
Tempo Adaptation in Non-stationary Reinforcement
Learning

Hyunin Lee1,∗ Yuhao Ding1 Jongmin Lee1 Ming Jin2,∗

Javad Lavaei1 Somayeh Sojoudi1
1UC Berkeley, Berkeley, CA 94709

2Virginia Tech, Blacksburg, VA 24061
{hyunin,yuhao_ding,jongmin.lee,lavaei,sojoudi}@berkeley.edu

jinming@vt.edu

Abstract

We first raise and tackle a “time synchronization” issue between the agent and
the environment in non-stationary reinforcement learning (RL), a crucial factor
hindering its real-world applications. In reality, environmental changes occur over
wall-clock time (t) rather than episode progress (k), where wall-clock time signifies
the actual elapsed time within the fixed duration t ∈ [0, T]. In existing works, at
episode k, the agent rolls a trajectory and trains a policy before transitioning to
episode k+1. In the context of the time-desynchronized environment, however, the
agent at time tk allocates ∆t for trajectory generation and training, subsequently
moves to the next episode at tk+1 = tk + ∆t. Despite a fixed total number of
episodes (K), the agent accumulates different trajectories influenced by the choice
of interaction times (t1, t2, ..., tK), significantly impacting the suboptimality gap
of the policy. We propose a Proactively Synchronizing Tempo (ProST) framework
that computes a suboptimal sequence {t1, t2, ..., tK}(= {t}1∶K) by minimizing
an upper bound on its performance measure, i.e., the dynamic regret. Our main
contribution is that we show that a suboptimal {t}1∶K trades-off between the policy
training time (agent tempo) and how fast the environment changes (environment
tempo). Theoretically, this work develops a suboptimal {t}1∶K as a function of
the degree of the environment’s non-stationarity while also achieving a sublinear
dynamic regret. Our experimental evaluation on various high-dimensional non-
stationary environments shows that the ProST framework achieves a higher online
return at suboptimal {t}1∶K than the existing methods.

1 Introduction

The prevailing reinforcement learning (RL) paradigm gathers past data, trains models in the present,
and deploys them in the future. This approach has proven successful for stationary Markov decision
processes (MDPs), where the reward and transition functions remain constant [1–3]. However,
challenges arise when the environments undergo significant changes, particularly when the reward
and transition functions are dependent on time or latent factors [4–6], in non-stationary MDPs.
Managing non-stationarity in environments is crucial for real-world RL applications. Thus, adapting
to changing environments is pivotal in non-stationary RL.

This paper addresses a practical concern that has inadvertently been overlooked within traditional non-
stationary RL environments, namely, the time synchronization between the agent and the environment.
We raise the impracticality of utilizing episode-varying environments in existing non-stationary RL

* Corresponding authors. This work was supported by grants from ARO, ONR, AFOSR, NSF, and the UC Noyce Initiative.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Figure 1: (a) 2D goal reacher in a time-desynchronized environment for one policy update, where the
agent learns an inaccurate policy on an accurate model; (b) For three policy updates, the agent learns
a near-optimal policy on an inaccurate model; (c) Rewards per episode in 2D goal reacher with four
model-free baselines, where ProST-T∗ is one of our proposed methods.

research, as such environments do not align with the real-world scenario where changes occur
regardless of the agent’s behavior. In an episode-varying environment, the agent has complete
control over determining the time to execute the episode k, the duration of policy training between
the episodes k and k + 1, and the transition time to the episode k + 1. The issue stems from the
premise that the environment undergoes dynamic changes throughout the course of each episode,
with the rate of non-stationarity contingent upon the behavior exhibited by the agent. However, an
independent wall-clock time (t) exists in a real-world environment, thereby the above three events are
now recognized as wall-clock time tk, training time ∆t, and tk+1. The selection of interaction times
(tk, tk+1) has a notable impact on the collected trajectories, while the interval tk+1 − tk establishes an
upper limit on the duration of training (∆t). This interval profoundly influences the suboptimality
gap of the policy. In the context of a time-desynchronized environment, achieving an optimal policy
requires addressing a previously unexplored question: the determination of the optimal time sequence
{t1, t2, .., .tK}(= {t}1∶K) at which the agent should interact with the environment.

We elucidate the significance of the aforementioned research question through an example. Consider
a robot with the goal of reaching inside a gray-shaded non-fixed target box, known as the goal reacher
(Appendix A.1). Note that the reward changes as the position of the box changes over time (Figure
1-(a)). We begin by considering a scenario in which the wall-clock time and episode are synchronized,
wherein the environment evolves alongside the episode. During each episode k, the agent rollouts
a trajectory and iteratively updates the policy N times, with the assumption that one policy update
requires one second, and then the agent transitions to the subsequent episode k + 1. In conventional
non-stationary RL environments, it is evident that a larger value of N provides an advantage in terms
of a faster adaptation to achieve a near-optimal policy. However, regardless of the chosen value of N ,
the agent will consistently encounter the same environment in the subsequent episode. Now, consider
a scenario in which the wall-clock time and episode are desynchronized. In this context, given a fixed
wall-clock time duration t ∈ [0,10], the agent is faced with the additional task of determining both
the total number of interactions (denoted as the total episode K) and the specific time instances for
these interactions {t}1∶K , where tk ∈ [0,10], tk−1 < tk for ∀k ∈ [K]. Figure 1(a) shows an agent that
interacts with the environment ten times, that is, {t}1∶K = {1,2, ...,10}, and spends the time interval
(tk, tk+1) to train the policy, which consumes one second (K = 10,N = 1). The high frequency of
interaction (K = 10) provides adequate data for precise future box position learning (t = 11), yet a
single policy update (N = 1) may not approximate the optimal policy. Now, if the agent interacts
with the environment four times, i.e. {t}1∶K = {1,4,7,10} (see Figure 1(b)), it becomes feasible to
train the policy over a duration of three seconds (K = 4,N = 3). A longer period of policy training
(N = 3) helps the agent in obtaining a near-optimal policy. However, limited observation data
(K = 4) and large time intervals (t ∈ {11,12,13}) may lead to less accurate box predictions. This
example underscores the practical importance of aligning the interaction time of the agent with the
environment in non-stationary RL. Determining the optimal sequence {t}1∶K involves a trade-off
between achieving an optimal model and an optimal policy.

Based on the previous example, our key insight is that, in non-stationary environments, the new
factor tempo emerges. Informally, tempo refers to the pace of processes occurring in a non-stationary

2

environment. We define environment tempo as how fast the environment changes and agent tempo
as how frequently it updates the policy. Despite the importance of considering the tempo to find the
optimal {t}1∶K , the existing formulations and methods for non-stationarity RL are insufficient. None
of the existing works has adequately addressed this crucial aspect.

Our framework, ProST, provides a solution to finding the optimal {t}1∶K by computing a minimum
solution to an upper bound on its performance measure. It proactively optimizes the time sequence
by leveraging the agent tempo and the environment tempo. The ProST framework is divided into two
components: future policy optimizer (OPTπ) and time optimizer (OPTt), and is characterized by three
key features: 1) it is proactive in nature as it forecasts the future MDP model; 2) it is model-based as
it optimizes the policy in the created MDP; and 3) it is a synchronizing tempo framework as it finds a
suboptimal training time by adjusting how many times the agent needs to update the policy (agent
tempo) relative to how fast the environment changes (environment tempo). Our framework is general
in the sense that it can be equipped with any common algorithm for policy update. Compared to the
existing works [7–9], our approach achieves higher rewards and a more stable performance over time
(see Figure 1(c) and Section 5).

We analyze the statistical and computational properties of ProST in a tabular MDP, which is named
ProST-T. Our framework learns in a novel MDP, namely elapsed time-varying MDP, and quantifies
its non-stationarity with a novel metric, namely time-elapsing variation budget, where both consider
wall-clock time taken. We analyze the dynamic regret of ProST-T (Theorem 1) into two components:
dynamic regret of OPTπ that learns a future MDP model (Proposition 1) and dynamic regret of OPTt
that computes a near-optimal policy in that model (Theorem 2, Proposition 2). We show that both
regrets satisfy a sublinear rate with respect to the total number of episodes regardless of the agent
tempo. More importantly, we obtain suboptimal training time by minimizing an objective that strikes
a balance between the upper bounds of those two dynamic regrets, which reflect the tempos of
the agent and the environment (Theorem 3). We find an interesting property that the future MDP
model error of OPTπ serves as a common factor on both regrets and show that the upper bound on
the dynamic regret of ProST-T can be improved by a joint optimization problem of learning both
different weights on observed data and a model (Theorem 4, Remark 1).

Finally, we introduce ProST-G, which is an adaptable learning algorithm for high-dimensional tasks
achieved through a practical approximation of ProST. Empirically, ProST-G provides solid evidence
on different reward returns depending on policy training time and the significance of learning the
future MDP model. ProST-G also consistently finds a near-optimal policy, outperforming four
popular RL baselines that are used in non-stationary environments on three different Mujoco tasks.

Notation

The sets of natural, real, and non-negative real numbers are denoted by N,R, and R+, respectively. For
a finite set Z, the notation ∣Z ∣ denotes its cardinality and the notation ∆(Z) denotes the probability
simplex over Z. For X ∈ N, we define [X]∶={1,2, ..,X}. For a variable X , we denote X̂ as a
forecasted (or predicted) variable at the current time, and X̃ as the observed value in the past. Also,
for any time variable t > 0 and k ∈ N, we denote the time sequence {t1, t2, .., tk} as {t}1∶k , and
variable X at time tk as Xtk . We use the shorthand notation X(k)(or X(k)) for Xtk (or Xtk). We use
the notation {x}a∶b to denote a sequence of variables {xa, xa+1, ..., xb}, and {x}(a∶b) to represent a
sequence of variables {xta , xta+1 , ..., xtb}. Given two variables x and y, let x ∨ y denote max(x, y),
and x ∧ y denote min(x, y). Given two complex numbers z1 and z2, we write z2 = W (z1) if
z2e

z2 = z1, where W is the Lambert function. Given a variable x, the notation a = O(b(x)) means
that a ≤ C ⋅ b(x) for some constant C > 0 that is independent of x, and the notation a = Ω(b(x))
means that a ≥ C ⋅ b(x) for some constant C > 0 that is independent of x. We have described the
specific details in Appendix C.1.

2 Problem statement: Desynchronizing timelines

2.1 Time-elapsing Markov Decision Process

In this paper, we study a non-stationary Markov Decision Process (MDP) for which the transition
probability and the reward change over time. We begin by clarifying that the term episode is agent-
centric, not environment-centric. Prior solutions for episode-varying (or step-varying) MDPs operate

3

under the assumption that the timing of MDP changes aligns with the agent commencing a new
episode (or step). We introduce the new concept of time-elapsing MDP. It starts from the wall-clock
time t = 0 to t = T , where T is fixed. The time-elapsing MDP at time t ∈ [0, T] is defined as
Mt ∶= ⟨S,A,H,Pt,Rt, γ⟩, where S is the state space, A is the action space, H is the number of
steps, Pt ∶ S×A×S →∆(S) is the transition probability , Rt ∶ S×A→ R is the reward function, and
γ is a discounting factor. Prior to executing the first episode, the agent determines the total number
of interactions with the environment (denoted as the number of total episode K) and subsequently
computes the sequence of interaction times {t}1∶K through an optimization problem. We denote tk
as the wall-clock time of the environment when the agent starts the episode k. Similar to the existing
non-stationary RL framework, the agent’s objective is to learn a policy πtk ∶ S →∆(A) for all k. This
is achieved through engaging in a total of K episode interactions, namely {Mt1 ,Mt1 , ...,MtK},
where the agent dedicates the time interval (tk, tk+1) for policy training and then obtains a sequence
of suboptimal policies {πt1 , πt2 , ..., πtK} to maximize a non-stationary policy evaluation metric,
dynamic regret.

Dealing with time-elapsing MDP instead of conventional MDP raises an important question that
should be addressed: within the time duration [0, T], what time sequence {t}1∶K yields favorable
trajectory samples to obtain an optimal policy? This question is also related to the following: what is
optimal value of K, i.e. the total number of episode that encompasses a satisfactory balance between
the amount of observed trajectories and the accuracy of policy training? These interwined questions
are concerned with an important aspect of RL, which is the computation of the optimal policy for
a given tk. In Section 4, we propose the ProST framework that computes a suboptimal K∗ and its
corresponding suboptimal time sequence {t∗}1∶K∗ based on the information of the environment’s
rate of change. In Section 3, we compute a near-optimal policy for {t∗}1∶K∗ . Before proceeding with
the above results, we introduce a new metric quantifying the environment’s pace of change, referred
to as time-elapsing variation budget.

2.2 Time-elapsing variation budget

Variation budget [10–12] is a metric to quantify the speed with which the environment changes.
Driven by our motivations, we introduce a new metric imbued with real-time considerations, named
time-elapsing variation budget B(∆t). Unlike the existing variation budget, which quantifies
the environment’s non-stationarity across episodes {1,2, ..,K}, our definition accesses it across
{t1, t2, ..., tK}, where the interval ∆t = tk+1 − tk remains constant regardless of k ∈ [K − 1]. For
further analysis, we define two time-elapsing variation budgets, one for transition probability and
another for reward function.
Definition 1 (Time-elapsing variation budgets). For a given sequence {t1, t2, .., tK}, assume that the
interval ∆t is equal to the policy training time ∆π. We define two time-elapsing variation budgets
Bp(∆π) and Br(∆π) as

Bp(∆π) ∶=
K−1
∑
k=1

sup
s,a
∣∣Ptk+1(⋅ ∣s, a) − Ptk(⋅ ∣s, a)∣∣1, Br(∆π) ∶=

K−1
∑
k=1

sup
s,a
∣Rtk+1(s, a) −Rtk(s, a)∣.

To enhance the representation of a real-world system using the time-elapsing variation budgets, we
make the following assumption.
Assumption 1 (Drifting constants). There exist constants c > 1 and αr, αp ≥ 0 such that
Bp(c∆π)≤cαpBp(∆π) and Br(c∆π)≤cαrBr(∆π). We call αp and αr the drifting constants.

2.3 Suboptimal training time

Aside from the formal MDP framework, the agent can be informed of varying time-elapsing variation
budgets based on the training time ∆π ∈ (0, T) even within the same time-elapsing MDP. Intuitively,
a short time ∆π is inadequate to obtain a near-optimal policy, yet it facilitates frequent interactions
with the environment, leading to a reduction in empirical model error due to a larger volume of data.
On the contrary, a long time ∆π may ensure obtaining a near-optimal policy but also introduces
greater uncertainty in learning the environment. This motivates us to find a suboptimal training time
∆∗π ∈ (0, T) that strikes a balance between the sub-optimal gap of the policy and the empirical model
error. If it exists, then ∆∗π provides a suboptimal K∗ = ⌊T /∆∗π⌋, and a suboptimal time sequence
where t∗k = t1 +∆∗π ⋅ (k − 1) for all k ∈ [K∗]. Our ProST framework computes the parameter ∆∗π,

4

then sets {t∗}1∶K∗ , and finally finds a future near-optimal policy for time t∗k+1 at time t∗k. In the next
section, we first study how to approximate the one-episode-ahead suboptimal policy π∗,tk+1 at time
tk when {t}1∶K is given.

3 Future policy optimizer

Figure 2: ProST framework

For given tk and tk+1, the future policy optimizer (OPTπ), as a module of the ProST framework
(Figure 2), computes a near-optimal policy for the future time tk+1 at time tk via two procedures: (i)
it first forecasts the future MDP model of time tk+1 at time tk utilizing the MDP forecaster function,
(ii) it then utilizes an arbitrary policy optimization algorithm within the forecasted MDP model OPTπ
to obtain a future near-optimal policy π∗.tk+1 .

3.1 MDP forecaster

Our ProST framework is applicable in an environment that meets the following assumption.

Assumption 2 (Observable non-stationary set O). Assume that the non-stationarity ofMtk is fully
characterized by a non-stationary parameter otk ∈ O. Assume also that the agent observes a noisy
non-stationary parameter õtk at the end of episode k ∈ [K] (at time tk).

It is worth noting that Assumption 2 is mild, as prior research in non-stationary RL has proposed
techniques to estimate o(k) through latent factor identification methods [4, 13–16], and our framework
accommodates the incorporation of those works for the estimation of o(k). Based on Assumption 2,
we define the MDP forecaster function g ○ f below.

Definition 2 (MDP forecaster g ○ f). Consider two function classes F and G such that F ∶ Ow → O
and G ∶ S ×A ×O → R ×∆(S), where w ∈ N. Then, for f(k) ∈ F and g(k) ∈ G, we define MDP
forecaster at time tk as (g ○ f)(k) ∶ Ow × S ×A→ R ×∆(S).

The function f(k), acting as a non-stationarity forecaster, predicts a non-stationary parameter
ô(k+1) at time tk+1 based on the last w observations given by the set {õ}(k−w+1∶k), i.e., ô(k+1) =
f({õ}(k−w+1,k)). The agent can determine the number of used historical observations, denoted as
w, by leveraging information from the environment (Section 4). Then, the function g(k), acting as a
model predictor, predicts a reward R̂(k+1)(s, a) and a transition probability P̂(k+1)(⋅∣s, a) for time
tk+1, i.e., (R̂(k+1), P̂(k+1)) = g(k)(s, a, ôk+1). Finally, the OPTπ generates the estimated future MDP
M̂(k+1) = ⟨S,A,H, P̂(k+1), R̂(k+1), γ⟩ associated with time tk+1.

3.2 Finding future optimal policy

Now, consider an arbitrary RL algorithm provided by the user to obtain an optimal policy from the
model M̂(k+1). For a given time sequence {t}1∶K , the OPTπ finds a near-optimal future policy as
follows: (1) observe and forecast, (2) optimize using the future MDP model.

(1) Observe and forecast. At time tk, the agent executes an episode k in the environmentM(k),
completes its trajectory τ(k), and observes the noisy non-stationary parameter ô(k) (Assumption
2). The algorithm then updates the function f(k) based on the last w observed parameters, and the

5

function g(k) with input from all previous trajectories. Following these updates, the MDP forecaster
at time tk predicts P̂(k+1) and R̂(k+1), thus creating the MDP model M̂(k+1) for time tk+1.

(2) Optimize using the future MDP model. Up until time tk+1, the agent continually updates the
policy within the estimated future MDP M̂(k+1) for a given duration ∆π. Specifically, the agent
rollouts synthetic trajectories τ̂(k+1) in M̂(k+1), and utilizes any policy update algorithm to obtain a
policy π̂(k+1). Following the duration ∆π , the agent stops the training by the time tk+1 and moves to
the next episodeM(k+1) with policy π̂(k+1).

We elaborate on the above procedure in Algorithm 1 given in Appendix F.1.

4 Time optimizer

4.1 Theoretical analysis

We now present our main theoretical contribution, which is regarding the time optimizer (OPTt):
computing a suboptimal policy training time ∆∗π (the agent tempo). Our theoretical analysis starts
with specifying the components of the OPTπ optimizer, which we refer to as ProST-T (note that
-T stands for an instance in the tabular setting). We employ the Natural Policy Gradient (NPG)
with entropy regularization [17] as a policy update algorithm in OPTπ. We denote the entropy
regularization coefficient as τ , the learning rate as η, the policy evaluation approximation gap
arising due to finite samples as δ, and the past reference length for forecaster f as w. Without loss
of generality, we assume that each policy iteration takes one second. The theoretical analysis is
conducted within a tabular environment, allowing us to relax Assumption 2, which means that one can
estimate non-stationary parameters by counting visitation of state and action pairs at time tk, denoted
as n(k)(s, a), rather than observing them. Additionally, we incorporate the exploration bonus term at
time tk into R̂(k+1), denoted as Γ(k)w (s, a), which is proportional to ∑k

τ=k−w+1(n(τ)(s, a))−1/2 and
aims to promote the exploration of states and actions that are visited infrequently.

We compute ∆∗π by minimizing an upper bound on the ProST-T’s dynamic regret. The dynamic
regret of ProST-T is characterized by the model prediction error that measures the MDP forecaster’s
error by defining the difference between M̂(k+1) andM(k+1) through a Bellman equation.

Definition 3 (Model prediction error). At time tk, the MDP forecaster predicts a model M̂(k+1)
and then we obtain a near-optimal policy π̂(k+1) based on M̂(k+1). For each pair (s, a), we denote
the state value function and the state action value function of π̂(k+1) in M̂(k+1) at step h ∈ [H] as

V̂
(k+1)
h (s) and Q̂(k+1)h (s, a), respectively. We also denote the model prediction error associated with

time tk+1 calculated at time tk as ι(k+1)h (s, a), which is defined as

ι
(k+1)
h (s, a)∶ = (R(k+1) + γP(k+1)V̂ (k+1)h+1 − Q̂(k+1)h) (s, a).

We now derive an upper bound on the ProST-T dynamic regret. We expect the upper bound to be
likely controlled by two factors: the error of the MDP forecaster’s prediction of the future MDP model
and the error of the NPG algorithm due to approximating the optimal policy within an estimated
future MDP model. This insight is clearly articulated in the next theorem.

Theorem 1 (ProST-T dynamic regret R). Let ιKH = ∑
K−1
k=1 ∑H−1

h=0 ι
(k+1)
h (s(k+1)h , a

(k+1)
h) and ῑK∞ ∶=

∑K−1
k=1 ∣∣ῑk+1∞ ∣∣∞, where ιKH is a data-dependent error. For a given p ∈ (0,1), the dynamic regret of the

forecasted policies {π̂(k+1)}1∶K−1 of ProST-T is upper bounded with probability at least 1 − p/2 as
follows:

R ({π̂(k+1)}1∶K−1,K)) ≤RI +RII

where RI = ῑK∞/(1 − γ) − ιKH+Cp ⋅
√
K − 1, RII = CII[∆π] ⋅ (K − 1), and Cp,CII[∆π] are some

functions of p, ∆π , respectively.

