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Abstract

Real-time inference is a challenge of real-world
reinforcement learning due to temporal differ-
ences in time-varying environments: the system
collects data from the past, updates the decision
model in the present, and deploys it in the future.
We tackle a common belief that continually up-
dating the decision is optimal to minimize the
temporal gap. We propose forecasting an online
reinforcement learning framework and show that
strategically pausing decision updates yields bet-
ter overall performance by effectively managing
aleatoric uncertainty. Theoretically, we compute
an optimal ratio between policy update and hold
duration, and show that a non-zero policy hold
duration provides a sharper upper bound on the
dynamic regret. Our experimental evaluations on
three different environments also reveal that a non-
zero policy hold duration yields higher rewards
compared to continuous decision updates.

1. Introduction

Real-world reinforcement learning (RL) bridges the gap
between the current literature on RL and real-world prob-
lems. Real-time inference, a key challenge in real-world
RL, requires that inference occur in real-time at the control
frequency of the system (Dulac-Arnold et al., 2019). For RL
deployment in a production system, policy inference must
occur in real-time, matching the control frequency of the
system. This could range from milliseconds for tasks such
as recommendation systems (Covington et al., 2016; Steck
et al., 2021) or autonomous vehicle control (Hester & Stone,
2013), to minutes for building control systems (Evans &
Gao). This constraint prevents us from speeding up the task
beyond real-time to rapidly generate extensive data (Silver
et al., 2016; Espeholt et al., 2018) or slowing it down for
more computationally intensive approaches (Levine et al.,
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2019; Schrittwieser et al., 2020). One strategy for real-time
action is to employ a multi-threaded architecture, where
model learning and planning occur in background threads
while actions are returned in real-time (Hester & Stone,
2013; Imanberdiyev et al., 2016; Glavic et al., 2017).

In this paper, we show that intentionally pausing policy
learning can lead to better overall performance than contin-
uous policy updating. Our study is based on deriving an
analytical solution for the optimal ratio between the paus-
ing and updating phases. Perhaps most importantly, this
paper offers the insight that the pausing phase is crucial
to handling an aleatoric uncertainty that stems from the
environment’s intrinsic uncertainty.

This paper begins with a fundamental observation of the real-
time inference mechanism based on prediction: the agent
forecasts the future based on past data, and then continually
updates decisions in the present based on future predictions.
This highlights the significance of balancing conservatism
or pessimism in decision-making, based on the three types
of uncertainties: epistemic, aleatoric, and predictive uncer-
tainties (Gal, 2016). We define conservatism as expecting
past trends to continue in the future, and pessimism as antic-
ipating future differences. Although accumulating extensive
past data reduces aleatoric uncertainty, and a prediction
model with high capacity lessens predictive uncertainty, the
frequency of policy updates still remains a key factor due to
unknown aleatoric uncertainty in the present.

R, T e

1

T

o 4 0

0 T 0 T 0 T
) (b) (c)

(a c

Figure 1. (a) Non-stationary bandit setting, (b) conservative policy,
(c) pessimistic policy

To elucidate the importance of the above problem, consider
a recommendation system tasked with optimally suggesting
item z or 1 to a user whose preference changes over time.
This can be framed as a Bernoulli non-stationary bandit
setting with a set of two actions A = {ag, a; }, and a time-
dependent policy 7 : A — [0, 1], where m¢(ag) = B¢ and
me(a1) =1 — B¢, 0 < By < 1. The rewards of each action,
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denoted as Ry, switch (i.e., Ry(ag) <> Ri(a1)) once at an
unpredictable time between 0 and 7' (see Figure 1 (a)). The
goal of the system is to maximize the average rewards over a

period T', i.e., maxy, . . E [Zfzo Rt(a)} . Initially, rec-

ommending x; yields a higher reward (Ry(a;) = 1). How-
ever, the system anticipates a shift in the user preference
towards xg by the end of period T. The system should
optimize its policy 7; during the interval from O to 7', fac-
ing aleatoric uncertainty about when the user preferences
will change. A conservative policy increases the preference
weight 3, associated with z( too quickly (Figure 1 (b)),
while a pessimistic approach may adjust too slowly (Fig-
ure 1 (c)). The key challenge is to determine the optimal
tempo of policy adjustment in anticipation of this unknown
preference shift.

Based on the previous example, this paper challenges the be-
lief that continually updating the decision always achieves
an optimal bound of dynamic regret, a measurement of
decision optimality in a time-varying environment. Our
main contribution, Algorithm 1 and Theorem 5.8, demon-
strates that strategically pausing decision updates provides
a sharper upper bound on the dynamic regret by deriving
an optimal ratio between the policy update duration and the
pause duration.

To achieve this, we formulate the online interactive learn-
ing problem in Section 3 by determining three key aspects:
1) the frequency of policy updates, 2) the timing of policy
updates, and 3) the extent of each update. First, we study
the real-time inference mechanism by proposing a forecast-
ing online reinforcement learning model-free framework in
Section 4. In Section 5, we calculate an upper bound on
the dynamic regret (Theorem 5.3) as a function of episodic
and predictive uncertainties (Propositions 4.1 and 4.2), as
well as aleatoric uncertainty (Proposition 5.6 and Lemma
5.7). This is achieved by separating it into the policy update
phase (Lemma 5.1) and the policy hold phase (Lemma 5.2).
In Subsection 5.3, we conduct numerical experiments to
show how the optimal ratio minimizing the dynamic regret’s
upper bound (Theorem 5.8) varies with hyperparameters
related to aleatoric uncertainty, highlighting the significance
of the policy hold phase in this minimization. Finally, in
Section 6, we empirically show two findings from three
non-stationary environments: 1) a higher average reward
of the forecasting method compared to the reactive method
(Subsection 6.2), and 2) a non-positive correlation relation-
ship between update ratios and average returns (Subsection
6.3).

Notations

The sets of natural, real, and non-negative real numbers
are denoted by N, R, and R, respectively. For a finite
set Z, the notation | Z| represents its cardinality, and A(Z)

denotes the probability simplex over Z. Given X,Y € N
with X <Y, we define [X] := {1,2,..., X}, the closed
interval [X,Y] := {X, X + 1,...,Y}, and the half-open
interval [X,Y) := {X, X +1,...,Y—1}. Forz € R, the
floor function | x| is defined as max{n € NU{0} | n < z}.
For any functions f, g : R™ — R satisfying f(z) < g(x)
for all values of z, if ¥ = argmin,cgm g(), then zj is
referred to as a surrogate optimal solution of f(x). We use
the term surrogate optimal solution and suboptimal solution
interchangeably.

2. Related works
Real-time inference RL

One approach to real-time reinforcement learning is to adapt
existing algorithms and validate their feasibility for real-
time operation (Adam et al., 2012). Alternatively, some
algorithms are specifically designed with the primary objec-
tive of functioning in real-time contexts (Cai et al., 2017;
Wang & Yuan, 2015). A recent and distinct perspective
on real-time inference was presented in (Ramstedt & Pal,
2019), which proposed a real-time markov reward process.
In this process, the state evolves concurrently with the action
selection. The anytime inference approach (Vlasselaer et al.,
2015; Spirtes, 2001) encompasses a set of algorithms capa-
ble of returning a valid solution at any interruption point,
with their performance improving over time.

Non-stationary RL

The problem formulation of this paper draws inspiration
from “desynchronized-time environment”, initially pro-
posed by (Lee et al., 2023). The desynchronized-time en-
vironment assigns the real-time duration of the learning
process, where the agent is responsible for deciding both
the timing and the duration of its interactions. (Finn et al.,
2019) introduced the Follow-The-Meta-Leader algorithm to
improve parameter initialization in a non-stationary environ-
ment, but it cannot efficiently handle delays in optimal pol-
icy tracking. To address this, (Chandak et al., 2020b;a) de-
veloped methods for forecasting policy evaluation, yet faced
limitations in empirical analysis and theoretical bounds for
policy performance. (Mao et al., 2021) proposed an adaptive
QQ-learning approach with a restart strategy, establishing a
near-optimal dynamic regret bound.

We will further elaborate on related work on non-stationary
RL in Appendix A.

