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Abstract

Autoregressive Large Language Models (LLMs)
have achieved impressive performance in lan-
guage tasks but face two significant bottlenecks:
(1) quadratic complexity in the attention module
as the number of tokens increases, and (2) limited
efficiency due to the sequential processing nature
of autoregressive LLMs during generation. While
linear attention and speculative decoding offer po-
tential solutions, their applicability and synergis-
tic potential for enhancing autoregressive LLMs
remain uncertain. We conduct the first comprehen-
sive study on the efficacy of existing linear atten-
tion methods for autoregressive LLMs, integrating
them with speculative decoding. We introduce an
augmentation technique for linear attention that
ensures compatibility with speculative decoding,
enabling more efficient training and serving of
LLMs. Extensive experiments and ablation stud-
ies involving seven existing linear attention mod-
els and five encoder/decoder-based LLMs consis-
tently validate the effectiveness of our augmented
linearized LLMs. Notably, our approach achieves
up to a 6.67 reduction in perplexity on the LLaMA
model and up to a 2x speedup during generation
compared to prior linear attention methods. Codes
and models are available at https://github.
com/GATECH-EIC/Linearized-LLM.

1. Introduction

LLMs have demonstrated exceptional capabilities in lan-
guage understanding and generation tasks, sparking im-
mense interest. Autoregressive LLMs, like OpenAI’s Chat-
GPT (OpenAl, 2023a;b), Meta’s LLaMA (Touvron et al.,
2023a;b), and Google’s Gemini (Anil et al., 2023), have
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achieved state-of-the-art (SOTA) performance in generation.
However, these models suffer from significant computa-
tional and memory demands, hindering their efficiency in
both training and serving. These limitations stem from two
key bottlenecks: Bottleneck 1: The attention module, a
core component of LLMs, exhibits quadratic complexity
relative to the input sequence length. This necessitates train-
ing LLMs with limited context sizes (e.g., 2048 tokens for
LLaMA), restricting their ability to process lengthy doc-
uments or engage in extended conversations (Chen et al.,
2023c). Bottleneck 2: The sequential nature of autore-
gressive decoding limits parallelism during generation, re-
sulting in slow inference speeds, especially for long se-
quences (Miao et al., 2023).

Various techniques have been proposed to address these
bottlenecks, including pruning (Ma et al., 2023), quantiza-
tion (Frantar et al., 2022; Xiao et al., 2023; Harma et al.,
2024), speculative decoding (Miao et al., 2023; Leviathan
et al., 2023), and linear attention (Qin et al., 2023; Lu
et al., 2021). Among these, linear attention tackles Bot-
tleneck 1 by reducing the quadratic complexity of softmax
attention from quadratic to linear. Speculative decoding
addresses Bottleneck 2 by employing smaller draft models
for speculative parallel generation, followed by verification
using the full LLM (Miao et al., 2023; Cai et al., 2023b;
Chen et al., 2023a). While promising, the effectiveness of
these techniques, especially when combined with autore-
gressive LLMs, remains largely unexplored. This paper
addresses two critical questions: Q1: Can existing linear
attention methods, primarily designed for encoder-based
LLMs like BERT (Devlin et al., 2018) or Vision Transform-
ers (ViTs) (Dosovitskiy et al., 2021), be effectively applied
to autoregressive decoder-based LLMs? Q2: Can linear at-
tention and speculative decoding be seamlessly integrated to
address both bottlenecks concurrently during LLM training
and serving?

We conduct the first comprehensive empirical exploration to
evaluate the efficacy of linearized autoregressive LLMs and
their compatibility with speculative decoding. Our findings
for QI reveal that directly applying existing linear attention
methods to autoregressive LLMs leads to suboptimal perfor-
mance, due to the disruption of temporal dependencies cru-


https://github.com/GATECH-EIC/Linearized-LLM
https://github.com/GATECH-EIC/Linearized-LLM

When Linear Attention Meets Autoregressive Decoding: Towards More Effective and Efficient Linearized LLMs

Attention Type: Attention Type:
Encoder —— Original Encoder —— Original
LinFormer RelLU
—— TransNormer —— Performer
—— Flash-Local —— Flash-Global
79 73p7 ——YOSO 79 7266 A
En-De Decoder En-De Decoder

Figure 1. Empirical evaluation of seven linear attention methods on
top of three types of LLMs on the GLUE (Wang et al., 2018) bench-
mark: (1) encoder-based BERT (Devlin et al., 2018); (2) decoder-
based GPT-2 (Radford et al., 2019); and (3) encoder-decoder
T5 (Roberts et al., 2022). Left: The majority of SOTA linear atten-
tions, including LinFormer (Wang et al., 2020), TransNormer(Qin
et al., 2022), FLASH-Local (Hua et al., 2022), and YOSO (Zeng
et al., 2021), exhibit superior performance on encoder-based mod-
els compared to decoder-based ones. Right: Other linear atten-
tion methods, such as ReLU-based one (Cai et al., 2023a), Per-
former (Choromanski et al., 2021), and FLASH-Global (Hua et al.,
2022), consistently perform less effectively on all LLMs.

cial for autoregressive generation. For instance, convolution-
based augmentation techniques (You et al., 2023b; Xiong
et al., 2021) introduce “information leakage” from future to-
kens during training, i.e., they use convoluted future context
directly instead of predicting the next tokens. Addressing
02, we find that direct integration of linear attention with
speculative decoding is ineffective, owing to mismatches in
handling temporal dependencies. In particular, speculative
decoding employs “tree-based” attention, complicating the
application of standard linear attention methods. Motivated
by these challenges, we propose an effective local convolu-
tional augmentation to prevent information leakage, boost
performance, and maintain compatibility with speculative
decoding. Our key contributions are:

* We conduct a comprehensive evaluation of seven linear
attention methods across three types of LLMs (encoder-
based, decoder-based, and encoder-decoder), revealing
that existing encoder-based linear attentions are not opti-
mally suited for autoregressive decoder-based LLMs.

* We introduce an effective local augmentation technique
that enhances the local feature extraction capabilities of
linear attention in autoregressive LLMs while preventing
information leakage.

* We develop a solution for seamlessly integrating linear
attention with speculative decoding’s tree-based attention,
boosting token-level parallelism for efficient generation
and accelerating both LLM training and serving.

» Extensive experiments on five LLMs validate the effec-
tiveness of our augmented linearized LLMs, achieving up
to a 6.67 reduction in perplexity and up to 2x speedups
during generation over existing linear attention methods.

2. Related Works

Autoregressive LLMs. Existing LLMs are broadly cate-
gorized into three architectures: encoder-based, decoder-
based, and encoder-decoder models. Encoder-based models
like BERT (Devlin et al., 2018) focus on natural language
understanding and are also commonly used in image pro-
cessing (Dosovitskiy et al., 2021). Encoder-decoder models,
such as Transformer (Vaswani et al., 2017), are designed for
sequence-to-sequence tasks, where the encoder extracts fea-
tures and the decoder generates outputs. Decoder-based
models, including GPT (Radford et al., 2019; OpenAl,
2023b) and LLaMA (Touvron et al., 2023a), generate text
sequentially by predicting the next token. While all these
models utilize Transformer architectures, their specific de-
sign and purpose vary. This paper presents a comprehen-
sive study of applying linear attention techniques to both
encoder-decoder and decoder-based LLMs.