Specifically, the upper bound is composed of two terms: RI that originates from the MDP forecaster
error between M(k+1) and M̂(k+1), and RII that arises due to the suboptimality gap between
π∗,(k+1) and π̂(k+1). Theorem 1 clearly demonstrates that a prudent construction of the MDP

6

forecaster that controls the model prediction errors and the selection of the agent tempo ∆π is
significant in guaranteeing sublinear rates for RI and RII . To understand the role of the environment
tempo in RI , we observe that the MDP forecaster utilizes w previous observations, which inherently
encapsulates the environment tempo. We expect the model prediction errors, at least in part, to be
controlled by the environment tempo B(∆π), so that a trade-off between two tempos can be framed
as the trade-off between RI and RII . Hence, it is desirable to somehow minimize the upper bound
with respect to ∆π to obtain a solution, denoted as ∆∗π , which strikes a balance between RI and
RII .

4.1.1 Analysis of RII

A direct analysis of the upper bound RI +RII is difficult since its dependence on K is not explicit.
To address this issue, we recall that an optimal ∆∗π should be a natural number that guarantees the
sublinearity of both RI and RII with respect to the total number of episodes K. We first compute
a set NII ⊂ N that includes those values of ∆π that guarantee the sublinearity of RII , and then
compute a set NI ⊂ N that guarantees the sublinearity of RI . Finally, we solve for ∆∗π in the common
set NI ∩NII .
Proposition 1 (∆π bounds for sublinear RII). A total step H is given by MDP. For a number ϵ > 0
such that H = Ω (log ((r̂max ∨ rmax)/ϵ)), we choose δ, τ, η to satisfy δ = O (ϵ) , τ = Ω (ϵ/ log ∣A∣)
and η ≤ (1 − γ) /τ , where r̂max and rmax are the maximum reward of the forecasted model and the
maximum reward of the environment, respectively. Define NII ∶={n ∣ n > 1

ητ
log (C1(γ+2)

ϵ
) , n ∈ N},

where C1 is a constant. Then RII ≤ 4ϵ(K − 1) for all ∆π ∈ NII .

As a by-product of Proposition 1, the sublinearity of RII can be realized by choosing ϵ = O((K −
1)α−1) for any α ∈ [0,1), which suggests that a tighter upper bound on RII requires a smaller ϵ and
subsequently a larger ∆π ∈ NII . The hyperparameter conditions in Proposition 1 can be found in
Lemma 1 and 2 in Appendix D.3.

4.1.2 Analysis of RI

We now relate RI to the environment tempo B(∆π) using the well-established non-stationary
adaptation technique of Sliding Window regularized Least-Squares Estimator (SW-LSE) as the MDP
forecaster [18–20]. The tractability of the SW-LSE algorithm allows to upper-bound the model
predictions errors ιKH and ῑK∞ by the environment tempo extracted from the pastw observed trajectories,
leading to a sublinear RI as demonstrated in the following theorem.
Theorem 2 (Dynamic regret RI with f = SW-LSE). For a given p ∈ (0,1), if the exploration bonus
constant β and regularization parameter λ satisfy β = Ω(∣S ∣H

√
log (H/p)) and λ ≥ 1, then RI is

bounded with probability at least 1 − p as follows:

RI ≤ CI[B(∆π)] ⋅w +Ck ⋅
√

1

w
log (1 + H

λ
w) +Cp ⋅

√
K − 1

where CI[B(∆π)] = (1/(1 − γ) +H) ⋅ Br(∆π) + (1 +Hr̂max)γ/(1 − γ) ⋅ Bp(∆π), and Ck is a
constant on the order of O(K).

For a brief sketch of how SW-LSE makes the environment tempo appear in the upper bound, we
outline that the model prediction errors are upper-bounded by two forecaster errors, namely P(k+1) -
P̂(k+1) and R(k+1) − R̂(k+1), along with the visitation count n(k)(s, a). Then, the SW-LSE algorithm
provides a solution (P̂(k+1), R̂(k+1)) as a closed form of linear combinations of past w estimated
values {P̃ , R̃}(k−w+1∶w). Finally, employing the Cauchy inequality and triangle inequality, we derive
two forecasting errors that are upper-bounded by the environment tempo. For the final step before
obtaining a suboptimal ∆∗π , we compute NI that guarantees the sublinearity of RI .
Proposition 2 (∆π bounds for sublinear RI). Denote B(1) as the environment tempo when
∆π = 1, which is a summation over all time steps. Assume that the environment satisfies
Br(1) + Bp(1)r̂max/(1 − γ) = o(K) and we choose w = O((K − 1)2/3/(CI[B(∆π)])2/3).
Define the set NI to be {n ∣ n < K, n ∈ N}. Then RI is upper-bounded as RI =
O (CI[B(∆π)]1/3 (K − 1)2/3

√
log ((K − 1)/CI[B(∆π)])) and also satisfies a sublinear upper

bound, provided that ∆π ∈ NI .

7

The upper bound on the environment tempo B(1) in proposition 2 is aligned with our expectation
that dedicating an excessively long time to a single iteration may not allow for an effective policy
approximation, thereby hindering the achievement of a sublinear dynamic regret. Furthermore,
our insight that a larger environment tempo prompts the MDP forecaster to consider a shorter past
reference length, aiming to mitigate forecasting uncertainty, is consistent with the condition involving
w stated in Proposition 2.

4.1.3 Suboptimal tempo ∆∗π

So far, we have shown that an upper bound on the ProST dynamic regret is composed of two terms
RI and RII , which are characterized by the environment tempo and the agent tempo, respectively.
Now, we claim that a suboptimal tempo that minimizes ProST’s dynamic regret could be obtained
by the optimal solution ∆∗π = argmin∆π∈NI∩NII

(Rmax
I +Rmax

II), where Rmax
I and Rmax

II denote the
upper bounds on RI and RII . We show that ∆∗π strikes a balance between the environment tempo
and the agent tempo since Rmax

I is a non-decreasing function of ∆π and Rmax
II is a non-increasing

function of ∆π . Theorem 3 shows that the optimal tempo ∆∗π depends on the environment’s drifting
constants introduced in Assumption 1.

Theorem 3 (Suboptimal tempo ∆∗π). Let kEnv = (αr ∨ αp)2CI[B(1)], kAgent =
log (1/(1 − ητ))C1(K − 1)(γ + 2). Consider three cases: case1: αr ∨ αp = 0, case2: αr ∨ αp = 1,
case3: 0 < αr ∨ αp < 1 or αr ∨ αp > 1. Then ∆∗π depends on the environment’s drifting constants as
follows:

• Case1: ∆∗π = T .

• Case2: ∆∗π = log1−ηγ (kEnv/kAgent) + 1.

• Case3: ∆∗π = exp (−W [−
log (1−ητ)

max (αr,αp)−1]), provided that the parameters are chosen so that
kAgent = (1 − ητ)kEnv.

4.2 Improving MDP forecaster

Determining a suboptimal tempo by minimizing an upper bound on RI +RII can be improved by
using a tighter upper bound. In Proposition 1, we focused on the Q approximation gap δ to provide a
justifiable upper bound on RI +RII . It is important to note that the factor δ arises not only from the
finite sample trajectories as discussed in [21], but also from the forecasting error betweenM(k+1)
and M̂(k+1). It is clear that the MDP forecaster establishes a lower bound on δ denoted as δmin,
which in turn sets a lower bound on ϵ and consequently on RI . This inspection highlights that the
MDP forecaster serves as a common factor that controls both RI and RII , and a further investigation
to improve the accuracy of the forecaster is necessary for a better bounding on RI +RII .

Our approach to devising a precise MDP forecaster is that, instead of selecting the past reference
length w as indicated in Proposition 2, we set w = k, implying the utilization of all past obser-
vations. However, we address this by solving an additional optimization problem, resulting in
a tighter bound on RI . We propose a method that adaptively assigns different weights q ∈ Rk

+
to the previously observed non-stationary parameters up to time tk, which reduces the burden of
choosing w. Hence, we further analyze RI through the utilization of the Weighted regularized
Least-Squares Estimator (W-LSE) [22]. Unlike SW-LSE, W-LSE does not necessitate a predefined
selection of w, but it instead engages in a joint optimization procedure involving the data weights q
and the future model (P̂(k+1), R̂(k+1)). To this end, we define the forecasting reward model error
as ∆r

k(s, a) = ∣(R(k+1) − R̂(k+1)) (s, a)∣ and the forecasting transition probability model error as
∆p

k(s, a) = ∣∣(P(k+1) − P̂(k+1)) (⋅ ∣ s, a)∣∣1.

Theorem 4 (RI upper bound with f=W-LSE). By setting the exploration bonus Γ(k)(s, a) =
1
2
∆r

k(s, a) +
γr̃max
2(1−γ)∆

p
k(s, a), it holds that

RI ≤ (4H +
2γ ∣S ∣
1 − γ (

1

1 − γ +H))(
1

2

K−1
∑
k=1

∆r
k(s, a) +

γr̃max

2(1 − γ)
K−1
∑
k=1

∆p
k(s, a)) .

8

Remark 1 (Tighter RI upper bound with f = W-LSE). If the optimization problem of W-LSE is
feasible, then the optimal data weight q∗ provides tighter bounds for ∆r

k and ∆p
k in comparison to

SW-LSE, consequently leading to a tighter upper bound for RI . We prove in Lemmas 4 and 6 in
Appendix D.3 that ῑK∞ and −ιKH are upper-bounded in terms of ∆r

k and ∆p
k.

4.3 ProST-G

The theoretical analysis outlined above serves as a motivation to empirically investigate two key
points: firstly, the existence of an optimal training time; secondly, the role of the MDP forecaster’s
contribution to the ProST framework’s overall performance. To address these questions, we propose
a practical instance, named ProST-G, which particularly extends the investigation in Section 4.2.
ProST-G optimizes a policy with the soft actor-critic (SAC) algorithm [23], utilizes the integrated
autoregressive integrated moving average (ARIMA) model for the proactive forecaster f , and uses a
bootstrap ensemble of dynamic models where each model is a probabilistic neural network for the
model predictor g. We further discuss specific details of ProST-G in Appendix F.3 and in Algorithm
3.

5 Experiments

We evaluate ProST-G with four baselines in three Mujoco environments each with five different
non-stationary speeds and two non-stationary datasets.

(1) Environments: Non-stationary desired posture. We make the rewards in the three environments
non-stationary by altering the agent’s desired directions. The forward reward Rf

t changes as Rf
t =

ot ⋅ sRf
t , where sRf is the original reward from the Mujoco environment. The non-stationary parameter

ok is generated from the sine function with five different speeds and from the real data A and B.
We then measure the time-elapsing variation budget by ∑K−1

k=1 ∣ok+1 − ok ∣. Further details of the
environment settings can be found in Appendix D.1.1.

(2) Benchmark methods. Four baselines are chosen to empirically support our second question:
the significance of the forecaster. MBPO is the state-of-the-art model-based policy optimization
[24]. Pro-OLS is a policy gradient algorithm that predicts the future performance and optimizes
the predicted performance of the future episode [7]. ONPG is an adaptive algorithm that performs
a purely online optimization by fine-tuning the existing policy using only the trajectory observed
online [8]. FTRL is an adaptive algorithm that performs follow-the-regularized-leader optimization
by maximizing the performance on all previous trajectories [9].

6 Discussions

6.1 Performance compare

The outcomes of the experimental results are presented in Table 1. The table summarizes the average
return over the last 10 episodes during the training procedure. We have illustrated the complete
training results in Appendix E.3. In most cases, ProST-G outperforms MBPO in terms of rewards,
highlighting the adaptability of the ProST framework to dynamic environments. Furthermore, except
for data A and B, ProST-G consistently outperforms the other three baselines. This supports our
motivation of using the proactive model-based method for a higher adaptability in non-stationary
environments compared to state-of-the-art model-free algorithms (Pro-OLS, ONPG, FTRL). We
elaborate on the training details in Appendix E.2.

Table 1: Average reward returns
Speed B(G) Swimmer-v2 Halfcheetah-v2 Hopper-v2

Pro-OLS ONPG FTML MBPO ProST-G Pro-OLS ONPG FTML MBPO ProST-G Pro-OLS ONPG FTML MBPO ProST-G

1 16.14 -0.40 -0.26 -0.08 -0.08 0.57 -83.79 -85.33 -85.17 -24.89 -19.69 98.38 95.39 97.18 92.88 92.77
2 32.15 0.20 -0.12 0.14 -0.01 1.04 -83.79 -85.63 -86.46 -22.19 -20.21 98.78 97.34 99.02 96.55 98.13
3 47.86 -0.13 0.05 -0.15 -0.64 1.52 -83.27 -85.97 -86.26 -21.65 -21.04 97.70 98.18 98.60 95.08 100.42
4 63.14 -0.22 -0.09 -0.11 -0.04 2.01 -82.92 -84.37 -85.11 -21.40 -19.55 98.89 97.43 97.94 97.86 100.68
5 77.88 -0.23 -0.42 -0.27 0.10 2.81 -84.73 -85.42 -87.02 -20.50 -20.52 97.63 99.64 99.40 96.86 102.48
A 8.34 1.46 2.10 2.37 -0.08 0.57 -76.67 -85.38 -83.83 -40.67 83.74 104.72 118.97 115.21 100.29 111.36
B 4.68 1.79 -0.72 -1.20 0.19 0.20 -80.46 -86.96 -85.59 -29.28 76.56 80.83 131.23 110.09 100.29 127.74

9

6.2 Ablation study

An ablation study was conducted on the two aforementioned questions. The following results support
our inspection of Section 4.2 and provide strong grounds for Theorem 3.

Figure 3: (a) Optimal ∆∗π; (b) Different forecaster f (ARIMA, SA); (c) The Mean squared Error
(MSE) model loss of ProST-G with four different forecasters (ARIMA and three SA) and the MBPO.
The x-axis in each figure shows the episodes.

Suboptimal ∆∗π. The experiments are performed over five different policy training times ∆π ∈
{1,2,3,4,5}, aligned with SAC’s number of gradient steps G ∈ {38,76,114,152,190}, under a
fixed environment speed. Different from our theoretical analysis, we set ∆t = 1 with G = 38. We
generate ok = sin(2π∆πk/37), which satisfies Assumption 1 (see Appendix E.1). The shaded areas
of Figures 3 (a), (b) and (c) are 95 % confidence area among three different noise bounds of 0.01,0.02
and 0.03 in ok. Figure 3(a) shows ∆t = 4 is close to the optimal G∗ among five different choices.

Functions f, g. We investigate the effect of the forecaster f ’s accuracy on the framework using two
distinct functions: ARIMA and a simple average (SA) model, each tested with three different the
values of w. Figure 3(b) shows the average rewards of the SA model with w ∈ {3,5,7} and ARIMA
model (four solid lines). The shaded area is 95 % the confidence area among 4 different speeds
{1,2,3,4}. Figure 3(c) shows the corresponding model error. Also, we investigate the effect of the
different model predictor g by comparing MBPO (reactive-model) and ProST-G with f =ARIMA
(proactive-model) in Figure 3(c). The high returns from ProST-G with f = ARIMA, compared to
those from MBPO, empirically support that the forecasting component of the ProST framework can
provide a satisfactory adaptability to the baseline algorithm that is equipped with. Also, Figures 3(b)
and 3(c) provide empirical evidence that the accuracy of f is contingent on the sliding window size,
thereby impacting the model accuracy and subsequently influencing the agent’s performance.

7 Conclusion

This work offers the first study on the important issue of time synchronization for non-stationary RL.
To this end, we introduce the concept of the tempo of adaptation in a non-stationary RL, and obtain
a suboptimal training time. We propose a Proactively Synchronizing Tempo (ProST) framework,
together with two specific instances ProST-T and ProST-G. The proposed method adjusts an agent’s
tempo to match the tempo of the environment to handle non-stationarity through both theoretical
analysis and empirical evidence. The ProST framework provides a new avenue to implement
reinforcement learning in the real world by incorporating the concept of adaptation tempo.

As a future work, it is important to generalize the proposed framework to learn a safe guarantee policy
in a non-stationary RL by considering the adaptation tempo of constraint violations [25, 26]. Another
generalization is to introduce an alternative dynamic regret metric, enabling a fair performance
comparison among agents, even when they have varying numbers of total episodes. Another future
work is to find an optimal tempo of the distribution correction in offline non-stationary RL, specifically
how to adjust the relabeling function to offline data in a time-varying environment that is dependent
on the tempo of the environment [27, 28].

References
[1] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan

Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint

10

arXiv:1312.5602, 2013.

[2] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, L. Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the
game of go with deep neural networks and tree search. Nature, 529:484–489, 2016.

[3] Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world reinforce-
ment learning. In International Conference on Machine Learning, 2019.

[4] Luisa Zintgraf, Sebastian Schulze, Cong Lu, Leo Feng, Maximilian Igl, Kyriacos Shiarlis, Yarin
Gal, Katja Hofmann, and Shimon Whiteson. Varibad: Variational bayes-adaptive deep rl via
meta-learning. Journal of Machine Learning Research, 22(289):1–39, 2021.

[5] Zhuangdi Zhu, Kaixiang Lin, Anil K. Jain, and Jiayu Zhou. Transfer learning in deep reinforce-
ment learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45
(11):13344–13362, 2023.

[6] Sindhu Padakandla. A survey of reinforcement learning algorithms for dynamically varying
environments. ACM Computing Surveys (CSUR), 54(6):1–25, 2021.

[7] Yash Chandak, Georgios Theocharous, Shiv Shankar, Martha White, Sridhar Mahadevan, and
Philip Thomas. Optimizing for the future in non-stationary mdps. In International Conference
on Machine Learning, pages 1414–1425. PMLR, 2020.

[8] Maruan Al-Shedivat, Trapit Bansal, Yuri Burda, Ilya Sutskever, Igor Mordatch, and Pieter
Abbeel. Continuous adaptation via meta-learning in nonstationary and competitive environments.
In International Conference on Learning Representations, 2018.

[9] Chelsea Finn, Aravind Rajeswaran, Sham Kakade, and Sergey Levine. Online meta-learning.
In International Conference on Machine Learning, pages 1920–1930. PMLR, 2019.

[10] Yuhao Ding, Ming Jin, and Javad Lavaei. Non-stationary risk-sensitive reinforcement learning:
Near-optimal dynamic regret, adaptive detection, and separation design. Proceedings of the
AAAI Conference on Artificial Intelligence, 37(6):7405–7413, 2022.

[11] STEVEN J BRADTKE. Linear least-squares algorithms for temporal difference learning.
Machine Learning, 22:33–57, 1996.

[12] Yonatan Gur, Assaf J. Zeevi, and Omar Besbes. Stochastic multi-armed-bandit problem with
non-stationary rewards. In NIPS, 2014.

[13] Xiaoyu Chen, Xiangming Zhu, Yufeng Zheng, Pushi Zhang, Li Zhao, Wenxue Cheng, Peng
CHENG, Yongqiang Xiong, Tao Qin, Jianyu Chen, and Tie-Yan Liu. An adaptive deep rl
method for non-stationary environments with piecewise stable context. In Advances in Neural
Information Processing Systems, volume 35, pages 35449–35461, 2022.

[14] Biwei Huang, Fan Feng, Chaochao Lu, Sara Magliacane, and Kun Zhang. Adarl: What, where,
and how to adapt in transfer reinforcement learning. In International Conference on Learning
Representations, 2022.

[15] Fan Feng, Biwei Huang, Kun Zhang, and Sara Magliacane. Factored adaptation for non-
stationary reinforcement learning. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho,
and A. Oh, editors, Advances in Neural Information Processing Systems, volume 35, pages
31957–31971, 2022.

[16] Jeongyeol Kwon, Yonathan Efroni, Constantine Caramanis, and Shie Mannor. Rl for latent
mdps: Regret guarantees and a lower bound. Advances in Neural Information Processing
Systems, 34:24523–24534, 2021.

[17] Sham M Kakade. A natural policy gradient. Advances in neural information processing systems,
14, 2001.

11

[18] Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu. Learning to optimize under non-
stationarity. In The 22nd International Conference on Artificial Intelligence and Statistics, pages
1079–1087. PMLR, 2019.

[19] Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu. Hedging the drift: Learning to
optimize under nonstationarity. Management Science, 68(3):1696–1713, 2022.

[20] Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu. Reinforcement learning for non-
stationary markov decision processes: The blessing of (more) optimism. In International
Conference on Machine Learning, pages 1843–1854. PMLR, 2020.

[21] Shicong Cen, Chen Cheng, Yuxin Chen, Yuting Wei, and Yuejie Chi. Fast global convergence
of natural policy gradient methods with entropy regularization. Operations Research, 70(4):
2563–2578, 2022.

[22] Vitaly Kuznetsov and Mehryar Mohri. Theory and algorithms for forecasting time series. arXiv
preprint arXiv:1803.05814, 2018.

[23] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pages 1861–1870. PMLR, 2018.

[24] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model:
Model-based policy optimization. Advances in neural information processing systems, 32,
2019.

[25] Ming Jin and Javad Lavaei. Stability-certified reinforcement learning: A control-theoretic
perspective. IEEE Access, 8:229086–229100, 2020.

[26] Samuel Pfrommer, Tanmay Gautam, Alec Zhou, and Somayeh Sojoudi. Safe reinforcement
learning with chance-constrained model predictive control. In Learning for Dynamics and
Control Conference, pages 291–303. PMLR, 2022.

[27] Jongmin Lee, Cosmin Paduraru, Daniel J Mankowitz, Nicolas Heess, Doina Precup, Kee-Eung
Kim, and Arthur Guez. Coptidice: Offline constrained reinforcement learning via stationary
distribution correction estimation. International Conference on Learning Representations, 2022.

[28] Jongmin Lee, Wonseok Jeon, Byungjun Lee, Joelle Pineau, and Kee-Eung Kim. Optidice:
Offline policy optimization via stationary distribution correction estimation. In International
Conference on Machine Learning. PMLR, 2021.

[29] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

[30] Weichao Mao, Kaiqing Zhang, Ruihao Zhu, David Simchi-Levi, and Tamer Başar. Model-free
non-stationary rl: Near-optimal regret and applications in multi-agent rl and inventory control.
arXiv preprint arXiv:2010.03161, 2020.

[31] Yuhao Ding and Javad Lavaei. Provably efficient primal-dual reinforcement learning for cmdps
with non-stationary objectives and constraints. AAAI’23/IAAI’23/EAAI’23. AAAI Press, 2023.
ISBN 978-1-57735-880-0.

[32] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Kirkeby Fidjeland, Georg Ostrovski,
Stig Petersen, Charlie Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Ku-
maran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep
reinforcement learning. Nature, 518:529–533, 2015.

