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Abstract

Federated representation learning (FRL) is a pop-

ular personalized federated learning (FL) frame-

work where clients work together to train a com-

mon representation while retaining their personal-

ized heads. Existing studies, however, largely fo-

cus on the over-parameterized regime. In this pa-

per, we make the initial efforts to investigate FRL

in the under-parameterized regime, where the FL

model is insufficient to express the variations in

all ground-truth models. We propose a novel

FRL algorithm FLUTE, and theoretically char-

acterize its sample complexity and convergence

rate for linear models in the under-parameterized

regime. To the best of our knowledge, this is the

first FRL algorithm with provable performance

guarantees in this regime. FLUTE features a data-

independent random initialization and a carefully

designed objective function that aids the distilla-

tion of subspace spanned by the global optimal

representation from the misaligned local repre-

sentations. On the technical side, we bridge low-

rank matrix approximation techniques with the

FL analysis, which may be of broad interest. We

also extend FLUTE beyond linear representations.

Experimental results demonstrate that FLUTE out-

performs state-of-the-art FRL solutions in both

synthetic and real-world tasks.

1. Introduction

In the development of machine learning (ML), the role of

representation learning has become increasingly essential. It

transforms raw data into meaningful features, reveals hidden

patterns and insights in data, and facilitates efficient learning
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of various ML tasks such as meta-learning (Tripuraneni

et al., 2021), multi-task learning (Wang et al., 2016a), and

few-shot learning (Du et al., 2020).

Recently, representation learning has been introduced to the

federated learning (FL) framework to cope with the hetero-

geneous local datasets at participating clients (Liang et al.,

2020). In the FL setting, it often assumes that all clients

share a common representation, which works in conjunction

with personalized local heads to realize personalized pre-

diction while harnessing the collective training power (Ari-

vazhagan et al., 2019; Collins et al., 2021; Zhong et al.,

2022; Shen et al., 2023).

Existing theoretical analysis of representation learning usu-

ally assumes the adopted model is over-parameterized to

almost fit the ground-truth model (Tripuraneni et al., 2021;

Wang et al., 2016a). While this may be valid for ex-

pressive models like Deep Neural Networks (He et al.,

2016; Liu et al., 2017) or Large Language Models (Ope-

nAI, 2023; Touvron et al., 2023), it may be too restrictive

for FL on resource-constrained devices, as adopting over-

parameterized models in such a framework faces several

significant challenges, as elaborated below.

• Computation limitation. In FL, edge devices like

smartphones and Internet of Things (IoT) devices of-

ten have limited memory and lack computational power,

which are not capable of either storing or training over-

parameterized models (Wang et al., 2019; He et al., 2020;

Kairouz et al., 2021)1.

• Communication overhead. In FL, the clients need to

communicate updated model information with the server

frequently. It thus becomes prohibitive to transmit a huge

number of model updates for devices operating with lim-

ited communication energy and bandwidth.

• Privacy concern. Existing works show that excessively

expressive models may ªmemorizeº relevant information

from local datasets, increasing the model’s susceptibility

to reconstruction attacks (Hitaj et al., 2017; Melis et al.,

2019; Wang et al., 2018; Li et al., 2020) or membership

inference (Tan et al., 2022).

1For example, two of the widely adopted neural network mod-
els suitable for IoT or embedded devices, MobileNetV3 (Howard
et al., 2019) and EfficientNet-B0 (Tan & Le, 2019), only have a
few million parameters and, as an example, typically process at
most a few GFLOPS in a Raspberry Pi 4 (Ju et al., 2023).

1



Federated Representation Learning in the Under-Parameterized Regime

Motivated by those concerns, in this work, we focus

on federated representation learning (FRL) in the under-

parameterized regime, where the parameterized model class

is not rich enough to realize the ground-truth models across

all clients. This is arguably a more realistic setting for edge

devices supporting FL. Meanwhile, due to the inherent lim-

itation of the expressiveness of the under-parameterized

models, the algorithm design and theoretical guarantees in

the over-parameterized regime do not naturally translate

to this setting. We summarize our main contributions as

follows.

• Algorithm design. A major challenge for FRL in the

under-parameterized regime is the fact that the locally

optimal representation may not be globally optimal. As a

result, simply averaging the local representations may not

converge to the global optimal solution. To cope with this

challenge, we propose FLUTE, a novel FRL framework

tailored for the under-parameterized setting. To the best

of our knowledge, this is the first FRL framework that

focuses on the under-parameterized regime. Our algo-

rithm design features two primary innovations. First, we

develop a new regularization term that generalizes the ex-

isting formulations in a non-trivial way. In particular, this

new regularization term is designed to provably enhance

the performance of FRL in the under-parameterized set-

ting. Second, our algorithm contains a new and critical

step of server-side updating by simultaneously optimiz-

ing both the representation layer and all local head lay-

ers. This represents a significant departure from existing

approaches in FRL, particularly in over-parameterized

settings where local heads are optimized solely on the

client side. By leveraging information across these local

heads, our approach could learn the ground-truth model

more effectively.

• Theoretical guarantees. In terms of theoretical perfor-

mance, we specialize FLUTE to the linear setting and

analyze the sample complexity required for FLUTE to

recover a near-optimal model, as well as characterizing

its convergence rate. FLUTE achieves a sample com-

plexity that scales in Õ
(

max{d,M}
Mϵ2

)

for recovering an

ϵ-optimal model, where d is the dimension of the input

data and M is the number of clients. This result indicates

a linear sample complexity speedup in terms of M in the

high dimensional setting (i.e., d ≥ M ) compared with

its single-agent counterpart (Hsu et al., 2012). Besides,

it outperforms the sample complexity in the noiseless

over-parameterized FRL setting (Collins et al., 2021) in

terms of both M and d. Moreover, we show that FLUTE

converges to the optimal model exponentially fast when

the number of samples is sufficiently large.

• Technical contributions. In the under-parameterized

regime, we must analyze the convergence of both the

representation and personalized heads toward their op-

timal estimations. This is in sharp contrast to the over-

parameterized regime, where we only need to study the

convergence of the representation column space to the

ground truth (Collins et al., 2021; Zhong et al., 2022).

Towards this end, we adopt a low-rank matrix approxi-

mation framework (Chen et al., 2023) of the ground-truth

model. However, in contrast to conventional low-rank

matrix approximation, in FRL, the global model is not ac-

cessible a priori but must be learned from distributed

local datasets. Thus, the technical analysis needs to

bound the unavoidable gradient discrepancy in the under-

parameterized regime, as well as ensure that neither gradi-

ent discrepancy nor noise-induced errors accumulate over

iterations. To address these technical challenges, we first

provide new concentration results to ensure that the norm

of the gradient discrepancy can be bounded when local

datasets are sufficiently large. We then develop iteration-

dependent upper bounds for sample complexity, which

guarantee that the improvement in the estimation, i.e.,

the ’distance’ between our estimated model and the opti-

mal low-rank model, can mitigate potential disturbances

caused by gradient discrepancy and noise.

• Empirical evaluation.2 We conduct a series of ex-

periments utilizing both synthetic datasets for linear

FLUTE and real-world datasets, specifically CIFAR-10

and CIFAR-100 (Krizhevsky et al., 2009), for general

FLUTE. The empirical results demonstrate the advantages

of FLUTE, as evidenced by its superior performance over

baselines, particularly in the scenarios where the level of

under-parameterization is significant.

2. Related Work

Representation learning. Representation learning focuses

on acquiring a representation across diverse tasks to ef-

fectively extract feature information (LeCun et al., 2015;

Tripuraneni et al., 2021; Wang et al., 2016a; Finn et al.,

2017). In the linear multi-task learning setting, Du et al.

(2020) characterize the optimal solution of the empirical

risk minimization (ERM) problem, demonstrating that the

gap between the solution and the ground-truth representation

is upper bounded by O
(
√

M+d
MN

)
, where d is the dimension

of data, M is the number of clients and N is the number of

samples per task. Tripuraneni et al. (2021) give an upper

bound O
(
√

d
MN

)
using the Method-of-Moment estimator.

Thekumparampil et al. (2021) also show the O
(
√

d
MN

)

upper bound in their work. Duchi et al. (2022) consider

data-dependent noise and show that the sample complexity

required to recover the shared subspace of the linear mod-

2Main experiments can be reproduced with the code pro-
vided under the following link: https://github.com/

RenpuLiu/flute
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els scales in O
(
log3(Nd)

√
d

MN

)
. These works, however,

only focus on the over-parameterized regime in a centralized

setting.

Federated representation learning. Recently, representa-

tion learning has been introduced to FL

(Arivazhagan et al., 2019; Liang et al., 2020; Collins et al.,

2021; Yu et al., 2020). Liang et al. (2020) propose an FRL

framework named Fed-LG, where the distinct representa-

tions are stored locally and the common prediction head is

forwarded to the server for aggregation. In contrast, Ari-

vazhagan et al. (2019) propose FedPer, where a common

representation is shared among clients, with personalized lo-

cal heads kept at the client side. A similar setting is adopted

by FedRep (Collins et al., 2021), where exponential con-

vergence to the optimal representation in the linear setting

is proved. These works focus on the over-parameterized

regime, while the under-parameterized regime has largely

been overlooked.

Low-rank matrix factorization. Under-parameterized rep-

resentation learning problem considered in this work is

closely related to low-rank matrix factorization, where the

objective is to find two low-rank matrices whose product

is closest to a given matrix Φ. Pitaval et al. (2015) prove

the global convergence of gradient search with infinitesimal

step size for this problem. Ge et al. (2017) demonstrate that

no spurious minima exists in such a problem and all saddle

points are strict. Based on a revised robust strict saddle prop-

erty, Zhu et al. (2021) show that the local search method

such as gradient descent leads to a linear convergence rate

with good initialization with a regularity condition on Φ.

Chen et al. (2023) extend the analysis in Zhu et al. (2021)

to general Φ, and show that with a moderate random initial-

ization, the gradient descent method will converge globally

at a linear rate. In the over-parameterized regime, Ye &

Du (2021) proves that the gradient descent method will

converge to a global minimum at a polynomial rate with

random initialization. We note, however, that these works

assume the perfect knowledge of Φ, which is different from

the data-based representation learning problem considered

in this work.

3. Problem Formulation

Notations. We use diag(x1, · · · , xd) to denote a d-

dimension diagonal matrix with diagonal entries x1, · · · , xd.

⟨x, y⟩ denotes the inner product of x and y, and ∥x∥ denotes

the Euclidean norm of vector x. We use f ◦ ψ to denote the

composition of functions f : Rk → R
m and ψ : Rd → R

k,

i.e., (f ◦ ψ)(x) = f(ψ(x)). Id represents a d× d identify

matrix, and 0 is a d-dimensional all-zero vector.

FL with common representation. We consider an FL

system consisting of M clients and one server. Client i has

a local dataset Di that consists of ni training samples (x, y)
where x ∈ R

d and y ∈ R
m. For simplicity, we assume

ni = N for all client i ∈ [M ]. For (xi,j , yi,j) ∈ Di, we

assume yi,j = gi(xi,j)+ξi,j , where xi,j is randomly drawn

according to a sub-Gaussian distribution PX with mean 0

and covariance matrix Id, gi : R
d → R

m is a deterministic

function, and ξi,j ∈ R
m is an independent and identically

distributed (IID) centered sub-Gaussian noise vector with

covariance matrix σ2Id.

Federated representation learning (FRL) aims at learning

both a common representation that suits all clients and an

individual head that only fits client i. An FL framework

adopting this principle was proposed by Arivazhagan et al.

(2019), and we follow the same framework in this paper.

More specifically, we assume that the local model of client i
can be decomposed into two parts: a common representation

ψB : R
d → R

k shared by all clients and a local head

fwi
: R

k → R
m, where B and wi are the parameters

of the corresponding functions. Then, the ERM problem

considered in this FRL framework can be formulated as:

min
B,{wi}

1

M

∑

i∈[M ]

1

N

∑

(x,y)∈Di

ℓ((fwi ◦ ψB)(x), y). (1)

This formulation leverages the common representation

while accommodating data heterogeneity among clients, fa-

cilitating efficient personalized model training (Arivazhagan

et al., 2019; Collins et al., 2021).

In this work, we focus on the under-parameterized setting

in FRL, which is formally defined as follows.