Efficient Linear Attention Self-attention in transformers,
with their quadratic computational complexity (Zhu et al.,
2021; Katharopoulos et al., 2020), have led to the develop-
ment of linear attention methods. Kernel-based linear atten-
tions (Liu et al., 2021; Arar et al., 2022; Wang et al., 2020;
Tu et al., 2022) decompose the softmax with kernel func-
tions and change the computation order. However, few ap-
proaches focus on decoder-based autoregressive LLMs (Hua
et al., 2022; Katharopoulos et al., 2020). Recent studies,
such as LongLoRA (Chen et al., 2023c¢), aim to adapt local
attention techniques for efficient fine-tuning, but a thorough
comparison of linear attention methods for autoregressive
LLMs is less explored. This paper systematically review
existing linear attention for decoder-based autoregressive
LLMs and investigates how to efficiently enhance less effec-
tive linear attention methods.

Speculative Decoding. Linear attention methods reduce
training inefficiencies, but the sequential nature of autore-
gressive decoding limits parallelism during deployment,
restricting the number of input tokens. Speculative decod-
ing (Chen et al., 2023a; Miao et al., 2023; Kim et al., 2023;
Leviathan et al., 2023; Cai et al., 2023b) has proven to
be an effective strategy for boosting parallelism in LLM
serving. It utilizes small speculative models for initial gener-
ation, with the original LLMs validating the outputs. Recent
works, such as Medusa (Cai et al., 2023b), suggests that
these models can be the same. This paper investigates the
synergy between linearized LLMs and speculative sampling
to improve LLM training and serving efficiency.

Additional related works are provided in Appendix A.

3. Preliminaries and Evaluation

Self-Attention and Softmax Bottleneck. The self-attention
module is a core component of the Transformer (Vaswani
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Figure 2. Runtime profiling: (a) actual runtime latencies for both
the softmax and the entire model; (b) the percentage of time al-
located to softmax computations across the latency of the entire
model. All data were collected using BERT-Base/Large models on
a single A5000 or A100 GPU.

et al., 2017; Dosovitskiy et al., 2021), and typically includes
multiple heads. Each head computes global-context informa-
tion by evaluating pairwise correlations among all n tokens
(n represents the total number of tokens) as follows:

Attn(X) = Concat(Hy, - ,Hp) - Wo, where

. T
Jo(X) \/C%(X) ) .

where h denotes the number of heads. Within each head H;,
input tokens X € R"*¢ of length n and dimension d will
be linearly projected to query, key, and value matrices, i.e.,
Q, K,V € R"*9  through three linear mapping functions,
fQ = )(VVQ7 fK = XWK, fv = XWV, where dk =
d/h is the dimensionality of each head and W / /1 are the
associated weight matrices. The final outputs are generated
by concatenating the results from all heads and applying a
weight matrix W € RI¥9,

(1)
H,; = Softmax (

Attention is the bottleneck in LLMs, accounting for 55%
of the total runtime during autoregressive generation (Ap-
pendix C). Within self-attention, softmax becomes a mem-
ory bottleneck when handling long sequences (Dao et al.,
2022; Kao et al., 2023). As depicted in Fig. 2, we profiled
BERT-Base/Large models on a single A100/A5000 GPU
to illustrate the percentage of time allocated to softmax as
the token length increases. We observe that the runtime
percentage for softmax continues to increase quadratically
as the token length grows, occupying up fo 50% of the total
model latency when token length reaches 10%.

Linear Attentions (LLAs). Kernel-based LAs (Katharopou-
los et al., 2020; Wang et al., 2020; You et al., 2023b) have
emerged as an effective method for eliminating the need for
softmax and reducing the quadratic complexity. The core
idea is to decompose the similarity measurement function,

You are a woman with strong opinions about pizza. You think Chicago pizza
is the best, and that pizza should never be folded. You think pineapples on
pizza are an abomination. Want to go grab a slice of pizza after work today?
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Figure 3. Illustrating the autoregressive LLMs. The process of
generating text unfolds in two stages: (1) an initial summarization
or prefill phase that employs a large batch size and utilizes the
given input context; followed by (2) the generation or decode
phase, which operates on a single-batch basis, using previously
generated tokens to continue the text output.

typically based on softmax, into separate kernel embeddings,
ie., Sim(Q,K) ~ ¢(Q) - ¢(K)T. This enables rearrang-
ing the computation order to ¢(Q)(¢(K)TV), utilizing the
associative property of matrix multiplication. Consequently,
the complexity of attention becomes linear relative to the
feature dimension d, instead of quadratic with respect to the
token length n. These LAs, however, could lead to a signif-
icant accuracy drop compared to softmax-based attention
unless they are carefully designed.

Autoregressive LLMs. As depicted in Fig. 3, unlike the ini-
tial summarization phase, which processes a large number
of tokens simultaneously and is computationally intensive,
the generation phase faces severe memory or bandwidth
limitations due to its autoregressive nature, involving token-
by-token generation. Linear attention speeds up training
and reduces summarization complexity, but is less effective
for autoregressive generation due to low parallelism. Specu-
lative decoding emerges as a critical method for increasing
parallelism. Thus, ensuring compatibility between linear
attention and speculative decoding is imperative for efficient
summarization and generation phases.

3.1. Evaluation of Existing LAs on LLMs

Comprehensive Evaluation. To investigate whether
previous LAs can be generally applicable to three cat-
egories of LLMs: encoder-based, decoder-based, and
encoder-decoder, we evaluate seven distinct LAs, in-
cluding FLASH-Local&Gloabl (Hua et al., 2022), Lin-
former (Wang et al., 2020), Performer (Choromanski et al.,
2021), TransNormer (Qin et al., 2022), YOSO (Zeng et al.,
2021), ReLU (Cai et al., 2023a), across three representa-
tive LLMs in each category: encoder-based BERT (Devlin
et al., 2018), decoder-based GPT-2 (Radford et al., 2019),
and encoder-decoder T5 (Raffel et al., 2020). As detailed
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Table 1. Evaluation of seven LAs on BERT (Devlin et al., 2018),
an encoder-based LLM, with the text classification accuracy on
the GLUE benchmark (Wang et al., 2018).

Table 3. Evaluation of seven LAs on T5 (Raffel et al., 2020), an
encoder-decoder-based LLM, with the text classification accuracy
on the GLUE benchmark (Wang et al., 2018).

