
Adversarial Attacks on Online Learning to Rank with
Click Feedback

Jinhang Zuo1,2 Zhiyao Zhang3 Zhiyong Wang4 Shuai Li5⇤
Mohammad Hajiesmaili1 Adam Wierman2

1University of Massachusetts Amherst 2California Institute of Technology
3Southeast University 4The Chinese University of Hong Kong 5Shanghai Jiao Tong University

{jhzuo,hajiesmaili}@cs.umass.edu muirheadzhang@gmail.com

zywang21@cse.cuhk.edu.hk shuaili8@sjtu.edu.cn adamw@caltech.edu

Abstract

Online learning to rank (OLTR) is a sequential decision-making problem where a
learning agent selects an ordered list of items and receives feedback through user
clicks. Although potential attacks against OLTR algorithms may cause serious
losses in real-world applications, there is limited knowledge about adversarial
attacks on OLTR. This paper studies attack strategies against multiple variants
of OLTR. Our first result provides an attack strategy against the UCB algorithm
on classical stochastic bandits with binary feedback, which solves the key issues
caused by bounded and discrete feedback that previous works cannot handle.
Building on this result, we design attack algorithms against UCB-based OLTR
algorithms in position-based and cascade models. Finally, we propose a general
attack strategy against any algorithm under the general click model. Each attack
algorithm manipulates the learning agent into choosing the target attack item
T � o(T) times, incurring a cumulative cost of o(T). Experiments on synthetic
and real data further validate the effectiveness of our proposed attack algorithms.

1 Introduction

Online learning to rank (OLTR) has been extensively studied [1, 2, 3, 4, 5] as a sequential decision-
making problem where, in each round, a learning agent presents a list of items to users and receives
implicit feedback from user interactions. One of the most common forms of feedback considered in
literature is in the form of user clicks [1, 4, 5]. OLTR with such click feedback can lead to major
improvements over traditional supervised learning to rank methods [6, 7, 8]. However, there is a
security concern that user-generated click feedback might be generated by malicious users with the
goal of manipulating the learning agent. Understanding the vulnerability of OLTR under adversarial
attacks plays an essential role in developing effective defense mechanisms for trustworthy OLTR.

There has been a surge of interest in adversarial attacks on multi-armed bandits [9, 10, 11]. For
example, [9] shows that, for stochastic bandits, it is possible to manipulate the bandit algorithm
into pulling a target arm very often with sublinear cumulative cost. Though it generally follows the
bandit formulation, it differs from stochastic bandits in the action space and feedback model. More
specifically, OLTR chooses a list of K out of L arms, instead of just one arm, to play in each round;
the realized rewards of the chosen arms are usually censored by a click model, e.g., position-based [4]
or cascade model [5]. Thus, it is nontrivial to design efficient adversarial attacks on the censored
feedback of the chosen arms for OLTR.

Moreover, previous works [9, 10] can only handle unbounded and continuous reward feedback, while
the (binary) click feedback of OLTR is bounded and discrete. Such binary feedback brings new

⇤Corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Table 1: Summary of the settings and proposed attack strategies†

Setting Attack against NL(T) limC(T)/ log T

L-armed bandits UCB [12] T �O

⇣
(L� 1)

⇣
1
�2

0
log T

⌘⌘
O

⇣P
a<L

�a+�0

�2
0

⌘

Position-based model PBM-UCB [4] T �O

⇣
(L�K)

⇣
1+✏

2
K�2

0
log T

⌘⌘
O

⇣P
a<L

(1+✏)(�a+�0)
2
M�2

0

⌘

Cascade model CascadeUCB [5] T �O

⇣
(L�K)

⇣
1

p⇤�2
0
log T

⌘⌘
O

⇣P
a<L

�a+�0

�2
0

⌘

General model Arbitrary T �O(log T) O
�P

a<L(�a + 4�(1))
�

† �0: parameter of the attack algorithm; �a: mean gap between arm a and L; �: a decreasing function in Section 3.2

challenges to the attack design against OLTR algorithms. Since the post-attack feedback must also
be binary, this scenario introduces a new problem of deciding whether to attack when the output
attack value from previous algorithms is between 0 and 1: a simple rounding up might be costly,
while skipping the attack may lead to undesired non-target arm pulls. Furthermore, the attack value
computed by previous attack algorithms can be larger than 1, which is higher than the maximum
attack value in the click model. In other words, in the bounded and discrete model, it is impossible to
always find a feasible attack value to ensure the required conditions for their theoretical guarantees.

Contributions. In this paper, we propose the first study of adversarial attacks on OLTR with click
feedback, aiming to overcome the new issues raised by the OLTR click model as well as the binary
feedback. Table 1 summarizes our proposed attack algorithms with their theoretical guarantees.
Since the click feedback itself complicates the attack design, we first consider adversarial attacks
on stochastic L-armed bandits with Bernoulli rewards where the feedback from the chosen arm is
always binary. We propose an attack algorithm that can mislead the well-known UCB algorithm [12]
to pull the target arm L for NL(T) times in T rounds, with a cumulative cost C(T) in the order of
log T asymptotically. Based on this approach, we study the two most popular click models of OLTR,
position-based model [4] and cascade model [5], and propose attack strategies against UCB-type
OLTR algorithms. Their cumulative costs depend on K and p

⇤, which are instance-dependent
parameters of the position-based and cascade models, respectively. Lastly, we introduce the threat
model for OLTR with a general click model and design an attack algorithm that can misguide arbitrary
OLTR algorithms using click feedback. Our technical contributions are summarized as follows.

1. We propose the new idea of conservative estimation of the target arm for attacking UCB in
stochastic bandits with binary feedback, which resolves the issues caused by the bounded
and discrete requirements of the post-attack feedback. This approach is also the backbone
of other attack strategies in more complicated OLTR settings.

2. The PBM-UCB algorithm uses position bias-corrected counters rather than simple click
counters to compute UCB indices; we provide the theoretical analysis of our attack algorithm
against PBM-UCB by carefully treating these unusual counters.

3. The partial feedback of OLTR with the cascade click model brings a new challenge to
the attack design. We provide a new regret-based analysis of our attack algorithm against
CascadeUCB without suffering from the partial feedback issue.

4. We devise a general attack strategy based on a new probabilistic attack design. It can
successfully attack arbitrary OLTR algorithms without knowing the details of the algorithm.

We also conduct experiments on both synthetic and real-world data to evaluate our proposed attack
strategies. Experimental results show that they can effectively attack the corresponding OLTR
algorithms with less cost compared to other baselines. Due to space constraints, proofs and empirical
results are included in the appendix.

Related Work. Online learning to rank with different feedback models has attracted much attention
in recent years. Though there are other types of feedback models such as top-K feedback [13], click
feedback has been widely used in literature. [4, 14, 15] consider the position-based model (PBM),
where each position of the item list has an examination probability known or unknown by the learning
agent. The cascade model in [5, 16, 17, 18, 19, 20] considers the setting where the user would check
the recommended items sequentially and stop at the first clicked one; all items after the clicked item
will not be examined. The dependent click model (DCM) is a generalization of the cascade model
where the user may click on multiple items [21, 22]. There are also general click models [1, 2, 3]

2

that can cover some of the previous click models. In this paper, we mainly focus on attack design on
PBM and cascade models; both of them adopt bounded and discrete click feedback thus require a new
design other than previous works like [9] that can only handle unbounded and continuous feedback.