Definition 3.1 (Under-Parameterization in FRL). Given

a common representation class Ψ and a collection of

local head classes {Fi}Mi=1, an FRL problem is under-

parameterized if there does not exist a representation ψ ∈ Ψ,

and a collection of functions f1 × f2 . . . × fM ∈ F1 ×
F2 . . .×FM such that fi ◦ ψ = gi for all i ∈ [M ].

The over-parameterization in FRL can be defined in a

symmetric form. This definition aligns with the over-

parameterized frameworks in matrix approximation, as de-

tailed in Jiang et al. (2022); Ye & Du (2021), where over-

parameterization is characterized by the rank of the repre-

sentation being no-less than that of the ground-truth model.

It also encompasses the definition in central statistical learn-

ing (Belkin et al., 2019; Oneto et al., 2023), where over-

parameterization is defined as the predictor’s function class

being sufficiently rich to approximate the global minimum.

While various algorithms have been developed and analyzed

in the over-parameterized setting (Arivazhagan et al., 2019;

Liang et al., 2020; Collins et al., 2021), to the best of our

knowledge, under-parameterized FRL has not been studied

in the literature before. This is, however, arguably a more

practical setting in large-scale FRL supported by a massive
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number of resources-scarce IoT devices, as such IoT de-

vices usually cannot support the storage, computation, and

communication of models parameterized by a large number

of parameters, while the task heterogeneity across massive

devices imposes significant challenges on the model class

to reconstruct M different local models perfectly3.

Low-dimensional linear representation. We first focus

on the linear setting in which all local models gi are linear,

i.e., yi,j = ϕ⊤i xi,j +ξi,j for (xi,j , yi,j) ∈ Di. Denote Φ :=
[ϕ1, · · · , ϕM ] ∈ R

d×M and assume its rank is r. Then,

similar to the works of Collins et al. (2021); Arivazhagan

et al. (2019), we consider a linear prediction model where

(fwi◦ψB)(x) can be expressed as x⊤Bwi. Here, B ∈ R
d×k

is the common linear representation shared across clients,

and wi ∈ R
k is the local head maintained by client i. We

denote W = [w1, · · · , wM ]. Then, if we further consider

the ℓ2 loss function, the ERM problem becomes

min
B,W

1

M

∑

i∈[M ]

1

N

∑

(x,y)∈Di

∥x⊤Bwi − y∥2. (2)

We note that the existing literature usually assumes that

r ≤ k, which falls in the over-parameterized regime (Zhu

et al., 2021). The over-parameterized assumption implies

the existence of a pair of B and W that can accurately

recover the ground-truth model Φ, i.e., BW = Φ. Thus,

the learning goal in the over-parameterized regime is to

identify such a pair using available training data (Du et al.,

2020; Tripuraneni et al., 2021; Collins et al., 2021; Shen

et al., 2023).

In contrast to the existing works, in the under-parameterized

regime given in Definition 3.1, we have r > k, i.e., there

does not exist matrices B ∈ R
d×k and W ∈ R

k×M such

that BW = Φ. Our objective is to learn a common repre-

sentation and local heads (B,W) in the federated learning

framework such that ∥BW − Φ∥2F reaches its minimum,

although Φ is not explicitly given but embedded in local

datasets.

4. The FLUTE Algorithm

In this section, we present the FLUTE algorithm for the

linear model. We will first highlight the unique challenges

the under-parameterized setting brings, and then introduce

our algorithm design.

3Continuing the previous example of MobileNet, which can
be adapted for object detection for autonomous driving (Chen
et al., 2021), it is known that a single model may not capture
very detailed or complex features of the complete environment,
including pedestrians, cyclists, and various road signs (Chen et al.,
2022).

4.1. Challenges

In order to understand the fundamental differences between

the over- and under-parameterized regimes, we first assume

Φ is known beforehand, and consider solving the following

optimization problem:

(B∗,W∗) = argmin
B∈R

d×k,W∈R
k×M

∥BW −Φ∥2F . (3)

Denote the singular value decomposition (SVD) of Φ as

UΛV⊤, where U and V are two unitary matrices, and

Λ is a diagonal matrix. When k ≥ r, i.e., the model

is over-parameterized, B∗ and W∗ can be explicitly con-

structed from the SVD of Φ, i.e., any (B,W) satisfying

BW = UΛV⊤ is an optimizer to Equation (3). When

k < r, i.e., in the under-parameterized regime, we can no

longer recover the full matrix Φ with B∗ and W∗. In-

stead, existing result (Golub & Van Loan, 2013) states

that we can only determine that the solution must satisfy

B∗W∗ = UkΛkV
⊤
k , where Λk is a k × k diagonal ma-

trix with the k largest singular values of Φ as the diagonal

entries.

Compared with the over-parameterized setting, learning

B∗ and W∗ from decentralized datasets is more challeng-

ing in the under-parameterized setting. Let B⋄
i be the lo-

cally optimized representation at client i, i.e., (B⋄
i , w

⋄
i ) =

argmin ∥Biwi − ϕi∥2. Then, in the over-parameterized

setting, B⋄
i will always stay in the same column space

as B∗, i.e., span(B⋄
i ) ⊆ span(B∗), ∀i ∈ [M ]. How-

ever, for the under-parameterized setting, it is possible that

span(B⋄
i ) ̸⊂ span(B∗), ∃i ∈ [M ]. How to aggregate the lo-

cally obtained B⋄
i to correctly span the column space of B∗

thus becomes a unique challenge in the under-parameterized

setting and requires novel techniques different from those

in the existing over-parameterized literature.

Example 1. Consider a scenario that Φ ∈ R
d×M with

M < d. We assume Φ = U diag(λ1, · · · , λM ), where

U := [u1, . . . , uM ] is a unitary matrix and λ1 > λ2 >
· · · > λM > 0. Assume k = 1. Then, we have

B∗W∗ = u1λ1. Assume each client i can perfectly re-

cover its local model ϕi = uiλi with Bi = uiλi/wi. Then,

depending on the value of wi’s, the aggregated representa-

tion B := 1
M

∑

i Bi may exhibit different properties. For

example, if wi = λi, we have B = 1
M

∑

i ui, which de-

viates significantly from the column space of B∗. On the

other hand, if wi =
√

λi/M , then Bi = ui
√
Mλi, while

B =
∑

i ui
√

λi/M . Thus, u1 will have a heavier weight

in the aggregated representation, which will eventually help

recover the column space of B∗. Intuitively, to accurately

recover the column space of B∗, in the under-parameterized

setting, it requires a more sophisticated algorithm design not

just to estimate the column space of Φ, but also distill the

most significant components of it from distributed datasets

in each aggregation.
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4.2. A New Loss Function

Motivated by the observation in Example 1, instead of con-

sidering the original problem in (2), we introduce two new

regularization terms and consider the following ERM prob-

lem:

min
B,{wi}M

i=1

1

M

∑

i∈[M ]

1

N

∑

(x,y)∈Di

∥x⊤Bwi − y∥2 (4)

−γ1∥BW∥2F
︸ ︷︷ ︸

(I)

+ γ2(∥B⊤B∥2F + ∥WW⊤∥2F )
︸ ︷︷ ︸

(II)

.

In Equation (4), we introduce the regularization term (I)

into the loss function, with the purpose of preserving the

top-k significant components of BW. By preserving the

significant components in B, the term (I) mitigates local

over-fitting induced during local updates. However, min-

imizing term (I) alone would result in a uniform enlarge-

ment of all k singular values of BW. To address this, we

further incorporate the regularization term (II). This term

is specifically formulated to promote the k most signifi-

cant components and suppress the less significant ones. By

doing so, it aids the server in accurately distilling the cor-

rect subspace spanned by the optimal representation. We

note that when γ1 = 2λ2, (I) and (II) together recover the

conventional penalty term ∥B⊤B−WW⊤∥2F , which has

been previously adopted for low-rank matrix approxima-

tion (Chen et al., 2023; Zhu et al., 2021; Wang et al., 2016b)

and multi-task learning (Tripuraneni et al., 2021).

4.3. FLUTE for Linear Model

In order to solve the optimization problem given in (4), we

introduce an algorithm named FLUTE (Ferated Learning

in Under-parameTerized REgime), which is compactly de-

scribed in Algorithm 1. Specifically, for each epoch, the al-

gorithm consists of three major steps, namely, server broad-

cast, client update, and server update.

Server broadcast. At the beginning of epoch t, the server

broadcasts the representation Bt−1 to all clients, and wt−1
i

(i.e., the i-th column of Wt−1) to each individual client i.

Client update. Denoting the local loss function as Li =
1
N

∑

(x,y)∈Di
∥x⊤Bwi − y∥2, the client calculates the gra-

dient of Li with respect towt−1
i and Bt−1

i , respectively, and

uploads them to the server.

Server update. After receiving ∇
w

t−1
i
Li and ∇Bt−1Li

from all clients, the server first aggregates them to update

the global representation and local heads as follows:

B̄t = Bt−1 − ηl
∑

i∈[M ]

∇Bt−1Li

(

wt−1
i ,Bt−1

)

,

wt
i = wt−1

i − ηl∇wt−1
i
Li

(

wt−1
i ,Bt−1

)

, ∀i ∈ [M ],

(5)

Algorithm 1 FLUTE Linear

1: Input: Learning rates ηl and ηr, regularization parame-

ter λ, communication round T , constant α
2: Initialization: All entries of B0 and W0 are indepen-

dently sampled form N (0, α2).
3: for t ∈ [T ] do

4: Server sends Bt−1 and wt−1
i to client i, ∀i ∈ [M ].

5: for client i ∈ [M ] in parallel do

6: Calculates ∇wt−1
i
Li

(

wt−1
i ,Bt−1

)

and

∇Bt−1Li

(

wt−1
i ,Bt−1

)

.

7: Sends gradients to the server.

8: end for

9: Server updates according to Equations (5) to (6).

10: end for

after which it constructs matrix W̄t by setting W̄t :=
[wt

1, · · · , wt
M ]. It then performs another step of gradient

descent with respect to the regularization term in (4) to re-

fine the global representation and local heads and obtain Bt

and Wt:

Bt = B̄t + γ1ηr∇Bt−1∥Bt−1Wt−1∥2F (6)

− γ2ηr∇Bt−1(∥(Bt−1)⊤Bt−1∥2F + ∥Wt−1(Wt−1)⊤∥2F ),
Wt = W̄t + γ1ηr∇Wt−1∥Bt−1Wt−1∥2F
− γ2ηr∇Wt−1(∥(Bt−1)⊤Bt−1∥2F + ∥Wt−1(Wt−1)⊤∥2F ).

The procedure repeats until some stop criterion is satisfied.

Remark 4.1. When α is small, the initialization of B0

and W0 would ensure that the largest singular value of

B0(W0)T is sufficiently small with high probability. As

we will show in the next section, such initialization guaran-

tees that FLUTE converges to the global minimum.

The major differences between FLUTE and existing FRL

algorithms such as FedRep (Collins et al., 2021), Fe-

dRod (Chen & Chao, 2021), and FedCP (Zhang et al.,

2023a) lie in the server-side model updating. While these

existing algorithms typically involve transmitting only the

shared representation layers of local models to the server,

with local heads being optimized and utilized exclusively

at the client side, FLUTE requires clients to transmit both

the shared representation layers and the local heads to the

server. The increased communication cost is fundamentally

necessary due to the unique nature of FRL in the under-

parameterized regime, as it allows for server-side optimiza-

tion, not just aggregation, of the entire model. Furthermore,

FLUTE introduces additional data-free penalty terms to the

server-side updates. These terms are designed to guide the

shared representation to converge toward the global mini-

mum by leveraging the information in the local heads. This

approach represents a significant paradigm shift in federated

learning, aiming to enhance the overall global performance
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of the FRL model.

5. Theoretical Guarantees

Before introducing our main theorem, we denote d =
min{d,M} and d = max{d,M}. We also denote λ1 ≥
λ2 ≥ · · · ≥ λd as the ordered singular values of Φ with

∆ := 2(λk − λk+1). Denote E =
∑

i λ
2
i . We assume

∆ > 0 throughout the analysis.