[33] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.
International Conference on Learning Representations, 2016.

[34] Wen Sun, Geoffrey J Gordon, Byron Boots, and J Bagnell. Dual policy iteration. Advances in
Neural Information Processing Systems, 31, 2018.

12

[35] Yuping Luo, Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell, and Tengyu Ma. Algo-
rithmic framework for model-based deep reinforcement learning with theoretical guarantees.
International Conference on Learning Representations, 2019.

[36] Yingjie Fei, Zhuoran Yang, Zhaoran Wang, and Qiaomin Xie. Dynamic regret of policy
optimization in non-stationary environments. Advances in Neural Information Processing
Systems, 33:6743–6754, 2020.

[37] Yash Chandak, Scott Jordan, Georgios Theocharous, Martha White, and Philip S Thomas.
Towards safe policy improvement for non-stationary mdps. Advances in Neural Information
Processing Systems, 33:9156–9168, 2020.

[38] Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy
gradient methods: Optimality, approximation, and distribution shift. The Journal of Machine
Learning Research, 22(1):4431–4506, 2021.

[39] Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, pages 2137–
2143. PMLR, 2020.

13

A Details on Introduction

A.1 Experimental motivation

1. Environment details of 2D goal reacher

• State space: S = R2. For (x, y) ∈ S, ∣x∣ ≤ 1, ∣y∣ ≤ 1.
• Action space: A = {(cos (π/4×k), sin (π/4×k)) ∣ k = 0,1, ...,7} (∣A∣ = 8)
• Reward function: if the agent’s state is in the Goal box, then it receives +6. Otherwise, it

receives -0.5 rewards for every step.
• Transition probability: sh+1 = sh + ah ⋅ ϵ, where sh+1 is the next state, sh is the current state,
ah is the current action, and ϵ ∈ R2 with ∣∣ϵ∣∣2 = 1 provides a stocasticity to the environment.

• Horizon length: H = 13
• Discounting factor: γ = 0.99
• Grid size: 10
• Goal box: The coordinates of the center of the time-varying goal box are (xg, yg)=
(0.9 cos (2π×k/2500),0.9 sin (2π×k/2500)), which changes for episode k ∈ [5000]. The
width and height of the box are equal to 0.05.

2. Experiment details

To motivate our proposed meta-framework via a simple experiment, we used Q-learning as a compo-
nent A of our meta-algorithm to update the policy. The three baselines (ProOLS, ONPG, FTML)
of Figure 1(c) were trained with four learning rates η ∈ {0.001,0.003,0.005,0.007} and the entropy
regularized parameter τ = 0.1, where the shaded area of the three baselines is 95 % confidence area
among 4 different learning rates. The PTM-T was trained with the model rollout length Ĥ ∈ {50,60},
policy update iteration number G ∈ {10,50}, entropy regularized parameter τ = 0.1, Q-learning
update parameter αQ ∈ {0.7,0.9,0.99}, and the learning rate η = 0.001. The shaded area of PTM-T is
95 % confidence area among the 12 different cases above. All four algorithms share the same agent’s
policy network structure.

B Related Works

Existing methods for non-stationary environments can be grouped into three categories: 1) shoehorn-
ing: directly using established frameworks for stationary MDPs by assuming no extra mechanisms
are needed since non-stationarity already exists in standard RL due to policy updates; 2) model-based
policy updates: updating models with new data, using short rollouts to prevent model exploitation
[24, 29], online model updates, or latent factor identification [4, 13–16]; and 3) anticipating future
changes by forecasting policy gradients or value functions [7, 30, 20, 10, 31].

The advantage of the model-free method is its computational efficiency, allowing for direct learning
of complex policies from raw data [32, 33], while the advantage of the model-based method is its
data efficiency, allowing one to learn fast by learning how the environment works [34, 35]. However,
both advantages are weakened in non-stationary environments since the optimizing non-stationary
loss function induced by time-varying data distribution makes the model-free method challenging to
adaptively obtain the optimal policy [36, 37] and the model-based method challenging to estimate
accurate non-stationary models [20, 10].

Model-free method in non-stationary RL. [8] uses meta-learning among the training tasks to find
initial hyperparameters of the policy networks that can be quickly fine-tuned when facing testing tasks
that have not been encountered before. However, access to a prior distribution of training tasks is not
available in real-world problems. To mitigate this issue, [9] proposed the Follow-The-Meta-Leader
(FTML) algorithm that continuously improves an initialization of parameters for non-stationary
input data. However, it internally entails a lag when tracking optimal policy as it maximizes the
current performance over all the past samples uniformly. To alleviate the lag problem, [7, 37] focused
on directly forecasting the non-stationary performance gradient to adapt the time-varying optimal
policies. However, it still has problems of showing empirical analysis on bandit settings or a low-
dimensional environment and lack of theoretical analysis which provides a bound on the adapted

14

policy’s performance. [30] proposed adaptive Q-learning with a restart strategy and established its
near-optimal dynamic regret bound. In addition, [36] proposed two model-free policy optimization
algorithms based on the restart strategy and showed that dynamic regret satisfies polynomial space
and time complexities. However, the provable model-free methods in [30, 36] still lack empirical
evidence and adaptability in complex environments. Furthermore, since the agent can execute a
policy in a fixed environment only once due to the non-stationarity of the environment, most existing
model-free methods only update the policy once for each environment, which prevents the tracking
of the time-varying optimal policies.

Model-based method in non-stationary RL. The work [14] learned the model change factors and
their representation in heterogeneous domains with varying reward functions and dynamics. However,
it has restrictions for use in non-stationary environments, meaning that it is applicable only for
constant change factors or the domain adaptation setting. [4] proposed a Bayesian optimal learning
policy algorithm by conditioning the action on both states and latent vectors that capture the agent’s
uncertainty in the environment. Also, [15] brought insights from recent causality research to model
non-stationarity as latent change factors across different environments, and learn policy conditioning
on latent factors of the causal graphs. However, learning an optimal policy conditioning on the latent
states [4, 13–16] makes the theoretical analysis intractable. The recent works [20, 10, 31] proposed
model-based algorithms with a provable guarantee, but their algorithms are not scalable for complex
environments and lack empirical evaluation for complex environments.

C Details on Problem Statement and Notations

C.1 Details on Notations

Environment Interaction. First, we denote the state and action at the wall-clock time tk of
step h as stkh and atkh , respectively. As mentioned in the main paper, we interchangeably use the
symbols s(k)h and a(k)h for stkh and atkh . At the wall-clock time tk, the agent starts from an initial
state stk0 ∼ ρ. At step h ∈ [H] of the episode k, the agent takes the action atkh = πtk(⋅∣stkh) from the
current state stkh . The agent then receives the reward rtkh ∼ Rtk(stkh , a

tk
h) and moves to the next state

stkh+1 ∼ Ptk(stkh+1∣s
tk
h , a

tk
h). The trajectory ends when the agent reaches stkH .

Future MDP M̂tk+1 . Our work creates a one-episode-ahead MDP M̂tk+1 based on the observed
data from the p lastest MDPs {Mtk−p+1 , ...,Mtk} when the agent is stated in episode k. We define
M̂tk+1 ∶= ⟨S,A,H, P̂tk+1 , R̂tk+1 , γ⟩, where P̂tk+1 and R̂tk+1 are the forecasted future transition
probability and reward function, respectively. As mentioned in the main paper, the agent also interacts
with the created future MDP M̂tk+1 in the same way as it did with the original MDPMtk . We denote
the state, action, and policy in M̂tk+1 as ŝtk+1h , âtk+1h , π̂tk+1 , or equivalently ŝ(k+1)h , â

(k+1)
h , π̂(k+1),

respectively. We elaborate our main methodology in Section 3.

State value and state-action value functions. For any given policy π and the MDPMtk , we denote
the state value function at the wall-clock time tk(episode k) as V π,tk ∶ S → R and the state-action
value function k as Qπ,tk ∶ S ×A→ R. We define

V π,tk(s) ∶= EMtk
,π [

H−1
∑
h=0

γhrtkh ∣ s
tk
0 = s] ,

Qπ,tk(s, a) ∶= EMtk
,π [

H−1
∑
h=0

γhrtkh ∣ s
tk
0 = s, a

tk
0 = a] .

Also, given the future MDP M̂tk+1 , we denote the forecasted state value as V̂ π,tk+1(s) ∶ S → R and
forecasted state-action value as Q̂π,tk+1 ∶ S ×A→ R. We define

V̂ π,tk+1(s) ∶= EM̂tk+1 ,π
[
H−1
∑
h=0

γhr̂tk+1h ∣ ŝtk+10 = s] ,

Q̂π,tk+1(s, a) ∶= EM̂tk+1 ,π
[
H−1
∑
h=0

γhr̂tk+1h ∣ ŝtk+10 = s, âtk+10 = a] .

15

As mentioned in the main paper, we simplify the symbols V π,tk ,Qπ,tk , V̂ π,tk+1 , Q̂π,tk+1 as
V π,(k),Qπ,(k), V̂ π,(k+1), Q̂π,(k+1).

Dynamic regret. Aside from stationary MDPs, the agent aims to maximize the cumulative expected
reward throughout the K episodes by adopting a sequence of policies {πtk}1∶K . In non-stationary
MDPs, the optimality of the policies is evaluated in terms of the dynamic regret R ({πtk}1∶K ,K)
defined as

R ({πtk}1∶K ,K) ∶=
K

∑
k=1
(V ˚,tk(ρ) − V πtk ,tk(ρ)) (C.1)

where V ˚,tk(= V π˚,tk ,tk) denotes the optimal state value function under the optimal policy π˚,tk

at the wall-clock time tk (episode k) and V πtk ,tk denotes the state value with agent’s kth episode’s
policy πk. Dynamic regret is a stronger evaluation than the standard static regret that considers the
optimality of a single policy over all episodes.

State value and state-action value functions at step h. We denote the state value function and the
state-action value function for any policy π at step h of the wall-clock time tk as V π,tk

h and Qπ,tk
h ,

respectively. We define

V π,tk
h (s) ∶= EMtk

,π[
H−1
∑
i=h

γi−hrtki ∣ s
tk
h = s],

Qπ,tk
h (s, a) ∶= EMtk

,π[
H−1
∑
i=h

γi−hrtki ∣ s
tk
h = s, a

tk
h = a].

Then, the corresponding Bellman equation is

Qπ,tk
h (s, a) = (Rtk + γPtkV

π,tk
h+1)(s, a), V

π,tk
h (s) = ⟨Qπ,tk

h (s, ⋅), π(⋅∣s)⟩A, V
tk,π
H (s) = 0 ∀s ∈ S

(C.2)
where (Ptkf) (s, a) ∶= Es′∼P tk (⋅∣s,a))[f(s′)] for every function f ∶ S → R.

We denote V ˚,tk
h (s) = V π˚,tk ,tk

h (s) as the optimal state value function at step h of episode k. We
omit the subscript h when h = 0, that is, V π,k = V π,k

0 , Qπ,k = Qπ,k
0 . Then, the corresponding

Bellman equation is

Q˚,tk
h (s, a) = (Rtk + γPtkV

˚,tk
h+1)(s, a), V

˚,tk
h (s) = ⟨Q˚,tk

h (s, ⋅), π˚,tk(⋅∣s)⟩A, (C.3)

π˚,tk(s) =max
a
Q˚,tk

h (s, a).

We also denote the forecasted state value at the wall-clock time tk+1 of step h when the agent is stated
at time tk as V̂ π,tk+1

h and the forecasted state-action value as Q̂π,tk+1
h in a forecasted MDP M̂tk+1 .

We define

V̂ π,tk+1
h (s) ∶= EM̂tk+1 ,π

[
H−1
∑
i=h

γi−hr̂tk+1i ∣ ŝtk+1h = s], (C.4)

Q̂π,tk+1
h (s, a) ∶= EM̂tk+1 ,π

[
H−1
∑
i=h

γi−hr̂tk+1i ∣ ŝtk+1h = s, âtk+1h = a]. (C.5)

Then, the Bellman equation is given by

Q̂π,tk+1
h (s, a) = (R̂tk+1+γP̂tk+1 V̂

π,tk+1
h+1)(s, a), V̂ π,tk+1

h (s) = ⟨Q̂π,tk+1
h (s, ⋅), π(⋅∣s)⟩A,

V̂ π,tk+1
H (s) = 0 ∀s ∈ S. (C.6)

We denote the future optimal policy of the future value function V̂ π,tk+1 as π̂˚,tk+1 . Then the Bellman
equation also holds for Q̂π,tk+1

h (s) and V̂ π,tk+1
h (s) as follows:

Q̂˚,tk+1
h (s, a) = (R̂tk+1+γP̂tk+1 V̂

˚,tk+1
h+1)(s, a), V̂ ˚,tk+1

h (s) = ⟨Q̂˚,tk+1
h (s, ⋅), π̂˚,tk+1(⋅∣s)⟩A,

π̂˚,tk+1(s) =max
a
Q̂˚,tk+1

h (s, a). (C.7)

16

As mentioned in the main paper, we simplify the notations V π,tk
h ,Qπ,tk

h , V̂ π,tk+1
h , Q̂π,tk+1

h as
V

π,(k)
h ,Q

π,(k)
h , V̂

π,(k+1)
h , Q̂

π,(k+1)
h .

Unnormalized (discounted) occupancy measure. We define the unnormalized (discounted)
occupancy measure νπ,tks0,a0

∈∆1/(1−γ)(S ×A) at wall-clock time tk (episode k) for a given policy π
together with an initial state s0 and the action a0 as

νπ,tks0,a0
(s, a) ∶=

∞
∑
h=0

γhP(sh = s, ah = a ∣ s0, a0 ; π,Ptk) , ∀(s, a) ∈ S ×A (C.8)

where P(sh = s, ah = a ∣ s0, a0 ; π,P tk) is the probability of visiting (s, a) at step h when following
policy π from (s0, a0) with the transition probability Ptk+1 .

We also define the unnormalized non-stationary (discounted) forecasted occupancy measure ν̂π,tk+1s0 ∈
∆1/(1−γ)(S × A) for a given policy π, an initial state s0, an action a0, and a forecasted future
transition probability P̂tk+1 :

ν̂π,tk+1s0,a0
(s, a) ∶=

∞
∑
h=0

γhP(sh = s, ah = a ∣ s0, a0, π, P̂tk+1) ,∀(s, a) ∈ S ×A (C.9)

where the probability is defined in a forecasted environment with P̂tk+1 .

Model prediction error. To measure how well our meta-function predicts the future environment,
we define two different model prediction errors ιtk+1∞ , ιtk+1h ∶ S ×A→ R, which denote the Bellman
equation error when using V̂ and Q̂ estimated in the future MDP instead of the true V and Q
functions:

ῑtk+1∞ (s, a) ∶= (Rtk+1 + γPtk+1 V̂
˚,tk+1
∞ − Q̂˚,tk+1

∞) (s, a), (C.10)

ιtk+1h (s, a) ∶= (Rtk+1 + γPtk+1 V̂
π̂tk+1 ,tk+1
h+1 − Q̂π̂tk+1 ,tk+1

h) (s, a). (C.11)

As mentioned in the main paper, we allow ῑtk+1∞ (s, a) and ιtk+1h (s, a) to be interchangeably expressed
by the symbols ῑ(k+1)∞ (s, a) and ι(k+1)h (s, a).
Local time-elapsing variation budget. Aside from the time-elapsing variation budget, we define the
local time-elapsing variation budgets B(k−w∶k)p and B(k−w∶k)r that quantifie how fast the environment
changes over wall-clock times {tk−w+1, tk+1, ..., tk} where k −w,k ∈ [K]:

B(k−w+1∶k)p (∆π) ∶=
k

∑
τ=k−w+1

sup
s,a
∣∣Ptτ+1(⋅ ∣s, a) − Ptτ (⋅ ∣s, a)∣∣1,

B(k−w+1∶k)r (∆π) ∶=
k

∑
τ=k−w+1

sup
s,a
∣Rtk+1(s, a) −Rtk(s, a)∣.

D Proof of Theoretical Analysis

D.1 Preliminary for ProST-T and theoretical analysis

In this subsection, we elaborate on the ProST-T’s environment setting and its components f, g.

D.1.1 Environment setting

We consider the tabular environment have the following properties:

1. First, P(k) and R(k) are represented by the inner products of the feature functions ψ ∶
S × S ×A → R∣S∣

2∣A∣, φ ∶ S ×A → R∣S∣∣A∣ and the non-stationary variables op(k), o
r
(k) ∈ O,

respectively, where op(k) ∶ S × S × A → R∣S∣
2∣A∣ and or(k) ∶ S × A → R∣S∣∣A∣. That is,

P(k) =< ψ, op(k) > and R(k) =< φ, or(k) >.

17

2. Second, the agent estimates op(k) and or(k) rather than observing them. More specifically, we
consider the non-stationary variable set O to be the set {P(k)}1∶K ,{R(k)}1∶K . The agent
then attempts to estimate ok (denote P(k) as op(k) and R(k) as or(k)) through its w lastest
trajectories, where Assumption 2 does not need to be satisfied in this setting. That is, the
agent estimates P(k) by ôpk and R(k) by ôrk from observations of last w trajectories, i.e.,
τk−(w−1)∶k.

We elaborate on the above two settings below:

1. P(k),R(k) are inner products of ψ,φ and op(k), o
r
(k).

Let us define a set of one-hot reward vectors over all states and the action space, namely 1r ∶= {φy ∈
{0,1}∣S∣∣A∣ ∣ ∑∣S∣∣A∣i=1 φy

i = 1}, and similarly define a set of one-hot transition probability vectors,

namely 1p ∶= {ψy ∈ {0,1}∣S∣2∣A∣ ∣ ∑∣S∣
2∣A∣

i=1 ψy
i = 1}. We then define one-to-one functions φ and

ψ such that φ ∶ S ×A → 1r and ψ ∶ S × S ×A → 1p. Namely, φ(s, a)(ψ(s′, s, a)) is a one-hot
vector such that the (i)th entry equals 1. We use the notation φk

h = φ(s
(k)
h , a

(k)
h) for the observed

(s(k)h , a
(k)
h) on the trajectory τk, and similarly ψk

h = ψ(s
(k)
h+1, s

(k)
h , a

(k)
h).

Then, we set O = {P(k),R(k)}∞k=1 in ProST-T. Also, we set ok to consist of two parameters
as ok = (op(k), o

r
(k)). We define a function op(k) ∶= {o ∶ S × S × A → R∣S∣

2∣A∣ ∣ o(s′, s, a) =
P(k)(s′∣s, a), ∀(s′, s, a)} and a function or(k) ∶= {o ∶ S×A→ R∣S∣∣A∣ ∣ o(s, a) = R(k)(s, a), ∀(s, a)}.
Then, the transition probability and reward value P(k) and R(k) can be constructed by the inner
products of the stationary functions φ and ψ and the unknown non-stationary parameters op(k) and
or(k) as follows,

P(k)(s′ ∣ s, a) ∶= < ψ(s′, s, a), op(k)(s
′, s, a) > for ∀(s′, s, a), (D.1)

R(k)(s, a) ∶= < φ(s, a), or(k)(s, a) > for ∀(s, a). (D.2)

For notational simplicity, we use < ψ, op(k) > and < φ, or(k) > to show the inner products of the
functions ψ, op(k) and φ, or(k), respectively. Therefore, P(k) =< ψ, op(k) > and R(k) =< φ, or(k) >.

To give an intuitive explanation, note that op(k) contains all transition probabilities for all (s′, s, a) in

a vector form with size R∣S∣
2∣A∣ and or(k) contains all rewards for all (s, a) in a vector form with size

R∣S∣∣A∣.
2. The agent estimates or(k) and op(k) rather than observing them

We have defined the functions op(k) and or(k) as the transition probability and reward functions at
episode k, respectively. Now, the agent strives to estimate op(k) and or(k), denoted as ôp(k) and ôr(k),
from the current trajectory τk:

ôp(k)(s
′, s, a) =

n(k)(s′, s, a)
λ + n(k)(s, a)

, ∀(s′, s, a) ∈ S × S ×A,

ôr(k)(s, a) =
∑H−1

h=0 1 [(s, a) = (s(k)h , a
(k)
h)] ⋅ r

(k)
h

nk(s, a)
, ∀(s, a) ∈ S ×A

where n(k)(s, a) denotes visitation count of state s under action a through trajectory τ(k) and
n(k)(s, a, s′) denotes visitation count of state s under action a and subsequent next state s′ through
trajectory. We denote ôpk,h = ô

p
(k)(s

(k)
h+1, s

(k)
h , a

(k)
h) and ôrk,h = r̂kh(s

(k)
h , a

(k)
h).

It can be verified that the following relations hold at episode k for the state and action pairs from the
kth trajectory {s(k)0 , a

(k)
0 , s

(k)
1 , a

(k)
1 , .., s

(k)
H−1, a

(k)
H−1, s

(k)
H }:

P(k)(s(k)h+1 ∣ s
(k)
h , a

(k)
h) = < ψ(s

(k)
h+1, s

(k)
h , a

(k)
h), o

p
(k)(s

(k)
h+1, s

(k)
h , a

(k)
h) > ,∀h ∈ [H], (D.3)

R(k)(s(k)h , a
(k)
h) = < φ(s

(k)
h , a

(k)
h), o

r
(k)(s

(k)
h , a

(k)
h) > ,∀h ∈ [H]. (D.4)

18

Note that the observed non-stationary parameters ôp(k) and ôr(k) can be interpreted partially observed
vectors.

D.1.2 Functions f and g

The function f estimates and the function g predicts as follows:

1. Function f : f forecasts one-episode-ahead non-stationary parameters ôp(k+1) and ôr(k+1) by
minimizing the following loss function Lf◇ with the regularization parameter λ ∈ R+:

Lf◇(ϕ ; ô◇(k−w+1∶k)) = λ∣∣ϕ∣∣2 +
k

∑
s=k−w+1

H−1
∑
h=0
((◻sh)⊺ϕ − ô◇s,h)

where ◇ = r, p and ◻ = φ if ◇ = r. We set ◻ = ψ if ◇ = p. We let ϕkf◇ =
argminϕLf◇(ô◇k−(w−1)∶k). We use ϕkf◇ as ô◇k+1 .