3. Problem Statement

Time-elapsing Markov Decision Process (Lee et al., 2023).
For a given time ¢ € [0, T, we define the Markov Decision
Process (MDP) at time t as M; = (S, A, Py, Ry,~, H).
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S is a state space, A is an action space, P, : § x A x
S — A(S) is a transition probability at time ¢, and R; :
S x A — R is a reward function at time ¢. For every
time ¢, the agent interacts with the environment via a policy
m: S X A — A(S) where each episode takes H steps to
complete. We assume that a trajectory is finished within
a second, implying that the agent will finish its trajectory
within a temporally fixed MDP M.

Time elapsing variation budget. In the real world, the
time of the environment flows independently from ¢ = 0
to t = T regardless of the agent’s behavior. For any time
instances 1, ta € [0,7T) such that t; < to, we define local
variation budgets B, (t1,t2) and B, (t1,t2) as

to—1
B (t1,t2) == Z max\RtH(s a) — Ry(s,a)|,
t=t,
to—1
By(t1,t2) = Z maXHPtJrl( | s,a)

t=ty

Pt(' | S,G)H1~

AlsoL we define cumulative variation budgets Bp(tl,tg)
and B, (t1,t2) as the summation of local variation budgets
between time t; and o, i.€.,

ta—1 to—1

ZB tl, tl,tQ ZB t17

t=ty t=ty

tl)tQ

To align with real-world scenarios where environmental
changes do not normally occur too abruptly, we propose
that these changes follow an exponential growth.

Assumption 3.1 (Exponential order local variation bud-
get). For any time interval [¢t1,t3] C [0,7), there ex-
ist constants k., k, > 1,B B™ > 0 such that
By(t1,t) < By*k,~" and B (tl, ) < Bmagi=t hold
for Vt € [tl,tg]

Building on Assumption 3.1, we will derive cumulative
variation budgets that also adhere to an exponential order.

Corollary 3.2 (Exponential order cumulative variation bud-
get). For arbitrary time instances t1,to € [0,T) satisfy-
mg t1 < to, there exist constants o,,cy, > 1 such that
By(t1,t2) < Bp*al2™" and B,(t1,t3) < Br@al>™h
hold.

Next, we define stationary and non-stationary environments
in the context of variation budget.

Definition 3.3 (Stationary environment). For arbitrary time
instances t1,ty € [0, T, if By (t1,t2) = 0 and B, (t1,t2) =
0 are satisfied, then we call the corresponding environment
a stationary environment.

Definition 3.4 (Non-stationary environment). If there exist
ti,t2 € [0,T] such that B,.(t1,t2) > 0 or By(t1,t2) > 0,
then we call the corresponding environment a non-stationary
environment.

State value function, State action value function. For any
policy 7, we define the state value function V" : § — R
and the state action value function Qf : & x A —

R at time ¢ as V"(s) := Ey, [Zf;ol Vhrt,h | s? _ s}

and Q7 (s,a) = Ep, [fool Yren | 8 =s,a) = a}
where 74, := Ry(s],al'). We define the optimal policy
at time ¢ as 7} = argmax, V,".

Dynamic regret. During the interval [0, T, the agent op-
erates according to a sequence of policies w1, ma, ..., 7.
Drawing from the learning procedure outlined previously,
we define the time-varying dynamic regret R(T) :=
ZtT:I (V¥ — V™), where V,* represents the optimal pol-
icy value at time ¢ and V;™* is the value function obtained
by executing policy 7, in the MDP M,.

Parallel process of policy learning and data collection.
In our formalization of policy learning in a non-stationary
environment, the policy learning phase and the data collec-
tion phase (interaction) occur concurrently. In this context,
the number of trajectories an agent can execute between
the unit times (¢, ¢ + 1),Vt € [T' — 1], typically depends on
the system’s control frequency or its hardware capabilities.
However, for the purpose of our analysis, we assume that
the agent executes one trajectory per unit time. This means
that at time ¢, the agent has rolled out a total of ¢ trajectories.

Before the first episode, the agent determines several key
parameters:

1. Frequency of Policy Updates: The agent decides on
the number of updates, denoted as M € N times.

2. Timing of Policy Updates: The update times are set
as a sequence {t1, to, t3, ..., tp} within [0, 7).

3. Extent of Each Update: The policy update iteration
sequence is defined as {G1, Ga, ..., G}

Specifically, at each time ¢,,, € [0, 1] where m € [M], the
agent updates its policy for G,,, € N U {0} iterations, using
all previously collected trajectories. We assume that each
policy iteration corresponds to one second in real-time. The
policy then remains fixed for N,, € NU {0} seconds after
the updates, where it is determined as N,,, = t,,41 — (tm +
G.,). The next episode starts immediately at time ¢,,,41 =
m + Gm + Np,. Without loss of generality, we assume
that ¢t; = 0, and therefore t,, = Zzzl(Nz + G;) holds.
Also, we define the m™ policy update interval as G,, :=
[tm,tm + Gy) and the m™ policy hold interval as NV, :=
[tm + Gy tme1). For notational simplicity, we denote
Br( mvt +Gm) (t +Gm; m+1) B ( m,tmj’Gm)
and ? (tm + Gy tmt1) as Br(Gm), T(Nm)’ By(Gm)
and By (N, ), respectively.
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How to determine {7y, w2, ..., w7 }. At time ¢,,, the
agent executes the policy 7, and starts optimizing the
policy for G,,, seconds. During this optimization, after g
iterations (seconds), where g € [G,,], the agent executes
the most recently updated policy 7rfm. This updated policy
represents the ¢*" iteration of optimization from the initial
policy 7, . Therefore, during the policy update interval G,y,,
specifically at time t,,, + g, the policy ;4 is equivalent
to 7{ . Subsequently, throughout the policy hold interval
N, the agent continues to execute the latest updated policy,
denoted as 7; = 775% for every t within AV,,,.
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Figure 2. Parallel process of policy learning and data collection.

Example. Figure 2 illustrates our problem setting. For
a given time duration between ¢ = 0 and ¢ = 30, sup-
pose that the agent has chosen the frequency of policy
updates as M = 3 and the update time sequence as
t1 = 0,t2 = 13,t3 = 25, along with the policy update
durations G; = 10,Gy = 4,G3 = 5. The agent be-
gins the first episode at ¢ = 0 with a random policy 7.
Subsequently, during times ¢t = 1,2,...,10, the agent
continuously executes updating policies 7§, 73, ..., 750,
respectively, and then employs the latest updated policy
730 at times ¢ = 11,12,13. Following this, the agent
operates with policies 713, 735, ..., 7}5 during the period
t = 14,15,16, 17, where m3 = 73", Lastly, it executes
with the most recently updated policy 71, during the time
t=18,...,25.

4. Method

To implement a real-time inference mechanism, particularly
emphasizing the prediction-based control approach of “pre-
dicting the future in the past,” we introduce a model-free
proactive algorithm, detailed in Algorithm 1. This approach
is based on the proactive evaluation of policies. At policy
update time t,,,, our proposed algorithm forecasts the future
@ value of time ¢,, 1 based on previous trajectories and
then optimizes the future policy for duration G,,, based on
foreacasted future @ value. For all ¢t € [0, 7], we denote
the estimated value of () based on the past trajectories as
(: and the optimal value of @) as Q);. We also denote the
future @ value of time ¢,,,, 1 which was forcasted at time ¢,,,
as @tm +1|tm - During the time duration G,,,, we determine
the policies {77 fg‘l by utilizing the Natural Policy Gradi-
ent (Kakade, 2001) with the entropy regularization method

based on Q¢ |z, as follows:

T (fs) o< (xf, (1) exp (thmHt'">

L=~
s.t. ||th+1|tm - Qrm_HHOO = 67);,

where 7 is a learning rate, 7 is an entropy regularization
parameter and 07, is the maximum forecasting error at time
step tom.-

based on

m

There are various methods to forecast Q. ,|¢

past (Q estimates {Qt}ﬁo- In this work, we provide an-
alytical explanations on how the forecasting error can be
bounded by the past [ uncertainties (() estimation errors)
and the intrinsic uncertainty of the future environment (local
variation budgets). For any ¢, we refer to €; as the maximum
@ estimation error if ||Q: — Q7 || < € holds. To simplify

the presentation, we drop the term “maximum’ when it is
clear from the context.