5.1. Main Results

Theorem 5.1 (Sample complexity). Set γ1 = 1
4 and γ2 = 1

8
in Equation (4). Let 0 < α ≲ 1

10d , and η := ηl = ηr ≲
∆2

228λ1
3 . Then, for any ϵ > 0, under Algorithm 1, there exists

positive constants c and c′ such that when the number of

samples per client satisfies

N ≥ cλ
4
1k(d+ log 1

δ + log log 1
ϵ )(
√

k(λ1)2 + E +
√
kσ)2

Mη2∆6ϵ2

and t ≥ log(ϵ
√
Mη∆2/c′λ2

1

√
k)

log(1−η∆/16) , with probability at least 1−δ,

1

M

∑

i∈[M ]

∥Btwt
i −B∗w∗

i ∥ ≤ ϵ. (7)

Remark 5.2. Theorem 5.1 indicates that the per-client sam-

ple complexity scales in Õ
(

max{d,M}
Mϵ2

)

. Compared with

the single-client setting, which is essentially a noisy linear

regression problem with sample complexity O( d
ϵ2 ) (Hsu

et al., 2012), FLUTE achieves a linear speedup in terms of

M in the high dimensional setting (i.e., d > M ). When

d < M , the sample complexity of FLUTE becomes inde-

pendent with M , which is due to the fact that each client

requires a minimum number of samples to have the local

optimization problem non-ill-conditioned. Compared with

the sample complexity O
(

d
M + log(M)

)

of FRL in the

noiseless over-parameterized setting (Collins et al., 2021),

FLUTE achieves more favorable dependency on M .

Remark 5.3. We note that the dependency on ∆ and

λ1, especially ∆, is unique for the under-parameterized

FRL. For the special case when λ∗k+1 = 0, the

problem we consider essentially falls into the over-

parameterized regime, and FLUTE can still be applied.

Theorem 5.1 shows that the sample complexity scales in

O(max{d,M}
Mϵ2 (

λ∗

1

∆ )10). We note that under the assumption

that B∗ consists of orthonormal columns, the SOTA sam-

ple complexity in the over-parameterized regime scales in

O(max{d,M}
Mϵ2 κ4) (Tripuraneni et al., 2021), where κ =

σ1((W
∗)⊤W∗)/σr((W∗)⊤W∗). Under the same as-

sumption on B∗, we have λ∗1 =
√

σ1((W∗)⊤W∗), ∆ =
√

σk((W∗)⊤W∗), and our sample complexity then be-

comes O(max{d,M}
Mϵ2 κ5). The additional order of κ in

the bound is due to an initial state-dependent quantity

bounded by
λ∗

1

∆ . The detailed analysis can be found in

Appendix A.2.3.

Remark 5.4. The sample complexity in Theorem 5.1 re-

quires that the size of each local dataset be sufficiently

large. This is in stark contrast to the sample complexity re-

sult in existing works (Collins et al., 2021), which imposes

a requirement on the total number of samples in the system

instead of on each individual client/task. We need the size

for each local dataset to be sufficiently large to ensure that

every ϕi can be locally estimated with a small error so that

the top k components of the ground truth Φ can be correctly

recovered.

Theorem 5.5 (Convergence rate). Set γ1, γ2 and η as in

Theorem 5.1. Denote κT = (1− η∆
16 )

T . Then, for a constant

TR (defined in Equation (16) in Appendix A) and any T >
TR, there exist positive constants c1 and c2 such that when

N ≥ c1
(d−log δ+log T )(

√
k(λ1)2+E+

√
kσ)2

κ2
T∆2 , for all TR <

t ≤ T , with probability at least 1− δ, we have

1

M

∑

i∈[M ]

∥Btwt
i −B∗w∗

i ∥ ≤
c2λ

2
1

√
k√

Mη∆2

(

1− η∆

16

)t

. (8)

Remark 5.6. Theorem 5.5 shows that when the number of

samples per client N is sufficiently large, FLUTE converges

exponentially fast. We note that the required number of sam-

ples grows exponentially in the total number of iterations.

Such an exponential increase in the required number of sam-

ples is essential to guarantee that the ‘noise’ level, which

is the gradient estimation error, decays at least as fast as

the decay rate of the representation estimation error, which

is exponential. Similar phenomenon has been observed in

the literature (Mitra et al., 2021; Zhang et al., 2023b). In

our problem, there are essentially two parts of ‘noise’ in

the learning process. One is the sub-exponential label noise

ξi,j , and the other is the gradient discrepancy arising from

the under-parameterized nature. This discrepancy persists

even when Bt and Wt are nearly optimal, leading to an

unavoidable gap between BtWt and Φ. This gap behaves

similarly to the sub-Gaussian noise in the convergence anal-

ysis, as elaborated in Section 5.2. Therefore, an exponential

increase in the number of samples is required to cope with

both parts of the noise and ensure the one-step improvement

of the estimation error as iteration grows.

Remark 5.7. We also note that both the sample complexity

in Theorem 5.1 and the convergence rate in Theorem 5.5 are

influenced by ∆, the gap between λk and λk+1. A smaller

∆ signifies a growing challenge in correctly identifying the

top-k principal components of Φ, leading to increased sam-

ple complexity and slower convergence. This is due to the

challenge of accurately distinguishing and recovering the

k-th and (k+ 1)-th significant components from the dataset

when ∆ is small. Note that in order to successfully distin-
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guish σk and σk+1, we need to estimate them to be ∆/2-

accurate, i.e., |σ̂k − σk| ≤ ∆/2 and |σ̂k+1 − σk+1| ≤ ∆/2.

Hence, the required number of samples per client would

grow significantly when ∆ is small, and this is arguably

inevitable.

5.2. Proof Sketch

In this subsection, we outline the major challenges and

main steps in the proof of Theorem 5.5 while deferring

the complete analysis to Appendix A. Theorem 5.1 can be

proved once Theorem 5.5 is established.

Challenges of the analysis. The analytical frameworks

proposed by Collins et al. (2021) and Zhong et al. (2022)

for over-parameterized learning scenarios, as well as by

Chen et al. (2023) for low-rank matrix approximation, can-

not handle the unique challenges that arise in the under-

parameterized FRL framework, as elaborated below.

The first major challenge we encounter is to bound the

gradient discrepancy on the update of Bt, denoted as

(BtWt −Φ)(Wt)⊤ −∑i∈[M ]
XiX

⊤

i

N

(
Btwt

i − ϕi
)
(wt

i)
⊤.

Such difficulty is absent in the analyses in Collins et al.

(2021) and Zhong et al. (2022) because, in the over-

parameterized regime and with a fixed number of samples

per client per iteration, the error caused by the gradient dis-

crepancy decays at a rate comparable to that of the represen-

tation estimation error. Therefore, the gradient discrepancy

will gradually converge to zero. However, for the under-

parameterized setting, even with the optimal (Bt,Wt), i.e.,

when BtWt = B∗W∗, gradient discrepancy can still be

non-zero, as the optimal representation cannot recover all

local models, i.e., B∗W∗ ̸= Φ. Instead, it only decreases

when the number of samplesN increases. This phenomenon

indicates that an increase in the number of samples is es-

sential to ensure one-step improvements of the estimated

representations toward the ground-truth representation as

the iteration progresses.

Another main challenge is ensuring that neither the gradi-

ent discrepancy nor noise-induced errors accumulate over

iterations. This is critical as error accumulation can lead

to significant deviation from the optimal solution, result-

ing in poor convergence and degraded model performance.

To achieve this, we need to ensure the improvement of the

estimation can dominate the effect of potential disturbances.

To tackle these new challenges, we first prove two con-

centration lemmas (Lemma A.13 and Lemma A.14 in Ap-

pendix A.2.5) to ensure that the norm of the gradient discrep-

ancy can be bounded when local datasets are sufficiently

large. Next, to address the second challenge of avoiding

the accumulation of gradient discrepancy and noise-induced

errors over iterations, we develop iteration-dependent up-

per bounds for sample complexity (Lemma A.10 and

Lemma A.11 in Appendix A.2.3). These bounds guarantee

that the improvement in estimation, i.e., the ’distance’ im-

provement between our estimated model and the optimal

low-rank model, can mitigate potential disturbances caused

by gradient discrepancy and noise. We establish this by in-

troducing a novel approach to derive an accuracy-dependent

upper bound for the per-client sample complexity, ensuring

the error caused by the gradient discrepancy decays as fast

as the increase of the signal-to-noise ratio (SNR), formally

introduced in Appendix A.

Main steps of the proof. First, we transform the asym-

metric matrix factorization problem into a symmetric prob-

lem by appropriately padding 0 columns or rows to Bt

and Wt and constructing the updating matrices Θt (see

Appendix A). Our goal is then to prove that Θt(Θt)⊤ con-

verges. We first show that, with a small random initializa-

tion, Θt will enter a region containing the optima with high

probability. Then, utilizing Lemma A.13 and Lemma A.14,

we demonstrate that when Θt enters the region R, it will

remain in this region with high probability despite gradient

discrepancy and noise. Finally, utilizing Lemma A.10 and

Lemma A.11, we show that when N is sufficiently large,

Θt(Θt)⊤ converges at a linear rate with high probability

under the influence of gradient discrepancy and noise, pro-

vided that the initialization condition satisfies Θ0 ∈ R.

6. General FLUTE

In this section, we extend FLUTE designed for linear models

to more general settings. Specifically, we use ψB to denote

the representation, and assume linear local heads fi(z) =
H⊤

i z + bi, where Hi ∈ R
k×m, bi ∈ R

m. This is motivated

by the neural network architecture where all layers before

the last layer are abstracted as the representation layer, and

the last layer is linear. Then, the objective function becomes

min
B,{Hi},{bi}

1

M

∑

i∈[M ]

1

N

∑

(x,y)∈Di

ℓ
(
H⊤

i ψB(x) + bi, y
)

+ λR({Hi},B), (9)

where R({Hi},B) is the regularization term to encourage

the alignment of local models with the global optimum

structure.

The general FLUTE algorithm for solving problem (9) is

provided in Algorithm 2 in Appendix B. Given the non-

linearity of ψB, the penalty introduced in linear FLUTE is

not directly applicable to the general problem. We thus

formulate and design new penalty terms, following the same

principles that motivated the design in the linear setting.

This is to mitigate the local over-fitting induced by local

updates and to encourage a structure benefit to global opti-

mization. As a concrete example, we present a design of the

penalty term for the classification problem with CNN as a

7
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prediction model in Section 7.2.

7. Experimental Results

7.1. Synthetic Datasets

We generate a synthetic dataset as follows. First, we ran-

domly generate ϕi according to a d-dimensional standard

Gaussian distribution. For each ϕi, we then randomly gen-

erate N pairs of (x, y), where x is sampled from a standard

Gaussian distribution, ξ is sampled from a centered Gaus-

sian distribution with variance σ2, and y = ϕ⊤i x+ ξ.

In Figure 1, we compare FLUTE with FedRep (Collins et al.,

2021). We measure the quality of the learned representa-

tion Bt and Wt over the metric 1
M

∑

i∈[M ] ∥Btwt
i − ϕi∥.

We emphasize that FedRep requires empirical covariance

estimated from the local datasets to be transmitted to the

server for the initialization. Thus, it begins with a good esti-

mate of the subspace spanned by B∗. In contrast, FLUTE

commences with a random initialization of both the repre-

sentation and the heads. As a result, FedRep converges to

a relatively small error within the few initial epochs, while

FLUTE needs to go through more epochs to obtain a good

estimate of the representation. However, as the learning

progresses over more epochs, FLUTE eventually outper-

forms FedRep. To validate this hypothesis, we introduce

FedRep(RI) in our experiments, which has the same initial-

ization as FLUTE but is otherwise identical to FedRep. We

see from Figure 1 that when FedRep is randomly initialized,

FLUTE outperforms FedRep(RI) in much fewer iterations.

We also observe that the performance gain of FLUTE is

more pronounced in highly under-parameterized scenarios,

i.e., where k is relatively small. As k increases, the gap

between the convergence rates of FLUTE and FedRep nar-

rows. These results demonstrate that FLUTE achieves better

performance in the under-parameterized regime. In the ad-

ditional experimental results included in Appendix C, we

also observe that when the number of participating clients

M increases, the average error of the model learned from

FLUTE decreases, which is consistent with Theorem 5.5.