Adversarial attacks on different types of multi-armed bandit problems have been studied recently [9,
10, 23, 24, 25]. [9] proposes the first study of adversarial attacks on the classical stochastic bandit
problem. It designs effective attack strategies against the ✏-Greedy and UCB algorithms. [10] extends
it to a more general setting, where the algorithm of the learning agent can be unknown. [23] studies
adversarial attacks on linear contextual bandits where the adversarial modifications can be added to
either rewards or contexts. To the best of our knowledge, we are the first to study adversarial attacks
on OLTR where, in addition to the challenges raised by click feedback, the combinatorial action
space and the censored feedback of OLTR make it non-trivial to design efficient attack strategies.

2 Preliminaries

In this section, we briefly discuss the three problem settings we consider in this paper.

Stochastic L-armed bandit. We consider an arm set [L] = {1, 2, · · · , L}, with µi as the expected
reward of arm i. Without loss of generality, we assume µ1 � µ2 � · · · � µL. In round t, the player
chooses an arm at 2 [L] to play and receives a reward r

0
t as feedback. In the click feedback setting,

the realized reward r
0
t 2 {0, 1} of arm at is sampled from a Bernoulli distribution with expectation

µat . The player aims to find an optimal policy to maximize the long-term cumulative reward.

OLTR with position-based model [4]. This setting also considers the item (arm) set [L] where µi

represents the click probability of item i. However, in OLTR with the position-based model (PBM),
in each round t, the player chooses an ordered list of K items, at = (a1,t, · · · , aK,t), with known
examination probability k for the k-th position in the list (assuming 1 � · · · � K). The player
then observes the click feedback of the chosen list from the user, denoted as r0t = (r01,t, · · · , r0K,t) 2
{0, 1}K , where r

0
i,t is sampled from a Bernoulli distribution with expectation iµai,t . The reward

obtained by the player is the sum of the clicks, i.e.,
PK

k=1 r
0
k,t. The goal of the player is to find an

optimal policy that can maximize the long-term cumulative user clicks.

OLTR with cascade model [5]. Here, we consider the same item set [L] as that in the PBM model.
For OLTR with cascade model, in each round t, the player chooses an ordered list of K items,
at = (a1,t, · · · , aK,t), for the user. The user then checks the list from a1,t to aK,t, with probability
µak,t to click the k-th item. She immediately stops at the first clicked item, and returns the click result
back to the player. We denote the position of the first clicked item as Ct (Ct = 1 if no item was
clicked). The click feedback of the player is r0t = (r01,t, · · · , r0K,t) 2 {0, 1}K , where only r

0
Ct,t

= 1

and r
0
k,t = 0 for all k 6= Ct. The reward obtained by the player is again the sum of user clicks

PK
k=1 r

0
k,t, but in the cascade model, it is at most 1. The goal of the player is also to find an optimal

policy that can maximize the long-term cumulative user clicks.

3 Attacks on Stochastic L-armed Bandits with Binary Feedback

As mentioned in the introduction, one main challenge of attacking OLTR algorithms comes from
the binary click feedback: such binary feedback limits the possible actions of the attacker since they
need to ensure the post-attack reward feedback is still valid (binary). This is a common issue for all
OLTR with click feedback. Hence, in this section, we focus on adversarial attacks on the L-armed
bandit problem with binary feedback. We propose an attack algorithm against the UCB algorithm,
which is the backbone of the attack strategies for more complicated OLTR settings.

3.1 Threat Model

We first introduce the threat model for the L-armed bandit problem with binary feedback. In each
round t, the player chooses an arm at 2 [L] to play. The environment generates the pre-attack reward
feedback r

0
t 2 {0, 1} based on a Bernoulli distribution with mean µat . The attacker then observes

at, r
0
t , and decides the post-attack feedback rt 2 {0, 1}. The player only receives rt as the feedback

and uses that to decide the next arm to pull, at+1, for round t + 1. Without loss of generality, we

3

Algorithm 1 Attacks against the UCB algorithm on stochastic bandits with binary feedback

1: Initialization: ha(0) = 1 for all a 2 [L]
2: for t = 1, 2, 3, . . . do
3: Observe at, r

0
t

4: if at 6= L then
5: Calculate �t, �̃t according to Eqs. (2) and (3)
6: if �t  r

0
t then

7: ↵t = d�te, hat(t) = t

8: else
9: ↵t = d�̃te, hat(t) = hat(t� 1)

10: end if
11: end if
12: Return rt = r

0
t � ↵t; update ha(t) = ha(t� 1) for all a 6= at

13: end for

assume arm L is a sub-optimal target arm. The attacker’s goal is to misguide the player to pull the
target arm L very often while using small attack costs. Let Ni(t) denote the number of pulls of arm i

up to round t. We say the attack is successful after T rounds if NL(T) = T � o(T) in expectation or
with high probability, while the cumulative attack cost C(T) =

PT
t=1 |rt � r

0
t | = o(T).

3.2 Attack Algorithm against UCB

For a better illustration of the attack strategy, we first define the following auxiliary notations. Let
⌧i(t) := {s : s  t, as = i} be the set of rounds up to t when arm i is played. We denote the
pre-attack average reward of arm i up to round t by µ̂

0
i (t) := Ni(t)�1

P
s2⌧i(t)

r
0
s . Lastly, let

µ̂i(t) := Ni(t)�1
P

s2⌧i(t)
rs be the post-attack average reward of arm i up to round t.

As in [9], we consider attacks against the (↵,)-UCB algorithm from [12], where ↵ = 4.5 and
 : � 7! �

2
/8 since Bernoulli random variables are 1/4-sub-Gaussian. The original attack algorithm

in [9] calculates an attack value ↵t for round t such that

µ̂at(t)  µ̂L(t� 1)� 2�(NL(t� 1))��0, (1)

where �(N) :=
q

1
2N log ⇡2LN2

3� ; �0 > 0 and � > 0 are the parameters of the attack algorithm. The
attacker then gives the post-attack reward rt = r

0
t � ↵t back to the player. The main idea of the

attack algorithm in [9] is to compute the attack value so that the post-attack empirical estimates of
the non-target arms are always less than those of the target arm.

However, this attack design only works when the reward space is unbounded and continuous, while
in the threat model with binary feedback, the Bernoulli rewards are discrete and bounded. There are
two issues raised by the discrete and bounded requirements. First, the calculated attack value ↵t is a
real number, which may not make the post-attack reward feedback rt to be valid (binary). Second, in
order to ensure that Eq. (1) is true, the calculated ↵t might be larger than 1, which is higher than the
maximum attack value in our threat model. In other words, it is impossible to let Eq. (1) hold for all
rounds, while such a guarantee was essential for the theoretical analysis in [9]. To overcome these
issues, we propose a new attack algorithm against UCB on L-armed bandits with binary feedback. It
is described in Algorithm 1. The algorithm maintains timestamp ha(t) for each arm a. In round t, if
the arm pulled by the player, at, is not the target arm L, it first checks the condition �t  r

0
t (Line 6),

with �t computed as

�t =


Nat(t)µ̂

0
at
(t)�

P
s2⌧at (t�1) ↵s �Nat(t)

h
µ
L
(t)��0

i

+

�

+

, (2)

where [z]+ = max(0, z) and µ
L
(t) := µ̂L(t)� 2�(NL(t)). In fact, condition �t  r