Proposition 4.1 (Linear forecasting method with bounded
lz norm). Consider a past reference length l,, € N and
define w = [wy, 1,41, ,Wt, 1, wy, | 7. We forecast
Q... +1]tm @S a linear combination of the past l,-estimated

Q values, namely th+1\tm = Ziztm—lp-i-l tht, where
the condition ||w||s < L holds for some L. Then, &, can
be bounded by

§f <L > 2(max(us, )’ + 1 (L+1)

_~H
2 (Bt tn) + 522 By (bt )

and Ty = maxy s o |Ri(s, a)l.

where u; =

Proposition 4.1 shows that utilizing a low-complexity fore-
casting model provides that the m™ maximum forecasting
error is bounded by intrinsic environment uncertainty of fu-
ture {ut}iztm_lp_l and past uncertainties {et}iztm_lp_l
due to finite samples.

Compared to previous studies on finite-time ) value conver-
gence with asynchronous updates (Qu & Wierman, 2020;
Even-Dar & Mansour, 2004), our work primarily focuses on
how strategic policy update intervals affect an upper bound
on the dynamic regret, leaving room for future exploration
of @) convergence rate improvement. This will be discussed
in more detail in Section 5.

In the remainder of this section, we investigate in Propo-
sition 4.2 and Corollary 4.3 how an €;-accurate estimate
of past () value establishes a lower bound condition on
{Ni}i" and {G )5
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Algorithm 1 Forecasting Online Reinforcement Learning

1: Input: Total time 7, Policy update duration sets
{Hy,..,Hn}, {G}1.k, Dataset D

2: Init: m = 0, m; = random policy

3: fort ={1,2,...,7} do

4:  Rollout H steps trajectory with policy 7, and save a

trajectory to D

5 iftE{t1,t2,...,

6 m<m+1

7: Qtpi1|t,, = FOrQ(D) /* Forecast future Q */

8: endif

9.

0

tar} then

ift € [t;, + G, then
Ti11 = Update(ms, 0, 7,7, Q.1 |t,.) /* Update

Policy */
11:  elseift € [t,,, + G, + N,y,) then
12: 441 = ¢ /* Pause policy update™®/
13:  endif
14: end for

Proposition 4.2 (Past uncertainty with sample complexity

(Qu & Wierman, 2020)). For any k > 0 and under some

(s|Ap*?

conditions on stepsizes, if t > (Era then ||Q: —

Q7o < € holds.

Proposition 4.2 highlights that the lower bound conditions
of {N;}77" and {G;}"! are useful to reach ¢,-accurate
estimate of @ value for asynchronous @)-learning method
on a single trajectory. The upper bound of 67, could be
better minimized by taking max(u, ;) = uy for all ¢t €

[tm — I+ 1,t,,]. This requires ¢ > % to hold for
all t € [t,, — 4+ 1,¢,,]. Note that ¢, = Zi:l (N; + Gy)
holds. Therefore, for j = 1,2, ..., 1, we have Z:’;l(NZ +

. S||A
Gi)—j+12 ol —.

be simplified without past uncertainty terms as follows.

Then, the upper bound can

Corollary 4.3 (Maximum forecasting error bound). For j =
1,2, by, if AN} and {G Y satisfy the condition

SN 4+ Gy) — G+ 1 > USIADS

(A=7)P2ufl i’
bounded by

1— H
85 < Lttmaer/2l, + 1,(L 4 1) <17rm>
-

, then 0y is

where 05 := = MaX;,¢c[M] 5 is a maximum forecasting error
and Upgy := MaAXyy M) Uty —1,+1-

Corollary 4.3 shows how the forecasting error d ¢ is bounded
with future environment’s uncertainty ,,,, with lower
bound conditions on {N;}77* and {G;}7;'. By collect-
ing more trajectories per the unit time (¢,¢ + 1), we can
significantly relax the lower bound condition, going beyond
our initial assumption (see Section 3).

5. Theoretical Analysis

In this section, we provide a dynamic regret analysis to
investigate how policy hold durations { Ny, Na, ..., Nas}
influence the minimization of dynamic regret. We initially
decompose the regret into two main components and cal-
culate upper bounds on these components in Subsection
5.1. Subsequently, in Subsection 5.2, we further divide the
overall upper bound of regret into three distinct terms and
investigate how NN,,, modulates each of these terms, except
for the future forecasting regret term. Finally, in Subsec-
tion 5.3, we present numerical experiments that demonstrate
variations in the regret upper bound in response to different
N,,, values under different aleatoric uncertainties.

5.1. Regret analysis

We define the dynamic regret between times t,, and
tmi1 as Ry (T), which is given by R, (T) =
m (VF — V™) . The m™ dynamic regret, R, (T'), can
be decomposed into two components, named Policy update

regret and Policy hold regret, as follows:
V).

M
)= Y (X 0 -V
Policy hold regret

m=1 “MteG, teENm

Policy update regret

The policy update regret and the policy hold regret will be
studied next.

Lemma 5.1 (Policy update regret). Let B(G,,) :=

CyBy(Gm) + CsBp(gm). For allt € G,,, where m € [M],
it holds that
S -y <& (1= (=)&)
nT

t€EGm

G, (02571; n 03) + B(Gm)

where C1 = (v + 2)(”an = Qtplloo +27(1 — 7

=
llog 7, — logm,, lloc)), Ca = 242 (1+ ),03 -
27 log | A 2(1—~H —~H
10g~i | Oy (1:;)’05:ﬁ'<113v A H - 1H)+

197 rhae
1—v 1—v -
Lemma 5.2 (Policy hold regret). Let B(N,,) :=
CyB,(Nn)+Cs5By(N,y,). Forallt € N, wherem € [M],
it holds that

Z (Vt* - V;”t) < Np - (Ol(l - UT)GM

tEN,

4 Codd 4 03) + B(N,p)

where C4,Cs,C3,Cy,Cs are the constants defined in
Lemma 5.1.
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By leveraging Lemmas 5.1 and 5.2, the dynamic regret
R(T) will be bounded below.

Theorem 5.3 (Dynamic regret). Let B(tm,tm41) :=
B(Ny) + B(G,). Then, it holds that

R(T) < mz::l ( i (N o= i) (1 —pr)

nrt
policy optimization regret(RT )

m

+ (N + G)(Co8f, + C3) + Bltm, tms1)

O function forecasting regret(R, ) non-stationarity regret(¢)

In Theorem 5.3, we articulate the decomposition of R, (T")
into three terms: the policy optimization regret, denoted as
AT, @ value forecasting regret, denoted as i)%j;, and non-
stationarity regret, denoted by R7.". Now, by extending the
upper bound of the forecasting error regret to 2%21 RS <

Yot (N + G )(Cz5f +Cs) = T(Caoy + Cy) <

T (CQ (Lumax vV + l L + 1) ( Tmax)) + 03),
we find that its upper bound is 1ndependent from
{N;,G;}", and satisfies a sublinear convergence rate to

the total time T for any [/, = (1/7)%,a > 0.

Expanding on the independence of {N;,G;}7, from the
upper bound of Z i)%f we will show how V,,, balances
between JRT and i)‘iiff“ followed by minimizing the upper
bound of R, (T) in the next subsection.

5.2. Theoretical insight

One crucial theoretical insight to be deduced from The-
orem 5.3 is what nonzero value of N,, strikes a balance
between AT and R, Our insights begin with the analy-
sis of R,,,(T"). We start by considering a fixed time interval
[ty tm+1], Which brings up the constraint N,,, + G,,, =
tm+1 — tm. The initial aspect of our investigation addresses
whether a nonzero value of V,,, offers any advantage in a
stationary environment.

Lemma 5.4 (Optimal N}, G, for R7)). Given a fixed
time interval [ty tm+1), the optimal values N}, and G,
that minimize RY, are determined as N}, = 0 and G, =
tm+1 — tm, respectively.

Since N5 = 0 is satisfied in stationary environments (see
Definition 3.3), Corollary 5.5 ensues from Lemma 5.4.