2. Function g: Then g predicts the functions P̂(k+1) and R̂(k+1), denoted as ĝP(k+1) and ĝR(k+1),

as P̂(k+1) = ĝP(k+1) ∶=< φ, ô
p
(k+1) > and R̂(k+1) = ĝR(k+1) ∶=< φ, ôrk+1 > +2Γ

(k)
w , where

Γ
(k)
w (s, a) ∶ S ×A→ R is the exploration bonus term that adapts the counter-based bonus

terms in the literature.

We elaborate on above two procedures below:

1. The function f solves an optimization problem to obtain the future ô(k+1).

The function g ○ f forecasts the k + 1th episode’s non-stationary parameters as (ôp(k+1), ô
r
(k+1)) from

ô(k−w+1∶k), where w is the sliding window length (past reference length). The function f forecasts
op(k+1) and or(k+1) by minimizing the following two regularized least-squares optimization problems
[18].

ôp(k+1) = argmin
o∈R∣S∣2 ∣A∣

⎛
⎝
λ∣∣o∣∣2 +

k,H

∑
s=k−w+1,h=0

((ψs
h)⊺o − ôps,h)

⎞
⎠

(D.5)

õr(k+1) = argmin
o∈R∣S∣∣A∣

⎛
⎝
λ∣∣o∣∣2 +

k,H−1
∑

s=k−w+1,h=0
((φs

h)⊺o − ôrs,h)
⎞
⎠

(D.6)

2. The function g predicts P̂(k+1) and R̂(k+1) from ôk+1.

From the equations (17a) and (17b) of the paper [31], the explicit solutions of (D.5) and (D.6) are
given as

ôp(k+1)(s
′, s, a) = ∑

k
t=k−w+1 nt(s′, s, a)

λ +∑k
t=k−w+1 nt(s, a)

, õr(k+1)(s, a) =
∑k

t=k−w+1∑H−1
h=0 1 [(s, a) = (sth, ath)] ⋅ rth

λ +∑k
t=k−w+1 nt(s, a)

.

(D.7)

Then, the ProST-T predicts the future model using the functions ĝPk+1 and ĝRk+1 as follows:

ĝPk+1(s′, s, a) ∶=< φ(s′, s, a), ôp(k+1)(s
′, s, a) >,

g̃Rk+1(s, a) ∶=< φ(s, a), õr(k+1)(s, a) >,
ĝRk+1(s, a) ∶= g̃Rk+1(s, a) + 2Γ(k)w (s, a).

We utilize the exploration bonus Γ(k)w (s, a) ∶ S ×A→ R to explore those state and action pairs that

are less visited. We define it as Γ(k)w (s, a) = β (∑k
t=k−w+1 nt(s, a) + λ)

−1/2
with β > 0. Then, we

use ĝPk+1 and ĝRk+1 to denote the future MDP’s P̂(k+1) and R̂(k+1), respectively. From the following
analysis, we write P̂(k+1) = ĝP(k+1), R̃(k+1) = g̃R(k+1), and R̂(k+1) = ĝR(k+1).

19

D.1.3 Baseline algorithms Alg and Algτ

The ProST-T utilizes softmax parameterization that naturally ensures that the policy lies in the
probability simplex. For any function that satisfies θ ∶ S ×A → R, the policy π(k) is generated by
the softmax transformation of θ(k) at the wall-clock time tk. Furthermore, to promote exploration
and discourage premature convergence to suboptimal policies in a non-stationary environment, we
implement a widely used strategy known as entropy regularization. We augment the future state value
function with an additional π(k)(s) entropy term, denoted by τH(s, π(k)), where τ > 0. We perform
a theoretical analysis with two baseline algorithms : Natural Policy Gradient (NPG) Alg and Natural
Policy Gradient (NPG) with entropy regularization Algτ

Softmax parameterization. For any function that satisfies θ ∶ S × A → R, the policy π(k) is
generated by the softmax transformation of θ(k) at the wall-clock time tk. Using the notation
π(k) = πθ(k) , the soft parameterization is defined as

πθ(k)(a∣s) ∶=
exp (θ(k)(s, a))

∑a′∈A exp (θ(k)(s, a′)) ,∀(s, a) ∈ S ×A.

Under the softmax parameterization, the NPG update rule admits a simple form of update rule given
in line 17 of Algorithm 2 in Appendix F.1. This is elaborated in [21].

Entropy regularized value maximization. For any policy π, we define the forecasted entropy-
regularized state value function V̂

π,ttk+1
τ (s) as

V̂ π,tk+1
τ (s) ∶= V̂ π,tk+1(s) + τH(s, π)

where τ ≥ 0 is a regularization parameter andH(s, π) is a discounted entropy defined as

H(s, π) ∶= EM̂(k+1)
[
H−1
∑
h=0
−γh logπ(â(k+1)h ∣ŝ(k+1)h)∣ŝ(k+1)0 = s] .

Also, we define the forecasted regularized Q-function Q̂π,(k+1)
τ as

Q̂π,tk+1
τ (s, a) = r̂tk+1h + γEs′∼P̂tk+1(⋅∣s,a)

[V̂ π,tk+1
τ (s′)]

where (s′, s, a) = (ŝ(k+1)h+1 , ŝ
(k+1)
h , â

(k+1)
h).

D.2 Notation for theoretical analysis

This subsection introduces some notations that we will use in the proofs.

At the wall-clock time tk, we define the forecasting model error ∆r
tk
(s, a) and forecasting transition

probability model error ∆p
tk
(s, a) below:

∆r
tk
(s, a) ∶= ∣(R(k+1) − R̃(k+1)) (s, a)∣ , (D.8)

∆p
tk
(s, a) ∶= ∣∣(P(k+1) − P̂(k+1)) (⋅ ∣ s, a)∣∣1 . (D.9)

Recall that R̃(k+1) and P̂(k+1) estimate the future reward and transition probability by solving the
optimization problems (D.5) and (D.6).

We define a model error that considers the bonus term as

∆Bonus,r
tk

(s, a) ∶= ∣(R(k+1) − R̂(k+1)) (s, a)∣

where R̂(k+1)(s, a) = R̃(k+1)(s, a) + 2Γ(k)w (s, a).

We also define the empirical forecasting reward model error ∆̄r
tk,h

and the empirical forecasting
transition probability model error ∆̄p

tk,h
:

∆̄r
tk,h
∶= ∣(R(k+1) − R̃(k+1)) (s(k+1)h , a

(k+1)
h)∣ ,

∆̄p
tk,h
∶= ∣∣(P(k+1) − P̂(k+1)) (⋅ ∣ s(k+1)h , a

(k+1)
h)∣∣

1

20

as well as the empirical bonus based on the reward model error:

∆̄Bonus,r
tk,h

∶= ∣(R(k+1) − R̂(k+1)) (s(k+1)h , a
(k+1)
h)∣ .

Likewise, we define total empirical forecasting reward model error ∆̄r
K and the total empirical

forecasting transition probability model error ∆̄p
K :

∆̄r
K ∶=

K−1
∑
k=1

H−1
∑
h=0

∆̄r
tk,h

, (D.10)

∆̄p
K ∶=

K−1
∑
k=1

H−1
∑
h=0

∆̄p
tk,h

. (D.11)

We simplify the symbols ∆r
tk
(s, a),∆p

tk
(s, a),∆Bonus,r

tk
(s, a), ∆̄r

tk,h
, ∆̄p

tk,h
, ∆̄Bonus,r

tk,h
as

∆r
(k)(s, a),∆

p
(k)(s, a),∆

Bonus,r
(k) (s, a), ∆̄r

(k),h, ∆̄
p
(k),h, ∆̄

Bonus,r
(k),h , respectively.

We also define a variable Λtk
w (s, a) that quantifies the visitation:

Λtk
w (s, a) =

⎡⎢⎢⎢⎢⎣
λ +

k

∑
t=(1∧k−w+1)

nt(s, a)
⎤⎥⎥⎥⎥⎦

−1

. (D.12)

It can be verified that
Γtk
w (s, a) = β

√
Λtk
w (s, a). (D.13)

As before, we simplify the notations Λtk
w (s, a) and Γtk

w (s, a) as Λ(k)w (s, a) and Γ
(k)
w (s, a). We define

rmax, r̃max,R
max
(k+1), and R̃max

(k+1) as follows:

Rmax
(k+1) ∶=max

(s,a)
∣R(k+1)(s, a)∣,

rmax ∶= max
1≤k≤K−1

Rmax
(k+1),

R̃max
(k+1) ∶=max

(s,a)
∣R̃(k+1)(s, a)∣,

r̃max ∶= max
1≤k≤K−1

R̃max
(k+1)

and since ∣∣R̂(k+1)(s, a)∣∣∞ ≤ ∣∣R̃(k+1)(s, a)∣∣∞ + ∣∣2Γ(k)w (s, a)∣∣∞ = R̃max
(k+1) +

2β√
λ

, we define r̂k+1max as

r̂max
(k+1) ∶= R̃max

(k+1) +
2β√
λ
.

Also, since β and λ are hyperparameters independent of k, we have that

r̂max = r̃max +
2β√
λ
. (D.14)

D.3 Proofs

Proof of Theorem 1. Following the definition of the dynamic regret (Definition C.1), it can be
separated into three terms:

R ({π̂(k+1)}1∶K−1,K))

=
K−1
∑
k=1
(V ˚,(k+1)(s0) − V π̂(k+1),(k+1)(s0))

=
K−1
∑
k=1
(V ˚,(k+1)(s0) − V̂ ˚,(k+1)(s0))

´¹¹¹¸¹¹¹¶
1

+
K−1
∑
k=1
(V̂ ˚,(k+1)(s0) − V̂ π̂(k+1),(k+1)(s0))

´¹¹¸¹¹¶
2

+
K−1
∑
k=1
(V̂ π̂(k+1),(k+1)(s0) − V π̂(k+1),(k+1)(s0))

´¹¹¸¹¹¶
3

21

1. Upper bound on 1 . The gap between V π˚,(k+1),(k+1)(s0) and V̂ π̂˚,(k+1),(k+1)(s0) comes from
the gap between two optimal value functions evaluated for two different MDPs:M(k+1) and M̂(k+1).

We will first come up with an upper bound on the difference between Q
˚,(k+1)
h (s, a) and

Q̂
˚,(k+1)
h (s, a) for any (s, a) ∈ S × A. The difference can be separated into three terms as fol-

lows:

Q
˚,(k+1)
h (s, a) − Q̂˚,(k+1)

h (s, a) ≤ ∣∣Q˚,(k+1)
h (s, a) −Q˚,(k+1)

∞ (s, a)∣∣∞
´¹¹¹¸¹¹¹¶

1.1

+ (Q˚,(k+1)
∞ (s, a) − Q̂˚,(k+1)

∞ (s, a))
´¹¹¹¸¹¹¶

1.2

+ ∣∣Q̂˚,(k+1)
h (s, a) − Q̂˚,(k+1)

∞ (s, a)∣∣∞
´¹¹¹¸¹¹¹¶

1.3

1.1. Terms 1.1 and 1.3 .

First, the term 1.1 can be bounded as follows:

1.1 = ∣∣EM(k+1),π˚[
H−h−1
∑
i=0

γir
(k+1)
i+h −

∞
∑
i=0
γir
(k+1)
i ∣ s(k+1)h = s, a(k+1)h = a]∣∣

∞

≤ ∣
∞
∑

i=H−h
γirmax∣

= γ
H−h

1 − γ rmax

Through a similar process, we can also obtain the upper bound: 1.3 ≤ γH−h/(1 − γ)r̂max.

1.2. Term 1.2 .

An upper bound on the term 1.2 can be obtained by utilizing ῑ(k+1)∞ (s, a) (Def (C.10)). Then, the

Q-function gap between Q˚,(k+1)
∞ and Q̂˚,(k+1)

∞ can be represented using the Bellman equation as
follows:

1.2 = (Q˚,(k+1)
∞ − Q̂˚,(k+1)

∞) (s, a) (D.15)

= (R(k+1) + γP(k+1)V ˚,(k+1)
∞)(s, a) − Q̂˚,(k+1)

∞ (s, a) (D.16)

= (R(k+1) + γP(k+1)V̂ ˚,(k+1)
∞ − Q̂˚,(k+1)

∞)(s, a) + γP(k+1) (V ˚,(k+1)
∞ − V̂ ˚,(k+1)

∞) (s, a)
≤ ῑk+1∞ (s, a) + γP(k+1) (V ˚,(k+1)

∞ − V̂ ˚,(k+1)
∞) (s, a)

= ῑk+1h (s, a) + γP(k+1) (⟨Q˚,(k+1)
∞ , π˚,(k+1)⟩A − ⟨Q̂˚,(k+1)

∞ , π̂˚,(k+1)⟩A) (s, a) (D.17)

= ῑk+1∞ (s, a) + γP(k+1)(⟨Q˚,(k+1)
∞ − Q̂˚,(k+1)

∞ , π˚,(k+1)⟩A
+ ⟨Q̂˚,(k+1)

∞ , π˚,(k+1) − π̂˚,(k+1)⟩A)(s, a)
≤ ῑk+1∞ (s, a) + γP(k+1) (⟨Q˚,(k+1)

∞ − Q̂˚,(k+1)
∞ , π˚,(k+1)⟩A) (s, a) (D.18)

where (D.16) and (D.17) hold by the definition of Bellman equation ((C.3) and (C.7)). Equation
(D.18) holds by ⟨Q̂˚,(k+1)

∞ , π˚,(k+1) − π̂˚,(k+1)⟩A(s, a) ≤ 0 since π̂˚,(k+1) is the optimal policy of
Q̂

˚,(k+1)
∞ . We now define the matrix operator (P ○π)(s, a) ∶ R∣S∣∣A∣ → R∣S∣∣A∣ as the transition matrix

22

that captures how the state-action pair transitions from (s, a) to (s′, a′) when following the policy π
in an environment with the transition probability P. Also, define the one-vector 1(s,a) ∈ R∣S∣A∣ such
that the (s, a)th entity is one and the remaining entries are zero. Then, the equation (D.15) becomes
the same as the (s, a)th entity of the vector 1(s,a) ⋅ (Q˚,(k+1)

∞ − Q̂˚,(k+1)
∞)(s, a). Also, the right-hand

side of equation (D.18) can be represented as

P(k+1) (⟨Q˚,(k+1)
∞ − Q̂˚,(k+1)

∞ , π˚,(k+1)⟩A) (s, a) = (P(k+1) ○ π˚,(k+1))
⋅ (1(s,a) ⋅ (Q˚,(k+1)

∞ − Q̂˚,(k+1)
∞)) (s, a)

= (Pk+1
π˚) (1(s,a) ⋅ (Q˚,(k+1)

∞ − Q̂˚,(k+1)
∞)) (s, a)

where we denote P(k+1) ○ π˚,(k+1) ∶= P(k+1)
π˚ for notational simplicity.

Then, we can reformulate the inequality (between (D.15) and (D.18)) into a vector form which holds
element-wise for all s, a:

(1(s,a) ⋅ (Q˚,(k+1)
∞ − Q̂˚,(k+1)

∞)) (s, a) ≤1(s,a) ⋅ ῑ(k+1)∞ (s, a)

+ γ(P(k+1)
π˚) (1(s,a) ⋅ (Q˚,(k+1)

∞ − Q̂˚,(k+1)
∞)) (s, a)

Then, rearranging the above inequality yields that

1(s,a) ⋅ (Q˚,(k+1)
∞ − Q̂˚,(k+1)

∞) (s, a) ≤ (I − γPk+1
π˚)−11(s,a) ⋅ ῑk+1∞ (s, a) (D.19)

= 1

1 − γ ῑ
k+1
∞ (s, a)

Now, note that (I − γP(k+1)
π˚)−1 can be expanded with an infinite summation of the matrix operator

P(k+1) ○ π˚,(k+1) as (I − γP(k+1)
π˚)−1 = I + γP(k+1)

π˚ + (γP(k+1)
π˚)2 + ...s. Since, 1(s,a) can be viewed

as the Dirac delta state-action distribution that always yields (s, a), it holds that νπ
˚,(k+1),(k+1)
(s,a) =

(I−γP(k+1)
π˚)−11(s,a), where ν is the unnormalized occupancy measure of (s, a) in light of Definition

(C.8). Then taking the l1 norm over the inequality (D.19) yields the that

∣∣1(s,a) ⋅ (Q˚,(k+1)
∞ − Q̂˚,(k+1)

∞) (s, a)∣∣
1
≤ ∣∣(I − γPk+1

π˚)−11(s,a) ⋅ ῑk+1∞ (s, a)∣∣1
= ∣∣(I − γPk+1

π˚)−11(s,a)∣∣1 ⋅ ∣ῑ
k+1
∞ (s, a)∣

= 1

1 − γ
∣ῑk+1∞ (s, a)∣ (D.20)

Equation (D.20) holds since νπ
˚,(k+1),(k+1)
(s,a) is an unnormalized probability distribution.

Then, for every (s, a, h) ∈ S ×A × [H], it follows from combining the terms 1.1 , 1.2 and 1.3 that

Q
˚,(k+1)
h (s, a) − Q̂˚,(k+1)

h (s, a) ≤ γ
H−h

1 − γ (rmax + r̂max) +
1

1 − γ
∣ῑ(k+1)∞ (s, a)∣

1.3. Combining the terms 1.1 , 1.2 and 1.3 .

Finally, an upper bound on 1 is derived as

1 =
K−1
∑
k=1
(V π˚,(k+1),(k+1)(s0) − V̂ π̂˚,(k+1),(k+1)(s0))

≤
K−1
∑
k=1
∣∣Q˚,(k+1) − Q̂˚,(k+1)∣∣∞

=
K−1
∑
k=1
⋅ γ

H

1 − γ (rmax + r̂max) +
1

1 − γ
K−1
∑
k=1
∣∣ῑk+1∞ ∣∣∞

= (K − 1) ⋅ γ
H

1 − γ (rmax + r̂max) +
1

1 − γ ῑ
K
∞ (D.21)

23

where we have defined ῑK∞ ∶= ∑K−1
k=1 ∣∣ῑ

(k+1)
∞ ∣∣

∞
in Theorem 1.

2. Upper bound on 2 .

The gap between V̂ ˚,(k+1)(s0) and V̂ π̂(k+1),(k+1)(s0) comes from the optimization error between the
optimal policy π̂˚,(k+1) and the policy π̂(k+1), which are both driven from the same MDP M̂(k+1) .
We also separate this gap into three terms:

2 ’s (k)th term = V̂ ˚,(k+1)(s0) − V̂ π̂(k+1),(k+1)(s0)

= (V̂ ˚,(k+1)(s0) − V̂ ˚,(k+1)
∞ (s0)) + (V̂ ˚,(k+1)

∞ (s0) − V̂ π̂(k+1),(k+1)
∞ (s0))+

+ (V̂ π̂(k+1),(k+1)
∞ (s0) − V̂ π̂(k+1),(k+1)(s0)) (D.22)

≤ (V̂ ˚,(k+1)
∞ (s0) − V̂ π̂(k+1),(k+1)

∞ (s0))
´¹¹¹¸¹¹¶

2.1

+2γ
H r̂max

1 − γ (D.23)

where the subscript∞ in the notations V̂ π,(k+1)
∞ (s0) and V̂ π,(k+1)

∞,τ (s0) indicate the forecasted value
function and the forecasted entropy-regularized value function when H =∞ (infinite horizon MDPs).
Equation (D.22) holds since V̂ π,(k+1)(s)− V̂ π,(k+1)

∞ (s) = EM̂(k+1),π
[∑∞h=H γhr̂

(k+1)
h ∣ s = ŝ(k+1)0] ≤

γH

1−γ r̂max holds for all π ∈ Π.

2.1. Upper bound on 2 - NPG without entropy regularization (Alg). The term 2.1 in (D.23)
can be bounded as

2.1 =V̂ ˚,(k+1)
∞ (s0) − V̂ π̂(k+1),(k+1)

∞ (s0)

≤ log ∣A∣
ηG

+ 1

(1 − γ)2G (D.24)

due to Theorem 5.3 in [38]. Now, combining D.23 and D.24 offers an upper bound of the term 2 ’s
(k)th term as follows:

2 ’s (k)th term = V̂ π̂˚,(k+1),(k+1)(s0) − V̂ π̂(k+1),(k+1)(s0)

≤ 1

(1 − γ)2G +
log ∣A∣
ηG

+ 2γH r̂max

1 − γ

Hence,

2 =
K−1
∑
k=1
(V̂ π̂˚,(k+1),(k+1)(s0) − V̂ π̂(k+1),(k+1)(s0))

≤ (K − 1)(1

(1 − γ)2G +
log ∣A∣
ηG

+ 2γH r̂max

1 − γ) (D.25)

2.2. Upper bound on 2 - NPG with entropy regularization (Algτ).

24

The term 2.1 in (D.23) can be further bounded as follows:

2.1 =V̂ ˚,(k+1)
∞ (s0) − V̂ π̂(k+1),(k+1)

∞ (s0)

= (V̂ ˚,(k+1)
∞ (s0) − V̂ ˚,(k+1)

∞,τ (s0)) + (V̂ ˚,(k+1)
∞,τ (s0) − V̂ π̂(k+1),(k+1)

∞,τ (s0))

+ (V̂ π̂(k+1),(k+1)
∞,τ (s0) − V̂ π̂(k+1),(k+1)

∞ (s0))

≤ ∣∣V̂ ˚,(k+1)
∞ (s0) − V̂ ˚,(k+1)

∞,τ (s0)∣∣∞ + ∣∣V̂
˚,(k+1)
∞,τ (s0) − V̂ π̂(k+1),(k+1)

∞,τ (s0)∣∣∞
+ ∣∣V̂ π̂(k+1),(k+1)

∞,τ (s0) − V̂ π̂(k+1),(k+1)
∞ (s0)∣∣∞

≤ ∣∣V̂ ˚,(k+1)
∞,τ (s0) − V̂ π̂(k+1),(k+1)

∞,τ (s0)∣∣∞
´¹¹¸¹¹¶

2.2

+2τ log ∣A∣
1 − γ (D.26)

where (D.26) holds since ∣∣V̂ π,(k+1)
∞ (s0) − V̂ π,(k+1)

∞,τ (s0)∣∣∞ = τ maxs ∣H(s, π)∣ ≤ τ log∣A∣
1−γ holds for

all π.