7.2. Real World Datasets

Datasets and models. We now evaluate the performance

of general FLUTE on multi-class classification tasks with

real-world datasets CIFAR-10 and CIFAR-100 (Krizhevsky

et al., 2009). For all experiments, we adopt a convolutional

neural network (CNN) with two convolution layers, two

fully connected layers with ReLU activation, and a final

fully connected layer with a softmax activation function.

A detailed description of the CNN structure is deferred to

Appendix C of the Appendix.

Algorithms for comparison. We compare FLUTE with sev-

Figure 1. Experimental results with synthetic datasets.

eral baseline algorithms, including FedAvg (McMahan et al.,

2017), Fed-LG (Liang et al., 2020), FedPer (Arivazhagan

et al., 2019), FedRep (Collins et al., 2021), FedRod (Chen

& Chao, 2021) and FedCP (Zhang et al., 2023a). Fed-LG

is designed to learn a common head shared across clients

while allowing for localized representations, while FedPer

and FedRep both assume shared representation and person-

alized local heads. FedRod extends the model considered in

FedRep by adding another head layer into the local model,

and FedCP further equips a conditional policy network into

the local model. We also consider variants of FLUTE and

FedRep, denoted as FLUTE* and FedRep*, respectively,

under which we vary the number of updates of the local

heads in each communication round, as elaborated later.

Loss function and penalty. For algorithms other than

FLUTE and FLUTE*, the local loss function is chosen as

Li =
1
N

∑

(x,y)∈Di
LCE(H

⊤
i ψB(x) + bi, y), where LCE is

the cross entropy loss. The local loss function for FLUTE

and FLUTE* are specialized as

Li(B, b,H) =
1

N

∑

(x,y)∈Di

LCE

(
H⊤

i ψB(x) + bi, y
)
+

λ1∥ψB(x)∥2 + λ2∥Hi∥2F + λ3NCi(Hi), (10)

where y ∈ R
m is a one-hot vector whose k-th en-

try is 1 if the corresponding x belongs to class k, λ1,

λ2 and λ3 are non-negative regularization parameters.

NCi(Hi) is motivated by Papyan et al. (2020) and set as
∥
∥
∥
∥

H
⊤

i Hi

∥H⊤
i Hi∥F

− 1√
m−1

uiu
⊤
i ⊙

(
Im − 1

m1m1⊤
m

)
∥
∥
∥
∥
F

, where

ui is an m-dimensional one-hot vector whose c-th entry

8
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Table 1. Average test accuracy on CIFAR-10 and CIFAR-100.

Dataset CIFAR-10 CIFAR-100

Partition 50 × 2 50 × 5 100 × 2 100 × 5 100 × 5 100 × 10 100 × 20 100 × 40

FedAvg 34.460±1.083 47.217±0.395 41.584±0.433 51.876±0.675 20.212±0.574 31.533±0.519 34.659±0.482 32.902±0.195

FedAvg-FT 83.996±0.948 71.465±0.701 84.688±0.437 70.884±0.697 78.342±0.574 66.660±0.370 54.464±0.178 44.858±0.119

Fed-LG 82.724±2.137 61.820±0.409 83.019±0.431 62.957±0.895 72.526±0.692 53.526±0.151 34.445±0.375 22.702±0.315

FedPer 85.173±1.082 74.015±0.724 86.168±0.703 73.666±0.281 76.001±0.454 67.100±0.229 56.066±0.389 44.689±0.411

FedRep 86.133±0.775 71.737±0.296 86.685±0.766 73.808±0.561 78.621±0.159 68.530±0.255 56.360±0.245 43.061±0.476

FedRep* 87.320±1.485 75.766±0.220 87.177±0.489 75.296±0.505 78.892±0.410 68.630±0.705 56.654±0.609 42.025±0.404

FedRoD 79.476±2.966 68.728±1.750 83.296±1.545 72.116±0.788 74.299±0.338 66.462±0.284 57.280±0.105 48.120±0.186

FedCP 85.361±1.605 71.603±0.885 84.798±0.489 71.344±0.587 74.266±0.559 66.426±0.372 57.067±0.483 43.638±0.415

FLUTE 87.012±0.453 76.478±0.484 86.128±1.007 76.918±0.712 77.750±0.615 70.598±0.282 59.243±0.334 48.169±0.597

FLUTE* 87.713±1.365 76.543±0.921 88.567±0.457 78.255±0.688 79.560±0.627 70.844±0.419 59.714±0.448 48.170±0.440

is 1 if c ∈ Ci, and ⊙ denotes the Hadamard product. We

specialize the regularization term optimized on the server

side as R({Hi}) =
∑

iNCi(Hi). Note that for general

FLUTE specified to a classification problem, we penalize

∥ψB(x)∥ instead of directly penalizing the parameter B.

Since ∥ψB(x)∥ depends on data, the regularization term is

optimized partially on the client side and partially on the

server side.

Compared with the objective function in Equation (4) for

the linear case, the term λ3NCi(Hi) replaces term (I) and

λ1∥ψB(x)∥22 + λ2∥Hi∥2F replaces term (II). The primary

goal of introducing λ3NCi(Hi) is to mitigate local over-

fitting that occurs during local updates in the training pro-

cess. As elaborated in Appendix B.3, such a regularization

term promotes a beneficial structure for the global model,

facilitating efficient learning performance. This term shares

the same motivation as the term (I) in the linear scenario,

which focuses on distilling significant components from

the model to mitigate local over-fitting effects. For term

(II), we only replace ∥B⊤B∥2F with ∥ψB(x)∥2, since the

representation is not linear in general.

Implementation and evaluation. We use m to denote the

number of classes assigned to each client. For CIFAR-10

dataset, we consider four (N,m) pairs: (50, 2), (50, 5),
(100, 2) and (100, 5); For CIFAR-100 dataset, we con-

sider four (N,m) pairs: (100, 5), (100, 10), (100, 20) and

(100, 40).

For experiments conducted on the CIFAR-10 dataset, all

algorithms are executed over 100 communication rounds.

For LG-Fed, FedPer, FedRoD, FedCP and FLUTE, each

client performs one round of local updates in each commu-

nication round. FedRep performs one epoch of local head

update and an additional epoch for the local representation

update. Compared with FedRep, FedRep* processes 10

epochs to update its local heads and one epoch to update

its representation. For comparison, FLUTE* also runs 11

rounds of local updates, updating both representation and

local head in the first round, followed by 10 rounds of only

updating the local head.

The experiments on the CIFAR-100 dataset also use 100

communication rounds. The number of local updates for

LG-Fed, FedPer, FedRoD, FedCP and FLUTE are set to 5.

FedRep is configured to update the local representation and

head for 5 epochs each, while FedRep* allocates 5 epochs

for updating the local representation and 10 for updating the

local head. FLUTE* runs 15 epochs of local updates, where

the initial 5 epochs update both the representation and local

head while the subsequent 10 epochs solely update the local

head.

Averaged performance. The results are reported in Table 1.

It is evident that FLUTE and FLUTE* consistently outper-

form other baseline algorithms in all experiments conducted

on CIFAR-10 and CIFAR-100 datasets. This superior perfor-

mance is attributed to the tailored design that encourages the

locally learned models to move towards a global optimal so-

lution rather than a local optimum. We also observe that the

gain of FLUTE and FLUTE* becomes more prominent with

larger N and m. Intuitively, larger N and m implies more

severe under-parameterization for the given CNN model,

and our algorithms exhibit more advantage for such cases.

8. Conclusion

To the best of our knowledge, this paper represents the first

effort in the study of federated representation learning in

the under-parameterized regime, which is of great practi-

cal importance. We have proposed a novel FRL algorithm

FLUTE that was inspired by asymmetric low-rank matrix

approximation. FLUTE incorporates a novel regularization

term in the loss function and solves the corresponding ERM

problem in a federated manner. We proved the convergence

of FLUTE and established the per-client sample complex-

ity that is comparable to the over-parameterized result but

with very different proof techniques. We also extended

FLUTE to general (non-linear) settings which are of prac-

tical interest. FLUTE demonstrated superior performance

over existing FRL solutions in both synthetic and real-world

tasks, highlighting its advantages for efficient learning in

the under-parameterized regime.
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Notations. Throughout this paper, bold capital letters (e.g., X) denote matrices, and calligraphic capital letters (e.g., C)

denote sets. We use tr(X) to denote the trace of matrix X, σmin(X) and σmax(X) to denote the minimum and maximum

singular values of X, respectively, and diag(x1, · · · , xd) to denote a d-dimensional diagonal matrix with diagonal entries

x1, · · · , xd. |C| denotes the cardinality of set C, and {Xi}i∈[N ] denotes the set {X1, · · · , XN}. We use ⟨x, y⟩ to denote the

inner product of x and y, and ∥x∥ to denote the Euclidean norm of vector x. We use f ◦ ψ to denote the composition of

functions f : Rk → R
m and ψ : Rd → R

k, i.e., (f ◦ ψ)(x) = f(ψ(x)). a ≲ b indicates a ≤ Cb for a positive constant C.

Id represents a d× d identity matrix, and 0 is a d-dimensional all-zero vector.

Denote d := max{d,M}, d := min{d,M}, and Φ⋆ ∈ R
d×d as the matrix constructed from Φ ∈ R

d×M by padding all-

zero columns or rows. Define its SVD as Φ⋆ = U⋆Λ⋆V
⊤
⋆ . Denote Λ̃ = diag(2Λ⋆,−2Λ⋆) and let λ∗1 ≥ λ∗2 ≥ · · · ≥ λ∗2d

be the eigenvalues of Λ̃, with ∆ = λ∗k − λ∗k+1. Note that the definition of ∆ is consistent with the definition in Section 5.

For clarity of presentation, we use σξ to denote the standard deviation of the noise ξ instead of σ that is used in the main

paper.

A. Analysis of the FLUTE Linear Algorithm

A.1. Preliminaries

We start with the updating rule of Bt and Wt in Algorithm 1.

For Bt, from FLUTE we have the following updating rule:

Bt+1 = Bt − η

N

∑

i∈[M ]

∑

j∈[N ]

xi,j
(
x⊤i,jB

twt
i − yi,j

)
(wt

i)
⊤ − η

2
Bt
(
(Bt)⊤Bt −Wt(Wt)⊤

)

= Bt − η

N

∑

i∈[M ]

XiX
⊤
i

(
Btwt

i − ϕi
)
(wt

i)
⊤ − η

2
Bt
(
(Bt)⊤Bt −Wt(Wt)⊤

)
.

Since data points {xi,j} are sampled from a standard Gaussian distribution, for large N , it holds that XiX
⊤
i /N ≈ I. Then,

we introduce the following definition:

Qt+1 := η
∑

i∈[M ]

(
Btwt

i − ϕi
)
(wt

i)
⊤ − η

∑

i∈[M ]

XiX
⊤
i

N

(
Btwt

i − ϕi
)
(wt

i)
⊤ + η

∑

i∈[M ]

XiEi(w
t
i)

⊤

N
. (11)

With this definition, the updating rule of Bt can be rewritten as

Bt+1 = Bt − η
(
BtWt −Φ

)
(Wt)⊤ − η

2
Bt
(
(Bt)⊤Bt −Wt(Wt)⊤

)
+Qt+1.

Now we consider the updating rule of W. Observe that each of its columns satisfies

wt+1
i = wt

i −
η

N

∑

j∈[N ]

(Bt)⊤xi,j
(
(xi,j)

⊤Btwt
i − yi,j

)

= wt
i −

η

N
(Bt)⊤XiX

⊤
i

(
Btwt

i − ϕi
)
.

We define Q̃t+1 := [q̃t+1
1 , · · · , q̃t+1

M ], where each of its columns is given by

q̃t+1
i := η(Bt)⊤

(
Btwt

i − ϕi
)
− η

N
(Bt)⊤XiX

⊤
i

(
Btwt

i − ϕi
)
+

η

N
(Bt)⊤XiEi. (12)

Then, Wt is updated according to

Wt+1 = Wt − η(Bt)⊤(BtWt −Φ) +
η

2

(
(Bt)⊤Bt −Wt(Wt)⊤

)
Wt + Q̃t+1.