Corollary 5.5 (Optimal N;,, G, in Stationary Environ-
ments). Consider a stationary environment. The upper
bound of R, achieves its minimum when N,, = 0 and

Gm = tm+1 - tm

What Corollary 5.5 states is intuitively straightforward. This
is because in scenarios where the time sequence of the pol-
icy update (t1,ta,...,ty) is fixed, maximizing the policy

R.(s0,a9)

Ry (s, a0)

Figure 3. Optimal solutions for ming,, n,, B(tm,tm+1) are
(Gry Ny) = (4,2),(2,4). (@ G = 4,Np, = 2. (b)
Gm =6,N,, =0

update duration is advantageous without considering fore-
casting errors. However, we claim that IV,,, plays an impor-
tant role in a non-stationary environment, i.e., positive N,
minimizes the upper bound of R, (T'). We first develop the
following proposition.

Proposition 5.6 (Existence of Positive N}, for RSY). In
a non-stationary environment, Consider any given time in-
terval [ty tmy1] satisfying tymi1 — tm > 2. Under these
conditions, there exists a number N,, within the open inter-

val (0, tyy1 — tm) that minimizes B(t,,, tyy1).

One way to intuitively understand Proposition 5.6 is ex-
emplified in Figure 3. Consider a non-stationary envi-
ronment where the reward abruptly changes only at state
sp and action ag. Suppose that Cy = C5 = 1. Then

min B(ty,tmy1) = 1 and its solution is attainable at
(GE,,N) = (4,2) and (2,4) (Figure 3 (a)), while in the
case where G,,, = 6, N,,, = 0 yields B(ty,t;mi1) = 3

(Figure 3 (b)). Both subfigures optimize the policy toward
the forecasted future () value of time ¢,,1, but the time
that the agent stops to update the policy (¢t = t,, + Gy)
determines how much the agent would be conservative with
respect to the future reward prediction.

Based on Proposition 5.6, we introduce the sur-
rogate optimal solution (G}, Ny ) for the non-
stationarity regret RN, According to Corol-
lary 3.2, it holds that B.(N,,) is bounded by

(=t 4 Gt N =1 Ozf~_(t”"+c'v"’/)B‘TnaX (Nm), and similarly,

t=tm+Gm

B,(G,,) is bounded by ZZ::+GM_1 "t B (G, ).
For brevity, we use the notation a1 = ao(Gp,) and
Qo2 = (M), and similarly for Bmax = B (G,,) and
BY = By™ (Nm), where ¢ is elther ror p. Furthermore,

we define ap as the max (o, 1), and BE™ as the
max (B;fj%‘, B;f%‘), where [ is either 1 or 2.

Lemma 5.7 (Surrogate optimal (G;;,, N;},) for R¢™). For
given m, ty,, ty, 41, the surrogate optimal policy update and
policy hold variables that minimize the upper bound of R;""
are

Ny =

™ arg min

Ny €{[N;, || Ny |41}

R (N, Gim)
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Figure 4. K7, upper bound with different environmental hyper-
parameters. 4 denotes the minimum of each function graph.
(@) ar/az € {0.98,0.99,1.0,1.01,1.02}. (b) BI™/By* €
{0.94,0.97,1.0,1.03,1.06}.
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and learning rates. 4 denotes the minimum of each function
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€ {0.01,0.1,0.3,0.7,0.99}.

and
Gy, =tm+1 —tm — N},
where
oo (el =y B
In (g /an) Inas /(g — 1) Bpx

Note that Lemma 5.7 provides a nonzero suboptimal N,
that minimizes the non-stationary regret R;'”. Now, we
combine Lemmas 5.4 and 5.7 to find the suboptimal N,
and G, that minimize the upper bound of R, (T').

Theorem 5.8 (Surrogate optimal (G, N;%,) for R,,,). For
givenm, t,,, ty1, the surrogate optimal policy update vari-
able Ny, and surrogate policy hold variable G, that mini-
mize the upper bound of R, satisfy the following equation:

Ci(Npp —D)In(1 —py7) — 1) (1 — nT)Gm+
| 1

(Ca+ Cs) | 2L Bpesa{m — 222 prargm ) —
a1 — 1 9 — 1

where C1,Cy4,Cs,n,T, a1, s, BI'™, and B5* are con-
stants or parameters specific to the system under considera-
tion.

Apart from Lemma 5.7, Theorem 5.8 does not provide a
closed-form solution. Consequently, we will conduct some

numerical experiments to understand how N, and G7,
change to the hyperparameters of Theorem 5.8 in the next
subsection.

5.3. Numerical analysis of theoretical insights

Figures 4 and 5 show how the surrogate optimal N,
changes with different parameter choices. Figure 4 shows
how N changes with different parameters of the envi-
ronment intrinsic uncertainty. Note that (o, B™) and
(o, B represent the magnitude (severity) of the intrin-
sic uncertainty of the environment during the policy update
phase (G,,) and the policy hold phase (N,,), respectively.
The two subfigures of Figure 4 not only support the impor-
tance of holding V%, but also show the necessity of keeping
the policy hold phase longer if the uncertainty of the environ-
ment during the policy update phase (a1, BI"*) is greater
than that of the policy hold phase (a3, B3**). Moreover,
Figure 5 (a) shows that increasing [V;;, provides a better
performance if the environment regret term dominates the
regret R + M7 . We define the dominant ratio C: as
cH = f mrLREnY J(Ren + RT )dt. Finally, Figure 5
(b) validates that the surrogate optimal solution is still an
acceptable solution and illustrates that the suboptimal gap
resulting from relaxing the non-convex upper bound into a
convex one is tolerable, as a higher learning rate leads to a
fast convergence of A7, and, in turn, intuitively results in a
longer N, within fixed ,,,, t;41-

6. Experiments

In this section, we demonstrate the effectiveness of two key
components of the proposed algorithm, forecasting () value
(line 7 of Algorithm 1) and the strategic policy update (line
9 ~ 12 of Algorithm 1). In Subsection 6.2, we illustrate how
utilizing forecasted () value yields higher rewards compared
to a reactive method in a finite-dimensional environment.
Subsequently, in Subsection 6.3, we will show how strategi-
cally assigning different policy update frequencies provides
a higher performance than the continually updating pol-
icy method in an infinite-dimensional Mujoco environment,
swimmer and halfcheetah. Details of environments and
experiments are specified in Appendix C.

6.1. Future () value estimator

For the following experiments in Subsections 6.2 and 6.3,
we design the ForQ function as the least-squares estima-
tor (Chandak et al., 2020b), namely thﬂ‘tm(s,a) =
H(tmi1) " w*(s,a) where ¢ : [0,T) — R is a basis func-
tion for encoding the time index. For example, an identity
basis is ¢(x) := {x, 1}. Then w*(s, a) denotes an optimal
solution of the least-squares problem for any s € S, a € A,
namely w* (s, a) = argmin, cgax: [|Q(s,a)—P(X) Tw]|



Pausing Policy Learning in Non-stationary Reinforcement Learning
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ange dots are SAC. An error bar is 0.5 standard deviation over 36
different hyperparmeter results. (a) Average reward [y = 5. (b)
Average reward [; = 20.

= [Qtnl_lp+1(s,a),...,th(s,a)]T S
Ri»x1 X [t — Iy + 1,y ty]T € RYX1) and
D(X) := [Pt — lp + 1), ..., d(t)] € R, The so-
lution to the above least-squares problem is w*(s,a) =
(@(X)T8(X))1B(X) T Q(s, ).

where Q(s,a)

6.2. Goal switching cliffworld

We first experiment with a low-dimensional tabular MDP to
verify that evaluating the policy by the forecasting method
yields a better performance than the reactive method. The
environment is the switching goal cliffworld where the agent
always starts in the blue circle and a goal switches between
two green pentagons (Figure 6 (a)). We use the ()-learning
algorithm (Watkins & Dayan, 1992), denoted as Q in Figure
6 (b), to evaluate the current policy and compute future
policy with future @) estimator, denoted as FQ in Figure 6
(b), proposed in Subsection 6.1. Figure 6 (b) illustrates that
after the goal point switches at step = 10000, the reactive
method fails to obtain an optimal policy for the remaining
steps. In contrast, the forecasting ) method successfully
identifies an optimal policy shortly after step = 15000.

Figure 8. Swimmer environment: blue dots are FSAC and orange
dots are SAC. An error bar is 0.5 standard deviation over 36 differ-
ent hyperparmeter results. (a) Average reward [y = 5. (b) Average
reward [y = 15.