BERT w/LAs |SST2 WNLI QNLI MNLI RTE MRPC QQP |Average

T5 w/ LAs SST2 WNLI QNLI MNLI RTE MRPC QQP | Average

BERT (Baseline) | 93.58 42.25 91.49 84.81 66.43 83.09 91.10| 78.96

T5 (Baseline) |93.81 36.62 91.73 86.54 58.12 80.64 90.89| 76.91

FLASH-Local |91.63 47.89 88.38 81.06 50.18 70.10 90.56| 74.26
FLASH-Global |76.72 54.93 53.69 33.46 48.74 68.63 7832| 59.21

Linformer 81.54 56.34 63.06 67.54 45.13 68.38 81.32| 66.19
Performer 80.16 45.07 60.77 39.81 4549 67.40 75.88| 59.23
TransNormer 81.88 56.34 67.67 67.01 53.07 70.10 83.13| 68.46
YOSO 91.51 52.11 87.75 82.16 58.12 7598 90.40| 76.86
ReLU 81.77 56.34 61.54 70.14 47.29 69.85 82.44| 67.05

Table 2. Evaluation of seven LAs on GPT-2 (Radford et al., 2019),
a decoder-based LLM, with the text classification accuracy on the
GLUE benchmark (Wang et al., 2018).

GPT-2w/LAs |SST2 WNLI QNLI MNLI RTE MRPC QQP |Average
GPT-2 (Baseline) [91.28 57.75 88.39 81.54 60.65 74.51 89.13| 77.61
FLASH-Local |83.60 53.52 77.16 73.97 48.01 68.87 86.40| 70.22
FLASH-Global |50.92 50.70 5427 34.59 5235 68.38 63.19| 53.49

Linformer 79.47 52.11 60.96 34.56 5235 68.38 76.30| 60.59
Performer 86.93 38.03 69.36 70.60 49.46 69.12 76.30| 65.69
TransNormer |82.11 56.34 63.48 59.11 53.07 68.38 75.79| 65.47
YOSO 88.42 45.07 8223 77.80 54.51 73.04 87.72| 72.68
ReLU 86.47 45.07 8096 78.02 51.99 69.61 83.42| 70.79

in Tabs. 1, 2, and 3, we have applied these LAs to their
respective LLMs, assessing their performance across seven
linguistic tasks from the General Language Understanding
Evaluation (GLUE) benchmark (Wang et al., 2018). To
enhance comparison efficacy, we also report the accuracy
of softmax-based LLMs as a baseline. This facilitates a
straightforward evaluation of the average accuracy drop
across the seven LAs and the seven tasks when being ap-
plied to different types of LLMs.

Result Analysis. Our evaluation shows that: (1) most LAs
are effective in encoder-based LLMs, aligning with their
initial design intent. However, their performance diminishes
when applied to decoder-based or encoder-decoder-based
LLMs. On average, seven LAs applied to encoder-based
LLMs result in an average accuracy of 67.32, whereas for
decoder-based or encoder-decoder-based models, the accu-
racy drops to 65.56 and 63.13, respectively; (2) as shown
in Fig. 1 (left), advanced LA techniques perform well in
encoder-based LLMs but struggle to replicate these results
in decoder or encoder-decoder-based LLMs. For instance,
FLASH-Local (Hua et al., 2022) and YOSO (Zeng et al.,
2021) achieve score 74.26/76.86 on BERT, only slightly
below the baseline, but drops to 70.22/72.68 on GPT-2 and
further to 62.75/61.39 on T3, significantly lower than their
softmax-based counterparts; (3) as shown in Fig. 1 (right),
LAs that are less effective in encoder-based LLMs consis-

FLASH-Local |77.87 56.34 58.87 49.44 5271 6838 75.62| 62.75
FLASH-Global | 80.62 56.34 63.65 49.87 46.93 6838 79.29| 63.58
Linformer 51.15 43.66 55.43 46.60 51.99 68.38 74.19| 5591

Performer 82.57 56.34 63.70 61.75 5235 69.85 78.60| 66.45
TransNormer |79.36 43.66 59.78 48.75 58.48 70.59 75.37| 62.29
YOSO 78.33 56.34 59.55 48.64 47.65 68.38 70.87| 61.39
ReLU 85.79 53.52 71.57 7352 48.01 70.34 83.89| 69.52
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Figure 4. Existing augmented LAs fail in autoregressive
LLMs. Left: The augmented DWConv branch results in zero
loss/accuracy, as indicated by the yellow line. Right: Illustration
of the information leakage phenomenon, i.e., next tokens are pre-
maturely revealed as shown by red arrows, in autoregressive LLMs
with DWConv in the V branch.

tently underperform in decoder-based and encoder-decoder
based LLMs, highlighting their distinct suitability for differ-
ent LLM architectures.

Limitations of Existing LAs. Our evaluation indicates that
most LAs suffer an accuracy drop in autoregressive decoder-
based LLMs in generation tasks. Advanced LA techniques,
such as efficient depthwise convolution (DWConv) in the
V (value) branch of attention modules (You et al., 2023b;
Xiong et al., 2021), fail in autoregressive LLMs due to an
information leakage from the inclusion of future context
during training. As evident in Fig. 4, LA with DWConv
convergences to zero loss early in training, but actual evalu-
ation accuracy remains zero, indicating information leakage
as also depicted in Fig. 4 (right). In addition, while LAs
improve training and summarization, their effectiveness is
limited in token-by-token generation and compatibility with
speculative decoding to increase parallelism during gen-
eration remains challenging. We will further discuss our
augmented methods for autoregressive LLMs and their inte-
gration with speculative decoding in subsequent sections.
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Figure 5. Model architecture of our LA augmentation.

4. The Proposed Method

In this section, we introduce a revised local augmentation
technique for existing LAs to enhance accuracy and examine
the synergy of augmented LAs with speculative decoding for
both efficient LLM training and autoregressive generation.

4.1. LA Augmentation for Autoregressive LLMs

Revised LA Augmentation. To address information leak-
age, we propose to design an effective masked DWConv
instead of using a simple convolutional layer for enhancing
the locality of the linear attention (You et al., 2023b; Xiong
et al., 2021). Specifically, we adopt a causal mask on the
DWConv layer to prevent tokens from accessing informa-
tion from subsequent tokens, thereby preserving the inherent
causality of the original attention mechanism, as illustrated
in the right branch of Fig. 5. The masked DWConv prevents
information leakage, leading to better loss convergence, as
demonstrated in the left of Fig. 4. Unlike (Dauphin et al.,
2017), our efficient DWConv is integrated directly into the
attention block, not as a standalone component.