Recall the SVD of Φ is denoted as Φ = UΛV⊤. Further denote B̃t = U⊤Bt and W̃t = WtV. Then, we have

B̃t+1 = B̃t − η
(
B̃tW̃t −Λ

)(
W̃t
)⊤ − η

2
B̃t
(
(B̃t)⊤B̃t − W̃t−1(W̃t)⊤

)
+U⊤Qt+1,
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W̃t+1 = W̃t − η(B̃t)⊤
(
B̃tW̃t −Λ

)
− η

2

(
(B̃t)⊤B̃t − W̃t(W̃t)⊤

)
W̃t + Q̃t+1V.

Similar to the definition of Φ⋆, we construct Bt
⋆ ∈ R

d×k and Wt
⋆ ∈ R

k×d by padding all-zero columns or rows to B̃t and

W̃, respectively. Similarly, we obtain Qt
⋆ ∈ R

d×k and Q̃t
⋆ ∈ R

k×d by padding all-zero columns or rows to Qt and Q̃t,

respectively. Then, we define Θt and Rt as

Θt =

[
(Bt

⋆)
⊤ +Wt

⋆√
2

(Bt
⋆)

⊤ −Wt
⋆√

2

]⊤
,

Rt =

[
(Qt

⋆)
⊤U⋆ + Q̃t

⋆V⋆√
2

(Qt
⋆)

⊤U⋆ − Q̃t
⋆V⋆√

2

]⊤
.

Then, the updating rule of Θt can be described as

Θt+1 = Θt +
η

2
Λ̃Θt − η

2
Θt(Θt)⊤Θt +Rt+1. (13)

Let Θt = [(Θt
k)

⊤(Θt
res)

⊤]⊤ and Rt = [(Rt
k)

⊤ (Rt
2d−k

)⊤]⊤ where Θt
k ∈ R

k×k, Θt
res ∈ R

(2d−k)×k, Rt
k ∈ R

k×k and

Rt
2d−k

∈ R
(2d−k)×k. Then, we decompose the updating rule of Θt as

Θt
k = Θt−1

k +
η

2
Λ̃kΘ

t−1
k − η

2
Θt−1

k (Θt−1)⊤Θt−1 +Rt
k, (14)

Θt
res = Θt−1

res +
η

2
Λ̃resΘ

t−1
res −

η

2
Θt−1

res (Θt−1)⊤Θt−1 +Rt
2d−k. (15)

A.2. Proof of Theorem 5.5

First, we restate Theorem 5.5 as follows.

Theorem A.1 (Restatement of Theorem 5.5). Set λ and η as in Theorem 5.1. Then for constant TR and any

T > TR, there exist positive constants c1 and c2 such that when the number of samples per client satisfies N ≥
c1

(d−log δ+log T )(k
√

(λ∗
1)

2+E+
√
kσξ)

2

κ2
T∆2 , for all TR < t ≤ T we have

1

M

∑

i∈[M ]

∥Btwt
i −B∗w∗

i ∥ ≤
c2κ
√
k√

M

(

1− η∆

16

)t

,

with probability at least 1− δ, where κT = (1− η∆
16 )

T .

Overview of the proof. The proof of Theorem 5.5 consists of three main steps.

• Step 1: We show that with a small random initialization, Θt will enter a region containing the optima with high probability

(see Appendix A.2.1).

• Step 2: We show that once Θt enters this region, it will stay in it with high probability (see Appendix A.2.2).

• Step 3: We show that when N is sufficiently large, with high probability it holds that ∥Θt(Θt)⊤ − diag(Λ̃k,0)∥
converges to 0 at a linear rate when the initialization satisfies Θ0 ∈ R (see Appendix A.2.3).

We then put pieces together and prove Theorem 5.5 in Appendix A.2.4. We introduce some auxiliary lemmas in Ap-

pendix A.2.5.

A.2.1. STEP 1: ENTERING A REGION WITH SMALL RANDOM INITIALIZATION

We first introduce the following definitions, adapted from the proof in Chen et al. (2023). Recall that ∆ = λ∗k − λ∗k+1. We

define

R =

{

Θt =

[
Θt

k

Θt
res

]

∈ R
2d×k

∣
∣
∣
∣
σ2
1(Θ

t) ≤ 2λ∗1, σ2
1(Θ

t
res) ≤ λ∗k −∆/2, σ2

k(Θ
t
k) ≥ ∆/4

}

,
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Rs =

{

Θt =

[
Θt

k

Θt
res

]

∈ R
2d×k

∣
∣
∣
∣
σ2
1(Θ

t) ≤ 2λ∗1, σ2
1(Θ

t
res) ≤ λ∗k −∆/2

}

.

Then, we establish the following proposition.

Proposition A.2. Assume η ≤ 1
6λ∗

1
and all entries of B0 and W0 are independently sampled from N (0, α2) with a

sufficiently small α. Then, if

√
N ≥ max

{√

d− log δ√
c1

,
3456

√

d− log δ
√
λ∗1(
√

k(λ∗1)
2 + E +

√
kσξ)

min{σ1(Θ0
res), σ1(Θ

0
res)}∆

√
c1

}

,

with probability at least 1− ctδ for some constant c > 0, Θt will enter regionR for some t ∈ [TR], where

TR =
log(∆/(4σ2

k(Θ
0
k)))

2 log(1 + η
2 (λ

∗
k −∆/2))

. (16)

The proof of Proposition A.2 relies on Lemma A.4 and Lemma A.5, which will be introduced shortly. Before that, we state

the following claim introduced in Chen et al. (2023):

Claim A.3. σ2
1(Θ

0) ≤ λ∗1, σ2
1(Θ

0
res) ≤ λ∗k −∆/2, σ2

k(Θ
0
k) ≤ ∆/4 and σ2

1(Θ
0
res) ≤ c1 · σk(Θ0

k)
1+κ, where c1 = ∆1−κ/2

23−κ

and κ =
log(1+ η

2 λ
∗

k+1+
η
8∆)

log(1+ η
2 (λ

∗
k−∆/2)) < 1.

The following lemma shows that with a small random initialization, Claim A.3 holds with high probability.

Lemma A.4. Assume all entries of B0 and W0 are independently sampled from N (0, α2). Then, for any δ ∈ [0, 1], if α is

sufficiently small, Claim A.3 holds with probability at least 1− δ.

Proof of Lemma A.4. Using Lemma A.19, we have σ1(Θ
0) ≤

√
λ∗1 and σ1(Θ

0
res) ≤

√
λ∗k −∆/2 hold with prob-

ability at least 1 − 2 exp(−( 1
α2

√
λ∗k −∆/2 − 2

√
d)2/2), and σk(Θ

0
k) ≤

√
∆/2 holds with probability at least

1− 2 exp(−(
√
∆/(2α2)− 2

√
d)2/2). Then for α small enough such that

α ≤ min
{

√
∆

4
√
d+ 2

√

2 log(2/δ′)
,

√

λ∗1 −∆/2

2
√
d+

√

2 log(2/δ′)

}

,

σ1(Θ
0) ≤

√
λ∗1, σ1(Θ

0
res) ≤

√
λ∗k −∆/2 and σk(Θ

0
k) ≤

√
∆/2 hold with probability at least 1− 2δ′ for any δ′ ∈ [0, 1].

From Rudelson & Vershynin (2008), there exists a constant K that only depends on δ′ such that with probability at least

1− δ′, we have σk(Θ
0
k) ≥ α2K

√
k.

Thus, when α is sufficiently small such that α4−2(1+κ) ≤ c1(K
√
k)1+κ

8d+4 log(2/δ′) , with probability at least 1− δ′, we have

c1σk(Θ
0
k)

1+κ ≥ c1(α2K
√
k)1+κ ≥ α4(2

√
d+

√

2 log(2/δ′))2.

Note that from Lemma A.19, with probability at least 1− δ′ we have

σ2
1(Θ

0
res) ≤ α4(2

√
d+

√

2 log(2/δ′))2.

Then we conclude that with probability at least 1 − 4δ′, we have σ1(Θ
0) ≤

√
λ∗1, σ1(Θ

0
res) ≤

√

λ∗1 −∆/2, σk(Θ
0
k) ≤√

∆/2 and σ2
1(Θ

0
res) ≤ c1 · σk(Θ0

k)
1+κ. Finally the lemma follows by setting δ = 4δ′.

Next, we introduce the following lemma, which shows that when Claim A.3 holds, Θt will enter the regionR in a short

time period.

Lemma A.5. Assume η ≤ 1
6λ∗

1
and Claim A.3 holds. Then, if

√
N ≥ max

{
√

d− log δ√
c1

,
3456

√

d− log δ
√
λ∗1(
√

k(λ∗1)
2 + E +

√
kσξ)

min{σ1(Θ0
res), σ1(Θ

0
res)}∆

√
c1

}

, (17)

with probability at least 1− ctδ, we have σk(Θ
t
k) ≥

√
∆/2 for some t ∈ [0,

log(∆/4σ2
k(Θ

0
k))

2 log(1+ η
2 (λ

∗
k−∆/2)) ].
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Proof of Lemma A.5. With Claim A.3 holds, we have σ2
1(Θ

0) ≤ 2λ∗1, σ2
1(Θ

0
res) ≤ λ∗k −∆/2. Then, based on Lemma A.17,

for N satisfying inequality (17), we have

σ1(Θ
t
res) ≤

(

1 +
η

2
λ∗k+1 +

η

8
∆
)t

σ1(Θ
0
res),

holds with probability at least 1− ctδ. Combining with Claim A.3, we obtain

(

1 +
η

2
λ∗k+1 +

η

8
∆
)TR

σ2
1(Θ

0
res) =

( ∆

4σ2
k(Θ

0
k)

)κ/2

σ2
1(Θ

0
res) ≤

∆

8
√
λ∗1
σk(Θ

0
k).

Then, for all t ≤ TR, we have

(

1 +
η

2
λ∗k+1 +

η

8
∆
)2t

σ2
1(Θ

0
res) ≤

(

1 +
η

2
λ∗k+1 +

η

8
∆
)t+TR

σ2
1(Θ

0
res) ≤

(

1 +
η

2
λ∗k −

η

4
∆
)t ∆

8
√
λ∗1
σk(Θ

0
k).

Let T ′ = min{t > 0|σ2
k(Θ

t
k) ≥ ∆/4}. We then aim to prove that

σk(Θ
t
k) ≥

(

1 +
η

2
λ∗k −

η

4
∆
)t

σk(Θ
0
k), ∀t ≤ min{TR, T ′}. (18)

We prove it by induction.

Assume Equation (18) holds for some τ ≤ t, where t ≤ min{TR, T ′}. Then we have

σ2
1(Θ

τ
res) ≤

(

1 +
η

2
λ∗k+1 +

η

8
∆
)2τ

σ2
1(Θ

0
res) ≤

∆

8
√
λ∗1

(

1 +
η

2
λ∗k+1 −

η

4
∆
)τ

σk(Θ
0
k) ≤

∆

8
√
λ∗1
σk(Θ

τ
k).

We consider the next time step τ + 1. Note that σk(Θ
τ+1
k ) can be lower bounded as

σk(Θ
τ+1
k ) ≥ σk(Θτ

k +
η

2
Λ̃kΘ

τ
k −

η

2
Θτ

k(Θ
τ )⊤Θτ )− σ1(Rτ+1

k )

≥ σk(Θτ
k +

η

2
Λ̃kΘ

τ
k −

η

2
Θτ

k(Θ
τ
k)

⊤Θτ
k)−

η

2
σ1(Θ

τ
k(Θ

τ
res)

⊤Θτ
res)− σ1(Rτ+1).

Applying Lemma D.4 in Jiang et al. (2022) gives

σk(Θ
τ
k +

η

2
Λ̃kΘ

τ
k −

η

2
Θτ

k(Θ
τ
k)

⊤Θτ
k)−

η

2
σ1(Θ

τ
k(Θ

τ
res)

⊤Θτ
res)

≥
(
1− (η)2

2
σ1(Λ̃k(Θ

τ
k)

⊤Θτ
k)
)
(1 +

η

2
λ∗k)σk(Θ

τ
k)
(
1− η

2
σ2
k(Θ

τ
k)
)
− η

2
σ1(Θ

τ
k(Θ

τ
res)

⊤Θτ
res)

≥
(

1− (η)2

2
λ∗1

2
)(

1 +
ηλ∗k
2

)(

1− η∆

4

)

σk(Θ
τ
k)−

η∆

8
σk(Θ

τ
k).