6.3. Mujoco environment

To verify our findings in a large-scale environment, we pro-
pose a practical deep learning algorithm, Forecasting Soft-
Actor Critic (FSAC), that specifies Algorithm 1. The FSAC
algorithm is detailed in Algorithm 3 (see Appendix B). Then,
we conduct experiments in high-dimensional non-stationary
Mujoco environments (Todorov et al., 2012), swimmer, and
halfcheetah where the reward changes as the episode goes
by (Feng et al., 2022). We utilize the Soft-Actor Critic
(SAC) algorithm (Haarnoja et al., 2018) as a baseline.

In particular, the distinctions between the FSAC and the
SAC are the lines 2, 9 ~ 11, and 16 ~ 18 of Algorithm
3. In FSAC, the prediction length Iy € N and the update
frequency vy € (0,1] are set as hyperparameters, with
tm = lymforallm € [M] (line 2). The algorithm forecasts
future () values at every [ iteration (lines 9 ~ 11), updating
the policy during the interval (¢,,, t,, + |7y |] and keeping
it between (¢, + [Lf7f], tm1] (lines 16 ~ 18).

Figures 7 and 8 depict the results. In most cases, the FSAC
algorithm (indicated by blue dots) yields a higher average
return compared to the SAC algorithm (indicated by orange
dots). These practical experiments aim to emphasize that
vf = 1.0 does not necessarily lead to the best average
reward. This observation aligns with our theoretical analysis
presented in Section 5.2, where we demonstrate that a non-
negative /V;;, minimizes the upper bound on dynamic regret.
We will elaborate on training and result details in Appendix
C.2.

7. Conclusion

This paper introduces a forecasting online reinforcement
learning framework, demonstrating that non-zero policy
hold durations improve dynamic regret’s upper bound. Em-
pirical results show the forecasting method’s advantage over
reactive approaches and indicate that continuous policy up-
dates do not always maximize average rewards. For future
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work, it is crucial to explore methods to minimize the fore-
casting error to achieve a sharper upper bound. This paper
presents work whose goal is implementing real-time control
with prediction in environments with unknown uncertainties.
A significant societal impact of our research is the narrowing
of the gap between simulation-based RL and its real-world
applications, along with demonstrating the advantages of
pausing policy learning in continual learning settings.
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A. Related works

In this work, we have introduced a forecasting method for non-stationary environments. Before proceeding with our
contributions, we first review the existing methods for addressing non-stationary environments in reinforcement learning
(RL). Those can be categorized into three main approaches.

One naive approach is to utilize previous RL algorithms that were designed for stationary environments to solve non-
stationary environments. Namely, this involves directly applying established RL frameworks for stationary MDPs without
additional mechanisms. Usually, this approach involves restarting strategies to handle longer horizon problems in a decision
making.

The second approach is model-based methods, which update models to adapt to changing environments. Techniques include
using rollout data from the model (Janner et al., 2019; Hafner et al., 2023). A few well-known methods include online
model updates and identifying latent factors (Zintgraf et al., 2021; Chen et al., 2022; Huang et al., 2022; Feng et al., 2022;
Kwon et al., 2021). Model-based methods face challenges in non-stationary settings due to difficulties in estimating accurate
non-stationary models (Cheung et al., 2020; Ding et al., 2022). To be more specific, (Huang et al., 2022) explored learning
factors of non-stationarity and their representations in heterogeneous domains with varying reward functions and dynamics.
(Zintgraf et al., 2021) proposed a Bayesian policy learning algorithm by conditioning actions on both states and latent tensors
that capture the agent’s uncertainty in the environment. In a similar manner, (Feng et al., 2022) incorporated insights from
the causality literature to model non-stationarity as latent change factors across different environments, learning policies
conditioned on these latent factors of causal graphs. Despite these advancements, learning optimal policies conditioned
on latent states (Zintgraf et al., 2021; Chen et al., 2022; Huang et al., 2022; Feng et al., 2022; Kwon et al., 2021) presents
significant challenges for theoretical analysis. Recent works (Cheung et al., 2020; Ding et al., 2022; Ding & Lavaei, 2023)
have proposed model-based algorithms with provable guarantees. However, these algorithms are not scalable for complex
environments and lack empirical evaluation.

The third approach is model-free methods. (Al-Shedivat et al., 2018) utilized meta-learning among training tasks to find
initial hyperparameters of policy networks that can be quickly fine-tuned for new, unseen tasks. However, this method
assumes access to a prior distribution of training tasks, which is often unavailable in real-world scenarios. To address this
limitation, (Finn et al., 2019) proposed the Follow-The-Meta-Leader (FTML) algorithm, which continuously improves
parameter initialization for non-stationary input data. Despite its innovation, FTML suffers from a lag in tracking the optimal
policy, as it maximizes current performance uniformly over all past samples.

To mitigate this lag, (Mao et al., 2020) introduced adaptive Q-learning with a restart strategy, establishing a near-optimal
dynamic regret bound. (Chandak et al., 2020b;a) focused on forecasting the non-stationary performance gradient to adapt
to time-varying optimal policies. Nevertheless, these approaches are limited by empirical analyses on bandit settings or
low-dimensional environments and lack a theoretical performance bound for the adapted policies. Also, (Fei et al., 2020)
proposed two model-free policy optimization algorithms based on the restart strategy, demonstrating that their dynamic
regret exhibits polynomial space and time complexities. However, these methods (Mao et al., 2020; Fei et al., 2020) still
lack empirical validation and adaptability in complex environments.

B. Algorithms

Algorithm 2 Update: Update policy 7

1: Input: policy 7, learning rate 7, entropy regularization constant 7, discount factor -y, policy evaluation @
1— -7 ~
2 Z(s) = Y ea (rlals)' 75 exp (nQ(s.0)/(1 = 7))

3 7(1s) = 7k - (7(15) 7T exp (232
4: Return 7’

C. Experiments
C.1. Environments and experiments details

Goal switching cliffword

12
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Algorithm 3 Forecasting Soft Actor-Critic

1: Initialize parameter vectors v, v, 6, .

2: Set prediction length [, update frequency v
3: for each iteration do

4:  for each environment step do

5: Sample action a; ~ mg(a¢|st).

6: Sample next state s;1 ~ p(St41]8¢, ar).
7: D <+ DU {(st,at,7(8t,at), St+1) }-

8:  end for

9:  ifiteration % [; = O then

10: Q =Forq(D).
11:  endif

12:  for each gradient step do
13: Y= — )\wvd,Jv(w)

14: 0; < 0; — AoV, JQ(@Q fori € {1, 2}.
15: Y Tap + (1 — 7).

16: if iteration % Iy < [y, then

17: ¢ ¢ — AV Jn(d).

18: end if

19:  end for

20: end for

The environment is 12 x 3 tabular MDP where (0, 2) is a fixed initial state (blue point), and the possible goal points are
(11,0) and (11, 2) (for the z, y axis, see Figure 6 (a)). The agent executes 4 actions (up, left, right, down). If the agent
reaches the restart states ((1,2), (2,2), ..., (10,2) and (1,0), (2,0), ..., (10,0)), denoted by yellow points, then the agent
goes back to the initial state with a failure reward —100. If the agent reaches the goal point, then it receives the success
reward +100. For taking every step (for every time the agent executes an action), the agent receives a step reward of —100.

s

For experiments, we use the -learning algorithm (Watkins & Dayan, 1992). In Figure 6 (b), we denote “reactive’
label as 2-learning algorithm proposed by (Watkins & Dayan, 1992) and “future ()” label as a method that combines
@-learning algorithm to evaluate the current policy and use future () estimator to compute future policy that was proposed
in section 6.1. We set the maximum number of steps as 100. The experiments have been carried out by changing
hyperparameters of ()-learning: step size « and € from the e-greedy method. We have done experiments with different
(o, €) = (0.05,0.05),(0.1,0.1), (0.1, 0.05), (0.2,0.1), (0.2,0.05), (0.3,0.1).