0
t is equivalent

to checking whether there exists a feasible ↵t to ensure Eq. (1) holds: if �t  r
0
t , with ↵t set to be

d�te (Line 7), Eq. (1) will hold in round t. Using a similar analysis as in [9], we can derive an upper
bound of Nat(t) and prove the success of the attack up to round t. The algorithm also updates the
timestamp hat(t) = t for at (line 7). If �t > r

0
t , it indicates that there is no feasible ↵t that can

4

ensure Eq. (1). Instead, the algorithm sets ↵t = d�̃te with �̃t computed as

�̃t =


Nat(t)µ̂

0
at
(t)�

P
s2⌧at (t�1) ↵s �Nat(t)

h
µ
L
(hat(t� 1))��0

i

+

�

+

, (3)

where hat(t� 1) records the last round that Eq. (1) was satisfied. We can prove such an ↵t is always
feasible (↵t  r

0
t) and it can ensure that

µ̂at(t)  µ̂L(hat(t� 1))� 2�(NL(hat(t� 1)))��0. (4)

This new inequality always holds for all rounds, which helps guarantee the success of the attack.

Remark. Compared with Eq. (1), Eq. (4) uses a more conservative lower bound of µL, µ
L
(hat(t�1)),

instead of µ
L
(t), on the right-hand side of the inequality. We refer to this as conservative estimation

for the target arm L with respect to arm at, where the estimated lower bound of L will only be
updated when there exists feasible ↵t to ensure Eq. (1). Intuitively, it makes the attack algorithm
more conservative and less likely to use a small attack value that may result in an invalid large attack
value in later rounds. We use an inductive proof to show that there always exists ↵t such that Eq. (4)
holds while keeping rt valid (binary). Therefore, conservative estimation addresses the problems
posed by binary feedback. This forms the foundation for the attack algorithms tailored for OLTR
with click feedback.

3.3 Analysis

We first show that our attack algorithm always returns valid binary feedback to the player.
Lemma 1. The post-attack feedback of Algorithm 1 is always valid, i.e., rt 2 {0, 1} for any t.

The proof of Lemma 1, which uses an inductive analysis on �t, �̃t, can be found in the appendix.

Define �a := µa � µL. We give the following theorem to show the successful attack of Algorithm 1.
Theorem 1. Suppose T � L and �  1/2. With probability at least 1� �, Algorithm 1 misguides

the UCB algorithm to choose the target arm L at least T � (L� 1)
⇣
1 + 3

�2
0
log T

⌘
rounds, using a

cumulative attack cost at most

C(T) 
⇣
1 + 3

�2
0
log T

⌘P
a<L

⇣
�a +�0 + 4�

⇣
1 + 3

�2
0
log ha(T)

⌘⌘
.

As T goes to infinity, we have

lim
T!1

C(T)

log T
 O

X

a<K

�a +�0

�2
0

!
.

Compared with Theorem 2 in [9], the � term in our cost bound depends on log ha(T) instead of
log T . Since � is a decreasing function and ha(T)  T , our finite-time cost bound can be larger
than that in [9]. However, our asymptotic analysis of the cost suggests that when T is large, such
difference becomes negligible. Notice that the attack algorithm in [9] does not have any theoretical
guarantee in the binary feedback setting, so this comparison is only meant to show the additional cost
potentially caused by the conservative estimation.

4 Attacks on Online Learning to Rank

We now move to developing effective attack algorithms for more complicated OLTR settings. Since
attacking OLTR also faces the challenges caused by binary click feedback, the attack algorithms in
this section rely on our attack design for stochastic bandits with binary feedback in Section 3.

4.1 Position-Based Click Model

Threat Model. We introduce the threat model for online stochastic ranking with position-based click
feedback. In each round t, the player chooses a list of K item, at = (a1,t, · · · , aK,t) to recommend.
The environment generates the pre-attack click feedback r0t = (r01,t, · · · , r0K,t) 2 {0, 1}K where r0i,t

5

Algorithm 2 Attack against the PBM-UCB algorithm

1: Initialization: Randomly select K � 1 items with L to build a⇤; hl,a(0) = 1 8l 2 [L] 8a 2 a⇤

2: for t = 1, 2, 3, . . . do
3: Observe at, r0t ; set ↵t = (↵1,t, · · · ,↵K,t) = (0, · · · , 0)
4: for i 2 [K] do
5: if ai,t /2 a⇤ then
6: ↵i,t = CAL_ALPHA(ai,t, r0i,t, a⇤)
7: else
8: ↵i,t = 0
9: end if

10: end for
11: Return rt = r0t �↵t; update hl,a(t) = hl,a(t� 1) for all l /2 at, a 2 a⇤

12: end for

Algorithm 3 CAL_ALPHA

1: Input: item l, click feedback r
0, item set a⇤

2: for a 2 a⇤ do
3: Calculate �t(l, a), �̃t(l, a) according to Eqs. (6) and (7)
4: end for
5: �max = maxa2a⇤ �t(l, a), �̃max = maxa2a⇤ �̃t(l, a)
6: if �max  r

0 then
7: ↵ = d�maxe, hl,a(t) = t for all a 2 a⇤

8: else
9: ↵ = d�̃maxe, hl,a(t) = hl,a(t� 1) for all a 2 a⇤

10: end if
11: Return ↵

is sampled from a Bernoulli distribution with mean iµai,t . The attacker then observes at and r0t ,
and decides the post-attack click feedback rt 2 {0, 1}K . The player only receives rt as the feedback
and uses it to decide the next list to recommend, at+1, for round t+1. Without loss of generality, we
assume item L is a sub-optimal target item. Similar to Section 3.1, we say the attack is successful
after T rounds if the number of target item recommendations is NL(T) = T � o(T) in expectation
or with high probability, while the cumulative attack cost C(T) =

PT
t=1 ||rt � r0t ||1 = o(T).

Attack against PBM-UCB. We consider the PBM-UCB algorithm in [4] as the online ranking
algorithm of the player, which computes the UCB index of each item a as

µ̄a(t) = µ̂a(t� 1) +Ba(t) = µ̂a(t� 1) +
q

Na(t�1)(1+✏) log t

2Ña(t�1)2
, (5)

where Ña(t) :=
Pt

s=1

PK
i=1 iI{ai,s = a} is the position bias-corrected counter, µ̂a(t) is the

empirical mean of item a, and ✏ is a parameter of the algorithm. The algorithm then chooses the
corresponding first K items with the highest UCB indices as the recommendation list.