Then, for η ≤ ∆2

18λ∗
1
3 , we have

σk(Θ
τ
k +

η

2
Λ̃kΘ

τ
k −

η

2
Θτ

k(Θ
τ
k)

⊤Θτ
k)−

η

2
σ1(Θ

τ
k(Θ

τ
res)

⊤Θτ
res) ≥

(

1 +
ηλ∗k
2
− η∆ 71

288

)

σk(Θ
τ
k). (19)

According to Lemma A.13 and Lemma A.14, if

√
N ≥ max

{
√

d− log δ√
c1

,
3456

√
λ∗1(
√

k(λ∗1)
2 + E +

√
kσξ)

√

d− log δ

σk(Θ0
k)∆
√
c1

}

,

then, with probability at least 1− 2δ, we have σ1(R
τ+1) ≤ 1

288η∆σk(Θ
0
k).

Combining with Equation (19) gives

σk(Θ
τ+1
k ) ≥

(

1 +
ηλ∗k
2
− η∆ 71

288

)

σk(Θ
τ
k)−

1

288
η∆σk(Θ

0
k)
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≥
(

1 +
ηλ∗k
2
− η∆ 71

288

)(

1 +
η

2
λ∗k −

η

4
∆
)τ

σk(Θ
0
k)−

1

288
η∆σk(Θ

0
k)

≥
(

1 +
ηλ∗k
2
− η∆ 71

288

)(

1 +
η

2
λ∗k −

η

4
∆
)τ

σk(Θ
0
k)−

1

288

(

1 +
η

2
λ∗k −

η

4
∆
)τ

η∆σk(Θ
0
k)

=
(

1 +
η

2
λ∗k −

η

4
∆
)τ+1

σk(Θ
0
k).

Then, we conclude that with probability at least 1− ctδ for some constant c, we have

σk(Θ
t
k) ≥

(

1 + ηλ∗k/2− η∆/4
)t

σk(Θ
0
k).

Here we claim TR ≤ T ′ always holds, since if TR > T ′, we must have

σk(Θ
TR

k ) ≥
(

1 + ηλ∗k/2− η∆/4
)TR

σk(Θ
0
k) ≥

√
∆/2,

which contradicts the definition of T ′. The proof is thus complete.

A.2.2. STEP 2: TRAPPED IN THE ABSORBING REGION

We start by introducing Lemma A.6, Lemma A.7 and Lemma A.8.

Lemma A.6. Assume η ≤ 2
5λ∗

1
and Θ0 ∈ Rs. Then, if

√
N ≥ 12

√
2
√

dk−k log δ√
c1

for constant c1, with probability at least

1− 2tδ, we have σ1(Θ
τ ) ≤

√
2λ∗1 hold for all τ ≤ t.

Proof of Lemma A.6. Assume that Θτ−1 ∈ Rs. Then, utilizing Equation (13), we have

σ1(Θ
τ ) ≤ σ1(Θτ−1)

(
1 +

η

2
λ∗1 −

η

2
σ2
1(Θ

τ−1)
)
+ σ1(R

τ ).

Note that σ1(Θ
τ−1)

(
1 + η

2λ
∗
1 − η

2σ
2
1(Θ

τ−1)
)

reaches its maximum at σ1(Θ
τ−1) =

√
2+ηλ∗

1

3η . For η ≤ 2
5λ∗

1
, we have

√
2+ηλ∗

1

3η ≥
√

2λ∗1. Thus, σ1(Θ
τ−1)

(
1 + η

2λ
∗
1 − η

2σ
2
1(Θ

τ−1)
)

is monotonically increasing for σ1(Θ
τ−1) ∈ [0,

√
2λ∗1].

Then,

σ1(Θ
tτ) ≤

√

2λ∗1
(
1− η

2
λ∗1
)
+ σ1(R

τ ).

We prove σ1(Θ
τ ) ≤

√
2λ∗1 by induction. First, since Θ0 ∈ Rs, we have σ1(Θ

0) ≤
√
2λ∗1. Then, assume σ1(Θ

τ ) ≤
√
2λ∗1

holds for time step 0 ≤ τ < t. According to Lemma A.13 and Lemma A.14, if σ1(Θ
τ ) ≤

√
2λ∗1, and

√
N ≥

12
√
2
√

dk−k log δ√
c1

, with probability at least 1− 2δ, we have σ1(R
τ+1) ≤

√
2
2 η(λ

∗
1)

3
2 . Thus,

σ1(Θ
τ+1) ≤

√

2λ∗1
(
1− η

2
λ∗1
)
+ σ1(R

τ+1) ≤
√

2λ∗1.

Then, by induction, with probability at least 1−2tδ, we have σ1(Θ
τ ) ≤

√
2λ∗1 for all τ ≤ t. Then the proof is complete.

Lemma A.7. Assume η ≤ 1
6λ∗

1
and Θ0 ∈ Rs. Then, if

√
N ≥ max







√

d− log δ√
c1

,
48
√
λ∗1(
√

k(λ∗1)
2 + E +

√
kσξ)

√

d− log δ

∆
√
c1(λ∗k −∆/2)







for constant c1, with probability at least 1− 2tδ, we have σ1(Θ
τ
res) ≤

√
λ∗k −∆/2 holds for all τ ≤ t.
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Proof of Lemma A.7. We prove it by induction. Note that σ1(Θ
0
res) ≤

√
λ∗k −∆/2 since Θ0 ∈ Rs. Assume σ1(Θ

τ−1
res ) ≤

√
λ∗k −∆/2 holds for some τ . We aim to show that the inequality holds for σ1(Θ

τ
res) as well.

Based on Lemma A.15, for η ≤ 1/6λ∗1 and σ1(Θ
τ ) ≤

√
2λ∗1, we have

σ1(Θ
τ
res) ≤

(

1 +
η

2

(
λ∗k+1 − σ2

1(Θ
τ−1
res )− σ2

k(Θ
τ−1
k )

))

σ1(Θ
τ−1
res ) + σ1(R

τ
2d−k

)

≤
(

1 +
η

2

(
λ∗k+1 − σ2

1(Θ
τ−1
res )

))

σ1(Θ
τ−1
res ) + σ1(R

τ
2d−k

).

Note that when σ1(Θ
τ−1
res ) ≥ 0,

(

1 + η
2

(
λ∗k+1 − σ2

1(Θ
τ−1
res )

))

σ1(Θ
τ−1
res ) is maximized at σ1(Θ

τ−1
res ) =

√
2+ηλ∗

k+1

3η . Since

we assume η ≤ 1
6λ∗

1
≤ 2

3λ∗
k+λ∗

k+1
, it holds that

√
2+ηλ∗

k+1

3η ≥
√
λ∗k −∆/2. Then,

(

1 + η
2

(
λ∗k+1 − σ2

1(Θ
τ−1
res )

))

σ1(Θ
τ−1
res )

is monotonically increasing for 0 ≤ σ1(Θτ−1
res ) ≤

√
λ∗k −∆/2. We thus have

σ1(Θ
τ
res) ≤

√

λ∗k −∆/2
(
1− η∆

4

)
+ σ1(R

τ ). (20)

According to Lemma A.13 and Lemma A.14, if
√
N ≥ max

{
√

d−log δ√
c1

,
48
√

λ∗
1(
√

k(λ∗
1)

+E+
√
kσξ)
√

d−log δ

∆
√

c1(λ∗
k−∆/2)

}
, with probabil-

ity at least 1− 2δ, we have

σ1(R
τ ) ≤ ∆η

√
λ∗k −∆/2

4
. (21)

Then by combining (20) and (21), we have σ1(Θ
τ
res) ≤

√
λ∗k −∆/2. The proof is thus complete.

Lemma A.8. Assume η ≤ ∆2

32λ∗
1
3 , σk(Θ

0
k)≥
√
∆/2 and Θτ ∈ Rs for all 0 < τ ≤ t. Then, if

√
N ≥ max

{√

d− log δ√
c1

,
6144

√
λ∗1(
√

k(λ∗1)
2 + E +

√
kσξ)

√

d− log δ

∆
√
c1

}

,

for some contact c1, with probability at least 1− 2tδ, we have σk(Θ
τ
k) ≥

√
∆/2 hold for all 0 < τ ≤ t.

Proof of Lemma A.8. We prove it by induction. First note that σk(Θ
0
k) ≥

√
∆/2 under the assumption of Lemma A.8.

Assume that σk(Θ
τ
k) ≥

√
∆/2 holds for some t. We then show that σk(Θ

τ+1
k ) ≥

√
∆/2 holds as well.

Since for all τ ≤ t it holds that Θτ ∈ Rs and N satisfies the condition described in Lemma A.8, based on Lemmas A.13

and A.14, with probability at least 1− 2tδ, it holds that σ1(R
τ
k) ≤ η∆2

512
√

λ∗
1

for all 0 ≤ τ ≤ t. From the intermediate result

of Lemma A.16, for η ≤ ∆2

16λ∗
1
3 , we have

σ2
k(Θ

τ+1
k ) ≥

(

1 + η
(
λ∗k − σ2

1(Θ
τ
res)− σ2

k(Θ
τ
k)
))

σ2
k(Θ

τ
k)− η2λ∗13 − 4

√

λ∗1σ1(R
τ
k).

Combining with the fact that

σ2
k(Θ

τ+1
k ) ≥

(

1 + η
(
λ∗k − σ2

1(Θ
τ
res)− σ2

k(Θ
τ
k)
))

σ2
k(Θ

τ
k)− η2λ∗13 −

η∆2

128
,

we have

σ2
k(Θ

τ+1
k ) ≥

(

1 + η
(
∆/2− σ2

k(Θ
τ
k)
))

σ2
k(Θ

τ
k)− η2λ∗13 −

η∆2

128

≥ (1 + η(∆/2−∆/4))∆/4− η2λ∗13 −
η∆2

128

≥ ∆

4
+ η

∆2

16
− η∆

2

32
− η∆2

128

≥ ∆

4
.

The proof is thus complete.
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Combining Lemmas A.6 and A.7, we conclude that for N sufficiently large,Rs is an absorbing region with high probability,

i.e., starting from Θ0 ∈ Rs, the subsequent Θt will stay inRs for all t > 0 with high probability, which is summarized in

the following proposition.

Proposition A.9. Assume Θ0 ∈ R. If
√
N ≥ c

√
λ∗
1(
√

k(λ∗
1)

2+E+
√
kσ)
√

d−log δ

∆
3
2

for some constant c, then, with probability

at least 1− tδ, we have Θτ ∈ R for all 0 ≤ τ ≤ t.

A.2.3. STEP 3: LOCAL CONVERGENCE OF Θt(Θt)⊤

We next show that whenN is sufficiently large, with high probability, ∥Θt(Θt)⊤−diag(Λ̃k,0)∥ converges to 0 exponentially

fast when Θ0 ∈ R.

Firstly, we establish the following lemma that lower bounds the number of samples needed for the inverse SNR to converge

exponentially fast with high probability.

Lemma A.10. Denote σt+1
ref =

√
λ∗1

(

1− η∆
16

)t+1

. Assume η ≤ ∆2/(36λ∗31 ), Θτ ∈ R for all 0 ≤ τ ≤ t, and

√
N ≥ c ·max

{√

d− log δ,

√

d− log δ
√
λ∗1(
√

k(λ∗1)
2 + E +

√
kσξ)

σt+1
ref ∆

,

√

d− log δλ∗1(
√

k(λ∗1)
2 + E +

√
kσ)

∆2

}

for some constant c. Then, with probability at least 1− (t+ 1)δ, we have

σ1(Θ
t+1
res ) ≤ 2

√
2λ∗1√
∆

(

1− η∆

16

)t+1

.

Proof of Lemma A.10. Based on Lemma A.20, we have σ1(R
τ+1

2d−k
) ≤ σ1(R

τ+1) and σ1(R
τ+1
k ) ≤ σ1(R

τ+1). Then, it

follows that

σ1(R
τ+1

2d−k
) ≤

√

σ2
1((Q

τ+1
⋆ )⊤U⋆) + σ2

1(Q̃
τ+1
⋆ V⋆) and σ1(R

τ+1
k ) ≤

√

σ2
1((Q

τ+1
⋆ )⊤U⋆) + σ2

1(Q̃
τ+1
⋆ V⋆).