Swimmer, Halfcheetah
The Swimmer and Halfcheetah environments share the same reward function at step h as r;, = r,(Ll) + 7“22) + 7“23). It

comprises a healthy reward (r,(f)), a forward reward (r}(f) =k fﬁ;f—m

the environment to be non-stationary by the agent’s desired velocity changes as time goes by. Specifically, we modify the

forward reward r,(f) varies as 7"22) = — |ky

ks > 0), and a control cost (r,(f)). We modify

ZLh4+1—Zh

Atrome va(t) ’, with v4(t) = asin(wt) and ¢ representing the episode. Here,

a,w > 0 are constants.

For our experiments, we varied hyperparameters such as learning rates A, € {0.0001, 0.0003, 0.0005,0.0007}, soft update
parameters 75 € {0.001,0.005,0.003} and the entropy regularization parameters {0.01, 0.03,0.1} and also experimented
with different prediction lengths [ € {5,15,20}. We selected the average reward per episode as the performance metric,
in line with the definition of dynamic regret. For given hyperparameters, we compare the average reward between FSAC
and SAC for different update frequencies v; € {0.1,0.2,...,1.0}. The experiments were conducted in two different
Mujoco environments: HalfCheetah and Swimmer (see Figures 7 and 8). In Figures 7 and 8, error bars denote 0.5 standard
deviations.
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C.2. Results

In this subsection, we have elaborated on the results of the experiment on Halfcheetah and Swimmer. Note that Fig-
ures 9,11 and 12 are detailed results for Figure 7 of the main paper, and Figures 10,13 and 14 are detailed result for
Figure 8 of the main paper. Figures 9 and 10 show the reward return per episode for different update frequencies
v € {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}. Figures 11,12,13 and 14 compare the FSAC and SAC reward return
per episode. Note that the plotted lines are mean rewards calculated over 36 different hyperparameters (learning rates
Ar € {0.0001,0.0003,0.0005,0.0007}, soft update parameters 75, € {0.001, 0.005,0.003} and the entropy regularization
parameters {0.01,0.03,0.1}).
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Figure 9. Reward per episode in the Halfcheetah environment for various update frequencies v; € {0.1,0.2,0.3,0.4,0.5,0.6,0.7
,0.8,0.9,1.0}. The plotted lines represent the mean reward across 36 different hyperparameters. (a) For iy = 5. (b) For Iy = 20.
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Figure 10. Reward per episode in the Swimmer environment for various update frequencies vy € {0.1,0.2,0.3,0.4,0.5,0.6,0.7
,0.8,0.9,1.0}. The plotted lines represent the mean reward across 36 different hyperparameters. (a) For iy = 5. (b) For Iy = 15.
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D. Proofs
Proof of Proposition 4.1.

2 tm
||th+1 - Q:’!7L+1|‘OO = Z Wy (Qt - Q:erl) + Z (wt - 1) QIm+1
t=tm—lp+1 o t=tm—lp+1 o
t/ryl tnz
< > el (198 - @ llee 1R = Qulloe) + D2 e — 11|,
t=tm —lp+1 t=tm —lp+1 e
tm tm ~ 2
< > k| > (e - @il + 1108 - Q)
t=tm;,—lp+1 t=tm;m—lp+1
tm
X ) ||en
t=tp—lp+1 i
tm
i > (110 - Q1+ 20101 - Qf L lell@) = QulllIQ7 — Q12
t=tm—lp+1
t
m 1 — ~H
+ |1 Z [we]? + 1, ( 1777 rmam) ) 1)

t=t,, —I+1

We use Lemma E.2 to conclude that

H

|
* *
||Qt _QtM-HHOO < 1_7

Tmal‘
(Brtttm) + 722 Byt )

Moreover, the assumption N
[1QF — Qtlloo < €

holds. As a result,

Hth+1 - Qme

o0

—H T x 2
[(11_1 (Brtstms) + 522 Byt tns) ) )

_H
t=tm—l+1 +2 11_’Y»Y (Br(ta tm+1) + Tliaf;c Bp(ta tm+1)) €+ €§:|

<L

1— H
+z,,(L+1)< : 77 rm>

T

e B, (t, tm+1)> . Then, the inequality (1) can be rewritten

To simplify the expression, define u; := 1; _7: (BT(t, tmt1) +

in a simpler form as follows:

tm

~ . 1—~H
@~ @] <2y D 20max(une)® +1,(L+ 1) (177"3:)
o -
t=t,;,—l+1
1-— 'yH
<VaLly | ma | (max(ue)) + (L +1) (Mm> :
Proof of Proposition 4.2. Refer to Theorem 7 of (Qu & Wierman, 2020). O
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Proof of Lemma 5.1. The policy update term is divided into three terms:

Gm—1

MoV =VT) = Y (Vi = Vi)

teGm 9=0

Gm—1

= Z (Vi1 = Virgd? )+ (Viigd? o= Vims )+ (Vivg = Vervcon—1)
g=0

(1D (1-11) (1-11m)

Note that the term (1-I), the term (1-II), and the term (1-III) are upper bounded by Lemma E.1, Corollary E.3, and Lemma
E.4.

For any g € [0, G, — 1] and for any s € S, one can write:

* m 2(y42 27 log | A
Vi1 = V&, 1 < (4 2)(1 = m)eC) + 22 (14 1) ep 4 2l

H

s Vimde (s)=Vima(s) < 55

By (tn+9, tn+ G = 1)+ 125 (5525 =7 ) - Byt + 9.t +- G 1)

— H T .
* ‘/ttrﬂrg(s) - Vvttn#»Gmfl(S) < 1117 (Br(tm + g»tm + Gm - 1) + frf; Bp(tm + g7tm + Gm - 1))

where O = [|Q; — Q7 [[oo +27(1 — {5 |[log 7} — log ™7 || ). Now, taking the summation over g = 0, ..., Gy, — 1
gives rise to

PORUAER A

teEGm
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+ 1_7 : Z Br<tm+gvtm+Gm71)
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(Z By (tm + gytm + Gm )+ZBp(tm+g,tm+Gm—1)>

g=0 1_7 9=0
1— 2y + 2 271
<(y 420t A= W> +Gm.<(v+> (1+7>.€f+fogfll)
L=n nt l=n
2(1—+") 4
S (Bi(tmstm + Gy — 1
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v (1=9" 1= e\ (5
== _ H . A Br(tmstm + G — 1
+(17 (1v ! - l—y 1-9v (B:( " )
C _ _
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where C; = (v + 2) (||Q;<,W—th so + 27(1 — {1 || log wf, —log e, m)),cz - 2%2)(1+n%),c3 -
27 log | A| 2(1—~) o 1— 1 Tmaz
%C 177 ’CS—ﬁ'(ljw H1H)+1_WW.1_7. 0
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Proof of Lemma 5.2. The policy hold error can be divided into three terms:

Npm—1

* T\ * Ttm+Gm
E (Vt - Vt ) - § (Vtm+Gm+n - Vtm-;-qu_n)
teEN, n=0

N,,—1
_ * i * U Ttm+Gm Ttm+Gm _ 1/ Ttm+Gm
= E, (Ve tGoman = Viva,) + (Vi qa, = Vi e )+ (Ve =V e n)

n=0

(2-D (2-1D (2-1II)

The terms (2-I), (2-1I) and (2-III) can be bounded using Corollary E.3, Lemma E.1 and Lemma E.4. Recall that we have
defined the time interval N,,, = [t;, + G, tima1), Where t, 11 =t + G + Ny, One can write:

" Tmax
S ViiGin = Vivia, < 2 (Beltm + Gt + G 4 10) + 552 By (b + Gy b + G + 1))

* m+Gm 2 2 27 log |A
FViia, Ve < G- nn)t0) + 222 (14 ) e + 2y

H H
o VymEom Yt ton < 11—17 ~BT(1tm+Gm,tm+Gm+n)+ﬁ-(—11‘17 —WH’lH)-Bp(tm+Gm,tm+Gm+n).