We now bound the term 2.2 in (D.26). With the policy-update rule of ProST-T (Algorithm 2 in
Appendix F.2), suppose that for a given g ∈ [∆π], we have obtained an inexact soft Q-function
value of the policy π̂(g) as Q̃

π̂(g)
τ , where Q̂

π̂(g)
τ denotes an exact soft forecated Q-function value and

g is the iteration index. The approximation gap ∣Q̃π̂(g)
τ − Q̂π̂(g)

τ ∣ results from computing Q using a
finite number of samples. For a hyperparameter δ, let the maximum of the approximation gap over
(s, a) is smaller than δ, namely ∣∣Q̃π̂(g)

τ − Q̂π̂(g)
τ ∣∣∞ ≤ δ holds. Then, for iteration g = 1,2, ..,∆π, the

policy-update rule of ProST-T can be written as

π̂(g+1)(⋅∣s) =
1

Z(g)
⋅ (π̂(g)(⋅∣s))

1− ητ
1−γ exp

⎛
⎝
ηQ̃

π̂(g)
τ (s, a)
1 − γ

⎞
⎠

where ∣∣Q̃π̂(g)
τ (s, a) − Q̂π̂(g)

τ (s, a)∣∣∞ ≤ δ for ∀(s, a) ∈ S ×A

where Z(g)(s) = ∑a∈A (π̂(g)(a∣s))
1− ητ

1−γ exp ((ηQ̂π̂(g)
τ (s, a))/(1 − γ)).

In light of Theorem 2 in [21], when the learning rate is such that 0 ≤ η ≤ (1 − γ)/τ , then the
approximate entropy-regularized NPG method satisfies the linear convergence theorem for every
g ∈ [∆π]:

∣∣Q̂˚,(k+1)
τ − Q̂π̂(g)

τ ∣∣∞ ≤ γ [(1 − ητ)g−1C1 +C2] (D.27)

∣∣ log π̂˚,(k+1) − log π̂(g)∣∣∞ ≤ 2τ−1 [(1 − ητ)g−1C1 +C2] (D.28)

where

C1 ∶= ∣∣Q̂˚,(k+1)
τ − Q̂π̂(0)

τ ∣∣∞ + 2τ (1 −
ητ

1 − γ) ∣∣ log π̂
˚,(k+1) − log π̂(0)∣∣∞

= ∣∣Q̂˚,(k+1)
τ − Q̂π(k)

τ ∣∣∞ + 2τ (1 −
ητ

1 − γ) ∣∣ log π̂
˚,(k+1) − log π̂(k)∣∣∞ (D.29)

C2 ∶=
2δ

1 − γ (1 +
γ

ητ
) (D.30)

The equation (D.29) holds since the policy that the agent executes at the wall-clock time tk (episode
k), i.e., π(k), is same as the initial policy of the policy iteration, i.e., π̂(0), at the wall-clock time tk.
Also, the policy that the agent executes at the wall-clock time tk+1, i.e., π̂(k+1), is same as the policy
after ∆π steps of the soft policy iteration, i.e., π̂(∆π) at the wall-clock time tk+1.

Now, the term 2.2 can be bounded as follows:

25

2.2 = ∣∣V̂ ˚,(k+1)
τ − V̂ π̂(k+1)

τ ∣∣∞
= ∣∣V̂ ˚,(k+1)

τ − V̂ π̂(∆π)
τ ∣∣∞

≤ ∣∣Q̂˚,(k+1)
τ − Q̂π̂(∆π)

τ ∣∣∞ + τ ∣∣ log π̂˚,(k+1) − log π̂(g)∣∣∞
≤ (γ + 2) [(1 − ητ)∆π−1C1 +C2] (D.31)

Combining (D.23,D.26 and D.31) offers an upper bound on the term 2 ’s k(th) term as follows,

2 ’s (k)th term = V̂ π̂˚,(k+1),(k+1)(s0) − V̂ π̂(k+1),(k+1)(s0)

≤ (γ + 2) [(1 − ητ)∆π−1C1 +C2] +
2γH r̂max

1 − γ + 2τ log ∣A∣
1 − γ (D.32)

Hence,

2 =
K−1
∑
k=1
(V̂ π̂˚,(k+1),(k+1)(s0) − V̂ π̂(k+1),(k+1)(s0))

≤ (K − 1)((γ + 2) [(1 − ητ)∆π−1C1 +C2] +
2γH r̂max

1 − γ + 2τ log ∣A∣
1 − γ) (D.33)

where (D.32) and (D.33) hold when 0 ≤ η ≤ (1 − γ)/τ
3. Upper bound on 3 .

By recalling Definition (C.11), note that ι
(k+1)
h (ŝ(k+1)h , â

(k+1)
h) is an empirical estimated

model prediction error, measuring the gap between M(k+1) and M̂(k+1). Specifically, at
episode k, the ProST algorithm creates the future MDP M̂(k+1) and evaluates V̂ and Q̂ us-
ing π̂(k+1). Subsequently at episode k + 1, the agent uses π̂(k+1) to rollout a trajectory
{s(k+1)0 , a

(k+1)
0 , s

(k+1)
1 , a

(k+1)
1 , ..., s

(k+1)
H−1 , a

(k+1)
H−1 , s

(k+1)
H }. Based on this observation, one can write

ι
(k+1)
h (s(k+1)h , a

(k+1)
h) =R(k+1)(s(k+1)h , a

(k+1)
h) + γ(P(k+1)V̂ π̂(k+1),(k+1)

h+1)(s(k+1)h , a
(k+1)
h)

−Q̂π̂(k+1),(k+1)
h (s(k+1)h , a

(k+1)
h)

=R(k+1)(s(k+1)h , a
(k+1)
h) + γ(P(k+1)V̂ π̂(k+1),(k+1)

h+1)(s(k+1)h , a
(k+1)
h)

−Qπ̂(k+1),(k+1)
h (s(k+1)h , a

(k+1)
h) +Qπ̂(k+1),(k+1)

h (s(k+1)h , a
(k+1)
h)

− Q̂π̂(k+1),(k+1)
h (s(k+1)h , a

(k+1)
h)

=γP(k+1)(V̂ π̂(k+1),(k+1)
h+1 − V π̂(k+1),(k+1)

h+1)(s(k+1)h , a
(k+1)
h)

+Qπ̂(k+1),(k+1)
h (s(k+1)h , a

(k+1)
h) − Q̂π̂(k+1),(k+1)

h (s(k+1)h , a
(k+1)
h) (D.34)

Equation (D.34) holds due to (C.6). Now, we define the operator Î(k+1) for a function f ∶ S ×A→ R
as follows:

(Î(k+1)f)(s) ∶= ⟨f(s, ⋅), π̂(k+1)(⋅∣s)⟩A

Recall that V̂
π̂(k+1),(k+1)
h (s) = ⟨Q̂π̂(k+1),(k+1)

h , π̂(k+1)⟩A and V
π̂(k+1),(k+1)
h (s) =

⟨Qπ̂(k+1),(k+1)
h , π̂(k+1)⟩A in light of (C.6) and (C.2). Then, the gap between V̂ π̂(k+1),(k+1)

h+1 (s(k+1)h)

26

and V π̂(k+1),(k+1)
h+1 (s(k+1)h) can be expanded as

V̂
π̂(k+1),(k+1)
h (s(k+1)h) − V π̂(k+1),(k+1)

h (s(k+1)h)

= (Î(k+1) (Q̂π̂(k+1),(k+1)
h −Qπ̂(k+1),(k+1)

h)) (s(k+1)h)

= (Î(k+1) (Q̂π̂(k+1),(k+1)
h −Qπ̂(k+1),(k+1)

h)) (s(k+1)h) − ι(k+1)h (s(k+1)h , a
(k+1)
h)

+ γP(k+1)(V̂ π̂(k+1),(k+1)
h+1 − V π̂(k+1),(k+1)

h+1)(s(k+1)h , a
(k+1)
h)

+ (Qπ̂(k+1),(k+1)
h − Q̂π̂(k+1),(k+1)

h) (s(k+1)h , a
(k+1)
h)

Now, we define two sequences {D(k+1)h,1 } and {D(k+1)h,1 } , where (k, h) = (0,0), (0,1), ..., (K−1,H).
We define D(k+1)h,1 and D(k+1)h,2 as

D
(k+1)
h,1 ∶=γh (Î(k+1) (Q̂π̂(k+1),(k+1)

h −Qπ̂(k+1),(k+1)
h)) (s(k+1)h)

− γh (Q̂π̂(k+1),(k+1)
h −Qπ̂(k+1),(k+1)

h) (s(k+1)h , a
(k+1)
h)

D
(k+1)
h,2 ∶=γh+1P(k+1)(V̂ π̂(k+1),(k+1)

h+1 − V π̂(k+1),(k+1)
h+1)(s(k+1)h , a

(k+1)
h)

− γh+1 (V̂ π̂(k+1),(k+1)
h+1 − V π̂(k+1),(k+1)

h+1) (s(k+1)h+1)

Therefore, we have the following recursive formula over h:

γh (V̂ π̂(k+1),(k+1)
h − V π̂(k+1),(k+1)

h) (s(k+1)h)

=D(k+1)h,1 +D(k+1)h,2 + γh+1 (V̂ π̂(k+1),(k+1)
h+1 − V π̂(k+1),(k+1)

h+1)(s(k+1)h+1) − γ
hι
(k+1)
h (s(k+1)h , a

(k+1)
h)

The summation over h = 0,1, ..,H − 1 yields that

V̂
π̂(k+1),(k+1)
0 (s(k+1)0) − V π̂(k+1),(k+1)

0 (s(k+1)0)

=
H−1
∑
h=0
(D(k+1)h,1 +D(k+1)h,2) −

H−1
∑
h=0

γhι
(k+1)
h (s(k+1)h , a

(k+1)
h).

Now, for every (k, h) ∈ [K] × [H], we define F(k)h,1 as a σ−algebra generated by state-action

sequences {(sτi , aτi)}(τ,i)∈[k−1]×[H] ∪ {(ski , aki)}i∈[h] and define F(k)h,2 as a σ-algebra generated by

{(sτi , aτi)}(τ,i)∈[k−1]×[H] ∪ {(ski , aki)}i∈[h] ∪ {s
(k)
h+1}. A filtration {F(k)h,m}(k,h,m)∈[K]×[H]×[2] is a

sequence of σ- algebras in terms of the time index t(k, h,m) = 2(k − 1)H + 2h +m such that
F(k)h,m ⊂ Fk′

h′,m′ for every t(k, h,m) ≤ t((k′), h′,m′). The estimates V̂ π,(k+1)
h and Q̂π,(k+1)

h are

F(k+1)1,1 measurable since they are forecasted from the past k historical trajectories. Now, since

D
(k+1)
h,1 ∈ F(k+1)h,1 and D(k+1)h,2 ∈ F(k+1)h,2 hold, E[D(k+1)h,1 ∣F(k+1)h−1,2] = 0 and E[D(k+1)h,2 ∣F(k+1)h,1] = 0.

Notice that t(k,0,2) = t(k − 1,H,2) and F(k)0,2 = F
(k−1)
H,2 for ∀k ≥ 2. Therefore, one can define a

martingale sequence adapted to the filtration {F(k)h,m}(k,h,m)∈[K]×[H]×[2]:

s
(k+1)
h,j =

k

∑
k′=1

H−1
∑
h′=0
(Dk′

h′,1 +Dk′

h′,2) +
h

∑
h′=0
(D(k+1)h′,1 +D

(k+1)
h′,2) + ∑

(k′,h′,j)∈[K]×[H]×[2]
Dk′

h′,j

Let
K−1
∑
k=1

H−1
∑
h=0
(D(k+1)h,1 +D(k+1)h,2) = SK−1

H,2

27

Since γhQ̂
π̂(k+1),(k+1)
h , γh+1V̂

π̂(k+1),(k+1)
h+1 ∈ [0, r̂max/(1 − γ)] and

γhQ
π̂(k+1),(k+1)
h , γh+1V

π̂(k+1),(k+1)
h+1 ∈ [0, rmax/(1 − γ)], it holds that ∣D(k+1)h,1 ∣, ∣D(k+1)h,s ∣ ≤

(rmax ∨ r̂max)/(1 − γ) for ∀(k, h) ∈ [K − 1] × [H]. Then, by the Azuma-Hoeffding inequlaity, the
following inequality holds:

P (∣SK−1
H,2 ∣ ≤ s) ≥ 2 exp

⎛
⎜⎜
⎝

−s2

16 (rmax∨r̂max
1−γ)

2
⋅ (K − 1)H

⎞
⎟⎟
⎠

For any p ∈ (0,1), if we set s = 4(rmax ∨ r̂max)(1 − γ)−1
√
(K − 1)H log(4/p), then the inequality

holds with probability at least 1 − p/2. The term 3 can be bounded as

3 =
K−1
∑
k=1

H−1
∑
h=0
(D(k+1)h,1 +D(k+1)h,2) −

K−1
∑
k=1

H−1
∑
h=0

γhι
(k+1)
h (s(k+1)h , a

(k+1)
h)

≤ 4(rmax ∨ r̂max)
1 − γ

√
(K − 1)H log(4/p) − ιKH (D.35)

4. Upper bound on dynamic regret.

4.1. Upper bound on dynamic regret - without entropy regularization.

For without entropy-regularized case, combining the equations (D.21), (D.25) and (D.35) leads to
the following upper bound on the dynamic regret for a future policy {π̂} that holds with probability
at least 1 − p/2:

R ({π̂(k+1)}1∶K−1,K))
= 1 + 2 + 3

≤ (K − 1) ⋅ γ
H

1 − γ (rmax + r̂max) +
1

1 − γ ῑ
K
∞

+ (K − 1)(1

(1 − γ)2∆π
+ log ∣A∣

η∆π
+ 2γH r̂max

1 − γ)

+ 4(rmax ∨ r̂max)
1 − γ

√
(K − 1)H log(4/p) − ιKH

Taking an upper bound on rmax and r̂max using (rmax ∨ r̂max) yields the following upper bound that
holds with probability at least 1 − p/2:

R ({π̂(k+1)}1∶K−1,K))

≤ (K − 1)(1

(1 − γ)2∆π
+ log ∣A∣

η∆π
+ 4γH(r̂max ∨ rmax)

1 − γ

+ 4(rmax ∨ r̂max)
1 − γ

√
H log(4/p)
K − 1) + 1

1 − γ ῑ
K
∞ − ιKH

4.2. Upper bound on dynamic regret - with entropy regularization.

For the entropy-regularized case, combining the equations (D.21), (D.33), (D.35) leads to the follow-
ing upper bound on the dynamic regret for a future policy {π̂} that holds with probability at least
1 − p/2:

28

R ({π̂(k+1)}1∶K−1,K))
= 1 + 2 + 3

≤ (K − 1) ⋅ γ
H

1 − γ (rmax + r̂max) +
1

1 − γ ῑ
K
∞

+ (K − 1)((γ + 2) [(1 − ητ)∆π−1C1 +C2] +
2γH r̂max

1 − γ + 2τ log ∣A∣
1 − γ)

+ 4(rmax ∨ r̂max)
1 − γ

√
(K − 1)H log(4/p) − ιKH

Then, the following holds with probability at least 1 − p/2:

R ({π̂(k+1)}1∶K−1,K))

≤ (K − 1)((γ + 2) [(1 − ητ)∆π−1C1 +C2] +
4γH(r̂max ∨ rmax)

1 − γ + 2τ log ∣A∣
1 − γ

+ 4(rmax ∨ r̂max)
1 − γ

√
H log(4/p)
K − 1) + 1

1 − γ ῑ
K
∞ − ιKH

4.3. Upper bound of Theorem 1.

Then, combining 4.1, 4.2 provides the expression,

R ({π̂(k+1)}1∶K−1,K)) ≤RI +RII

where RII = RAlg if we use Alg as the baseline algorithm and RII = Algτ if we use RAlgτ as the
baseline algorithm:

RI =
1

1 − γ ῑ
K
∞ − ι

(k)
H +Cp

√
K − 1

RAlg = CAlg(∆π) ⋅ (K − 1)
RAlgτ = CAlgτ (∆π) ⋅ (K − 1)

where the corresponding constants are

Cp =
4(rmax ∨ r̂max)

1 − γ
√
H log(4/p), CAlg(∆π) = (

1

(1 − γ)2 +
log ∣A∣
η
) ⋅ 1

∆π
+ 4γH(r̂max ∨ rmax)

1 − γ

CAlgτ (∆π) = (γ + 2) [(1 − ητ)∆π−1C1 +C2] +
4γH(r̂max ∨ rmax)

1 − γ + 2τ log ∣A∣
1 − γ

Lemma 1 (Conditions on ∆π andH to guarantee the optimal threshold 2ϵ of 2 without entropy
regularization). We decompose the term 2 as

2 ’s (k)th term = 1

(1 − γ)2∆π
+ log ∣A∣

η∆π
´¹¹¸¹¹¹¶

2 − a ≤ ϵ

+ 2γH r̂max

1 − γ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2 − b ≤ ϵ

To guarantee that the terms 2 − a and 2 − b are each less than or equal to ϵ, it suffices to satisfy
the following conditions for τ, η,∆π and H:

2 − a ∶∆π ≥ (
1

(1 − γ)2 +
log ∣A∣
η
) ⋅ 1

ϵ

2 − b ∶H ≥
log(1−γ

2r̂max
ϵ)

log(γ) or H ≥ 1

1 − γ log(2r̂max

(1 − γ)ϵ)

29

Lemma 2 (Conditions on τ,∆π,H to guarantee the optimal threshold 4ϵ of 2 with entropy
regularization). We decompose the term 2 as

2 ’s (k)th term = (γ + 2) [(1 − ητ)∆π−1C1]
´¹¹¹¸¹¹¶

2 − a ≤ ϵ

+ (γ + 2)C2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

2 − b ≤ ϵ

+ 2γ
H r̂max

1 − γ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2 − c ≤ ϵ

+ 2τ log ∣A∣
1 − γ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2 − d ≤ ϵ

To guarantee that the terms 2 − b , 2 − c and 2 − d are each less than or equal to ϵ, it suffices to
satisfy the following conditions for τ, η,∆π and H:

2 − b ∶ δ ≤ ϵ

(γ + 2) ⋅ 2
1−γ ⋅ (1 +

γ
ητ
)

(D.36)

2 − c ∶H ≥
log(1−γ

2r̂max
ϵ)

log(γ) or H ≥ 1

1 − γ log(2r̂max

(1 − γ)ϵ) (D.37)

2 − d ∶ τ ≤ 1 − γ
2 log ∣A∣ϵ (D.38)

and the term 2 − a offers the lower bound of iteration ∆π as follows.

2 − a ∶∆π ≥
log (ϵ

C1(γ+2))
log(1 − ητ) + 1 or ∆π ≥

1

ητ
log(C1(γ + 2)

ϵ
) + 1 (D.39)

The inequalities (D.37) and (D.39) results from applying the first-order Taylor series on log(γ) and
log(1 − ητ) since γ ∈ (0,1] and η ∈ (0, (1 − γ)/τ]. The inequalities (D.36) and (D.39) implies that
if the learning rate η is fixed in the admissible range, then the iteration complexity scales inversely
proportional to τ , and the upper bound on δ, which we will denote it as δmax, also scales proportional
to τ .

Now, the best guaranteed convergence can be achieved when η∗ = (1 − γ)/τ (associated with the
value of η that minimizes the equation (D.29)), for which conditions of hyperparameters ∆π,η∗ and
δη∗ are

2 − a ∶∆π,η∗ ≥
1

1 − γ log
⎛
⎝
∣∣Q̂˚,(k+1)

τ − Q̂π̂(0)

τ ∣∣∞(γ + 2)
ϵ

⎞
⎠
+ 1

2 − b ∶ δη∗ ≤
ϵ(1 − γ)2
2(γ + 2) .

When η∗ = (1 − γ)/τ , the iteration complexity is now proportional to the effective horizon 1/(1 − γ)
modulo some log factor, where the iteration complexity and δmax are now independent of the choice of
the regularization parameter τ .

Lemma 3 (Sample complexity to guarantee the optimal threshold 4ϵ of 2). We define δmax as
right-hand side of the equation (D.36). If we have the number of samples per state-action pairs is at
least the order of

1

(1 − γ)3δ2max

up to some logarithmic factor, then δ ≤ δmax holds with high probability and we can guarantee the
optimal threshold 4ϵ with high probability for the upper bound of 2 , provided (D.37), (D.38) and
(D.39) hold.