We build our DWConv augmentation on top of existing
grouped LAs to speed up the linearized LLMs. The reason
why we need the grouped LA is that standard LAs exhibit re-
duced efficiency in autoregressive settings due to the causal
constraint (Hua et al., 2022). For example, the query vec-
tor Q at ¢-th time step interacts with the cumulative sum
of all preceding results 22:1 K;V;. This cumulative sum
(cumsum) of KV product operations inherently creates a
sequential dependency, and restricts the potential for paral-
lel processing. To enhance efficiency, we partition the input
sentence into non-overlapping groups. Within each group,
we bypass local dependencies, allowing parallel processing.
For interactions between groups, we only compute the cu-
mulative sums at the group level for the KV products for

(a) Training FLASH from Scratch (b) Finetuning LLaMA-7B

144 —— Softmax-based Attention 124 — Local LA
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Figure 6. Tested our augmented linear attention mechanism for
both training from scratch and fine-tuning from pre-trained model
settings, where (a) shows the training progress of FLASH mod-
els (Hua et al., 2022); (b) depicts the fine-tuning performance of
LLaMA-7B (Touvron et al., 2023a).

improved efficiency, as depicted in the middle branch of
Fig. 5. Furthermore, to improve local dependency handling,
we employ parallel local attention within each group, us-
ing softmax-based attention, as depicted in the left branch
of Fig. 5. The integration of this local attention strategy
with our revised local augmentation contributes significantly
to the performance, combining the efficiency of LAs with
improved accuracy.

Verification on Small- and Large-Scale LLMs. We evalu-
ate and verify the revised LA augmentation on both small-
and large-scale LLMs, i.e., FLASH (Hua et al., 2022) and
LLaMA-7B (Touvron et al., 2023a). For FLASH, we train a
small model from scratch for 100K steps on enwik8 (Hutter,
2012). As shown in Fig. 6 (a), grouped LA leads to reduced
accuracy or increased loss. Local LA alone is also inef-
fective. A combination of grouped and local LAs showed
some improvement but remained inferior to the traditional
softmax-based attention method. In contrast, our augmented
LAs, blending the grouped LA concept with masked DW-
Conv augmentation (with a kernel size of 63), achieved the
most favorable results among all LAs, on par with the origi-
nal softmax-based attentions. For LLama-7B, we finetune
it using LAs on the RedPajama dataset (Computer, 2023)
for 1K steps with a batch size of 64 following (Chen et al.,
2023c). Fig. 6 (b) indicates a similar trend to FLASH,
where local augmentation proves even more vital in this
finetuning phase, and reliance solely on global LA leads to
significantly higher loss. Note that we use a hyperparameter
« to balance the interplay between global and local LAs.
Overall, our augmented LAs combining the three branches
in Fig. 5 consistently outperform existing LAs.

4.2. When LA Meets Speculative Decoding

To address limited parallellism in LLM serving, we aim
to combine speculative decoding with our imporved LAs.
However, direct integration is ineffective. Here, we explore
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Figure 7. Illustrating the speculative decoding pipeline with our
augmented LAs: (a) Speculation; and (b) Verification.

compatibility challenges and propose seamless solutions.

Compatibility Analysis. Speculative decoding, such as
Medusa (Cai et al., 2023b), uses smaller draft models to
simultaneously predict multiple output tokens across dif-
ferent time steps, as illustrated in Fig. 7 (a). The original
LLMs then act as verifiers, either accepting or rejecting
them, and resampling if needed, as illustrated in Fig. 7 (b).
This approach improves parallelism during LLM generation.
However, combining LAs with speculative decoding is chal-
lenging because it generates multiple candidate outputs per
step, with varying counts per time step, altering the tempo-
ral dependency. This change is not effectively captured by
masked DWConvs and grouped LAs in our augmented LAs.
As shown in Fig. 8 (a), using a masked DWConv with a
kernel size of 3 to convolve over stacked candidate tokens
at time step ¢4 results in capturing time steps {t1, ¢1 }, rather
than the correct sequence {to, ¢1 }. This discrepancy occurs
because, at time step ¢, two candidate tokens are included
in the convolution instead of the final verified one, leading
to a temporal misalignment.

Proposed Solution. To integrate our augmented LAs with
the speculative decoding, we propose the updated design
of DWConv and grouped LA to take into consideration the
temporal dependencies represented in Medusa’s tree-based
attention mask. This design ensures the simultaneous pro-
cessing of multiple candidate tokens while ensuring that
each token only accesses information from its preceding to-
ken. As shown in Fig. 8 (b), we unfold the convolution into
matrix multiplication, akin to the img2col method (Vasude-
van et al., 2017). This unfolding allows for the integration
of tree-based attention masks with DWConv kernels, ad-
dressing their compatibility with negligible overheads. For
example, using a masked DWConv with an unfolded kernel
to convolve over stacked candidate tokens at time step t;
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Figure 8. (a): DWConv itself fails to capture the temporal de-
pendency in speculative decoding; (b): Our Unfolded DWConv
kernels capture the correct temporal dependency.

successfully captures the correct sequence {tg, 1}, while
omitting an unchosen candidate at the same time step ;.
In addition, we categorize speculative tokens into groups
based on temporal dependency, regardless of the number of
candidates per time step. In this way, tokens in each group
interact only with verified tokens from previous groups,
aligning their visibility with the tree-based attention pattern.

5. Experiments

Models, Tasks, and Datasets. Models. We apply our
proposed augmented LA on top of five models, includ-
ing FLASH (Hua et al., 2022), T5 (Raffel et al., 2020),
GPT-2 (Radford et al., 2019), LLaMA-2-7B, and LLaMA-
2-13B (Touvron et al.,, 2023b). In particular, we train
the FLASH (Hua et al., 2022) model of roughly 110M
parameters from scratch and finetune the remaining lan-
guage models of different sizes with our augmented LAs.
Tasks and Datasets. For FLASH and LLaMA-2-7B/13B
models, we evaluate them on language modeling tasks.
Specifically, we train the FLASH model on the English par-
tition of Wiki40b (Guo et al., 2020), which includes about
40B characters from 19.5M pages obtained from Wikipedia.
We finetune the LLaMA-2-7B/13B models on RedPa-
jama (Computer, 2023) dataset with about 1.2T tokens for
1K steps, following the setting of LongLora (Chen et al.,
2023c¢). For T5 and GPT-2 models, we consider the text clas-
sification task to evaluate our augmented LAs, and choose
seven datasets from GLUE (Wang et al., 2018) benchmark:
SST2 (Socher et al., 2013), WNLI (Levesque et al., 2012),
QNLI (Rajpurkar et al., 2016), MNLI (Williams et al., 2018),
RTE (Dagan et al., 2006), MRPC (Dolan & Brockett, 2005),
and QQP (DataCanary et al., 2017). In addition, we con-
sider the evaluation of LLaMA models on six zero-shot or
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Figure 9. Visualizing the training trajectories of baseline LAs and our augmented LAs.

Table 4. Inference latency and memory comparison at various sequence lengths for LLaMA models.