Now, taking the summation over n = 0, 1, ..., N,,, — 1 leads to

2 2 271
Z (Vi = V™) =Np, - ((’Y+2)((1 —m‘)GmC’) + M <1+ 7) ep+ 7'0g|.»4|>
teEN; 1—7 nT 1—~

1—’}/H N,,—1
+ 1—~ : Z Br(t7n+G'rnatm+Gm+n)

n=0
1_ H Np—1
+ L. <1_A’7 —7H1H> : ( > Bp(tm + Gt + G +n)>
n=0

1—"YH N,,—1 r N,,—1
+ (Z Br(ﬁmJrc:m,rfm+Gm+n)+1_7 > Bp(tm+Gm,tm—|—Gm+n)>

n=0 n=0
2(v+2) gl 27 log | A
<N, - 2)(1—nr)¢C") + —~—2 1+ — ) - A
<N (G420 =)oy + B2 (14 2 208
2(1 —~H)
+(1_77)~(Br(tm+Gm,tm+Gm+Nm—1))
v 1—" 1-9" Tmas \ (5
[ [ S H . . Br tm m;tm m Nm -1
+<1—7 (1—7 ! TSy T (Bt +G o )

=Ny, - (C1(1 = 7)™ + Coey + C3) + C4B,(Ny) + C5Bp(Nom)

where C4, Cy, C3, Cy, C5 are the constants defined in the Lemma 5.1. O

Proof of Theorem 5.3. Note that the following relationship holds for the dynamic regret 93(T):

M
R(T) = ( S v+ Y v:t)).

m=1 t€EGm teEN,

Policy update error Policy hold error

We use Lemma 5.1 to upper bound the use policy update error and use Lemma 5.2 to upper bound the policy hold error.
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This leads to
M
)=y (S 0 -ve+ ¥ o)
m=1 “MtEG, tEN
Mo B -
< <nl (1= (U =97)) + G (Cad, + C5) + CuBy(Gm) + CBy(G)
m=1
+ Ny - (01(1 — )G Codf 4 03) + Cy B, (No) + C5Bp(Nm))
L [C C
= Z 7777{ + (chl — 7771_) (1 — ’I77')Gm + (Nm + G,—,J(Cgé,{l =+ 03) + B(tm,tm+1)>.
m=1
O
Proof of Lemma 5.4. The reader is referred to the proof of Theorem 5.8. O

Proof of Proposition 5.6. For fixed t,,,t,,11, note that B(t,,,t,,.1) is a function of G,,, N,,, with the constraint
Gm + Ny = tyma1 — tm. In this proof, we let B(t,,tmt1) to be denoted as a function g(G,,, N,,). Recall
that we have defined B(ty11,tm) := BWNm) + B(Gm). Now, since g(0,tm11 — tm) = g(tmi1 — tm,0) =

i"";’nll_l (C4By(tm,t) + Cs5By(tm,t)), it is sufficient to show the existence of Gf, € (0,t;41,tn) and N}, €
(0, 1, t) that satlsfy g(GI,L,N ) < g(0,tmt1 — tm) = g(tm+1 — tm,0). By the definition of non-stationary environ-
ments (see Definition 3.4), let ¢1, ¢} satisfy B, (tLt;) > 0or B,(t 17tT) > 0. Now, letting Gf,, = t}, we have B, (t,,, Gf,,) >

0 or By(tm,G) > 0. As a result, either Zt:+G ' Bt t) + Zt"‘“ "B(tm + Gl 1) < Zi:ﬁ*rl By (tm,t) or
Z§Z+GI”71 By(tm,t)+ Z o L By(tm + Gl 1) < Zt:“ " By(tm, t) holds. Now, by combining the two inequalities
with the constants C4, Cs > O deﬁned in Lemma 5.1, we obtain that

CyB,(tm,tm + G )+C4B (tm + Gl Trg1) + CsBy(tm, ty + G1 ) 4+ CsBy(ty + Gt
< CuB, (tm, tm+1) + C5Bp(tm, tm+1)

if and only if
Bt tm + GY,) + B(tm + Gl tmg1) < Bltm, tmg)-

Therefore, Gf, = t}, NI = t,41 — t,, — t], satisfies the condition g(Gi,, NI ) < g(0,tpms1 — tm) = g(tme1 — tm., 0).

m?

This completes the proof. O

Proof of Theorem 5.8. We first show that the policy optimization error is a convex function of G,, (or N,,. Let
fi(Npm, Gr) = C1(1 — (1 — n1)%m) + N,,C1(1 — n7)%™, where N,,, + G,y = tme1 — L is a constant. Note
that ON,,, /0G,,, = —1. Tt holds that

1 0f

Cy 0Gy,

= {ln(l —n7) (Npy — 1) — 1}(1 - 777')Gm

and

2
Cil . SG‘% = {(ln(l —n7)2(Ny, — 1) — 21In(1 — 777')}(1 — nr)Gm

Therefore, 9% f1/0G2, > 0 and 02 f; /JON?, > 0 holds for VN,,, G,, > 0, where N,,, + G, = t;i1 — t, holds. The
non-stationary terms are bounded as follows:

B(N;) + B(Gm) = (Cs + Cs) (Br(Niw) + Br(Gm)) -
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Note that by Assumption 3.1, B,(N,,) < Y- EZIg’"JFN Lol tm kG pmax (A Y and Br(Gr) <

t tm+G Lt t=tm pmax(G, ). For the short notation, we use a6 (Gm) = o1, @6(N) = o2 and BP*¥(G,,) =
Bgle, Bm‘”‘(J\/ ) B where o = 1 or p. Also, we let ap = max(a,.0, ap 0) and BE™ = max(B)'Y, B]'}), where
[0 =1 or 2. One can write:

BNm) + B(Gm) = C1 (Br(Nin) + Br(Gim)) + Cs5 (Bp(Nim) + Bp(Gim))

G N.
a;™ —1 max ay™ —1 max
§<C4+C5>'<él'31 a1 B )
1= 2 =

We denote the upper bound as a function f3(N,,, Gy,). Note that B and BY™®* > 0 hold for a non-stationary environment.
If 0 < ay,ay < 1, then fo(N,,, Gy,) is a concave function with respect to (Ny,, Grp). If g, g > 1, then fo(Nyp, Grpy) is
a convex function with respect to (Ny,, G, ). O

E. Supplementary lemmas

Lemma E.1 (NPG Convergence). Assume that we have an inexact Q value estimation at time t,, + G, — 1, thJFGm_l,

m

Qi v —1lloo < €5 Forany g € [G,,), it holds that

2 2 271
(WH(HW).EﬁfoglAl

* —1
Vi a1 = Vi, S (v +2)((L =)o) + 1~ o -~

—|—27<

Proof of Lemma E.1. We omit the underscript ¢ for simplicity of notation, i.e., V;, V., V;* denote V, V., V*, respectively.
For any m € [M] and any t € G,,, the inequality

Vi(s) = V() < IVE) = VIOl + IIVEC) = VaOlloo +1IVR() = V)l
27-10g|.A|
1—

where

=]l -e

T ) Hlogwi — logw(O)H
-

o0

<[V = VrO)llo +

holds since for any policy 7, ||V — V™| = 7 max, |H(s, )| < TI%LA holds. Now, note that V. is a value function of
a policy 7, that we obtain after updating g iterations. As a result,

V() = Va0l < 7lllogmr —lognlf, +[1Q7() = Q- ()l

2
ST'; ((1—777')g_101+02) +’y((1—777)g_101+02) )
= (’y + 2) ((1 — 777-)-‘7_101 + CQ)
where )
CleQj—Q(TO) ‘ + 27 (1—m)Hlog7ri—log7r(o)H , = =L (1+ )
oo 1—x oo C1l—n nT
The equation (2) holds cue to Theorem 2 in (Cen et al., 2022). O

Lemma E.2 (Difference between optimal state action value functions of two MDPs). For any two time steps t1,to € T, we
denote the optimal Q functions at step h € [H] as Qf (s, a),Qy}, 1,(s,a). Then, for any state and action pair s,a € S x A,

H-1

* Tmax
Qi n(s,0) = Qf, 4(s,a) Z VT (t, 1) + 5 4 Z VB (th, t2)

holds, where B,.(t1,t2) and By(t1,t2) denote the local time-elapsing variation budgets between the time steps {t1,t1 +
1,t14+2,..., tg}.

21



Pausing Policy Learning in Non-stationary Reinforcement Learning

Proof of Lemma E.2. Only for the purpose of the proof of Lemma E.2, we define the state value function V) : & — R and
the state action value function Qf , : S x A — R at step h of time ¢ as
s = s]

E ’Y Tth'
0 _ 0 _
st—s,at—al.