Proof of Theorem 2. 1. ProST-T ι
(k)
H :

30

The empirical estimated model prediction error ι(k+1)h (s(k+1)h , a
(k+1)
h) is represented as follows

(Definition (C.11)):

−ι(k+1)h (s(k+1)h , a
(k+1)
h) = −R(k+1)(s(k+1)h , a

(k+1)
h) − γ(P(k+1)V̂ π̂(k+1),(k+1)

h+1)(s(k+1)h , a
(k+1)
h)

+ Q̂π̂(k+1),(k+1)
h (s(k+1)h , a

(k+1)
h) (D.40)

= −R(k+1)(s(k+1)h , a
(k+1)
h) − γ(P(k+1)V̂ π̂(k+1),(k+1)

h+1)(s(k+1)h , a
(k+1)
h)

+ R̂(k+1)(s(k+1)h , a
(k+1)
h) + γ(P̂(k+1)V̂ π̂(k+1),(k+1)

h+1)(s(k+1)h , a
(k+1)
h)

(D.41)

= (R̂(k+1) −R(k+1)) (s(k+1)h , a
(k+1)
h)

+ γ ((P̂(k+1) − P(k+1)) V̂ π̂(k+1),(k+1)
h+1) (s(k+1)h , a

(k+1)
h)

≤∆̄Bonus,r
(k),h + γ ∣∣(P̂(k+1) − P(k+1)) (⋅ ∣ s(k+1)h , a

(k+1)
h)∣∣

1
∣∣V̂ π̂(k+1),(k+1)

h+1 (⋅)∣∣
∞

≤∆̄Bonus,r
(k),h + γ∆̄p

k,h

γH−hr̂max

1 − γ (D.42)

≤∆̄r
(k),h + 2Γ(k)w (s

(k+1)
h , a

(k+1)
h) + γ∆̄p

(k),h
γH−hr̂max

1 − γ (D.43)

The equation (D.41) holds due to the future Bellman equation (C.6), the equation (D.42) holds since

∣∣V̂ π̂(k+1),(k+1)
h+1 (⋅)∣∣

∞
≤ ∑H

h′=h+1 γ
h′−(h+1)r̂max ≤ γH−hr̂max/(1 − γ), and the equation (D.43) holds

since ∆Bonus,r
(k) (s, a) ≤ ∣(R(k+1) − R̃(k+1)) (s, a)∣ + ∣2Γ(k)w (s, a)∣ =∆r

(k)(s, a) + 2Γ
(k)
w (s, a) for all

(s, a). The summation of the empirical model prediction error over all episodes and all steps can be
bounded as

−ιKH =
K−1
∑
k=1

H−1
∑
h=0
−γhι(k+1)h (s(k+1)h , a

(k+1)
h) ≤ ∆̄r

K
°

1

+
K−1
∑
k=1

H−1
∑
h=0

2Γ(k)w (s
(k+1)
h , a

(k+1)
h)

´¹¹¹¸¹¹¶
2

+γr̂max

1 − γ ∆̄p
K
°

3

(D.44)

We use Lemma 8 to bound the term 1 , Lemma 9 and (D.13) to bound the term 2 , and Lemma 11
(or Lemma 10) to bound the term 3 :

1 ≤ wHBr(∆π) + λrmax ⋅ (K − 1)
√

H

w

√
log (λ +wH

λ
) (D.45)

2 ≤ 2β(K − 1)
√

H

w

√
log (λ +wH

λ
) (D.46)

3 ≤
⎛
⎝
∣S ∣
√

H2

2
log (H

δλ
) + λ

⎞
⎠
(K − 1)

√
H

w

√
log (λ +wH

λ
) +wHBp(∆π) (D.47)

31

where the inequality (D.47) holds with probability at least 1 − δ, where δ ∈ (0,1). Now, combining
(D.45), (D.46) and (D.47) that

−ιKH = −
K−1
∑
k=1

H−1
∑
h=0

ι
(k+1)
h (s(k+1)h , a

(k+1)
h)

≤ ∆̄r
K
°

1

+
K−1
∑
k=1

H−1
∑
h=0

2Γ(k)w (s
(k+1)
h , a

(k+1)
h)

´¹¹¹¸¹¹¶
2

+γr̂max

1 − γ ∆̄p
K
°

3

≤wHBr(∆π) + λrmax ⋅ (K − 1)
√

H

w

√
log (λ +wH

λ
) + 2β(K − 1)

√
H

w

√
log (λ +wH

λ
)

+ γr̂max

1 − γ
⎛
⎝
⎛
⎝
∣S ∣
√

H2

2
log (H

δλ
) + λ

⎞
⎠
(K − 1)

√
H

w

√
log (λ +wH

λ
) +wHBp(∆π)

⎞
⎠

≤wH (Br(∆π) +
γr̂max

1 − γ Bp(∆π))

+ (K − 1)
√
H
⎛
⎝
λrmax + 2β +

γr̂max

1 − γ
⎛
⎝
∣S ∣
√

H2

2
log (H

δλ
) + λ

⎞
⎠
⎞
⎠

√
1

w

√
log (λ +wH

λ
)

(D.48)

2. ProST-T ῑK∞ :

Recall that ῑK∞ = ∑K−1
k=1 ῑ

(k+1)
∞ . For the same δ that we used in the previous proof of [1.ProST-T ι(k)H]

(see equation (D.48)), ῑk∞ can be bounded as follows with probability at least 1 − δ:

ῑ(k+1)∞ =R(k+1) + γP(k+1)V̂ ˚,(k+1)
∞ − Q̂˚,(k+1)

∞

=R(k+1) + γP(k+1)V̂ ˚,(k+1)
∞ − (R̂(k+1) + γP̂(k+1)V̂ ˚,(k+1)

∞) (D.49)

=R(k+1) + γP(k+1)V̂ ˚,(k+1)
∞ − (R̃(k+1) + 2Γ(k)w (s, a) + γP̂(k+1)V̂ ˚,(k+1)

∞) (D.50)

=R(k+1) + γP(k+1)V̂ ˚,(k+1)
∞ − (R̃(k+1) + 2β(Λ(k)w (s, a))1/2 + γP̂(k+1)V̂ ˚,(k+1)

∞) (D.51)

= (R(k+1) − R̃(k+1)) − β(Λ(k)w (s, a))1/2 + γ (P(k+1) − P̂(k+1)) V̂ ˚,(k+1)
∞

− β(Λ(k)w (s, a))1/2 (D.52)

≤∣R(k+1) − R̃(k+1)∣ − β(Λ(k)w (s, a))1/2 + γ∣∣P(k+1) − P̂(k+1)∣∣1∣∣V̂ ˚,(k+1)
∞ ∣∣∞ − β(Λ(k)w (s, a))1/2

≤ (B(k−w+1∶k)r (∆π) + λΛ(k)w (s, a)rmax) − β(Λ(k)w (s, a))1/2 (D.53)

+ γ ⋅
⎛
⎝
B(k−w+1∶k)p (∆π) + (Λ(k)w (s, a))1/2 ⋅ ∣S ∣ ⋅

√
H2

2
log (H

δλ
) + λΛ(k)w (s, a)

⎞
⎠
⋅ r̂max

1 − γ

− β(Λ(k)w (s, a))1/2 (D.54)

≤ (B(k−w+1∶k)r (∆π) + λ(Λ(k)w (s, a))1/2rmax) − β(Λ(k)w (s, a))1/2 (D.55)

+ γ ⋅
⎛
⎝
B(k−w+1∶k)p (∆π) + (Λ(k)w (s, a))1/2 ⋅ ∣S ∣ ⋅

√
H2

2
log (H

δλ
) + λ(Λ(k)w (s, a))1/2

⎞
⎠
⋅ r̂max

1 − γ

− β(Λ(k)w (s, a))1/2 (D.56)

≤B(k−w+1∶k)r (∆π) + γB(k−w+1∶k)p (∆π)

+
⎛
⎝
λrmax − β + γ∣S ∣ ⋅

√
H2

2
log (H

δλ
) + λr̂max

1 − γ − β
⎞
⎠

´¹¹¸¹¹¶
≤0

(Λ(k)w (s, a))1/2 (D.57)

≤B(k−w+1∶k)r (∆π) + γB(k−w+1∶k)p (∆π) (D.58)

32

The equation (D.49) holds by the future Bellman equation (C.7) when H =∞, the equations (D.50)
and (D.51) hold by the definition of R̂(k+1) together with (D.13). The inequalities (D.53) and (D.54)
hold by Lemma 7, Lemma 10, (D.8) and (D.9). The inequalities (D.55) and (D.56) hold since
0 ≤ Λ(k)w (s, a) < 1. Now, the inequality (D.58) holds if the under-brace term of equation (D.57) is
equal or smaller than zero. That gives us an additional condition on β to obtain the final inequality
(D.58). Since r̂max is defined as r̃max + 2β√

λ
where r̃max is a constant and r̂max is still function of β,λ

(equation (D.14)), the condition is

λrmax − β + γ∣S ∣ ⋅
√

H2

2
log (H

δλ
) + λ

1 − γ ⋅ (r̃max +
2β√
λ
) − β ≤ 0

or equivalently,

β ≥ (2 + 2
√
λ

1 − γ)
−1 ⎛
⎝
λrmax + γ∣S ∣ ⋅

√
H2

2
log (H

δλ
)
⎞
⎠

(D.59)

Since (D.58) holds for all (s, a) if β satisfies (D.59), ∑K−1
k=1 ῑK∞ = ∣∣ῑk∞∣∣∞ is bounded as

ῑK∞ ≤
K−1
∑
k=1
(B(k−w+1∶k)r (∆π) + γB(k−w+1∶k)p (∆π)) ≤ w(Br(∆π) + γBp(∆π))

because ∑K−1
k=1 B

(k−w+1∶k)
p (∆π) = ∑

⌊K−1
w
⌋

E=1 ∑Ewk=(E−1)wB
(k−w+1∶k)
p (∆π) ≤ wBp(∆π) holds and in

the same way ∑K−1
k=1 B

(k−w+1∶k)
p (∆π) ≤ wBr(∆π) holds.

Then, the model prediction errors −ιKH , ῑK∞ when utilizing the forecaster f as SW-LSE are

−ιKH ≤wH (Br(∆π) +
γr̂max

1 − γ Bp(∆π))

+ (K − 1)
√
H
⎛
⎝
λrmax + 2β +

γr̂max

1 − γ
⎛
⎝
∣S ∣
√

H2

2
log (H

δλ
) + λ

⎞
⎠
⎞
⎠

√
1

w

√
log (λ +wH

λ
),

ῑK∞ ≤w(Br(∆π) + γBp(∆π))

Finally, the term RI can be bounded as

RI =
1

1 − γ ῑ
K
∞ − ιKH +Cp

√
K − 1

≤ 1

1 − γ (w(Br(∆π) + γBp(∆π))) +wH (Br(∆π) +
γr̂max

1 − γ Bp(∆π))

+ (K − 1)
√
H
⎛
⎝
λrmax + 2β +

γr̂max

1 − γ
⎛
⎝
∣S ∣
√

H2

2
log (H

δλ
) + λ

⎞
⎠
⎞
⎠

√
1

w

√
log (λ +wH

λ
)

+Cp

√
K − 1

≤ ((1

1 − γ +H)Br(∆π) +
(1 +Hr̂max)γ

1 − γ Bp(∆π))w

+ (K − 1)
√
H
⎛
⎝
λrmax + 2β +

γr̂max

1 − γ
⎛
⎝
∣S ∣
√

H2

2
log (H

δλ
) + λ

⎞
⎠
⎞
⎠

√
1

w

√
log (λ +wH

λ
)

+Cp

√
K − 1

Now, let B(∆π) be a conic combination of Br(∆π) and Bp(∆π) as

B(∆π) = (
1

1 − γ +H)Br(∆π) +
(1 +Hr̂max)γ

1 − γ Bp(∆π)

≤(1

1 − γ +H)∆
αr
π Br(1) +

(1 +Hr̂max)γ
1 − γ ∆αp

π Bp(1)

= CBr∆
αr
π +CBp∆

αp
π (D.60)

33

where CBr = (1
1−γ +H)Br(1) and CBp =

(1+Hr̂max)γ
1−γ Bp(1) are constants related to the total

variation budget with reward and transition probability.

Recall the definitions of Br(∆π) and Bp(∆π), as well as the inequalities Br(∆π) ≤ ∆αr
π Br(1)

and Bp(∆π) ≤ ∆
αp
π Bp(1). We denote Bp(1) and Br(1) as time-elapsing variation budgets for one

policy iteration. We also let the constant Ck be defined as

Ck = (K − 1)
√
H
⎛
⎝
λrmax + 2β +

γr̂max

1 − γ
⎛
⎝
∣S ∣
√

H2

2
log (H

δλ
) + λ

⎞
⎠
⎞
⎠
.

Then, an upper bound on RI can be obtained as

RI ≤ B(∆π)w +Ck

√
1

w
log (λ +wH

λ
) +Cp

√
K − 1.

Proof of Proposition 2. Now, we set the sliding window length w that is adaptive to ∆π as follows:

w̃(∆π) = (
Ck

B(∆π)
)
2/3

.

Then,

B(∆π)w̃(∆π) +Ck

√
1

w̃(∆π)

¿
ÁÁÀlog(λ + w̃(∆π)H

λ
)

=C2/3
k B(∆π)1/3 +C2/3

k B(∆π)1/3
¿
ÁÁÁÀlog

⎛
⎝
1 + H

λ
(Ck

B(∆π)
)
2/3⎞
⎠
.

Since Ck is linear to K − 1, the function RI satisfies that

RI = O
⎛
⎜
⎝
B(∆π)1/3 (K − 1)2/3 ⋅

¿
ÁÁÀlog(K − 1

B(∆π)
)
⎞
⎟
⎠
. (D.61)

Now, by utilizing (D.60), if B(∆π)≤ CBr∆
αr
π +CBp∆

αp
π = o(K) holds, then RI is sublinear to K.

The corresponding condition is Br(1) + r̂max
1−γBp(1) = o(K) with ∆π <K since

CBr∆
αr
π +CBp∆

αp
π = o(K)

(CBr +CBp
) ⋅∆max(αr,αp)

π = o(K)

((1

1 − γ +H)Br(1) + (
1 +Hr̂max

1 − γ +)Bp(1)) ⋅∆max(αr,αp)
π = o(K)

(1

1 − γ (Br(1) +Bp(1)) +H (Br(1) +
r̂max

1 − γBp(1))) ⋅∆max(αr,αp)
π = o(K).

This completes the proof.

Proof of Theorem 3. We first prove multiple statements below. We denote the upper bound on RI

as Rmax
I , and that of RII as Rmax

II .

1. The upper bound on RII(∆π) (i.e., Rmax
II) is a non-increasing function, the upper bound

on RI(∆π) (i.e., Rmax
I) is a non-decreasing function , and both are convex in the region ∆π ∈

34

NI ∩NII

BRmax
II (∆π)
B∆π

= B

B∆π

(C1(K − 1)(γ + 2) [(1 − ητ)∆π−1])

= log (1 − ητ)C1(K − 1)(γ + 2) [(1 − ητ)∆π−1] ≤ 0
B2Rmax

II (∆π)
B2∆π

= B2

B2∆π

(C1(K − 1)(γ + 2) [(1 − ητ)∆π−1])

= (log (1 − ητ))2C1(K − 1)(γ + 2) [(1 − ητ)∆π−1] ≥ 0

since ∆π ∈ NI ∩NII satisfies ∆π > 1 and log(1−ητ) ≤ 0 holds under the hyperparameter assumption
0 ≤ η ≤ (1 − γ)/τ , it follows from the Proposition 1 that

BRmax
I (∆π)
B∆π

= B

B∆π

(CBr∆
αr
π +CBp∆

αp
π)

= αrCBr∆
αr−1
π + αpCBp∆

αp−1
π ≥ 0

B2Rmax
I (∆π)

B2∆π
= B2

B2∆π

(CBr∆
αr
π +CBp∆

αp
π)

= αr(αr − 1)CBr∆
αr−2
π + αp(αp − 1)CBp∆

αp−2
π ≥ 0

when αr, αp ≥ 1.

2. Suboptimal ∆∗π
We slightly relax the upper bound RI(∆π) ≤ CBr∆

αr
π + CBp∆

αp
π to RI(∆π) =

(CBr +CBp
)∆max (αr,αp)

π and obtain ∆∗π in the worst case by optimizing Rmax
I (∆π) +Rmax

II (∆π).

1. max (αr,αp) = 0 : this means that Rmax
I (∆π) = CBr +CBp , where Rmax

I is now indepen-
dent of ∆π . Then, an infinite number ∆π guarantees a small dynamic regret RI , which also
leads to a small R. It can be checked that RII without entropy regularization decreases
with the scale of 1/∆π, and RII with entropy regularization decreases with the scale of
exp (∆π). This also matches with the existing results on achieving a faster convergence
with an entropy regularization.

For the remaining case, we first compute the gradient of the term Rmax
I (∆π) +Rmax

II (∆π) when
Rmax

II (∆π) comes from entropy-regularized case:

B (Rmax
I (∆π) +Rmax

II (∆π))
B∆π

=max (αr, αp) (αrCBr + αpCBp
)∆max (αr,αp)−1

π − log (1

1 − ητ)C1(K − 1)(γ + 2) [(1 − ητ)∆π−1]

= kI∆max (αr,αp)−1
π − kII [(1 − ητ)∆π−1]

when Rmax
II (∆π) is for the case without entropy regularization, the gradient of the dynamic regret

upper bound is given as

B (Rmax
I (∆π) +Rmax

II (∆π))
B∆π

=max (αr, αp) (αrCBr + αpCBp
)∆max (αr,αp)−1

π − (1

(1 − γ)2 +
log ∣A∣
η
) ⋅ 1

∆2
π

= kI∆max (αr,αp)−1
π − kII

1

∆2
π

2. max (αr,αp) = 1: The relation (1− ητ)∆π−1 = kI/kII should be satisfied for the entropy
regularized case and ∆−2π = kI/kII should be satisfied in the case without entropy regulariza-
tion, respectively. Then, it holds that ∆∗π = log1−ητ(kI/kII) + 1 for the entropy regularized
case and ∆∗π =

√
kII/kI without regularization.

35

Now, for the case of the entropy regularized case, if kII = (1 − ητ)kI is satisfied,
B (Rmax

I (∆π) +Rmax
II (∆π)) /B∆π = 0 is equal to solving ∆

max (αr,αp)−1
π = (1 − ητ)∆π . Now,

we use the Lambert W function to find ∆π as follows:

∆max (αr,αp)−1
π = (1 − ητ)∆π

(max (αr, αp) − 1) log∆π =∆π log (1 − ητ)

∆−1π ⋅ log∆π =
log (1 − ητ)

max (αr, αp) − 1

− log∆π ⋅ e− log∆π = − log (1 − ητ)
max (αr, αp) − 1

W [− log∆π ⋅ e− log∆π] =W [− log (1 − ητ)
max (αr, αp) − 1

]

W [− log∆π ⋅ e− logG] =W [−
log (1 − ητ)

max (αr, αp) − 1
]

− log∆π =W [−
log (1 − ητ)

max (αr, αp) − 1
]

∆∗π = exp(−W [−
log (1 − ητ)

max (αr, αp) − 1
]) = exp (−W [x])

3. 0 <max (αr,αp) < 1 :

• Without Entropy-regularization: ∆∗π = (kI/kII)1/(max (αr,αp)+1)

• With Entropy-regularization: Since x = − log (1−ητ)
max (αr,αp)−1 < 0, a small ∣x∣ will have a

large −W (x) > 0 value, which leads to a large ∆∗π .

4. max (αr,αp) > 1 :

• Without Entropy-regularization: ∆∗π = (kI/kII)1/(max (αr,αp)+1)

• With Entropy-regularization: It holds that x > 0 and −W (x) < 0. Then ∆∗π < 1, which
means that one iteration is enough.

From the proof of Theorem 2, we will develop Lemma 4, Lemma 5 and Lemma 6 to upper-bound
two model prediction errors −ι(k)h and ῑk∞.

Lemma 4 (Upper bound on −ι(k+1)h (s(k+1)h , a
(k+1)
h) by ∆̄r

k,h, ∆̄
p
k,h). It holds that

−ι(k+1)h (s(k+1)h , a
(k+1)
h) ≤ ∆̄r

k,h + 2Γ(k)w (s, a) + γ∆̄p
k,h

γH−hr̂max

1 − γ

Proof of Lemma 4. It follows from (D.40), (D.41), (D.42) and (D.43).

Lemma 5 (Upper bound on −ι(k+1)h (s, a) by ∆r
(k), ∆

p
(k)). For every (s, a) ∈ S ×A, it holds that

−ι(k+1)h (s, a) ≤∆r
(k)(s, a) + γ∆

p
(k)(s, a)

γH−hr̂max

1 − γ + 2Γ(k)w (s, a)

36

Proof of Lemma 5.

−ι(k+1)h (s, a) = −R(k+1)(s, a) − γ(P(k+1)V̂ π̂(k+1),(k+1)
h+1)(s, a) + Q̂π̂(k+1),(k+1)

h (s, a)

= −R(k+1)(s, a) − γ(P(k+1)V̂ π̂(k+1),(k+1)
h+1)(s, a)

+ R̂(k+1)(s, a) + γ(P̂(k+1)V̂ π̂(k+1),(k+1)
h+1)(s, a)

= (R̂(k+1) −R(k+1)) (s, a) + γ ((P̂(k+1) − P(k+1)) V̂ π̂(k+1),(k+1)
h+1) (s, a)

≤∆r
(k)(s, a) + 2Γ(k)w (s, a) + γ ∣∣(P̂(k+1) − P(k+1)) (⋅ ∣ s, a)∣∣1 ∣∣V̂

π̂(k+1),(k+1)
h+1 (⋅)∣∣

∞

≤∆r
(k)(s, a) + 2Γ(k)w (s, a) + γ∆p

(k)(s, a)
γH−hr̂max

1 − γ

Lemma 6 (Upper bound on ῑk∞ by ∆r
(k), ∆

p
(k)). For every (s, a) ∈ S ×A, it holds that

ῑk+1∞ (s, a) ≤∆r
(k)(s, a) +∆

p
(k)(s, a)

γr̂max

1 − γ − 2Γ
(k)
w (s, a)

Proof of Lemma 6. It results from (D.52),

ῑk+1∞ = (R(k+1) − R̃(k+1)) − β(Λ(k)w (s, a))1/2 + γ (P(k+1) − P̂(k+1)) V̂ ˚,(k+1)
∞ − β(Λ(k)w (s, a))1/2

≤ ∣R(k+1) − R̃(k+1)∣ − β(Λ(k)w (s, a))1/2 + γ ∣∣P(k+1) − P̂(k+1)∣∣1 ∣∣V̂
˚,(k+1)
∞ ∣∣∞ − β(Λ

(k)
w (s, a))1/2

≤∆r
(k)(s, a) − β(Λ(k)w (s, a))1/2 + γ∆p

(k)(s, a)
r̂max

1 − γ − β(Λ
(k)
w (s, a))1/2

=∆r
(k)(s, a) +∆

p
(k)(s, a)

γr̂max

1 − γ − 2Γ
(k)
w (s, a)

Lemma 7 (Upper bound on ∆r
(k)(s, a)). For every (s, a) ∈ S ×A, it holds that

∆r
(k)(s, a) ≤ B(k−w∶k)r (∆π) + λΛ(k)w (s, a)rmax

37

Proof of Lemma 7. We directly utilize the proof of Lemma 35 in [31]. For every (s, a) ∈ S ×A,
∆r
(k)(s, a) can be represented as

∆r
(k)(s, a) (D.62)

= ∣R(k+1)(s, a) − R̃(k+1)(s, a)∣ (D.63)

= ∣or(k+1)(s, a) − õr(k+1)(s, a)∣ (D.64)

=
RRRRRRRRRRR

∑k
t=(1∧k−w+1)∑H−1

h=0 1 [(s, a) = (sth, ath)] ⋅ rth
λ +∑k

t=(1∧k−w+1) nt(s, a)
− or(k+1)(s, a)

RRRRRRRRRRR
(D.65)

= Λ(k)w (s, a)
RRRRRRRRRRRR

k

∑
t=(1∧k−w+1)

H−1
∑
h=0

1 [(s, a) = (sth, ath)] ⋅ rth −
⎛
⎝
λ +

k

∑
t=(1∧k−w+1)

nt(s, a)
⎞
⎠
or(k+1)(s, a)

RRRRRRRRRRRR
(D.66)

= Λ(k)w (s, a)
RRRRRRRRRRRR

k

∑
t=(1∧k−w+1)

H−1
∑
h=0
(1 [(s, a) = (sth, ath)] (rth − or(k+1)(s, a))) − λ ⋅ or(k+1)(s, a)

RRRRRRRRRRRR
(D.67)

≤ Λ(k)w (s, a)
⎛
⎝

k

∑
t=(1∧k−w+1)

H−1
∑
h=0

1 [(s, a) = (sth, ath)] ⋅ ∣rth − or(k+1)(s, a)∣
⎞
⎠
+ λΛ(k)w (s, a) ∣or(k+1)(s, a)∣

(D.68)

≤ Λ(k)w (s, a)
⎛
⎝

k

∑
t=(1∧k−w+1)

nt(s, a) (∣rt(s, a) − or(k+1)(s, a)∣)
⎞
⎠
+ λΛ(k)w (s, a)rmax (D.69)

≤ max
(1∧k−w+1)≤t≤k

(∣rt(s, a) − or(k+1)(s, a)∣)Λ(k)w (s, a)
⎛
⎝

k

∑
t=(1∧k−w+1)

nt(s, a)
⎞
⎠
+ λΛ(k)w (s, a)rmax

≤ max
(1∧k−w+1)≤t≤k

(∣rt(s, a) − or(k+1)(s, a)∣) + λΛ(k)w (s, a)rmax

≤ B(k−w∶k)r (∆π) + λΛ(k)w (s, a)rmax (D.70)

Equations (D.64) and (D.65) hold by the definition of ork+1, õ
r
k+1 (definition (D.7)), equation (D.66)

holds by the definition (D.12), equation (D.67) holds since nt(s, a) ∶= ∑H−1
h=0 1 [(s, a) = (sth, ath)],

and inequality (D.70) holds since max(1∧k−w+1)≤t≤k (∣rt(s, a) − or(k+1)(s, a)∣) ≤ ∣r(1∧k−w+1)(s, a)−
r(1∧k−w+1)+1(s, a)∣ + ⋅ ⋅ ⋅ + ∣rk(s, a) − rk+1(s, a)∣ = B(k−w∶k)r (∆π).