Substitute the σ in Lemmas A.13 and A.14 by σt+1
ref . Then, if

√
N ≥ max

{√

d− log δ√
c1

,
192
√

d− log δ
√
λ∗1(
√

k(λ∗1)
2 + E +

√
kσξ)

σt+1
ref ∆

√
c1

,
6144

√

d− log δλ∗1(
√

k(λ∗1)
2 + E +

√
kσξ)

∆2
√
c1

}

,

with probability at least 1− 2δ, we have

σ1(R
τ
2d−k) ≤

σt+1
ref η∆

16
and σ1(R

τ
k) ≤

η∆2

512
√
λ∗1
. (22)

We prove the lemma by considering two cases. In the first case, we assume σ1(Θ
τ
res) ≥ σt+1

ref for all 0 ≤ τ ≤ t. In the

second case, we assume there exists at least one time step in [0, t] such that σ1(Θ
τ
res) < σt+1

ref , and we denote the last time

step satisfying this condition as t′.

We start from the first case. Combining Equation (22) with Lemma A.15 gives

σ1(Θ
τ+1
res ) ≤

(

1 +
η

2

(
λ∗k+1 − σ2

1(Θ
τ
res)− σ2

k(Θ
τ
k)
))

σ1(Θ
τ
res) +

σ1(Θ
τ
res)η∆

16
(23)

=
(

1 +
η

2

(
λ∗k+1 +∆/8− σ2

1(Θ
τ
res)− σ2

k(Θ
τ
k)
))

σ1(Θ
τ
res),

where in Equation (23) we use the assumption that σt+1
ref ≤ σ1(Θτ

res).

Then, using the fact that σ2
1(Θ

τ ) ≤ 2λ∗1 and η ≤ ∆
16λ∗

1
2 we obtain

σ2
1(Θ

τ+1
res ) ≤

(

1 + η
(
λ∗k+1 +∆/8− σ2

1(Θ
τ
res)− σ2

k(Θ
τ
k)
)
+ 4η2λ∗1

2
)

σ2
1(Θ

τ
res) (24)
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≤
(

1 + η
(
λ∗k+1 +∆/8− σ2

1(Θ
τ
res)− σ2

k(Θ
τ
k)
)
+
η∆

4

)

σ2
1(Θ

τ
res)

≤
(

1− η∆/8 + η
(
λ∗k −∆/2− σ2

1(Θ
τ
res)− σ2

k(Θ
τ
k)
))

σ2
1(Θ

τ
res), (25)

where Equation (24) holds since
(
λ∗k+1 +∆/8− σ2

1(Θ
τ
res)− σ2

k(Θ
τ
k)
)2 ≤ 16λ∗1

2.

Next, combining Lemma A.16 and Equation (22) leads to

σ2
k(Θ

τ+1
k ) ≥ σ2

k(Θ̃
τ+1
k )− 4

√

λ∗1σ1(R
τ+1
k )

≥ σ2
k(Θ̃

τ+1
k )− η∆2

128

≥ σ2
k(Θ̃

τ+1
k )− η∆

8
σ2
k(Θ

τ
k) (26)

≥
(

1 + η
(
λ∗k − σ2

1(Θ
τ
res)− σ2

k(Θ
τ
k)
)
− η∆

4

)

σ2
k(Θ

τ
k)−

η∆

8
σ2
k(Θ

τ
k)

=
(

1 + η∆/8 + η
(
λ∗k −∆/2− σ2

1(Θ
τ
res)− σ2

k(Θ
τ
k)
))

σ2
k(Θ

τ
k), (27)

where in Equation (26) we use the fact σk(Θ
τ
k) ≥ ∆

4 .

Then, combining Equation (25) with Equation (27) we have

σ2
1(Θ

τ+1
res )

σ2
k(Θ

τ+1
k )

≤

(

1− η∆/8 + η
(
λ∗k −∆/2− σ2

1(Θ
τ
res)− σ2

k(Θ
τ
k)
))

σ2
1(Θ

τ
res)

(

1 + η∆/8 + η
(
λ∗k −∆/2− σ2

1(Θ
τ
res)− σ2

k(Θ
τ
k)
))

σ2
k(Θ

τ
k)

≤ 3/2− η∆/8
3/2 + η∆/8

· σ
2
1(Θ

τ
res)

σ2
k(Θ

τ
k)

(28)

≤
(

1− η∆

6

)σ2
1(Θ

τ
res)

σ2
k(Θ

τ
k)

≤
(

1− η∆

16

)2σ2
1(Θ

τ
res)

σ2
k(Θ

τ
k)
, (29)

where Equation (28) holds when−1/2 ≤ η
(
λ∗k−∆/2−σ2

1(Θ
τ
res)−σ2

k(Θ
τ
k)
)
≤ 1/2, which is valid when η ≤ ∆2/(36λ∗1

3),
and Equation (29) holds since (1− η∆/6) ≤ (1− η∆/16) is valid for positive η.

Then, with probability at least 1− 2(t+ 1)δ, we have

σ2
1(Θ

t+1
res ) ≤

(

1− η∆

16

)2(t+1)σ2
1(Θ

0
res)

σ2
k(Θ

0
k)
σ2
k(Θ

t+1
k ) ≤ 8λ∗1

2

∆

(

1− η∆

16

)2(t+1)

.

For the second case, note at time step t′ we have σ1(Θ
t′

res) < σt+1
ref , and for all t′ < τ ≤ t we have σ1(Θ

τ
res) ≥ σt+1

ref . Similar

to the previous analysis, we show that with probability at least 1− 2(t+ 1− t′)δ, we have

σ2
1(Θ

t+1
res ) ≤

(

1− η∆

6

)t+1−t′
(
σt+1

ref

)2

σ2
k(Θ

t′
k )
σ2
k(Θ

t+1
k )

≤ 8λ∗1
∆

(
σt+1

ref

)2
(

1− η∆

16

)2(t+1−t′)

≤ 8λ∗1
2

∆

(

1− η∆

16

)2(2t+2−t′)

≤ 8λ∗1
2

∆

(

1− η∆

16

)2(t+1)

.

The proof is complete by combining the two cases.
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The following lemma characterizes the number of samples needed for Θk to converge to Λ̃k, which is based on the

convergence of the inverse SNR.

Lemma A.11. Assume η ≤ ∆2/(36λ∗31 ), Θt ∈ R for all 0 ≤ τ ≤ t and N satisfies
√
N ≥ c ·

max

{
√

d− log δ,

√
d−log δλ∗

1(
√

k(λ∗
1)

2+E+
√
kσξ)

σt+1
D ∆

}

for some constant c. Then, with probability at least 1 − (t + 1)δ,

we have

σ1(D
t+1) ≤ 200λ∗1

2

η∆2

(

1− η∆

16

)t+1

,

where σt+1
D = min

{

3λ∗1, (1− η∆
16 )

t+1 λ∗

1
2

η∆2

}

.

Proof of Lemma A.11. We denote Dτ = Θτ
k(Θ

τ
k)

⊤ − Λ̃k. For Θ̃τ
k defined in Lemma A.16, we have

Dτ = Θ̃τ
k(Θ̃

τ
k)

⊤ − Λ̃k + Θ̃τ
k(R

τ
k)

⊤ +Rτ
k(Θ̃

τ
k)

T +Rτ
k(R

τ
k)

⊤. (30)

Let σt+1
D = min

{

3λ∗1, (1− η∆
16 )

t+1 λ∗

1
2

η∆2

}

. Then, if

√
N ≥ max

{√

d− log δ√
c1

,
1152

√

d− log δλ∗1(
√

k(λ∗1)
2 + E +

√
kσξ)

σt+1
D ∆

√
c1

}

, (31)

we have ∥Rτ
k∥ ≤

σt+1
D η∆

96
√

λ∗
1

. It follows that

∥Θ̃τ
k(R

τ
k)

⊤∥ ≤ σt+1
D η∆

48
,

and

∥Rτ
k(R

τ
k)

⊤∥ ≤
(σt+1

D η∆

96
√
λ∗1

)2

≤ σt+1
D η∆

48
, (32)

where Equation (32) holds since
σt+1
D η∆

96
√

λ∗
1

≤ 1. Then, with probability at least 1− 2δ, we have

σ1

(

Θ̃τ
k(R

τ
k)

⊤ +Rτ
k(Θ̃

τ
k)

⊤ +Rτ
k(R

τ
k)

⊤
)

≤ η∆

16
σt+1
D .

We prove the lemma by considering two cases: In the first case, we assume σ1(D
τ ) ≥ σt+1

D for all 0 ≤ τ ≤ t; In the second

case, we assume there is at least one time step in [0, t] such that σ1(D
τ ) < σt+1

D , and we denote the latest time step satisfies

this condition as t′.

We start from the first case. From Section A.3 in Chen et al. (2023), we have

σ1(D
τ ) ≤ (1− η∆

8
)σ1(D

τ−1) + σ2
1(Θ

τ−1
res ) +

η∆

16
σt+1
D

≤ (1− η∆

8
)σ1(D

τ−1) + (1− η∆

16
)2(τ−1) 8λ

∗
1
2

∆
+
η∆

16
σ1(D

τ−1)

≤ (1− η∆

16
)σ1(D

τ−1) + (1− η∆

16
)2(τ−1) 8λ

∗
1
2

∆
.

Then, for N satisfying Equation (31), with probability at least 1− 2(t+ 1)δ, we have

σ1(D
t+1)

(1− η∆
16 )

t+1
≤ σ1(D0) +

t∑

i=0

(

1− η∆/16
)i

8λ∗1
2

(1− η∆/16)∆
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≤ σ1(D0) +
130λ∗1

2

η∆2

≤ 200λ∗1
2

η∆2
, (33)

where Equation (33) follows from the fact that λ∗1/η∆
2 ≥ 1 and σ1(D

0) ≤ 3λ∗1 ≤ 3λ∗1
2/η∆2. Therefore, we conclude that

σ1(D
t+1) ≤ (1− η∆/16)t+1 · 200λ

∗

1
2

η∆2 .

For the second case, note at time step t′ we have σ1(D
t′) < σt+1

D , and for all t′ < τ ≤ t we have σ1(D
τ ) ≥ σt+1

D . Similar

to the previous analysis, we show that with probability at least 1− 2(t+ 1− t′) exp(−c2(d+ k)), it has

σ1(D
t+1)

(1− η∆
16 )

t+1−t′
≤ σ1(Dt′) +

t+1−t′∑

i=0

(

1− η∆/16
)i

8λ∗1
2

(1− η∆/16)∆ ,

≤ λ∗1
2

η∆2
(1− η∆

16
)t+1 +

130λ∗1
2

η∆2

≤ 200λ∗1
2

η∆2
.

The proof is complete by combining the two cases.

Then, we aim to show the local convergence property of Θt stated in the following proposition.

Proposition A.12. Assume Θ0 ∈ R0, η ≤ ∆2/(36λ∗31 ) and N satisfies

√
N ≥ max

{√

d− log δ√
c1

,
1152

√

d− log δ(
√

k(λ∗1)
2 + E +

√
kσξ)

κt∆
√
c1

,
6144

√

d− log δλ∗1(
√

k(λ∗1)
2 + E +

√
kσξ)

∆2
√
c1

}

,

(34)

for constant c1 and κt =
(
1− η∆

16

)t+1
. Define κ =

λ∗

1
2

η∆2 . Then, with probability at least 1− ctδ, we have

∥Θt(Θt)⊤ − diag(Λ̃k,0)∥F ≤ 400κ
√
k
(

1− η∆

16

)t

.

Proof. First, by combining Lemmas A.6 to A.8, we conclude that if N satisfies (34), Θτ ∈ Rτ holds for all τ ≤ t with

probability at least 1− ctδ.

Then, based on Lemma A.10, if N satisfies Equation (34), with probability at least 1− 2tδ, we have

σ1(Θ
t
res) ≤

2
√
2λ∗1√
∆

(

1− η∆

16

)t

. (35)

Define Dt = Θt
k(Θ

t
k)

⊤ − Λ̃k. Based on Lemma A.11, we have

√
N ≥ 1152

√

d− log δ(
√

k(λ∗1)
2 + E +

√
kσξ)

κt∆
√
c1

≥ 1152
√

d− log δλ∗1(
√

k(λ∗1)
2 + E +

√
kσξ)

σt+1
D ∆

√
c1

.