Vi (s) == B,

h!=h

and

Qt h(s (1) - EMt

Z’Y Tth'

h'=h

Note that the optimal state value function and the state action value function satisfy the following Bellman equation.
Qi n(s,a) = (Ren +vPiVi) (s,0), 77 = arg max Qinls,a).
ac
The proof depends on a backward induction. First, the statement holds when h = H — 1 since

QF, mr—1(s,0) = Q-1 (s:0)|| = Ity 51 = 70 1]l oo = 1Rty = Riy || oo
Now, we assume that the statement of Lemma E.2 holds for h + 1. Then, for A it holds that
Qi1 = Qi 50) = (o= R (51007 3 (P15 Vi a6 = Pl Vi () )
s'eS

< B(t1t2) 47 Y (Ptl o, @)Q% por (/s (5)) — Paa(s '|s,a>cz;,hﬂ<szw;;<s’><s'>).

s’eS

Then by the induction hypothesis on & + 1, the following holds for any s’ € S:

H-1
Q;,thl(Slﬂrzl (s) < QtQ h+1(5 7Tt1( Z Y _(h+1)B (t1,t2) + lﬂ Z " _(}L+1)Bp(t17t2)
h'’=h+1 h'=h+1
H-1 r H-1
< QIQ,thl(SI?ﬂ—Z; (S/)) + Z '7h —(’L+1)Br(t17t2) + % Z '7h _(h+1)Bp(t17t2).
h'’=h+1 v h’=h+1

Therefore,

Qi (60 = Qpo(5:0) = Brltrot) +9 Y (Pl lsc0) = P15 0)) Qa6 ) )

s'eS
H-1 r H-1
+ )" Byt te) + > ATt 1)
h’=h+1 h'=h+1

H-1
< ||(Pa(s'15.0) = Patsls, )| (@0, g (s, ()| + D2 2B, 12)

h'=h
. H-1
S
T =
H-1 H-1
T'max R —h "'max B —h
<qBy(trta) - 770+ DA T Bt te) + 77 Y T By ()
T Tk R

H-1 ,o H

= > AV B (1, 1) + R > AN TB(t, 1),

h=h T p=h
This completes the proof. O
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Corollary E.3 (Difference between optimal state value functions of two MDPs). For any two times t, < to € T, the gap
between the two value functions at times t1 and to is bounded as

* * 1_7H Tmax
Vi (s) = Via (5)lloe < 5 5 Br(tl,t2)+1_’pr(t1,t2) :

Proof of Corollary E.3. Corollary E.3 comes from Lemma E.2. O

Lemma E.4 (Difference between value functions of two MDPs with same policy). For any two times t1,to € T, any policy
m, and any state s € S, the gap between the two value functions V7 and V;7 is bounded as follows:

1— 1—~H
Vii(s) = Viz(s) < 1 777 “B(ti,t2) + ﬁ (177 —’YH_lH> - By(t1,t2).

Proof of Lemma E.4. For a given initial state s, we first define the occupancy measure of state and action (s, a) as

H-1

ot (s,a) == Z VP (s, = s,ap, = a| Py, 7).
h=0

It is worth noting that P (s, = s, ap = a|P;, ) =P (s, = s| P, 7) - w(ap = alss = s). Now, note that the value function
can be rewritten using the occupancy measure as

H-1

Vi"(s) == Enm, lz Vren | s) =5
h=0

= ]E(S’a)szr [Rt(s, CL)] .

Then for any t1,t2 € T, the gap between the two value functions can be expressed as

VI (8) = Vi(5) = By, [Bes (5,0)] — Eqo gy, [Ria(s,0)]

= E(s,a)~ag, [, (s5,0) = Riy (s, 0)] = E(sa)may, [Bey(5,0)] + E(s,a)nag, [Be, (5, 0)]
1—~H
< 1 ~ : I(Isli})( (|Rt2 (57 0’) - Rt1 (37 CL)D =+ (E(s,a)wdf2 [th (57 CL)} - ]E(s,a)~dg1 [th (Sa (1)])

1—~H"
= 1 — ,y . Br(tl, t2) + (]E(s,a)wdgz [Rt2 (S, a)] — E(S,Q)Nd?l [Rt2 (87 a)]) . (3)

Now, the gap IE(S)Q)thw2 [R,(s,a)] — E(Sﬂ)"’dfl [R:,(s,a)] is upper bounded as follows:

E(s,a)~dr, [Bea(5,0)] = E(s,a)ndg, [Beo(5,0)] <5, () = o7, (5 )1 - [[Rea (45 oo
= 1pf, () = PF ¢ )1 - Tmax- )
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Now, the term 3, [0, (s, a) — pf, (s, a)| is bounded as follows:

H-1
Z i, (s,a) — pf. (s,a)| = Z Z (’yh (P (sp = s|Py,,m) —P(sp =s|Py,7)) - w(an = alsp, = s))‘
(s,a) (s,a) | h=0
= <Z V" (P (sh = s|Poy, ) =P (sn = s|Pi,,7))| - |m(an = alsp = 5)|>
(s,a)

acA

H—-1
Z V" (P (sh = 8| Py, m) =P (sn = s|Pi,,7) )| - 1)
h=0

S

= Z (Z_ |’7h ’ (P(Sh = S|Pt277r) _P(Sh = 3|Pt1,ﬂ'))’ : Z ‘ﬂ'(ah = a|sh = S)’)
s h=0

M7E 6]

AP (Z‘(P(Shzswtwﬁ)—[?’(sh:s|Pt1,7r))‘> , (5)

h=0 seS

Now, for simplicity of notation, we denote P(s;, = s|P;, ) as P!(s), Pi(s;, = s|sn_1 = &', an_1 = a’) as PP(s|s’,a’),
and 7(ay, = a|s, = s) as 7" (als). Then, we have

> [PL(s) = PP (s)]

seS
(Pt s, ) "-1<a’|s’>-ﬂmig1<s’>—Pz”;<s|s’,a'>-n"*(a%’)-ﬂ»g1<s'>)
s€$ s’,a’
235 (Pt ') - PE () Pt’:<ss’,a’>~Pﬁl1<s'>>-w”-1<a’s’>
seS s’,a’
-y (Pt (sl ') - PE () Pt’;<ssxa'>~1@z1<s'>)-wh—1<a's’>
s',a’ sSES
<ZZ(| (PE(sls/, ') — Pl (sl a')) - P (s') - w1 (a])]
s’,a’ SES

(P ) - P) - PG 7)) )

< max (IPA (I, a) = PACI ) - [ 30 (B s) - n"H(alls))

i

+ Z (|P?2_1(8/) —P?l_l(s’)‘) T l(d|s") (Z Pl (s|s',a’ )
s’ a’ seS
(L1, t2) - (Z PrNs) Y whl(a'|8/)> + <Z [P () = PRS- D > 1
s'es a’eA s'es a’€A
= By(ti,ta) + [P = PETN(s)]
s'eS

Now, note that >~ |PY, (s) —P? (s)| = 0and )", ¢ |IP%2 (s) =P}, (s)| = Bp(t1,t2) hold. Therefore,

Z|IP )|<hB (tl,tg)

seS
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holds. Then, substituting the above inequality into the inequality (5) gives that

H-1
Z |Pg (870‘) - P?l (87 a)| S Z ’Ythp(tlyt2)
(s,a) h=0

v 1" g
< —. - H ) - B,(t1,t2).
<75 <1—’Y gt p(t1,t2)
Now, it follows from the inequalities (3) and (4) that
T T 1 _’YH Y 1_7H H-1
Vis) = Vils) < == .Br(tl,t2)+1_w.< ) By, a)

F. Experiment Platforms and Licenses
F.1. Platforms
All experiments are conducted on 12 Intel Xeon CPU E5-2690 v4 and 2 Tesla V100 GPUs.

F.2. Licenses

We have used the following libraries/ repos for our Python codes:

Pytorch (BSD 3-Clause “New” or “Revised” License).

OpenAl Gym (MIT License).

* Numpy (BSD 3-Clause “New” or “Revised” License).

Official codes distributed from https://github.com/pranz24/pytorch-soft-actor-critic: to compare the performance of
SAC and FSAC in the Mujoco environment.

Official codes distributed from the https://github.com/linesd/tabular-methods: to compare SAC and FSAC in the
goal-switching cliff world.
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