Lemma 8 (Upper bound on ∆̄r
K). For every (s, a) ∈ S ×A, it holds that

∆̄r
K ≤ wHBr(∆π) + λrmax ⋅ (K − 1)

√
H

w

√
log (λ +wH

λ
)

38

Proof of Lemma 8. The total empirical forecasting model error up to K − 1 is given as

∆̄r
K =

K−1
∑
k=1

H−1
∑
h=0

∆̄r
k,h

=
K−1
∑
k=1

H−1
∑
h=0

∆r
(k)(s

(k+1)
h , a

(k+1)
h)

≤
K−1
∑
k=1

H−1
∑
h=0
(B(k−w∶k)r (∆π) + λΛ(k)w (s

(k+1)
h , a

(k+1)
h)rmax) (D.71)

= wHBr(∆π) + λrmax ⋅
K−1
∑
k=1

H−1
∑
h=0
(Λ(k)w (s

(k+1)
h , a

(k+1)
h)) (D.72)

≤ wHBr(∆π) + λrmax ⋅
K−1
∑
k=1

H−1
∑
h=0
(
√

Λ
(k)
w (s(k+1)h , a

(k+1)
h))

≤ wHBr(∆π) + λrmax ⋅ (K − 1)
√

H

w

√
log (λ +wH

λ
) (D.73)

The inequality (D.71) holds by Lemma 7, the equation (D.72) holds since ∑K−1
k=1 B

(k−w∶k)
r (∆π) =

∑⌊
K−1
w
⌋

E=1 ∑Ewk=(E−1)wB
(k−w∶k)
r (∆π) ≤ wBr(∆π), and the inequality (D.73) holds by Lemma 9.

Lemma 9 (Upper bound on the term ∑K−1
k=1 ∑H−1

h=0

√
Λ
(k)
w (s(k+1)h , a

(k+1)
h)). It holds that

K−1
∑
k=1

H−1
∑
h=0
(
√

Λ
(k)
w (s(k+1)h , a

(k+1)
h)) ≤ (K − 1)

√
H

w

√
log (λ +wH

λ
)

Proof of lemma 9. We denote Λ̄k
w = λI+∑k

t=(1∧k−w+1)∑H−1
h=0 φ(sth, ath)φ(sth, ath)⊺. Also, we denote

(Λ̄k
w)(1) = λI + φ(s

(1∧k−w+1)
h , a

(1∧k−w+1)
h)φ(s(1∧k−w+1)h , a

(1∧k−w+1)
h)⊺ Then, for every (s, a) ∈

S ×A, Λ(k)w (s, a) = φ(s, a)(Λ̄k
w)−1φ(s, a)⊺ holds. Now, the following term can be bounded as

K−1
∑
k=1

H−1
∑
h=0

√
Λ
(k)
w (s(k+1)h , a

(k+1)
h)

=
K−1
∑
k=1

H−1
∑
h=0

√
φ(s(k+1)h , a

(k+1)
h)(Λ̄k

w)−1φ(s
(k+1)
h , a

(k+1)
h)⊺

=
⌊K−1

w
⌋

∑
E=1

Ew
∑

k=(E−1)w+1

H−1
∑
h=0

√
φ(s(k+1)h , a

(k+1)
h)(Λ̄k

w)−1φ(s
(k+1)
h , a

(k+1)
h)⊺

≤
⌊K−1

w
⌋

∑
E=1

√
Hw

¿
ÁÁÁÀ

Ew
∑

k=(E−1)w+1

H−1
∑
h=0

φ(s(k+1)h , a
(k+1)
h)(Λ̄k

w)−1φ(s
(k+1)
h , a

(k+1)
h)⊺ (D.74)

≤
⌊K−1

w
⌋

∑
E=1

√
Hw

¿
ÁÁÁÁÀlog

⎛
⎜
⎝

det (ΛEw+1w)
det ((Λ(E−1)w+2w)(1))

⎞
⎟
⎠

(D.75)

≤ ⌊K − 1
w
⌋
√
Hw

√
log (λ +wH

λ
) (D.76)

≤ (K − 1)
√

H

w

√
log (λ +wH

λ
)

The inequality (D.74) holds by the Cauchy–Schwarz inequality, (D.75) holds by Lemmas (D.1) and
(D.2) in [39], and (D.76) holds since (Λ(E−1)w+2w)(1) ≥ λ and ΛEw+1w ≤ λ +wH .

39

Lemma 10 (Upper bound on ∆p
(k)(s, a)). For every (s, a) ∈ S×A and given δ ∈ (0,1), the following

holds with probability at least 1 − δ:

∆p
(k)(s, a) ≤ B

(k−w+1∶k)
p + (Λ(k)w (s, a))1/2 ⋅ ∣S ∣ ⋅

√
H2

2
log (H

δλ
) + λΛ(k)w (s, a)

Proof of lemma 10. For every (s, a) ∈ S ×A, one can write:

∆p
(k)(s, a)

= ∣∣P(k+1)(⋅∣s, a) − P̂(k+1)(⋅∣s, a)∣∣1
= ∣∣op(k+1)(⋅, s, a) − ô

p
(k+1)(⋅, s, a)∣∣1

= ∑
s′∈S
∣ ∑

k
t=k−w+1 nt(s′, s, a)

λ +∑k
t=k−w+1 nt(s, a)

− op(k+1)(s
′, s, a)∣

= Λ(k)w (s, a) ∑
s′∈S
∣

k

∑
t=k−w+1

nt(s′, s, a) − (λ +
k

∑
t=k−w+1

nt(s, a)) op(k+1)(s
′, s, a)∣

≤ Λ(k)w (s, a) ∑
s′∈S
(∣

k

∑
t=k−w+1

(nt(s′, s, a) − nt(s, a)op(k+1)(s
′, s, a))∣ + ∣λop(k+1)(s

′, s, a)∣)

≤ Λ(k)w (s, a) ∑
s′∈S
∣

k

∑
t=k−w+1

(nt(s′, s, a) − nt(s, a)op(k+1)(s
′, s, a))∣ + λΛ(k)w (s, a) (D.77)

Recall that nt(s′, s, a), nt(s, a) is defined as

nt(s′, s, a) =
H−1
∑
h=0

1 [(s′, s, a) = (sth+1, sth, ath)]

=
H−1
∑
h=0

1 [(s, a) = (sth, ath)] ⋅ 1 [s′ = sth+1] (D.78)

nt(s, a) =
H−1
∑
h=0

1 [(s, a) = (sth, ath)] (D.79)

where 1[⋅] is an indicator function. Substituting (D.78) and (D.79) into (D.77) yields that

Λ(k)w (s, a) ∑
s′∈S
∣

k

∑
t=k−w+1

(nt(s′, s, a) − nt(s, a)op(k+1)(s
′, s, a))∣

= Λ(k)w (s, a) ∑
s′∈S
∣

k

∑
t=k−w+1

(
H−1
∑
h=0

1 [(s, a) = (sth, ath)] ⋅ 1 [s′ = sth+1]

−
H−1
∑
h=0

1 [(s, a) = (sth, ath)] ⋅ op(k+1)(s
′, s, a))∣

= Λ(k)w (s, a) ∑
s′∈S
∣

k

∑
t=k−w+1

(
H−1
∑
h=0

1 [(s, a) = (sth, ath)] (1 [s′ = sth+1] − op(k+1)(s
′, s, a)))∣

≤ Λ(k)w (s, a) ∑
s′∈S
∣

k

∑
t=k−w+1

(
H−1
∑
h=0

1 [(s, a) = (sth, ath)] (1 [s′ = sth+1] − opt (s′, s, a))) ∣

´¹¹¸¹¹¹¶
2.1

+Λ(k)w (s, a) ∑
s′∈S
∣

k

∑
t=k−w+1

(
H−1
∑
h=0

1 [(s, a) = (sth, ath)] (opt (s′, s, a) − o
p
(k+1)(s

′, s, a))) ∣

´¹¹¹¸¹¹¹¶
2.2

40

The term 2.1 can be upperbounded by utilizing the Lemmas (34) and (43) in [31]. For every t ∈ [K]
and s′ ∈ S, we define the random variable ηt(s′) ∶= ∑H−1

h=0 (1 [s′ = sth+1] − o
p
t (s′, sth, ath)). Given

s′ ∈ S, the sequence {ητ(s′)}∞τ=1 is a zero-mean and H/2-sub Gaussian random variable. From the
Lemma 43 in [31], we set Y = λI and Xt = ∑H−1

h=0 1 [(s, a) = (sth, ath)]. Then, for a given δ ∈ (0,1),
the following holds with probability at least 1 − δ for all (s, a) ∈ S ×A:

∣(Λ(k)w (s, a))1/2
k

∑
t=k−w+1

(
H−1
∑
h=0

1 [(s, a) = (sth, ath)] ⋅
H−1
∑
h=0

1[s′ = sth+1] − opt (s′, s, a))∣

≤

¿
ÁÁÁÀH2

2
log
⎛
⎝
(Λ(k)w (s, a))−1/2 ⋅ λ−1/2

δ/H
⎞
⎠

=

¿
ÁÁÁÀH2

2
log
⎛
⎝
H

δ
⋅ 1

(Λ(k)w (s, a))1/2 ⋅ λ1/2
⎞
⎠

≤
√

H2

2
log (H

δ
⋅ 1
λ
) (D.80)

As a result, the following inequality holds with probability at least 1 − δ:

2.1

=(Λ(k)w (s, a))1/2 ∑
s′∈S
∣(Λ(k)w (s, a))1/2

k

∑
t=k−w+1

(
H−1
∑
h=0

1 [(s, a) = (sth, ath)] ⋅
H−1
∑
h=0

1[s′ = sth+1]

− opt (s′, s, a))∣

≤(Λ(k)w (s, a))1/2 ⋅ ∣S ∣ ⋅
√

H2

2
log (H

δλ
)

The term 2.2 can be bounded as

2.2 ≤ Λ(k)w (s, a) ∑
s′∈S

k

∑
t=k−w+1

H−1
∑
h=0

1 [(s, a) = (sth, ath)] ∣opt (s′, s, a) − o
p
(k+1)(s

′, s, a)∣

= Λ(k)w (s, a)
k

∑
t=k−w+1

H−1
∑
h=0

1 [(s, a) = (sth, ath)] ∑
s′∈S
∣opt (s′, s, a) − o

p
(k+1)(s

′, s, a)∣

= Λ(k)w (s, a)
k

∑
t=k−w+1

H−1
∑
h=0

1 [(s, a) = (sth, ath)] ∣∣opt (⋅, s, a) − o
p
(k+1)(⋅, s, a)∣∣

1

≤ max
t∈[k−w+1,k]

(∣∣opt (⋅, s, a) − o
p
(k+1)(⋅, s, a)∣∣

1

) ⋅ (Λ(k)w (s, a)
k

∑
t=k−w+1

H−1
∑
h=0

1 [(s, a) = (sth, ath)])

≤ max
t∈[k−w+1,k]

(∣∣opt (⋅, s, a) − o
p
(k+1)(⋅, s, a)∣∣

1

) ⋅ 1

≤ B(k−w+1∶k)p (∆π) (D.81)

Then, by combining (D.77), (D.80) and (D.81), the term ∆p
(k)(s, a) can be expressed as

∆p
(k)(s, a) ≤ B

(k−w+1∶k)
p (∆π) + (Λ(k)w (s, a))1/2 ⋅ ∣S ∣ ⋅

√
H2

2
log (H

δλ
) + λΛ(k)w (s, a).

Lemma 11 (Upper bound on ∆̄p
K). Given δ ∈ (0,1), the following inequality holds with probability

at least 1 − δ:

∆̄p
K ≤
⎛
⎝
∣S ∣
√

H2

2
log (H

δλ
) + λ

⎞
⎠
(K − 1)

√
H

w

√
log (λ +wH

λ
) +wHBp(∆π)

41

Proof of lemma 11. The total empirical forecasting transition probability model error ∆̄p
K can be

represented as follows,

∆̄p
K =

K−1
∑
k=1

H−1
∑
h=0

∆̄p
k,h

=
K−1
∑
k=1

H−1
∑
h=0

∆p
(k)(s

(k+1)
h , a

(k+1)
h)

≤
K−1
∑
k=1

H−1
∑
h=0

⎛
⎝
(Λ(k)w (s

(k+1)
h , a

(k+1)
h))1/2∣S ∣

√
H2

2
log (H

δλ
)
⎞
⎠

+
K−1
∑
k=1

H−1
∑
h=0
(max
t∈[k−w+1,k]

∣∣opt (⋅, s
(k+1)
h , a

(k+1)
h) − op(k+1)(⋅, s

(k+1)
h , a

(k+1)
h)∣∣

1

)

+
K−1
∑
k=1

H−1
∑
h=0
(λΛ(k)w (s

(k+1)
h , a

(k+1)
h))

≤
⎛
⎝
∣S ∣
√

H2

2
log (H

δλ
) + λ

⎞
⎠

K−1
∑
k=1

H−1
∑
h=0
((Λ(k)w (s

(k+1)
h , a

(k+1)
h))1/2)

+
K−1
∑
k=1

H−1
∑
h=0
(max
t∈[k−w+1,k]

∣∣opt (⋅, s
(k+1)
h , a

(k+1)
h) − op(k+1)(⋅, s

(k+1)
h , a

(k+1)
h)∣∣

1

)

≤
⎛
⎝
∣S ∣
√

H2

2
log (H

δλ
) + λ

⎞
⎠
(K − 1)

√
H

w

√
log (λ +wH

λ
) +wHBp(∆π)

Proof of Theorem 4 . Before introduing the proof, we first go over some details about Theorem 4 in
the following paragraph.

The W-LSE involves solving the following joint optimization problem over ϕrf ∈ R∣S∣∣A∣, ϕ
p
f ∈ R∣S∣

2∣A∣

and q ∈ RN to obtain a minimum upper bound on the dynamic regret:

min
ϕ◇
f
,q
L (ϕ◇f , q ; ◻1∶N) where L (ϕ◇f , q ; ◻1∶N) =

N

∑
t=1
qt (◻̂k+1ϕ◇

f
− ◻t)

2
+ disc(q) + 1

wH
⋅ λ∣∣ϕ◇f ∣∣2

(D.82)

where ◇ = r or p. If ◇ = r, then ◻ = R(s, a) and if ◇ = p, then ◻ = P (s′, s, a). Moreover,
◻ϕ◇

f
means that ◻ is parameterized by ϕ◇f , and ◻1∶N are observed data of ◻, and the disc(q) ∶=

supf∈F (E[f(◻̂
k+1 ∣ ◻1∶N] −∑N

t=1 qtE[◻̂
t∣◻1∶t−1]) measures the non-stationarity of the environment.

disc(q) could be measured and upper-bounded by the observed data. For example, if ◇ = r and
◻ = R, then ϕrf parameterizes the future reward function R̂k+1

ϕr
f

, N is the total number of visits of
(s, a) up to episode k, R1∶N(s, a) is the set of reward values {R1(s, a),R1(s, a), . . . ,RN(s, a)}
that the agent has received when visiting (s, a). We demonstrate a modified upper bound on
RI when utilizing W-LSE. To do so, we define the forecasting reward model error ∆1

r,k(s, a) =
∣(R(k+1) − R̃(k+1)) (s, a)∣ and the forecasting transition probability model error as ∆p

(k)(s, a) =
∣∣(P(k+1) − P̂(k+1)) (⋅ ∣ s, a)∣∣1 where R̃(k+1) and P̂(k+1) are predicted reward,transition probability
from function g ○ f (Appendix D.2).

We now brought the Theorem 7 of [22] to offer an upper bound on the l2-norm of the reward gap
between R(k+1)(s, a) and R̃(k+1)(s, a) as follows. To this end, we denote Xk,h = (s(k)h , a

(k)
h) ∈

S ×A, Yk,h = R(k)(s(k)h , a
(k)
h) ∈ R and assume that the environment provides the agent with a noisy

reward Ŷk,h = Yk,h + η, where η is sampled from a zero-mean Gaussian. Define the kernel Ψ(x) =
φ(x) ∈ R∣S∣∣A∣, where φ(x) is the one-hot vector that we have defined in Section D.1.1. Now, we set
r(x) = c⊺φ(x) where the vector c ∈ R∣S∣∣A∣ is the same as the estimated future reward vector R̃(k+1) ∈

42

R∣S∣∣A∣ and r(x) is the same as the estimated future reward when x = (s, a), namely R̃(k+1)(s, a).
Then, for data until episode k, i.e., Ddata = {(X1,0, Ŷ1,0), (X1,1, Ŷ1,1), .., (Xk,H−1, Ŷk,H−1)}, we
denoteD(s,a)data ∶= {(Xk,h, Ŷk,h) ∣Xk,h = (s, a) such that (Xk,h, Ŷk,h) ∈ Ddata}. We relabelD(s,a)data as
{((s, a), Ŷ1) , ((s, a), Ŷ2) , ..., ((s, a), ŶN)} such that N(s, a) = ∑k

t=1 nt(s, a) is the total number
of visitations of (s, a) until episode k (Definition (D.79)). We use the shorthand notation N as
N(s, a), and ∑N

t=1 qt = 1. For every (s, a) ∈ S ×A, the following inequalities hold with probability
at least 1 − δ for all functions r ∈ {x→ c⊺Ψ(x) ∶ ∣∣c∣∣2 ≤ Λ}:

E[(r(s, a) − ŶN+1)
2 ∣D(s,a)data] ≤

N

∑
t=1
qt (r(s, a) − Ŷt)

2 + disc(q) + 1

wH
⋅ λ∣∣r̄∣∣2 (D.83)

Take the expectation over η on both inequailty.

Eη [E [(r(s, a) − ŶN+1)
2 ∣D(s,a)data]] ≤ Eη [

N

∑
t=1
qt (r(s, a) − Ŷt)

2 + disc(q) + 1

wH
⋅ λ∣∣r̄∣∣2] ,

E [(r(s, a) − ŶN+1)
2 ∣D(s,a)data] ≤

N

∑
t=1

Eη [qt (r(s, a) − Ŷt)
2] + disc(q) + 1

wH
⋅ λ∣∣r̄∣∣2.