We propose our attack algorithm against PBM-UCB in Algorithm 2. It works by first randomly taking
K � 1 items out and making them a set with the target item L, denoted as a⇤ = {a⇤1, · · · , a⇤K�1, L}.
Then, based on the conservative estimation idea from Algorithm 1, it maintains a timestamp h(l, a)
for each item l with respect to each a 2 a⇤. The intuition is that, to ensure a similar inequality as
Eq. (4) for all rounds, we need to make conservative estimation on the lower bounds of µa for all
a 2 a⇤. This is handled by Algorithm 3, which maintains the timestamps hl,a(t) for the input item l

and outputs the appropriate attack value ↵ on l that can always ensure the required inequality. The
value of parameters �t(l, a) and �̃t(l, a) in Algorithm 3 are computed as

�t(l, a) =


Nl(t)µ̂0

l (t)�
P

s2⌧l(t�1) ↵l(s)�Nl(t)
h
µ
a
(t)��0

i

+

�

+

, (6)

�̃t(l, a) =


Nl(t)µ̂0

l (t)�
P

s2⌧l(t�1) ↵l(s)�Nl(t)
h
µ
a
(hl,a(t� 1))��0

i

+

�

+

. (7)

6

Algorithm 4 Attack against the CascadeUCB algorithm

1: Initialization: Randomly select K � 1 items with L to build a⇤; hl,a(0) = 1 8l 2 [L] 8a 2 a⇤

2: for t = 1, 2, 3, . . . do
3: Observe at, r0t ,Ct; set ↵t = (↵1,t, · · · ,↵K,t) = (0, · · · , 0)
4: if Ct  K and aCt,t /2 a⇤ then
5: ↵Ct,t = CAL_ALPHA(aCt,t, r

0
Ct,t

,a⇤)
6: if ↵Ct,t = 1 and 9i > Ct s.t. ai,t 2 a⇤ then
7: ↵i,t = �1
8: end if
9: end if

10: Return rt = r0t �↵t; update hl,a(t) = hl,a(t� 1) for all l 6= aCt,t, a 2 a⇤

11: end for

Notice that Algorithm 2 could also work when there are more than one but less than K + 1 target
arms (the goal of the attacker becomes misguiding the player to recommend all target arms very often
with sublinear cost). The only modification required is to put all of these target arms into a⇤.

Analysis. The following theorem shows the attack against PBM-UCB is successful.
Theorem 2. Suppose T � L and �  1/2. With probability at least 1� �, Algorithm 2 misguides the

PBM-UCB algorithm to recommend the target item L at least T � (L�K)
⇣

1+✏
22

K�2
0
log T

⌘
rounds,

using a cumulative attack cost at most

C(T) 
⇣

1+✏
22

K�2
0
log T

⌘P
a<L

⇣
�a +�0 + 4�

⇣
1+✏

22
K�2

0
log ha,L(T)

⌘⌘
.

When T goes to infinity, we have

lim
T!1

C(T)

log T
 O

X

a<K

(1 + ✏)(�a +�0)

2K�2
0

!
.

Proof sketch. Whenever ai,t /2 a⇤ is chosen by the player, there must exist a 2 a⇤ such that
µ̄ai,t(t) � µ̄a(t). The output ↵i,t of Algorithm 3 would ensure µ̂ai,t(t)  µ̂a(hai,t,a(t � 1)) �
2�(Na(hai,t,a(t � 1))) � �0, owing to the conservative estimations in �t(ai,t, a) and �̃t(ai,t, a).
Combining these two inequalities, we can get Bai,t(t)�Ba(t) � �0. With a careful calculation on

this inequality and the involved bias-corrected counters, we have Nai,t(t) 
⇣

1+✏
22

K�2
0
log t

⌘
. This

result holds for any ai,t /2 a⇤. Thus, we immediately get the bound of NL(t). The remaining proof
for the cost bound will be similar to that of Theorem 1.

Compared with Theorem 1, the asymptotic cost of Algorithm 2 has an additional dependency on
1/2K , which suggests it may require more cost to achieve a successful attack in the PBM model,
though the cost dependency on T is still logarithmic.

4.2 Cascade Click Model

Threat Model. We introduce the threat model for OLTR with cascade click feedback. In each round
t, the player chooses a list of K items, at = (a1,t, · · · , aK,t) to recommend. The environment
generates the pre-attack click feedback r0t = (r01,t, · · · , r0K,t) 2 {0, 1}K , ||r0t ||  1. Let Ct denote
the position of the clicked item, i.e., r0Ct,t

= 1 (Ct = 1 if no item was clicked). The attacker
observes at, r0t ,Ct, and decides the post-attack click feedback rt 2 {0, 1}K , ||rt||1  1. The player
only receives rt as the feedback and uses it to decide the next list to recommend, at+1, for round
t+ 1. The goal of the attacker in this setting is the same as that in the PBM model.

Attack against CascadeUCB. We propose an attack algorithm against CascadeUCB in Algo-
rithm 4. Similar to the attack against PBM-UCB, it first randomly generates a set of items
a⇤ = {a⇤1, · · · , a⇤K�1, L}. It also follows the idea of conservative estimation: when the clicked item
aCt,t does not belong to a⇤, it calls Algorithm 3 to maintain haCt,t,a

for all a 2 a⇤ and compute
the attack value ↵Ct,t based on the conservative estimations. If the output ↵Ct,t = 1, which means

7

Algorithm 5 Attack against arbitrary algorithm
1: Initialization: Randomly select K � 1 items with target L to build a⇤

2: for t = 1, 2, 3, . . . do
3: Observe at, r0t
4: for i 2 [K] do
5: ↵i,t = 0
6: if ai,t /2 a⇤ and r

0
i,t = 1 then

7: pi,t = maxa2a⇤

h
µ̂0
ai,t

(t)+�(Nai,t (t))�µ̂0
a(t)+�(Na(t))

i

+

µ̂0
ai,t

(t)+�(Nai,t (t))

8: With prob. pi,t, set ↵i,t = 1
9: end if

10: end for
11: Return rt = r0t �↵t

12: end for

the algorithm sets the clicked position to be zero, the player will keep checking the positions after
Ct. Since the pre-attack feedback of all items after position Ct is zero, we need to find the first item
ai,t 2 a⇤ after position Ct and set ↵i,t = �1 (ri,t = 1). The empirical means of the items between
position Ct and i that are not in a⇤ decreases, and the empirical mean of ai,t 2 a⇤ increases. Thus, it
does not affect the success of the attack while still making the post-attack feedback rt valid.

Analysis. First, note that there is a mismatch between recommendation and observation in the cascade
model: for all i such that Ct < i  K, ai,t is recommended but not observed, i.e., there is no new
click sample for item ai,t for estimation. We can still follow a similar proof of Theorem 2 to get the
upper bound of the number of observations (samples) for ai,t /2 a⇤, but it is less than the number of
recommendations and thus cannot ensure the success of the attack. To tackle this problem, we use a
new regret-based analysis on the expected number of recommendations. We can also prove that the
post-attack feedback of Algorithm 4 is always valid. Define p

⇤ :=
QK�1

i=1 µi. We give the following
theorem of the successful attack against CascadeUCB.
Theorem 3. Suppose T � L and �  1/2. With probability at least 1� �, Algorithm 2 misguides

the CascadeUCB algorithm to choose the target arm at least T � (L�K)
⇣

12
p⇤�2

0
log T

⌘
rounds in

expectation. Its cumulative attack cost is at most

C(T) 
⇣
1 + 3

�2
0
log T

⌘P
a<K

⇣
�a +�0 + 4�

⇣
1 + 3

�2
0
log ha,L(T)

⌘⌘
.

As T goes to infinity, we have

lim
T!1

C(T)

log T
 O

X

a<K

�a +�0

�2
0

!
.