Model Atin. Inference Latency (ms) Inference Memory (GB)
2048 4096 8192 16384 32768 2048 4096 8192 16384 32768
LLaMA-2-7B Original 302.3 812.6 2355.0 OOM OOM 16.6 22.5 40.5 OOM OOM
Ours LA | 275.2 (-9%) 529.8 (-35%) 1029.7 (-56%) 2032.9 39859 | 15.9 (-4%) 19.1 (-<15%) 25.7 (-37%) 38.8 65.0
LLaMA-2-13B Original 491.6 1319.7 3805.0 OOM OOM 30.1 38.2 62.1 OOM OOM
Ours LA | 449.4 (-9%) 876.5 (-34%) 1737.1 (-54%) 3460.9 OOM |29.1 (-3%) 33.8(-12%) 43.2(-30%) 61.9 OOM

few-shot downstream tasks: BBH (Suzgun et al., 2022),
PIQA (Bisk et al., 2020), MMLU (Hendrycks et al., 2020),
COPA (Wang et al., 2019), ARCC (Clark et al., 2018), and
AGNews (Zhang et al., 2015). Following common evalua-
tion settings, MMLU was tested with 5 shots, BBH with 3
shots, and the remaining tasks with zero shots.

Training Settings. For the FLASH training task, we train
the model of roughly 110M parameters from scratch with
a sequence length of 1024. The batch size is 256 and the
token per batch is set to 2'8. We use the AdamW optimizer
with linear learning rate decay and a peak learning rate of
7 x 10~*, the momentum of the AdamW optimizer is set to
B1 = 0.9, B2 = 0.95 and the group size is set to 256 follow-
ing (Hua et al., 2022). For the LLaMA-2 finetune task, we
train it for 1K steps with a peak learning rate of 2x 10~° and
a batch size of 64. The learning rate scheduler is constant
with 20 warmup steps. The optimizer is AdamW with the
momentum of 3; = 0.9 and B2 = 0.95. The group size is
set to 64 following (Chen et al., 2023c). For the GLUE task,
We finetune the models for 3 epochs with a learning rate of
2 x 1075 and a batch size of 32 (Devlin et al., 2018). The
group size is set to 64, and the sequence length is set to 256.

Baseline and Evaluation Metrics. Baselines. For the text
classification task on the GLUE benchmark, we compare the
proposed augmented LAs with FLASH-Local&Global (Hua
et al., 2022), Linformer (Wang et al., 2020), Per-
former (Choromanski et al., 2021), TransNormer (Qin et al.,
2022), YOSO (Zeng et al., 2021), ReLU (Cai et al., 2023a).
For the LLaMA-2 finetune tasks, we compare the proposed
augmented LAs with the local and global attention proposed

in (Hua et al., 2022), i.e., FLASH-Local/Global. For the
FLASH training task, we compare our proposed method
with local, global, and quadratic softmax-based attention.
Evaluation Metrics. For the GLUE task, we use the classifi-
cation accuracy to evaluate the augmented LA and baselines.
For the LLaMA-2 finetune task, we use the perplexity on
PG-19 (Rae et al., 2019) to evaluate all methods. For the
FLASH training task, we use the validation set perplexity of
Wiki40B to evaluate. In addition, to evaluate the speedups
after integrating our LAs and speculative decoding, we test
the decoding speeds on MT-Bench (Zheng et al., 2023) fol-
lowing (Cai et al., 2023b).

5.1. Our Linearized LLMs over Original LLMs

We analyze the latency improvements and memory effi-
ciencies of our linearized LLMs compared to conventional
LLMs. As detailed Tab. 4, our approach reduces latency
by up to 56.3% and memory usage by 36.5% for models
like LLaMA-2-7B and LLaMA-2-13B on A100-80G de-
vice. In addition, our linearized LLMs extend the maximum
supported sequence lengths from 8K to 32K for LLaMA-2-
7B on the same GPU, demonstrating our method’s efficacy
and scalability in large-scale models. We also provide
detailed reports on latency and memory consumption for
the LLaMA-2-7B model across four downstream tasks, un-
der varied prefill and decode size configurations (see Ap-
pendix C for details). As shown in Tab. 5, our approach
reduces latency by up to 39.1% and memory usage by up
to 32.8% during runtime when deploying LLaMA-2-7B
models on a A100-80G GPU. In addition, we compare the
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Table 5. Inference latency and memory comparison at various task
prefill and decode sizes for LLaMA-2-7B models.

Table 7. Accuracy comparison using the LLaMA-2-7B model on
six zero-shot or few-shot downstream tasks.

Attn. Prefill and Decode Sequence Lengths Attn. BBH PIQA MMLU COPA ARCC AGNews | Lat.

(340, 160) | (60, 20) | (7000, 200) | (1700, 400) FLASH-Local |30.89 61.65 3421 68.60 45.01 69.05 | 0.5s

Latency | Original 325.00 40.61 709.59 894.21 FLASH-Global | 31.78 61.48 35.62 75.00 4736  78.14 |0.5s

(ms) Ours LA | 290.08 37.51 432.48 736.51 Aug. FLASH |32.70 62.52 36.04 78.00 4836 7820 |0.5s
Memory | Original 134 12.8 32.3 15.7
(GB) Ours LA 13.1 12.8 21.7 14.8

Table 6. Accuracy comparison on six zero/few-shot downstream
tasks under 0.8s latency (sequence length is 4K).

LLaMA-2 | Attn. | BBH PIQA MMLU COPA ARCC AGNews
7B Original | 33.50 63.22 4540 85.00 52.17 78.17
13B Ours LA | 3391 68.06 36.57 85.00 51.74 78.95

accuracy of our augmented linear attention method and the
original attention-based LLaMA models under compara-
ble inference latency on six downstream tasks. As shown
in Tab. 6, LLaMA-2-13B with our augmented linear atten-
tion, achieves comparable inference latency to the original
LLaMA-2-7B at a 4K sequence length, while outperforming
the original LLaMA-2-7B in four out of six downstream
tasks. These results validate that our method can boost
downstream task performance.

5.2. Our Augmented LAs over SOTA LA Baselines

Overall Comparison. We apply our augmented LAs to five
decoder-based or encoder-decoder-based LLMs and com-
pare them with other LA baselines. The training trajectories
are visualized in Fig. 9. We see that our augmented LAs
consistently achieve a better convergence loss as compared
to all baselines. As for the quantitative results:

1. Text Classification with GPT-2 and T5. We evaluate the
performance of GPT-2 and T5 with our augmented LAs
on the GLUE benchmark, with results provided in Ap-
pendix F. Our augmented LAs consistently yield better
accuracy, achieving an average increase of 1.87 percent-
age points in classification accuracy on the GLUE bench-
mark compared to competitive existing LA baselines,
such as FLASH-Local and FLASH-Global.

2. Language Modeling with FLASH and LLaMA-7B/13B.
We evaluate the perplexity of LLaMA-7B/13B with our
augmented LAs on PG-19, with results provided in Ap-
pendix G. The results on LLaMA models reveal that
our augmented LAs with both the local augmentation
and grouped LAs outperform all baselines, resulting
in a 6.67/6.33 reduction in perplexity. The results on
FLASH models consistently validate the effectiveness of

Table 8. Throughput of LLaMA (tokens/s) with LAs and the spec-
ulative decoding on MT-Bench (Zheng et al., 2023).

