mechanism to classify multivariate
time series." Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence. 2020.

28. Dempster, Angus, Daniel F. Schmidt, and Geoffrey I. Webb. "Minirocket: A very
fast (almost) deterministic transform for time series classification." Proceedings of
the 27th ACM SIGKDD conference on knowledge discovery & data mining. 2021.

29. Gao, Ge, et al. "A reinforcement learning-informed pattern mining framework for
multivariate time series classification." In the Proceeding of 31th International Joint
Conference on Artificial Intelligence (IJCAI-22). 2022.