Proof sketch. As mentioned above, we use a new regret-based analysis. The intuition is that the regret
caused by any suboptimal item is the product of its reward gap with respect to the optimal list and
its expected number of recommendations. If we know the regret upper bound and the reward gap
lower bound, we can derive the upper bound of the expected number of recommendations. To do
so, we first show that the post-attack problem can be viewed as a problem with a known reward gap
lower bound. This can be obtained by µ̂ai,t(t)  µ̂L(hLi,t,a(t� 1))� 2�(Na(hai,t,L(t� 1)))��0

for any ai,t /2 a⇤, which indicates the post-attack expected reward gap between ai,t and L is always
larger than �0. Then, the lower bound of the reward gap of ai,t with respect to the optimal list is
p
⇤�0. Based on the regret upper bound 12 log T/�0 given in [5], we can get the upper bound of the

expected number of recommendations 12
p⇤�2

0
log T . For the remaining cost analysis, since the attack

cost only depends on the observed items, we can still follow the proof of Theorem 2.

4.3 General Attacks on OLTR with General Click Model

We have provided attack strategies against UCB-based OLTR algorithms under two specific click
models. A natural follow-up question is whether there exists an attack strategy that can attack any

8

OLTR algorithm under the general click model. To answer this question in what follows, we design
an attack strategy that can misguide any OLTR algorithm without knowing the underlying algorithm.
However, it may pay more cost (still sublinear) than the others since it cannot take advantage of the
details of the algorithm to make fine-tuned adjustments.

Threat Model. We consider the threat model for OLTR with general click feedback. In each round
t, the player chooses a list of K items, at = (a1,t, · · · , aK,t) to recommend. The environment
generates the pre-attack click feedback r0t = (r01,t, · · · , r0K,t) 2 {0, 1}K , r0t 2 Rc, where Rc is the
feasible feedback space of click model c. The attacker observes at, r0t , and decides the post-attack
click feedback rt 2 {0, 1}K , rt 2 Rc. The attack should be aware of Rc; otherwise, ensuring valid
post-attack feedback is impossible. The player only receives rt as the feedback and uses it to decide
the next list to recommend, at+1. The goal of the attacker is the same as that in the PBM model.

General Attack against Arbitrary OLTR Algorithm. We propose an attack algorithm against
arbitrary OLTR algorithms in Algorithm 5. Similar to the attack against PBM-UCB, it first randomly
generates a set of items a⇤ = {a⇤1, · · · , a⇤K�1, L}. In each round, for each clicked item ai,t /2 a⇤,
the algorithm calculates an attack probability pi,t and uses that to decide whether its feedback needs
to be changed to unclicked (ri,t = 0). We prove that pi,t is actually an estimated upper bound of
�i/µi, thus by such probabilistic feedback perturbations, the algorithm makes all items outside a⇤

be worse than the items inside a⇤, which guarantees the success of the attack. We consider a general
assumption for the OLTR algorithm to be attacked.

Assumption 1. The OLTR algorithm chooses suboptimal items no more than R(T) = o(T) times

for T rounds,

Notice that both PBM-UCB and CascadeUCB satisfy the assumption with R(T) = O(log T). We
give the following theorem to show the success of our general attack algorithm.

Theorem 4. Suppose T � L and �  1/2. With probability at least 1� �, Algorithm 5 misguides

arbitrary OLTR algorithm that satisfies Assumption 1 to choose the target item at least T � R(T)
rounds in expectation. Its cumulative attack cost is at most

C(T)  O
�P

a<L(�a + 4�(1))R(T)
�
.

Compared with the results in the PBM and cascade models, the �() term in the cumulative cost
of Algorithm 5 is �(1), which can be much larger than the others. Also, the asymptotic costs of
Algorithm 2 and Algorithm 4 is independent of �, while the asymptotic cost of Algorithm 5 depends
on �, showing that Algorithm 5 is more costly than attack strategies specific to OLTR algorithms.

5 Experiments

We conduct experiments using both synthetic and real data (MovieLens 20M dataset [26]). Due
to space limitations, we report only the results of OLTR using the position-based model. We use
✏ = 0.1 for the PBM-UCB algorithm. For the synthetic data, we take L = 16,K = 8, T = 100, 000;
{µi}Li=1 are sampled from uniform distribution U(0, 1) for Figure 1a, and from U(0, x) for Figure 1b.
For the real data, we take L = 100,K = 10, T = 100, 000; {µi}Li=1 are extracted according to [2].

Using synthetic data, we first study how the algorithm’s performance is influenced by the algorithmic
and problem parameters. As shown in Figure 1a, the cost decreases with an increase in �0, aligning
with our observations in Theorem 2. Figure 1b shows that the cost increases as x increases, which
suggests that our algorithm pays more costs when �a is large. We then compare our algorithm
with two baselines: Trivialall attacks all arms except the target arm as long as the attack is valid;
Trivialset first randomly takes K � 1 arms out to generate a set a⇤ and then attacks all arms outside
the set as long as the attack is valid. Figure 2 shows that Trivialall algorithm cannot successfully
attack PBM-UCB even with linear costs. Our algorithm and Trivialset have similar performance
on the chosen ratio of the target arm as shown in Figures 2a and 2c, which is the chosen time of the
target arm divided by the current round. However, our algorithm pays 50% and 40% less cost than
Trivialset in Figures 2b and 2d, respectively, which validates the necessity of our attack design.

9

(a) Cost as �0 varies (b) Cost as x varies

Figure 1: Impact of algorithmic and problem parameters on PBM-UCB.

(a) Chosen ratio (syn.) (b) Cost (syn.) (c) Chosen ratio (real) (d) Cost (real)

Figure 2: Companion with baseline algorithms.

6 Concluding Remarks

This paper presents the first study on adversarial attacks against OLTR with click feedback. We
propose attack strategies that can successfully mislead various OLTR algorithms across multiple click
models. One limitation of our work is that it cannot be applied to feedback models without clicks,
such as the top-K feedback [13]. Although we provide theoretical results for all these strategies, as
discussed in Section 3.3, the finite-time cost results might be further improved by a more fine-grained
analysis on ha(t). Additionally, there is no known lower bound for the cumulative attack cost, even
for the stochastic bandit setting in the literature, making it unclear whether our attack strategies are
(asymptotically) order-optimal. This study opens up several future directions. One is to design attack
strategies for other OLTR algorithms and feedback models. Lastly, our study on the vulnerability of
existing OLTR algorithms inspires the design of robust OLTR algorithms against adversarial attacks.

Acknowledgments and Disclosure of Funding

Shuai Li is supported by National Key Research and Development Program of China
(2022ZD0114804) and National Natural Science Foundation of China (62376154, 62006151,
62076161). M. Hajiesmaili’s work is supported by CAREER-2045641, CNS-2102963, CNS-
2106299, and CPS-2136199. Wierman is supported by NSF grants CNS-2146814, CPS-2136197,
CNS-2106403, NGSDI-2105648.

References
[1] Masrour Zoghi, Tomas Tunys, Mohammad Ghavamzadeh, Branislav Kveton, Csaba Szepesvari,

and Zheng Wen. Online learning to rank in stochastic click models. In International conference

on machine learning, pages 4199–4208. PMLR, 2017.

[2] Shuai Li, Tor Lattimore, and Csaba Szepesvári. Online learning to rank with features. In
International Conference on Machine Learning, pages 3856–3865. PMLR, 2019.

[3] Tor Lattimore, Branislav Kveton, Shuai Li, and Csaba Szepesvari. Toprank: A practical
algorithm for online stochastic ranking. Advances in Neural Information Processing Systems,
31, 2018.