LLaMA w/ Loc. Loc.+Gro. Loc.+Conv Loc.+Gro.+Conv
7B 32.3 (1.0x) 26.8 (1.0x) 30.4 (1.0x) 25.9 (1.0x)
7B w/ Spec. | 63.3 (2.0x) 50.5 (1.9x) 55.1 (1.8x) 50.7 (2.0x)
13B 26.1 (1.0x) 22.7 (1.0x) 22.3 (1.0x) 20.4 (1.0x)
13B w/Spec. | 54.4 (2.1x) 42.6 (1.9x) 47.0 (2.1x) 41.7 (2.0x)

our augmented LAs, leading to 1.49 to 20.09 perplexity
reductions as compared to other LAs and even 0.24 re-
duction over original attention. The effectiveness of our
augmented LAs is consistently validated by results on
FLASH models and the Wiki40B dataset, demonstrat-
ing perplexity reductions ranging from 1.49 to 20.09 as
compared to baselines, and even a 0.24 reduction over
the original attention.

3. Downstream Tasks on LLaMA-2-7B. We analysis six
downstream tasks: BBH, PIQA, MMLU, COPA, ARCC,
and AGNews. Using standard evaluation settings,
MMLU was tested with 5 shots, BBH with 3 shots, and
the remaining tasks with zero shots. As shown in Tab. 7,
our augmented linear attention not only reduces perplex-
ity but also improves accuracy across all tasks. Specifi-
cally, with models like FLASH, our method achieved an
average accuracy improvement of 3.53%.

In addition, we extend our methods to three more linear
attention methods, with summarized results in Appendix H.

Generation Speedups by Integrating L.As with Specula-
tive Decoding. We benchmark the speedups of our com-
patible LAs with speculative decoding. As shown in Tab.
8, we test the LLaMA-7B/13B models which are adapted
into a chat model format, similar to LongLora (Chen et al.,
2023c). Following Medusa (Cai et al., 2023b), we train
Medusa heads for speculative decoding. Speed tests for the
7B and 13B models are conducted on a single A100-80GB
GPU, we observe that our revised LAs are compatible with
speculative decoding and approximately doubled the speed.
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Table 9. Comparison of our method with the integration of
FLASH (Hua et al., 2022) and Medusa (Cai et al., 2023b).

Methods Total Latency | Attention | FFNs | Others

FLASH + Medusa 137.2 ms 119.7ms |82 ms | 9.3 ms

Ours Aug. LA 49.7 ms (-64%) | 32.2ms |[82ms| 9.3 ms
5.3. Ablation Study

Comparison with Direct Integration. To verify the effec-
tiveness of our causal and compatible augmentation tech-
niques, we compare them with the direct integration of
previous linear attention FLASH (Hua et al., 2022) and the
speculative decoding method Medusa (Cai et al., 2023b). As
shown in Tab. 9, our method applied to LLaMA-2-7B mod-
els on A100 GPUs for a single batch of speculative decoding
(64 speculated tokens and 42 sequence candidates), achieves
a 64% reduction in total latency compared to the direct inte-
gration, while also reducing QKV memory requirements by
75% from 0.4 GB to 0.1 GB.

Our techniques outperform direct integration because stan-
dard implementations, even with linear attention like
FLASH and speculative decoding like Medusa, face two key
limitations without our augmentations: (1) slow sequence-
based decoding and (2) lack of optimizations such as shared
cumulative sum (cumsum) and key-value (KV) states for
batch processing. Conventional strategies for compatible
KV caching rely on sequence-based decoding, assigning
distinct KV caches to each speculated sequence candidate,
as shown in Fig. 7. This results in unnecessary computa-
tional effort and memory inefficiency since candidates with
identical prefixes are processed separately. In contrast, our
method addresses these issues by ensuring identical prefixes
are computed only once, mitigating these issues with time-
dependent causal and compatible augmentation in linear
attention and speculative decoding.

Our LA Speedups. We benchmarked the training speed of
FLASH using both the original attention and our augmented
LAs, with a batch size of 1, on a single A100-40G GPU. Our
results show that the augmented LAs significantly improve
training speed. For sequence lengths of 4K and 8K, they
are 1.52x and 2.94x faster, respectively. FLASH with
augmented LAs takes 1.05 seconds and 1.95 seconds per
training step for 4K and 8K sequences, compared to 1.60
seconds and 5.74 seconds with the original attention. The
group size in FLASH was consistently set to 256.

Extend to Longer Sequence. We fine-tuned LLaMA-2-
7B to extend its sequence length from 4K to 8K using our
augmented LAs, following LongLora (Chen et al., 2023c)
setting on the RedPajama dataset. For a fair comparison,
we used only the local attention in LongLora, maintaining a

block size of 256. Our augmented LAs reduced perplexity
from 15.29 to 13.86, demonstrating their effectiveness in
handling longer sequences.

6. Conclusion

This paper presents the first empirical analysis of linearized
autoregressive LLMs, revealing significant limitations of
existing linear attention methods in effectively handling
masked attention and integration with speculative decoding.
To address these challenges, we introduced an approach
that combines effective local augmentation with seamless
compatibility for speculative decoding. Our experiments
across a range of LLMs consistently demonstrate that our
method achieves substantial performance gains. Notably,
we achieve up to a 6.67 perplexity reduction and up to 2x
speedups in generation compared to existing linear atten-
tion methods. Our work paves the way for more efficient
training and deployment of powerful autoregressive LLMs,
especially for long-sequence applications.
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Impact Statement

Efficient LLM Training and Serving Goal. The recent
advancements in Large Language Models (LLMs), exem-
plified by OpenAI’s GPT-3 with its 175 billion parameters,
have underscored the significant data and computational
power required for such technologies. Training models of
this scale incur substantial costs, both financially and envi-
ronmentally. For instance, the cost necessary to train GPT-3
could exceed 4 million equivalent GPU hours (Brown et al.,
2020), and the carbon footprint of training a single Trans-
former model might rival the lifetime emissions of five
average American cars (Strubell et al., 2019). Addressing
the challenges of efficient training and serving of LLMs is
therefore not only a technical imperative but also an envi-
ronmental and ethical necessity.