The left-hand side of (D.83) can be expressed as

E [(r(s, a) − ŶN+1 − η)2] = Eη [(r(s, a) − YN+1)2] +Eη [η2]
= (r(s, a) − YN+1)2 +E [η2] (D.84)

Also, the term ∑N
t=1Eη [qt (r(s, a) − Ŷt)

2] of the right-hand side of equation (D.83) can be written
as

N

∑
t=1

Eη[qt (r(s, a) − Ŷt)
2] =

N

∑
t=1

Eη[qt ((r(s, a) − Yt)2 + η2)]

=
N

∑
t=1

Eη [qt ((r(s, a) − Yt)2)] +
N

∑
t=1

Eη [qtη2]

=
N

∑
t=1
qt ((r(s, a) − Yt)2) +Eη [η2]

By eliminating Eη[η2] from both sides, we obtain that

(r(s, a) − YN+1)2 ≤
N

∑
t=1
qt ((r(s, a) − Yt)2) + disc(q) + 1

wH
⋅ λ∣∣r̄∣∣2 (D.85)

Recall the definition of r(s, a) = R̃(k+1)(s, a), Yt = Rt(s, a). Since t matches one of (k, h) ∈
[K] × [H] pairs, we can rewrite

N

∑
t=1
qt (r(s, a) − Ŷt)

2 =
k−1
∑
k′=1

H−1
∑
h=0

q(k′,h) (r(s, a) − Y(k,h))
2

=
k−1
∑
k′=1

H−1
∑
h=0

q(k′,h) (R̃(k+1)(s, a) −Rk′

h (s, a))
2

=
k−1
∑
k′=1

H−1
∑
h=0

q(k′,h) (R̃(k+1)(s, a) −Rk′(s, a))
2

where if (s, a) is not visited at step h of episode k, then the corresponding q(k′,h) is zero. As a result,

∆r
(k)(s, a) ≤

¿
ÁÁÀmin

q,r̄
(
k−1
∑
k′=1

H−1
∑
h=0

q(k′,h) (R̃(k+1)(s, a) −Rk′(s, a))2 + disc(q) + 1

wH
⋅ λ∣∣r̄∣∣2)

≤

¿
ÁÁÀmin

q,r̄
((max

1≤k′≤k
(R̃(k+1)(s, a) −Rk′(s, a)))

2

(
k−1
∑
k′=1

H−1
∑
h=0

q(k′,h)) + disc(q) + 1

wH
⋅ λ∣∣r̄∣∣2)

43

A similar analysis for ∆p
(k) leads to the following inequality for all (s′, s, a) ∈ S × S ×A:

∣P(k+1)(s′ ∣ s, a) − P̂(k+1)(s′ ∣ s, a)∣

≤

¿
ÁÁÀmin

q,p̄
(
k−1
∑
k′=1

H−1
∑
h=0

q(k′,h) (P̂(k+1)(s′∣s, a) − P k′(s′∣s, a))2 + disc(q) + 1

wH
⋅ λ∣∣p̄∣∣2)

On the other hand,

∆p
(k)(s, a) ≤ ∑

s′∈S

¿
ÁÁÀmin

q,p̄
(
k−1
∑
k′=1

H−1
∑
h=0

q(k′,h) (P̂(k+1)(s′∣s, a) − P k′(s′∣s, a))2 + disc(q) + 1

wH
⋅ λ∣∣p̄∣∣2)

≤ ∣S ∣

¿
ÁÁÀmin

q,p̄
(
k−1
∑
k′=1

H−1
∑
h=0

q(k′,h) ∣∣P̂(k+1)(⋅∣s, a) − P k′(⋅∣s, a)∣∣2∞ + disc(q) + 1

wH
⋅ λ∣∣p̄∣∣2)

Recall the Corollary 5, Corollary6 and RI definition. Aftering fixing (s, a), the term RI(s, a) can
be expressed as

RI =
1

1 − γ
K−1
∑
k=1

ῑk+1∞ +
K−1
∑
k=1

H−1
∑
h=0
−ι(k+1)h +Cp

√
K − 1

≤ 1

1 − γ
K−1
∑
k=1
(∆r
(k)(s, a) +∆

p
(k)(s, a)

γr̂max

1 − γ − 2Γ
(k)
w (s, a))

+
K−1
∑
k=1

H−1
∑
h=0
(∆r
(k)(s, a) +∆

p
(k)(s, a)

γr̂max

1 − γ + 2Γ
(k)
w (s, a))

+Cp

√
K − 1

≤ 1

1 − γ
K−1
∑
k=1
(∆r
(k)(s, a) +∆

p
(k)(s, a)

γ

1 − γ
(r̃max +max(2Γ(k)w (s, a))) − 2Γ(k)w (s, a))

+H
K−1
∑
k=1
(∆r
(k)(s, a) +∆

p
(k)(s, a)

γ

1 − γ
(r̃max +max(2Γ(k)w (s, a))) + 2Γ(k)w (s, a))

+Cp

√
K − 1

≤
K−1
∑
k=1
((1

1 − γ +H)∆
r
(k)(s, a) +

γr̃max

1 − γ (
1

1 − γ +H)∆
p
(k)(s, a)

´¹¹¸¹¹¹¶
1

+

+ γ

1 − γ (
1

1 − γ +H)max(2Γ(k)w (s, a))∆p
(k)(s, a))

+
K−1
∑
k=1

2(− 1

1 − γ +H)Γ
(k)
w (s, a)

+Cp

√
K − 1

We set the term 1 to be 2(1
1−γ +H)Γ

(k)
w (s, a), which requires redefining the exploration bonus term

as

Γ(k)w (s, a) =
1

2
∆r
(k)(s, a) +

γr̃max

2(1 − γ)∆
p
(k)(s, a).

44

Also, note that ∆p
(k)(s, a) = ∑s′∈S ∣(P̂(k+1) − P(k+1)) (s′∣s, a)∣ ≤ ∣S ∣. Therefore,

RI ≤
K−1
∑
k=1
(4HΓ(k)w (s, a) +

2γ

1 − γ (
1

1 − γ +H)max(Γ(k)w (s, a)) ∣S ∣)

≤
K−1
∑
k=1
(4H + 2γ

1 − γ (
1

1 − γ +H))max(Γ(k)w (s, a))

= (4H + 2γ ∣S ∣
1 − γ (

1

1 − γ +H))
K−1
∑
k=1

max(Γ(k)w (s, a))

≤ (4H + 2γ ∣S ∣
1 − γ (

1

1 − γ +H))
K−1
∑
k=1
(1
2
max(∆r

(k)(s, a)) +
γr̃max

2(1 − γ) max(∆p
(k)(s, a)))

= (4H + 2γ ∣S ∣
1 − γ (

1

1 − γ +H))
K−1
∑
k=1
(1
2
∆r
(k)(s, a) +

γr̃max

2(1 − γ)∆
p
(k)(s, a))

= (4H + 2γ ∣S ∣
1 − γ (

1

1 − γ +H))(
1

2

K−1
∑
k=1

∆r
(k)(s, a) +

γr̃max

2(1 − γ)
K−1
∑
k=1

∆p
(k)(s, a))

Note that above upper bound on RI holds under the following conditions for ∆r
(k)(s, a) and

∆p
(k)(s, a):

∆r
(k)(s, a) ≤

¿
ÁÁÀmin

q,r̄
(
k−1
∑
k′=1

H−1
∑
h=0

q(k′,h) (R̃(k+1)(s, a) −Rk′(s, a))2 + disc(q) + 1

wH
⋅ λ∣∣r̄∣∣2),

∆p
(k)(s, a) ≤ ∑

s′∈S

¿
ÁÁÀmin

q,p̄
(
k−1
∑
k′=1

H−1
∑
h=0

q(k′,h) (P̂(k+1)(s′∣s, a) − P k′(s′∣s, a))2 + disc(q) + 1

wH
⋅ λ∣∣p̄∣∣2).

Proof of Remark 1. The proof starts with (D.85). Define

qswt = {
1

wH
if t ∈ (k −w,k]

0 otherwise
,

rsw = argmin
r̄
(λ∣∣r̄∣∣2 +

N

∑
t=1
(r(s, a) − Ŷt)

2) . (D.86)

where rsw is the same reward estimation as in (D.7). Then the minimum of (D.83) yields that

min
r̄,q
(

N

∑
t=1
qt (r(s, a) − Ŷt)

2 + disc(q) + 1

wH
⋅ λ∣∣r̄∣∣2) (D.87)

≤min
r̄
(

N

∑
t=1
qswt (r(s, a) − Ŷt)

2 + disc(qsw) + 1

Hw
⋅ λ∣∣r̄∣∣2)

≤ 1

Hw
min
r̄
(

N

∑
t=1
(Hw) ⋅ qswt (r(s, a) − Ŷt)

2 + λ∣∣r̄∣∣2)
´¹¹¹¸¹¹¶

1

+ disc(qsw). (D.88)

The term 1 is the optimization problem in (D.86) whose minimizer is rsw. An inspection of (D.87)
and (D.88) concludes that the optimal solution (q∗, r̄∗), namely the minimizer of (D.87) provides a
smaller value than (qsw, rsw). Since the right-hand side (D.85) is same as (D.87), (q∗, r̄∗) provides
a tighter upper bound on the left-hand side term of equation (D.83) than qsw, rsw. Therefore, (D.84)
implies that the optimal solution (q∗, r̄∗) gives a tighter upper bound on ∆r

(k) than using (qsw, r̄sw).
One can repeat the above argument for the upper bound on ∆p

(k). Then, by Corollary 5 and 6, the

tighter upper bounds on ∆r
(k)(s, a) and ∆p

(k)(s, a) provide smaller upper bounds on −ι(k)H , ῑK∞ and
lead to a tighter upper bound on RI .

45

E Experimental design and results

E.1 Environment setting details

Reward function design.

All three environments share the same reward function structure and have an identical goal. The
reward function R consists of three parts R = Rh + Rf − Rc, where Rh is the healthy reward,
Rf = kf(xt+1 − xt)/∆t, kf > 0 is the forward reward, and Rc is the control cost. The agents have a
goal to run faster in the +x direction, and therefore the faster they run, the higher the forward reward
Rf is. We modify the environment to make the agent’s desired directions change as the episode goes
by. To be specific, we design the forward reward Rf to change as episodes progress in the form of
Rk

f = ok ⋅ kf(xt+1 − xt)/∆t where ok = asin(wbk) and k is a episode where a, b > 0 are constants.
A positive ok causes the agent to desire a forward +x direction as an optimal policy, and a negative
ok causes it to desire a backward −x direction. We generate different speeds of non-stationarity by
changing the frequency variable w ∈ {1,2,3,4,5}.
Non-stationary variable ok generator.

1. Sine function: The non-stationary parameter ok is designed as ok = sin (2πwk/37), wherew
is the integer speed of the environment change and k is the episode number. We change w in
the set [1,2,3,4,5]. We divide 2πwk by 37, a prime number, to ensure that the environment
has various non-stationary modes and to avoid certain non-stationary parameters appearing
frequently.

2. Real data: we bring the stock price data to model a non-stationary real dataset.

Figure 4: Nonstationary parameter from real data A,B

Non-stationary parameter ok generator (ablation study). B(G) satisfies the property of the time-
elapsing variation budget that B(G) increases as G increases. For the ablation study, we generate
ok = sin (2π ⋅G ⋅ k/37), where G ∈ {38,76,114,152,190}. We estimated B(G) as∑150

k=1 ∣ok+1 −ok ∣:

G = 38 G = 76 G = 114 G = 152 G = 190
B(G) 15.98 31.85 47.49 62.79 77.64

E.2 Hyperparameters and implementation details

Training Details.

For the ARIMA model that serves as a forecatser f , we use the auto_arima function of pmdarima
python package to find the optimal p, q, d. To compare the results between ProST-G and MBPO,
we train the MBPO and ProST-G with the initial learning rate lr = 0.0003 with the decaying
parameter 0.999. For ProST-G, We add the uniform noise η ∼ Unif([−b, b]) to the non-stationary
parameter ok to generate the noisy non-stationary parameter ôk = ok + η with different noise bounds
b ∈ {0.01,0.03,0.05}. We denote Unif([−b, b]) as continuous uniform distributions over the interval
[−b, b].
To compare the results between ProST-G and ProOLS, ONPG, FTML, we train these three baselines
with eight different initial learning rates lr ∈ {0.001,0.003,0.005,0.007,0.01,0.03,0.05,0.07}.
Hyper parameters.

46

Letter hyper parameters Swimmer-v2 Half cheetah-v2 Hopper-v2

K episodes 100 150 150

H environment steps per episodes 100

G policy updates per epochs 50

Ĥ model rollout length 1→ 15 over episodes 20→150

N iteration of policy update and policy evaluation 1

M model rollout batch size (Dsyn) 1e5

τ entropy regularization parameter 0.2

γ reward discounting factor 0.99

Note that Ĥ increases linearly within a certain range as episode goes by. We denote hmin → hmax

over episodes kmin → kmax as Ĥ(k) = min(max(hmin + (k − kmin)/(kmax − kmin) ⋅ (hmax −
hmin), hmin), hmax).

47

E.3 Full results

E.3.1 Non-stationarity: sine wave

(1) Swimmer-v2

Figure 5: (a) ∼ (e) the average rewards of ProST-G, and the three baselines: ProOLS, ONPG, FTML
for 5 different speeds (x-axis indicates the episode). The shaded area of ProST-G is 95% confidence
area among 3 different noise bounds, and the shaded areas of three baselines are the 95 % confidence
area among 8 different learning rates.

Figure 6: (a) ∼ (e) the average rewards of ProST-G and MBPO. The shaded area of ProST-G is 95%
confidence area among 3 different noise bounds.

48

(2) Halfcheetah-v2

Figure 7: (a) ∼ (e) the average rewards of ProST-G, and the three baselines: ProOLS, ONPG, FTML
for 5 different speeds (x-axis indicates the episode). The shaded area of ProST-G is 95% confidence
area among 3 different noise bounds, and the shaded ares of three baselines are the 95% confidence
areas among 8 different learning rates.

Figure 8: (a) ∼ (e) the average rewards of ProST-G and MBPO (x-axis indicates the episode). The
shaded area of ProST-G is 95% confidence area among 3 different noise bounds.

49

(3) Hopper-v2

Figure 9: (a) ∼ (e) the average rewards of ProST-G, and the three baselines : ProOLS, ONPG, FTML
for 5 different speeds (x-axis indicates the episode). The shaded area of ProST-G is 95% confidence
area among 3 different noise bounds, and the shaded areas of three baselines are the 95% confidence
areas among 8 different learning rates.

Figure 10: (a) ∼ (e) the average rewards of ProST-G and MBPO (x-axis indicates the episode). The
shaded area of ProST-G is 95% confidence area among 3 different noise bounds.

50

E.3.2 Non-stationarity : real data

The shaded area of ProST-G is 95% confidence area among 3 different noise bounds, and the shaded
ares of three baselines are the 95% confidence area among 8 different learning rates.

(1) Swimmer-v2

Figure 11: (a) average reward with ProST-G and MBPO on real data A,B (x-axis is episode). (b)
average reward with ProST-G and three baselines on realdata A. (c) average reward with ProST-G
and three baselines on realdata B.

(2) Halfcheetah-v2

Figure 12: (a) average reward with ProST-G and MBPO on real data A,B (x-axis is episode). (b)
average reward with ProST-G and three baselines on realdata A. (c) average reward with ProST-G
and three baselines on realdata B.

(3) Hopper-v2

Figure 13: (a) average reward with ProST-G and MBPO on real data A,B (x-axis is episode). (b)
average reward with ProST-G and three baselines on realdata A. (c) average reward with ProST-G
and three baselines on realdata B.

51

F Algorithms

F.1 ProST framework

Algorithm 1: ProST framework
1 Set : kf = 1
2 Init : policy π0, forecaster fϕ0

f
, model estimator gϕ0

g
, two dataset Denv,Dsyn

3 for episode k do
4 Execute the agent with πk in a environmentMk and add a trajectory to Denv .

/* MDP forecaster g ○ f */
/* (1) Observe and forecast: */

5 Observe a noisy non-stationary parameter ôk
6 Update fϕf

, gϕg using Denv and ôk−(w−1)∶k.
7 Use fϕk

f
, gϕk

g
to predict the future P̂k+1, R̂k+1 and construct future MDP M̂k+1

/* Baseline A */
/* (2) Optimize: */

8 Roll out synthetic trajectories in M̂k+1 and add them to Dsyn

9 Use Dsynto evaluate and update πk to π̂k+1

10 end for

F.2 ProST-T algorithm

Algorithm 2: ProST-T
1 Set : kf = 1
2 Init : policy πk , forecaster fϕk

f
, tabular reward model gRk , tabular transition probability model

gPk , forecasted state-action value Q̂⋅,k+1, empty dataset Denv,Dsyn

3 Explore w episodes and add (τ−k, ô−k) to Denv where k ∈ [w] before starts
4 for episodes k = 1, ..,K do
5 Rollout a trajectory τk using πkand Denv = Denv ∪ {τk}
6 Observe a noisy non-stationary parameter ôk

/* MDP forecaster g ○ f: (1) update f, g */
7 Update fϕf

: ϕkf ← argminϕLf(ôk−(w−1)∶k;ϕ)
8 Update gPk (s′, s, a, o)
9 Update gRk (s, a, o)

/* MDP forecaster g ○ f: (2) predict P̂k+1, R̂k+1 */
10 Forecast 1 episode ahead non-stationary parameter: ôk+1 = fϕk

f
(ôk−(w−1)∶k)

11 Forecast transition probability function: ĝPk+1 = gPk (⋅, ôk+1)
12 Forecast reward function: ĝRk+1 = gRk (⋅, ôk+1)
13 Reset Dsyn to empty.

/* Baseline A: NPG with entropy regularization */
14 Set π̂(0) ← πk

15 for g = 0, ..,G − 1 do
16 Evaluate Qπ̂(g)

τ using the rollouts from the future model ĝPk+1, ĝ
R
k+1

17 Update π̂ : π̂(g+1) ← 1/Z(t) ⋅ (π̂(g))1−
ητ
1−γ exp ((ηQ̂π̂(g)

τ)/(1 − γ))

18 where Z(t) = ∑a∈A (π̂(g))
1− ητ

1−γ exp ((ηQ̂π̂(g)

τ)/(1 − γ))
19 end for
20 Set πk+1 ← π̂(G)

21 end for

52

F.3 ProST-G algorithm

(1) Forecaster f . We adopt the ARIMA model to forecast ôk+1 from the noisy observation ôk−(w−1)∶k.
The ARIMA model is one of the most general classes of models for forecasting a time series, which
can be made to be stationary by taking a difference among the data. For given time series data Xt, we
define ARIMA(p, d, q) as given by Xt − α1Xt−1 − ⋅ ⋅ ⋅ − αpXt−p = ϵt + θ1ϵt−1 +⋯ + θqϵt−q, where
αi’s are the parameters of the autoregressive part of the model, the θi’s are the parameters of the
moving average part, and ϵt’s are the error terms that take d times difference between Xts, which we
assume to be independent and follow a normal distribution with a zero mean.

(2) Model predictor g. We use a bootstrap ensemble of dynamic models {g1ϕg
, g2ϕg

, ..., gMϕg
}. Each

ensemble model is a probabilistic neural network whose output is parameterized by the mean vector
µ and the diagonal vector of the standard deviation Diag(Σ) of a Gaussian distribution, namely
giϕg
(sh+1, rh∣sh, ah, ôk+1) = N (µi

ϕg
(sh, ah),Σi

ϕg
(sh, ah)). To efficiently handle uncertainty due

to the non-stationary environment, we design each neural network to be a probabilistic model to
capture the aleatoric uncertainty, i.e. the noise of the output, and learn multiple models as bootstrap
ensemble to handle the epistemic uncertainty, i.e. the uncertainty in the model parameters. Then we
predict sh+1 and rh from a model uniformly chosen from its ensemble randomly that admits different
transitions along a single model rollout to be sampled from different dynamics modes.

(3) Baseline algorithm A. We adopt soft-actor critic (SAC) as our policy optimization algorithm.
SAC alternates the policy evaluation step and the policy optimization step. For a given policy
π̂, it estimates the forecasted Q̂π̂,k+1 value using the Bellman backup operator and optimizes the
policy that minimizes the expected KL-divergence between π and the exponential of the difference
Q̂π̂,k+1 − V̂ π̂,k+1 : Es∼Dsyn[DKL(π̂∣∣ exp (Q̂π̂,k+1 − V̂ π̂,k+1)].

Algorithm 3: ProST-G
1 Set : kf = 1
2 Init : policy πk, forecaster fϕk

f
, model estimator gϕk

g
, two dataset Denv,Dsyn

3 Explore w episodes and add (τ−k, ô−k) to Denv where k ∈ [w] before starts
4 for episodes k = 1, ..,K do
5 Execute the agent with πk in a environmentMk and add a trajectory to Denv .

/* MDP forecaster g ○ f: (1) update f, g */
6 Observe a noisy non-stationary variable ôk
7 Optimize fϕk

f
on ôk−(w−1)∶k

8 Optimize gϕk
g

on Denv

/* MDP forecaster g ○ f: (2) predict f, g */
9 Forecast ôk+1 = fϕk

f
(ôk−(w−1)∶k)

10 Forecast model : ĝk+1 = gϕk
g
(⋅, ôk+1)

11 Reset Dsyn to empty.
/* Baseline A: SAC */

12 Set π̂k+1 ← πk

13 for epochs n = 1, ...,N do
14 for model rollouts m = 1, ..,M do
15 Sample ŝm0 uniformly from Denv .
16 Perform a Ĥ-step model rollout using âmh = π̂k+1(ŝmh), ŝmh+1 = ĝk+1(ŝmh , âmh) and

add a rollout to Dsyn .
17 end for
18 for updates g = 1, ..,G do
19 Evaluate and update forecasted policy π̂k+1 on Dsyn

20 end for
21 end for
22 Set πk+1 ← π̂k+1

23 end for

53

G Experiment Platforms and Licenses

G.1 Platforms

All experiments are done on 12 Intel Xeon CPU E5-2690 v4 and 2 Tesla V100 GPUs.

G.2 Licenses

We have used the following libraries/ repos for our python codes:

• Pytorch (BSD 3-Clause "New" or "Revised" License).
• OpenAI Gym (MIT License).
• Numpy (BSD 3-Clause "New" or "Revised" License).
• Official codes distributed from the paper [7]: to compare the four baselines.
• Official codes distributed from the paper [24]: to build PMT-G.

54

	Introduction
	Problem statement: Desynchronizing timelines
	Time-elapsing Markov Decision Process
	Time-elapsing variation budget
	Suboptimal training time

	Future policy optimizer
	MDP forecaster
	Finding future optimal policy

	Time optimizer
	Theoretical analysis
	RII analysis
	RI analysis
	Optimal tempo Delta*pi

	Improving MDP forecaster
	ProST-G

	Experiments
	Discussions
	Performance compare
	Ablation study

	Conclusion
	Details on Introduction
	Experimental motivation

	Related Works
	Details on Problem Statement and Notations
	Details on Notations

	Proof of Theoretical Analysis
	Preliminary for ProST-T and theoretical analysis
	Environment setting
	Functions f,g
	Baseline algorithm Alg

	Notation for theoretical analysis
	Proofs

	Experimental design and results
	Environment setting details
	Hyperparameters and implementation details
	Full results
	Non-stationarity: sine wave
	Non-stationarity : real data

	Algorithms
	Meta-algorithm IgfA
	ProST-T algorithm
	ProST-G algorithm

	Experiment Platforms and Licenses
	Platforms
	Licenses