[4] Paul Lagrée, Claire Vernade, and Olivier Cappe. Multiple-play bandits in the position-based
model. Advances in Neural Information Processing Systems, 29, 2016.

10

[5] Branislav Kveton, Csaba Szepesvari, Zheng Wen, and Azin Ashkan. Cascading bandits:
Learning to rank in the cascade model. In International conference on machine learning, pages
767–776. PMLR, 2015.

[6] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank: from pairwise
approach to listwise approach. In Proceedings of the 24th international conference on Machine

learning, pages 129–136, 2007.

[7] Tie-Yan Liu et al. Learning to rank for information retrieval. Foundations and Trends® in

Information Retrieval, 3(3):225–331, 2009.

[8] Fatih Cakir, Kun He, Xide Xia, Brian Kulis, and Stan Sclaroff. Deep metric learning to rank. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
1861–1870, 2019.

[9] Kwang-Sung Jun, Lihong Li, Yuzhe Ma, and Jerry Zhu. Adversarial attacks on stochastic
bandits. Advances in Neural Information Processing Systems, 31, 2018.

[10] Fang Liu and Ness Shroff. Data poisoning attacks on stochastic bandits. In International

Conference on Machine Learning, pages 4042–4050. PMLR, 2019.

[11] Yinglun Xu, Bhuvesh Kumar, and Jacob D Abernethy. Observation-free attacks on stochastic
bandits. Advances in Neural Information Processing Systems, 34:22550–22561, 2021.

[12] Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. Foundations and Trends® in Machine Learning, 5(1):1–122,
2012.

[13] Sougata Chaudhuri and Ambuj Tewari. Online learning to rank with top-k feedback. The

Journal of Machine Learning Research, 18(1):3599–3648, 2017.

[14] Junpei Komiyama, Junya Honda, and Akiko Takeda. Position-based multiple-play bandit
problem with unknown position bias. Advances in Neural Information Processing Systems, 30,
2017.

[15] Beyza Ermis, Patrick Ernst, Yannik Stein, and Giovanni Zappella. Learning to rank in the
position based model with bandit feedback. In Proceedings of the 29th ACM International

Conference on Information & Knowledge Management, pages 2405–2412, 2020.

[16] Branislav Kveton, Zheng Wen, Azin Ashkan, and Csaba Szepesvari. Combinatorial cascading
bandits. Advances in Neural Information Processing Systems, 28, 2015.

[17] Shi Zong, Hao Ni, Kenny Sung, Nan Rosemary Ke, Zheng Wen, and Branislav Kveton. Cascad-
ing bandits for large-scale recommendation problems. Thirty-Second Conference on Uncertainty

in Artificial Intelligence, 2016.

[18] Shuai Li, Baoxiang Wang, Shengyu Zhang, and Wei Chen. Contextual combinatorial cascading
bandits. In International conference on machine learning, pages 1245–1253. PMLR, 2016.

[19] Daniel Vial, Sujay Sanghavi, Sanjay Shakkottai, and R Srikant. Minimax regret for cascading
bandits. Advances in Neural Information Processing Systems, 2022.

[20] Xutong Liu, Jinhang Zuo, Siwei Wang, John CS Lui, Mohammad Hajiesmaili, Adam Wierman,
and Wei Chen. Contextual combinatorial bandits with probabilistically triggered arms. In
International Conference on Machine Learning, pages 22559–22593. PMLR, 2023.

[21] Sumeet Katariya, Branislav Kveton, Csaba Szepesvari, and Zheng Wen. Dcm bandits: Learning
to rank with multiple clicks. In International Conference on Machine Learning, pages 1215–
1224. PMLR, 2016.

[22] Weiwen Liu, Shuai Li, and Shengyu Zhang. Contextual dependent click bandit algorithm
for web recommendation. In Computing and Combinatorics: 24th International Conference,

COCOON 2018, Proceedings 24, pages 39–50. Springer, 2018.

11

[23] Evrard Garcelon, Baptiste Roziere, Laurent Meunier, Jean Tarbouriech, Olivier Teytaud,
Alessandro Lazaric, and Matteo Pirotta. Adversarial attacks on linear contextual bandits.
Advances in Neural Information Processing Systems, 33:14362–14373, 2020.

[24] Yuzhe Ma and Zhijin Zhou. Adversarial attacks on adversarial bandits. International Conference

on Learning Representations, 2023.

[25] Huazheng Wang, Haifeng Xu, and Hongning Wang. When are linear stochastic bandits
attackable? In International Conference on Machine Learning, pages 23254–23273. PMLR,
2022.

[26] Movielens 20m dataset. https://grouplens.org/datasets/movielens/20m/. [Online].

12

https://grouplens.org/datasets/movielens/20m/

Appendix

A Proofs

A.1 Proof of Lemma 1

Proof. When �t  r
0
t , it is easy to check ↵t = d�te  r

0
t , thus rt 2 {0, 1}.

When �t > r
0
t , if �̃t  r

0
t , we will have ↵t = d�̃te  r

0
t and rt 2 {0, 1}. Since �̃t depends on at,

our goal is to show �̃t  r
0
t for any at. Consider any arm a 6= K. We denote ta,j as the j-th time

that the UCB algorithm played a. Since the UCB algorithm would play each arm one time in the
beginning, we have

�̃ta,1 
⇥
Na(ta,1)µ̂

0
a(ta,1)

⇤
+
=
h
r
0
ta,1

i

+
 r

0
ta,1

. (8)

Next, we want to show that if �̃ta,j  r
0
ta,j

, �̃ta,j+1  r
0
ta,j+1

. Since �̃t also depends on hat(t� 1),
we consider two cases:

1) �ta,j  r
0
ta,j

. In this case, we have ha(ta,j+1 � 1) = ta,j . We can bound �̃ta,j+1 using �ta,j :

�̃ta,j+1  �ta,j + r
0
ta,j+1

� ↵ta,j �
h
µ
L
(ta,j)��0

i

+
 r

0
ta,j+1

, (9)

where the second inequality is due to �ta,j  ↵ta,j .

2) �ta,j > r
0
ta,j

. In this case, we have ha(ta,j+1 � 1) = ha(ta,j � 1). We can bound �̃ta,j+1 using
�̃ta,j

�̃ta,j+1  �̃ta,j + r
0
ta,j+1

� ↵ta,j �
h
µ
L
(ha(ta,j � 1))��0

i

+
 r

0
ta,j+1

, (10)

where the second inequality is due to �̃ta,j  r
0
ta,j

and �̃ta,j  ↵ta,j .

Since �̃ta,1  r
0
ta,1

, by induction, we have �̃ta,j  r
0
ta,j

for any a, j, which concludes the proof.

A.2 Proof of Theorem 1

Proof. We use the following two lemmas to prove Theorem 1. The proof is similar to those of Lemma
5 and Lemma 6 in [9], while as discussed in Section 3, the algorithm in [9] relies on Eq. (1) that may
not hold due to the binary feedback, and our proof is mainly based on Eq. (4) that can be ensured
by the conservative estimations. Define event E := {8i, 8t > L : |µ̂0

i (t)� µi| < �(Ni(t))}. With
Hoeffding’s inequality, it is easy to prove for � 2 (0, 1), P(E) > 1� �.