Societal Consequences. The success of this project in en-
abling more efficient training and serving of LLMs will have
far-reaching implications, especially in processing long se-
quences commonly encountered in document handling. Our
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efforts are set to substantially influence various societal
and economic sectors. The enhanced efficiency of LLMs
promises transformative changes in diverse applications
ranging from document summarization and question answer-
ing to personal digital assistants, security, and augmented re-
ality. The development and exploration of linearized LLMs
mark a pivotal progress in rendering these models both more
accessible and environmentally sustainable.
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A. Comprehensive Related Works

Autoregressive LLMs. Transformers (Vaswani et al., 2017; Dosovitskiy et al., 2021) have significantly advanced the fields
of language and vision, leading to the development of foundation LLMs such as ChatGPT (Brown et al., 2020; OpenAl,
2023b), LLaMA (Touvron et al., 2023a;b), Gemini (Anil et al., 2023), DALL-E (Ramesh et al., 2021), etc. To date, various
Transformers have emerged to serve distinct needs, broadly categorized into three types: encoder-based, decoder-based, and
encoder-decoder models. Encoder-based models like BERT (Devlin et al., 2018) focus on natural language understanding
and are also commonly used in image processing (Dosovitskiy et al., 2021). Encoder-decoder models like the original
Transformer (Vaswani et al., 2017), Bard (Waisberg et al., 2023), and T5 (Raffel et al., 2020; Roberts et al., 2022) are
designed for sequence-to-sequence tasks (e.g., translation, speech recognition), where the encoder extracts features and the
decoder produces outputs based on these features. Decoder-based models, including GPT (Radford et al., 2019; OpenAl,
2023b) and LLaMA (Touvron et al., 2023a), generate text sequentially by predicting the next token based on previous ones.
All these models leverage Transformer architectures but differ in their specific purposes and structures. Both encoders and
decoders are leveraged in multimodal models like MiniGPT (Zhu et al., 2023; Chen et al., 2023b) and DALL-E (Ramesh
et al., 2021). Note that the model architectures used in all categories are based on Transformer. The primary difference lies
in their purpose: the encoder is designed to extract features, while the decoder focuses on scoring and generating outputs.
Our work presents a comprehensive study of applying linear attention techniques to the encoder/decoder-based LLMs.

Efficient Linear Attention. Transformers’ self-attention modules, known for their quadratic computational complexity (Zhu
et al., 2021; Katharopoulos et al., 2020), have spurred the development of linear attention methods to improve efficiency,
especially in encoder-based LLMs for better training and inference. Techniques such as local attentions (Liu et al., 2021; Arar
et al., 2022; Wang et al., 2020; Tu et al., 2022; You et al., 2023a) limit self-attention to neighboring tokens or group attention
queries to reduce the computational cost, while kernel-based linear attentions (Liu et al., 2021; Arar et al., 2022; Wang
et al., 2020; Tu et al., 2022; You et al., 2024) decompose the softmax with kernel functions and exchange the computation
order. However, only a few linear attention approaches focus on decoder-based autoregressive LLMs, aiming to reduce
RNN-style sequential state updates over a large number of steps (Hua et al., 2022; Katharopoulos et al., 2020). Recent
studies, like LonglLoRA (Chen et al., 2023c¢), aim to adapt local attention techniques for efficient fine-tuning of pre-trained
autoregressive LLMs, yet a thorough analysis comparing various linear attention methods for autoregressive LLMs remains
lacking. This paper uniquely provides a systematic review of existing linear attentions for decoder-based autoregressive
LLMs and investigates how to efficiently enhance less effective linear attention methods.

Speculative Decoding. Linear attention techniques alleviate the training inefficiency in LLMs by mitigating the quadratic
complexity with regard to the number of input tokens. However, during deployment, autoregressive decoding necessitates
sequential token-by-token text generation, which curtails parallelism and restricts the number of input tokens. Speculative
decoding (Chen et al., 2023a; Miao et al., 2023; Kim et al., 2023; Leviathan et al., 2023; Cai et al., 2023b) has proven to
be an effective strategy for boosting parallelism in LLM serving, utilizing small speculative models for initial generation,
with original LLMs serving as validators to assess if the output meets standards or needs resampling. Recent works like
Medusa (Cai et al., 2023b) further argue that the small speculative models and LLMs can be the same model, and other
studies (Schuster et al., 2022; Bae et al., 2023) suggest using shallow layers for generation and deeper layers for verification,
based on early exit strategies. Such speculative decoding and linear attention jointly ensure efficient LLM training and
generation, especially for long sequence inputs. In this paper, we take the initiative to investigate the synergy between
linearized LLMs and speculative sampling, to improve the efficiency of training and serving LLMs.

B. More Visualization of Training Trajectories.

As detailed in Sec. 5.3, we present a quantitative analysis comparing local LAs, grouped LAs, and our augmented LAs that
combine both local augmentation and grouped LAs. This appendix provides the training trajectories for GPT-2 using these
LA methods. Fig. 10 demonstrates that our local augmentation, specifically masked DWConv, effectively enhances both
local and grouped LAs. Moreover, our augmented LAs, which integrate local augmentation with grouped LAs, exhibit the
most favorable convergence in terms of loss.

C. More Profiling on the LLaMA-2-7B Model

We provide detailed profiling and comparisons below to illustrate the runtime distribution between attention and feed-forward
networks (FFNs), highlighting that attention is a bottleneck even for LLMs with 7B parameters. To ensure a real-world
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Figure 10. Visualizing the training trajectories of baseline LAs and our augmented LAs.

application scenario, we profiled the LLaMA-2-7B model across four settings of prefill and decode sizes, adhering to
benchmarks commonly used in academia and industry, as summarized in Tab. 10.

Table 10. Dataset and task details for different prefill and decode size settings.

(Prefill, Decode) | Task Dataset Referenced Paper
(340, 160) Chat ShareGPT (Kwon et al., 2023)
(60, 20) Chat Stanford Alpaca (Taori et al., 2023)
(7000, 200) Summarization | ArXiv Summarization | (Agrawal et al., 2024)
(1700, 400) Chat OpenChat ShareGPT 4 | (Agrawal et al., 2024)

As shown in Tab. 11, profiling the LLaMA-2-7B models under the four prefill and decode size settings reveals that the
average runtime latency attributed to attention and FFNs accounts for 55% and 21% of the total runtime across these settings,
respectively. This indicates that although FFNs are a bottleneck in the model, attention is an even more significant bottleneck,
especially for large-scale LLMs and extended dialogue sequences (e.g., 67.8% runtime latency for the arxiv summarization
task). Therefore, optimizing attention blocks can yield considerable speed improvements, particularly for tasks with large
prefill or decode sequence lengths. This is corroborated by contemporary studies on linear attention-based LLMs (Lee et al.,
2023; Yang et al., 2023) and efforts to optimize attention, such as FlashAttention (Dao et al., 2022) and FLAT (Kao et al.,
2023).

Table 11. Latency breakdown of LLaMA-2-7B models under different prefill and decode size settings.