Lemma 2. Assume event E holds and �  1/2. For any a 6= L and any t � L, we have

Na(t)  min{NL(t), 1 +
3

�2
0

log t} (11)

Proof. Fix some t � L. We consider at = a 6= L and denote t
0 = max{s < t : as = a} as the

previous round that a was pulled. Since arm a should be pulled at least once by the UCB algorithm,
we have t

0 � 1, and the attack in round t
0 would ensure

µ̂a(t
0)  µ

L
(ha(t

0))��0. (12)

Since arm a was pulled in round t, we know its UCB value must be greater than that of target arm L:

µ̂a(t� 1) +
3

2

s
log(t)

Na(t� 1)
� µ̂L(t� 1) +

3

2

s
log(t)

NL(t� 1)
. (13)

Considering that t0 and t are two consecutive rounds when arm a was pulled, we have µ̂a(t� 1) =
µ̂a(t0) and Na(t� 1) = Na(t0). Rearranging Eq. (13), we get

3

2

s
log(t)

Na(t0)
� 3

2

s
log(t)

NL(t� 1)
� µ̂L(t�1)� µ̂a(t

0) � µ̂L(t�1)�(µ
L
(ha(t

0))��0) � �0, (14)

13

where the second inequality comes from Equation (12). Since �0 > 0, we have

Na(t) = Na(t
0) + 1  NL(t� 1) = NL(t). (15)

Also, since 3
2

q
log(t)

NL(t�1) > 0, we have 3
2

q
log(t)
Na(t0)

> �0, which implies

Na(t) = Na(t
0) + 1  1 +

3

�0
2 log(t). (16)

Lemma 3. Assume event E holds and �  1/2.

1) For any t � L, the cumulative attack cost to any fixed arm a 6= L can be bounded as:

X

s2⌧a(t)

↵s  Na(t) (�a +�0 + 3�(NL(ha(t)) + �(Na(t))) + 1 (17)

2) When t goes to infinity, we have

lim
t!1

P
s2⌧a(t)

↵s

log t
 3

�2
0

(�a +�0) (18)

Proof. Fix any arm a 6= L. By the definitions of �t and �̃t, it follows that:
X

s2⌧a(t)

↵s 
X

s2⌧a(t�1)

↵s + 1 (19)

 Na(t)µ̂
0
a(t)�Na(t)

h
µ
L
(ha(t� 1))��0

i
+ 1 (20)

 Na(t) [�a + 3�(NL(ha(t))) + �(Na(t))] + 1, (21)

where the last inequality is due to the decrease of �.

For the asymptotic result, combining Lemma 2 with Equation (17), we have

lim
t!1

P
s2⌧a(t)

↵s

log t
 lim

t!1

Na(t)

log(t)
[�a + 3�(NL(ha(t))) + �(Na(t))] +

1

log(t)
(22)

 lim
t!1

(
1

log(t)
+

3

�0
2) [�a + 3�(NL(ha(t))) + �(Na(t))] +

1

log(t)
. (23)

It is easy to check that limt!1 �(t) = 0. Hence, to get the asymptotic cost bound in the lemma, we
need to prove limt!1 �(NL(ha(t))) = 0. We find limt!1 ha(t) = t is a sufficient condition for it;
in other words, ha(t) should be always updated when t goes to infinity. To obtain this, we consider
two cases of �t.

1) If µ
L
(t)��0 � 0, we have

lim
t!1

�t = lim
t!1

(Na(t)µ̂
0
a(t)�

X

s2⌧a(t�1)

↵s �Na(t)(µ̂L(t)� 2�(NL(t))��0))

= lim
t!1

(Na(t)µ̂
0
a(t)�Na(t

0)(µ̂L(ha(t
0))� 2�(NL(ha(t

0)))��0) + r
0
t � ↵t0

+Na(t
0)(µ̂L(ha(t

0))� 2�(NL(ha(t
0)))��0)�Na(t)(µ̂L(t)� 2�(NL(t))��0))

 lim
t!1

(r0t � ↵t0 +Na(t
0)(µ̂L(ha(t

0))� 2�(NL(ha(t
0)))��0)�Na(t)(µ̂L(t)� 2�(NL(t))��0))

r
0
t + lim

t!1
(Na(t

0)(µ̂L(ha(t
0))� µ̂L(t)� 2�(NL(ha(t

0))))� (µ̂L(t)��0))

r
0
t .

The first inequality is due to the attack at round t
0. The last inequality is due to the confidence radius

based on �(NL(ha(t0))) and � is decreasing.

14

2) If µ
L
(t)��0 < 0, we have µ̂L(t) < 2�(NL(t))+�0 and µ̂L(ha(t0))  µ̂L(t)+2�(NL(ha(t0))).

lim
t!1

�t = r
0
t + lim

t!1
(Na(t

0)µ̂0
a(t

0)�
X

s2⌧a(t�1)

↵s)

= r
0
t + lim

t!1
Na(t

0)µ̂a(t
0)

 r
0
t + lim

t!1
Na(t

0)(µ̂L(ha(t
0))� 2�(NL(ha(t

0)))��0)

 r
0
t + lim

t!1
Na(t

0)2�(NL(t))

= r
0
t .

Since in both cases, �t  r
0
t , we have ha(t) = t when t goes to infinity.

With Lemma 2 and Lemma 3, the proof is completed by summing the corresponding upper bounds
over all non-target arms a < L,

A.3 Proof of Theorem 2

Proof. As for Algorithm 1, we first need to prove the post-attack feedback of Algorithm 2 is always
valid. It is equivalent to showing that the output ↵ of Algorithm 3 is a valid attack value on the input
pre-attack feedback r

0, i.e., ↵  r
0. Similar to the proof of Lemma 1, we consider two cases: when

�max  r
0, ↵ = d�maxe  r

0; when �max < r
0, we can use the same inductive proof of Lemma 1

to show that ↵ = d�̃maxe  r
0. Thus, the post-attack feedback r

0 � ↵ is always valid.

Fix some t � L such that ai,t /2 a⇤. We denote t
0 = max{s < t : ai,t 2 as} as the previous round

that ai,t was chosen. With the conservative estimations in �t(ai,t, a) and �̃t(ai,t, a), the output ↵i,t

of Algorithm 3 could ensure

µ̂ai,t(t)  µ̂a(hai,t,a(t� 1))� 2�(Na(hai,t,a(t� 1)))��0, (24)

for any a 2 a⇤. Since ai,t is chosen by the PBM-UCB algorithm, there must exist a 2 a⇤ with its
UCB value less than that of ai,t:

µ̂a(t� 1) +Ba(t)  µ̂ai,t(t� 1) +Bai,t(t). (25)

Since t
0 and t are two consecutive rounds when item ai,t was chosen, we have µ̂ai,t(t � 1) =

µ̂ai,t(t
0), Nai,t(t� 1) = Nai,t(t

0). Rearranging Eq. (25), we have

Bai,t(t)�Ba(t) � µ̂a(t� 1)� µ̂ai,t(t
0) � �0, (26)

where the last inequality is due to Eq. (24). Since Bai,t(t) � �0, with the definition of Bai,t(t) in
Eq. (5), we have

Nai,t(t) 
1 + ✏

22K�2
0

log t, (27)

for any ai,t /2 a⇤. Thus, for the target item L,

NL(T) � T �
X

l/2a⇤

Nl(T) � T � (L�K)

✓
1 + ✏

22K�2
0

log T

◆
, (28)

which guarantees the chosen time of the target item.

For the cumulative attack cost analysis, we consider any arm ai,t /2 a⇤. Since Eq. (24) holds for any
a 2 a⇤, we take a = L and get

X

s2⌧ai,t (t)

↵ai,t,s  Nai,t(t)
⇥
�ai,t +�0 + 3�(NL(hai,t,L(t))) + �(Nai,t(t))

⇤
(29)

 Nai,t(t)
⇥
�ai,t +�0 + 4�(Nai,t(hai,t,L(t)))

⇤
, (30)

where the second line is due to Nai,t(t)  NL(t), hai,t,L(t)  Nai,t(t), and � is decreasing. Based
on this inequality, we can follow the same steps in the proof of Lemma 3 to derive the upper bound
of the cumulative attack cost for Algorithm 2.

15

A.4 Proof of Theorem 3

Proof. Since Algorithm 4 also calls Algorithm 3, we can use the same proof in Appendix A.3 to
show its post-attack feedback is always valid. Also, the output ↵i,t of Algorithm 3 would still ensure
Eq. (24) for any ai,t /2 a⇤

, a 2 a⇤. Based on this, we can consider the post-attack problem as a
cascading bandit problem with known expected reward gaps, where the expected reward of any item
l /2 a⇤ is less than that of the target item L by at least �0. Since L is the worst item in a⇤, with the
regret analysis of CascadeUCB in [5], we know the regret caused by any list containing l /2 a⇤ is
bounded by

Rl(T) 
12

�0
log T. (31)

We also know the lower bound of the one-round instantaneous regret caused by any list containing l

is p⇤�0, where p
⇤ :=

QK�1
i=1 µi. We can then write the lower bound of Rl(T) as

Rl(T) � p
⇤�0 · E[Nl(T)]. (32)

Combinining Eq. (31) and Eq. (32), we obtain the upper bound of the expected number of recommen-
dations of item l:

E[Nl(T)] 
12

p⇤�2
0

log T. (33)

Thus, for the target item L,

E[NL(T)] � T �
X

l/2a⇤

E[Nl(T)] � T � (L�K)

✓
12

p⇤�2
0

log T

◆
. (34)

For the remaining cost analysis, since the attack cost only depends on the observed items, we can
still follow the proof of Theorem 2: we need to change the confidence radius Ba(t) in Eq. (5) to the
typical form 3

2

q
log t

Na(t�1) , then derive the corresponding cost upper bound.

A.5 Proof of Theorem 4

Proof. Since Algorithm 5 only attacks when r
0
i,t = 1, it is easy to verify its post-attack feedback

is valid. The key step for proving its successful attack is to show that pi,t is an upper bound of
�ai,t/µai,t : if it is true, by the probabilistic attack with probability pi,t, Algorithm 5 makes a post-
attack bandit problem where the expected reward of any item l /2 a⇤ is worse than that of target item
L, which guarantees the number of target arm pulls is T �R(T). Actually, we have

�ai,t

µai,t

=
µai,t � µL

µai,t

= 1� µL

µai,t

, (35)

which increases as µai,t increases. Replacing µai,t with µ̂
0
ai,t

(t) + �(Nai,t(t)),

�ai,t

µai,t


µ̂
0
ai,t

(t) + �(Nai,t(t))� µL

µ̂0
ai,t

(t) + �(Nai,t(t))


h
µ̂
0
ai,t

(t) + �(Nai,t(t))� µ̂
0
L(t) + �(NL(t))

i

+

µ̂0
ai,t

(t) + �(Nai,t(t))
, (36)

where µ̂
0
ai,t

(t) + �(Nai,t(t)) � µai,t and µ̂
0
L(t) + �(NL(t)) � µL under event E. Since the last

term is the definition of pi,t, we have proved it is a high-probability upper bound of �ai,t/µai,t . For
the cost analysis, we have

C(T) 
X

i,t

h
µ̂
0
ai,t

(t) + �(Nai,t(t))� µ̂
0
L(t) + �(NL(t))

i

+
I{ai,t /2 a⇤} (37)


X

i,t

⇥
µai,t + 2�(Nai,t(t))� µL + 2�(NL(t))

⇤
+
I{ai,t /2 a⇤} (38)

 O

X

a<L

(�a + 4�(1))R(T)

!
, (39)

which concludes the proof.

16

B Additional Experiments

B.1 Synthetic Data

We first consider adversarial attacks on 2-armed stochastic bandits with binary feedback. The rewards
of arms 1 and 2 follow Bernoulli distributions with means µ1 and µ2 (µ1 > µ2). We designate arm 2
as the target arm. We take T = 10, 000, � = 0.1,�0 = 0.1. We set µ1 = 0.85 and sample the value
of µ2 from a uniform distribution U(0.05, 0.15). We compare Algorithm 1 with a modified algorithm
from [9], which attacks every non-target arm whenever the calculated ↵t > 0 and the pre-attack
feedback is one. Note that this modified algorithm lacks a theoretical guarantee. We show the costs
and target arm chosen times relative to a trivial baseline, which sets the post-attack feedback of all
non-target arms to zero as long as the pre-attack feedback is one. Figure 3 demonstrates that our
algorithm is more efficient than the modified one, incurring fewer costs for a greater number of target
arm selections.

We also conduct experiments under the cascade model with synthetic data. We take L = 16,K =
8, T = 100, 000, and {µi}Li=1 are sampled from a uniform distribution U(0, 1). We compare
Algorithm 4 with the same baselines introduced in Section 5. Figure 4 shows that Trivialall
algorithm suffers an extremely high cumulative cost, while it cannot misguide the agent to recommend
the target arm very often. On the other hand, our algorithm and Trivialset algorithm can successfully
attack CascadeUCB and perform similarly on the chosen ratio of the target arm. However, our
algorithm pays about 30% less cost than Trivialset.

B.2 Real Data

As discussed in Section 5, we have shown results under the position-based model with real data.
We now show the experimental results with real data (MovieLens 20M dataset) under the cascade
model. We take L = 100,K = 10, T = 100, 000; {µi}Li=1 are extracted according to [2]. Similarly,
we compare the chosen ratio and cumulative cost of our algorithm with Trivialall and Trivialset.
Figure 5 shows that Trivialall cannot successfully attack CascadeUCB as the chosen ratio of
the target arm is very low and it suffers a linear cost. Algorithm 4 and Trivialset have similar
performance on the chosen ratio of the target arm. However, our algorithm dramatically decreases
the cost by more than 50%, which indicates that it is more effective than Trivialset.

17

(a) Relative Cost (b) Relative chosen times

Figure 3: Attacks against UCB on 2-armed bandits with binary feedback.

(a) Cost (b) Chosen times

Figure 4: Attacks against CascadeUCB with synthetic data.

(a) Cost (b) Chosen times

Figure 5: Attacks against CascadeUCB with real data.

18

	Introduction
	Preliminaries
	Attacks on Stochastic L-armed Bandits with Binary Feedback
	Threat Model
	Attack Algorithm against UCB
	Analysis

	Attacks on Online Learning to Rank
	Position-Based Click Model
	Cascade Click Model
	General Attacks on OLTR with General Click Model

	Experiments
	Concluding Remarks
	Proofs
	Proof of L1
	Proof of T1
	Proof of T2
	Proof of T3
	Proof of T4

	Additional Experiments
	Synthetic Data
	Real Data