(Prefill, Decode) (340, 160) (60, 20) (7000, 200) (1700, 400)
Attention (ms) 158.97 (48.9%) | 20.12 (49.5%) | 481.35 (67.8%) | 481.41 (53.8%)
FFNs (ms) 74.64 (23.0%) | 9.22 (22.7%) | 111.90 (15.8%) | 188.98 (21.1%)
Others (ms) 91.39 (28.1%) | 11.27 (27.8%) | 116.34 (16.4%) | 223.83 (25.1%)
Total Latency (ms) 325.00 40.61 709.59 894.21

D. Breakdown Analysis of Our Augmented LAs

To gain insights into the contribution of each component in our augmented LAs, we show the breakdown analysis using
GPT-2 and T5 models on Wikitext2 (Merity et al., 2017)/PTB (Marcus et al., 1993) and CNN/Daily Mail (See et al.,
2017) datasets, respectively. As shown in Tabs. 12 and 13, our local augmentation, i.e., masked DWConv, consistently
augments the local or grouped LAs, leading to 5.71 perplexity reductions on GPT-2 and 3.59 Rougel score (Lin, 2004)
improvement on T5. Our augmented LAs, consisting of both local augmentation and grouped LAs, achieve the best results,
i.e., 11.83~17.54 perplexity reduction and 4.23~15.45 Rougel score improvement, over all other LA variants.
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Table 12. Perplexity of GPT-2 with our augmented LAs on the Wikitext2 and PTB datasets.
GPT-2w/ | Loc. Loc.+Gro. Loc.+Conv | Augmented LA
Wikitext2 | 56.80 42.81 51.09 39.26
PTB 69.32 57.72 84.24 46.85

Table 13. Ablation studies of fine-tuning T5 with LAs on the CNN/Daily Mail dataset (See et al., 2017).

TS w/ Rougel |Rouge2 | RougeL | RougeLsum
Local LA 8.65 0.17 7.14 8.27
Grouped LA 6.14 0.86 5.77 5.50

Local + Grouped LA 19.87 | 3.07 14.54 18.29
Local + axGrouped LA| 19.01 | 2.90 13.99 17.54
Local LA + DWConv 12.24 | 0.20 8.95 11.38
Augmented LAs 24.10 | 4.93 17.22 22.11

E. Additional Training and Evaluation Settings and Model Hyperparameters.

Model, Task, Dataset. Model: We evaluate seven existing linear attention methods on top of three representative
Transformers: (1) encoder-based BERT model of 12 layers and around 400M parameters, (2) decoder-based GPT-2 model of
12 layers and around 500M parameters, and (3) encoder-decoder-based TS model of 12 layers and around 900M parameters.
Task and Dataset: We conduct the evaluation on the text classification task across seven linguistic tasks from the General
Language Understanding Evaluation (GLUE) benchmark: SST2, WNLI, QNLI, MNLI, RTE, MRPC, and QQP.

Training and Evaluation Settings. We fine-tuned all models for 3 epochs with a sequence length of 256, using a learning
rate of 2 x 1075 and a batch size of 32. The optimizer was AdamW, with 3; = 0.9 and 35 = 0.95 following the standard
training recipe in (Devlin et al., 2018). For the GLUE task, classification accuracy was utilized to evaluate the performance
of all linear attention methods.

F. Text Classification with GPT-2 and T5

We evaluate the performance of GPT-2 and T5 with our augmented LAs on the GLUE benchmark. As shown in Tab. 14, our
augmented LAs consistently yield better accuracy, achieving an average increase of 1.87 percentage points in classification
accuracy on the GLUE benchmark compared to competitive existing LA baselines, such as FLASH-Local/Global.

Table 14. Evaluation of augmented LAs on T5 and GPT-2, with the classification accuracy on the GLUE benchmark.

GPT-2 w/ SST2 WNLI QNLI MNLI RTE MRPC QQP | Average
LA Baseline 83.60 53.52 77.16 7397 48.01 68.87 86.40| 70.22
Loc.+Gro. 82.34 46.48 79.11 75.09 50.20 68.38 86.16| 69.68

Loc.+a*Gro. |83.72 54.04 79.15 73776 46.68 69.61 86.11| 70.44
Augmented LA | 84.72 5493 80.01 7426 50.90 69.85 86.16| 71.55

TS w/ SST2 WNLI QNLI MNLI RTE MRPC QQP | Average
LA Baseline 77.87 56.34 58.87 49.44 5271 68.38 75.62| 62.75
Loc.+Gro. 76.95 56.34 60.37 51.20 49.82 68.38 75.44| 62.64

Loc.+a*Gro. |78.10 56.34 59.62 51.49 49.10 6838 75.62| 62.66
Augmented LA | 82.00 56.34 59.78 54.26 54.15 68.38 76.68| 64.51

16



When Linear Attention Meets Autoregressive Decoding: Towards More Effective and Efficient Linearized LLMs

G. Language Modeling with FLASH and LLaMA-7B/13B

We evaluate the perplexity of LLaMA-7B/13B with our augmented LAs on PG-19. As shown in Tab. 15, integrating our
local augmentation, i.e., masked DWConv, with the local LAs results in a 6.67/6.33 reduction in perplexity. The results on
LLaMA models reveal that our augmented LAs with both the local augmentation and grouped LAs outperform all baselines,
resulting in a 6.67/6.33 reduction in perplexity. The results on FLASH models and the Wiki40B dataset consistently validate
the effectiveness of our augmented LAs, leading to 1.49 to 20.09 perplexity reductions as compared to other LAs and even
0.24 reduction over original attention. The effectiveness of our augmented LAs is consistently validated by results on
FLASH models and the Wiki40B dataset, demonstrating perplexity reductions ranging from 1.49 to 20.09 as compared to
baselines, and even a 0.24 reduction over the original attention.

Table 15. Perplexity evaluation on two tasks: (1) LLaMA models on PG-19 (sequence length is 4K) and (2) FLASH model on Wiki40B
(sequence length is 1K).

Model Loc. | Loc.+Gro. | Loc.+Conv | Augmented LA
LLaMA-2-7B |21.61 15.04 14.94 13.47
LLaMA-2-13B | 19.25 12.92 12.92 11.55
Model Loc. | Loc.+Gro. | Gro. | Quad. | Augmented LA
FLASH-110M | 16.65 16.14 | 35.25| 15.40 15.16

H. Augmentation for More Linear Attention Methods

We further extend our augmentation method to four additional types of linear attention methods, including not only FLASH
but also the random feature attention (RFA) (Peng et al., 2021), Performer (Choromanski et al., 2021), and Linformer (Wang
et al., 2020). Specifically, we evaluated these linear attention methods before and after our augmentation on the decoder-
based GPT-2 model and measured the resulting text classification accuracy on the GLUE benchmark (Wang et al., 2018).
Tab. 16 demonstrates that our augmentation method consistently improves performance across these methods, achieving
non-trivially on average 5.07% ~ 8.05% task accuracy gain. These results validate that our augmentation techniques are
generally applicable to different linear attention methods in largely enhancing their achievable performance and efficiency.

Table 16. Augmentation for various linear attention methods.

Method SST2 RTE MRPC QQP MNLI QNLI WNLI | Average
RFA 83.37 61.01 73.04 8224 71.73 6945 45.07 | 69.42
Aug. RFA 91.28 60.65 75.00 88.53 81.76 69.26 5493 | 74.49
Performer 86.93 4946 69.12 7630 70.60 69.36 38.03 | 65.69
Aug. Performer | 91.51 67.15 7230 84.61 70.87 63.72 50.70 | 71.55
Linformer 79.47 5235 6838 76.30 3456 69.06 52.11 | 60.59
Aug. Linformer | 92.43 61.37 77.45 88.42 42.63 63.26 5493 | 68.64

17