Under the same conditions in Equation (34), it holds that

σ1(D
t) ≤ 200λ∗1

2

η∆2

(

1− η∆

16

)t

. (36)

By combining Equation (35) and Equation (36), we have

∥Θt(Θt)⊤ − diag(Λ̃k,0)∥F ≤
√
k∥Dt∥+ 2

√

kλ∗1∥Θt
res∥ (37)
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≤ 400max
{
√
kλ∗1

3
2

√
∆

,

√
kλ∗1

2

η∆2

}(

1− η∆

16

)t

.

Note that the randomness in {Θt}t comes from {Rt}t. If N satisfies Equation (34), we have Equation (35) Equation (36)

and the event Θτ ∈ Rτ , ∀0 < τ ≤ t holds with probability at least 1− ctδ. Noting that max
{√

kλ∗

1

3
2√

∆
,
√
kλ∗

1
2

η∆2

}

=
√
kλ∗

1
2

η∆2 ,

the proof is complete.

A.2.4. PUTTING ALL TOGETHER

Combining Propositions A.2, A.9 and A.12, it is straightforward to show that if t > TR, N satisfies N ≥
c2

(d−log δ+log T )(
√

k(λ∗
1)

2+E+
√
kσξ)

2

κ2
T∆2 for some constant c2, and Θ0 satisfies the small random initialization condition

stated in Proposition A.2, then it holds that ∥Θt(Θt)⊤−diag(Λ̃k,0)∥F ≤ c4κ
√
k
(

1− η∆
16

)t

for all t satisfies TR < t < T

with probability at least 1− δ, where κT = (1− η∆
16 )

T and constant c4 = 400
(

1− η∆
16

)−TR

.

Applying Lemma A.18, with probability at least 1− δ, we have

∥B̃tW̃t − diag(Λk,0)∥F ≤ c4κ
√
k
(

1− η∆

16

)t

.

Note that ∥BtWt − B∗W∗∥F = ∥B̃tW̃t − diag(Λk,0)∥F . Combing with the fact that
∑

i∈[M ] ∥Btwt
i − B∗w∗

i ∥2 =

∥BtWt −B∗W∗∥2F , we have
∑

i∈[M ]

∥Btwt
i −B∗w∗

i ∥2 ≤ c24κ2k
(

1− η∆

16

)2t

.

Then, applying the Cauchy-Schwarz inequality gives

( ∑

i∈[M ]

∥Btwt
i −B∗w∗

i ∥
)2

≤ c24Mκ2k
(

1− η∆

16

)2t

,

which immediately implies that

1

M

∑

i∈[M ]

∥Btwt
i −B∗w∗

i ∥ ≤ c4κ
√

k

M

(

1− η∆

16

)t

.

A.2.5. AUXILIARY LEMMAS

Lemma A.13 (Concentration of ∥U⊤
⋆ Q

τ+1
⋆ ∥). For any T ≥ 0, assume Θτ ∈ Rs holds for all 0 < τ ≤ t. Then, we have

the following results for any 0 ≤ τ ≤ t and c2 ≥ 0 with probability at least 1− 2δ:

• If
√
N ≥ max

{
√

d−log δ√
c1

,
192
√

d−log δ
√

λ∗
1(
√

k(λ∗
1)

2+E+
√
kσξ)

σ∆
√
c1

}
, then it holds that

∥U⊤
⋆ Q

τ+1
⋆ ∥ ≤ ση∆

16
√
2
. (38)

• If
√
N ≥ max

{
√

d−log δ√
c1

,
6144
√

d−log δλ∗

1(
√

k(λ∗
1)

2+E+
√
kσξ)

∆2
√
c1

}
, then it holds that

∥U⊤
⋆ Q

τ+1
⋆ ∥ ≤ η∆2

512
√
2
√
λ∗1
. (39)

Proof of Lemma A.13. Recall that Qτ+1
⋆ is defined as

Qτ+1
⋆ = η

∑

i∈[M ]

(
Bτ

⋆w
τ
i − ϕ⋆i

)
(wτ

i )
⊤ − η

∑

i∈[M ]

X⋆iX
⊤
⋆i

N

(
Bτ

⋆w
τ
i − ϕ⋆i

)
(wτ

i )
⊤ + η

∑

i∈[M ]

X⋆iEi(w
τ
i )

⊤

N
, (40)
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where ϕ⋆i and X⋆i are padded versions of ϕi and Xi, respectively. To upper bound the norm of Qτ+1
⋆ , we decompose it

into two parts:

1

η
∥Qτ+1

⋆ ∥ ≤

∥
∥
∥
∥
∥
∥

∑

i∈[M ]

(
Bτ

⋆w
τ
i − ϕ⋆i

)
(wτ

i )
⊤ −

∑

i∈[M ]

X⋆iX
⊤
⋆i

N

(
Bτ

⋆w
τ
i − ϕ⋆i

)
(wτ

i )
⊤

∥
∥
∥
∥
∥
∥

︸ ︷︷ ︸

Aτ+1
1

+

∥
∥
∥
∥
∥
∥

∑

i∈[M ]

X⋆iEi(w
τ
i )

⊤

N

∥
∥
∥
∥
∥
∥

︸ ︷︷ ︸

Aτ+1
2

.

For Aτ+1
1 ,by applying Lemma 5.4 in Vershynin (2010), there exists a 1

4 -net Nk on the unit sphere Sk−1 and a 1
4 -net Nd on

the unit sphere Sd−1 such that

Aτ+1
1 ≤ 2 max

u∈Nd,v∈Nk

∣
∣
∣
∣
∣
∣

∑

i∈[M ]

1

N

∑

j∈[N ]

u⊤
(
Bτwτ

i − ϕi
)
(wτ

i )
⊤v −

∑

i∈[M ]

1

N

∑

j∈[N ]

u⊤xi,jx
⊤
i,j

(
Bτwτ

i − ϕi
)
(wτ

i )
⊤v

∣
∣
∣
∣
∣
∣

.

Denote cτi = ∥Bτwτ
i − ϕi∥ and cτw = maxi{∥wτ

i ∥}. Observe that u⊤xi,jx⊤i,j
(
Bτwτ

i − ϕi
)
(wτ

i )
⊤v − u⊤(Bτwτ

i −
ϕi)(w

τ
i )

⊤v is a sub-exponential random variable with sub-exponential norm c′cτi c
τ
w for some constant c′, where c′ depends

on the distribution of x. Then, based on the tail bound for sub-exponential random variables, there exists a constant c′2 > 0
such that for any s ≥ 0,

P







1

N




∑

i∈[M ]

∑

j∈[N ]

u⊤
(
Bτwτ

i − ϕi
)
(wτ

i )
⊤v −

∑

i∈[M ]

∑

j∈[N ]

u⊤xi,jx
⊤
i,j

(
Bτwτ

i − ϕi
)
(wτ

i )
⊤v



 ≥ s







≤ exp

(

−Nc′2min

(

s2
∑

i∈[M ](c
τ
i c

τ
w)

2
,

s

maxi{cτi cτw}

))

.

Taking the union bound over all u ∈ Nd and v ∈ Nk, with probability at least 1 − 9d+kexp
(

−
Nc′2min

{
s2∑

i∈[M](c
τ
i c

τ
w)2 ,

s
maxi{cτ cτw}

})

, we have

∥
∥
∥
∥
∥
∥

∑

i∈[M ]

(
Bτwτ

i − ϕi
)
(wτ

i )
⊤ −

∑

i∈[M ]

XiX
⊤
i

N

(
Bτwτ

i − ϕi
)
(wτ

i )
⊤

∥
∥
∥
∥
∥
∥

≤ 2s.

Since σ2
1(Θ

τ ) ≤ 2λ∗1, we have

∥(B̃τ )⊤B̃τ + W̃τ (W̃τ )⊤∥ = σ2
1(Θ

τ ) ≤ 2λ∗1.

Note that (B̃τ )⊤B̃τ and W̃τ (W̃τ )⊤ are PSD matrices. It follows that

∥B̃τ∥ ≤
√

2λ∗1 and ∥W̃τ∥ ≤
√

2λ∗1,

which implies that ∥Bτ∥ ≤
√
2λ∗1 and ∥Wτ∥ ≤

√
2λ∗1. Since cτi = ∥Bτwτ

i − ϕi∥ and cτw = maxi{∥wτ
i ∥},

we have
∑

i∈[M ](c
τ
i c

τ
w)

2 ≤ 2λ∗1∥BτWτ − Φ∥2F ≤ 4λ∗1(k(λ
∗
1)

2 + E) and maxi{cτi cτw} ≤ 3
√
2(λ∗1)

3
2 , where

E =
∑

i(λi)
2. Let s =

√

18λ∗1(k(λ
∗
1)

2 + E) ·
√

log(1/δ)/d+ 6 ·
√
d/
√

Nc′2. Then, if N is sufficiently large such

that (
√

log(1/δ)/d+ 2)
√
d/
√

Nc′2 ≤ 1, we have

s

3
√
2(λ∗1)

3
2

≥ s
√

18λ∗1(k(λ
∗
1)

2 + E)
≥ s2

18λ∗1(k(λ
∗
1)

2 + E)
.

Then, with probability at least 1− δ, we have

∥
∥
∥
∥
∥
∥

∑

i∈[M ]

(
Bτwτ

i − ϕi
)
(wτ

i )
⊤ −

∑

i∈[M ]

XiX
⊤
i

N

(
Bτwτ

i − ϕi
)
(wτ

i )
⊤

∥
∥
∥
∥
∥
∥

≤ 2
√

18λ∗1(k(λ
∗
1)

2 + E) ·
√

log(1/δ)/d+ 6 ·
√

d

Nc
.
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Therefore, with probability at least 1− δ, we have

Aτ+1
1 ≤

√

λ∗1
(
k(λ∗1)

2 + E
)6
√
2
√
d− log δ√
Nc2

,

where c2 =
c′2
6 .

Next, we consider Aτ+1
2 . Similar to the above analysis, note that u⊤xi,jξi,j(wτ

i )
⊤v is a centered sub-exponential random

variable with sub-exponential norm c′′σξ∥wτ
i ∥ for some constant c′′. Based on the tail bound for sub-exponential random

variables, there exists a constant c′3 > 0 such that for any s ≥ 0,

P







∑

i∈[M ]

u⊤
X⋆iE⋆i(w

τ
i )

⊤

N
v ≥ s






≤ exp

(

−Nc′3min

(

s2

σ2
ξ∥Wτ∥2F

,
s

σξ
√

2λ∗1

))

.

Combining with the fact ∥Wτ∥2F ≤ 2kλ∗1 and taking the union bound over all u ∈ Nd and v ∈ Nk, we have that inequality
∥
∥
∥
∥

∑

i∈[M ]
X⋆iE

τ
⋆i(w

τ
i )

⊤

N

∥
∥
∥
∥
≤ 2s holds with probability at least 1 − 9d+kexp

(

− Ncmin
{

s2

2σ2
ξkλ

∗
1
, s

σξ

√
2λ∗

1

})

. Then, let

s =
√

2σ2kλ∗1 ·
√

log(1/δ)/d+ 6 ·
√
d/
√
Nc. If N is sufficiently large such that (

√

log(1/δ)/d+ 2)
√
d/
√

Nc′3 ≤ 1 we

have min{ s2

2σ2
ξkλ

∗
1
, s

σξ

√
2λ∗

1

} = s2

2σ2
ξkλ

∗
1

. Therefore, with a probability at least 1− δ, we have

Aτ+1
2 ≤ 2

√

2σ2
ξkλ

∗
1 ·
√

log(1/δ)/d+ 6

√

d

Nc′3
≤ (λ∗1)

1
2σξ

6
√
2
√
dk − k log δ√
Nc3

,

where c3 =
c′3
24 . Combining the upper bounds of Aτ+1

1 and Aτ+1
2 , we conclude that following inequality holds with

probability at least 1− δ:

∥U⊤
⋆ Q

τ+1
⋆ ∥ ≤ ∥Qτ+1

⋆ ∥ ≤ η(Aτ+1
1 +Aτ+1

2 )

≤ η(λ∗1)
1
2

√

k(λ∗1)
2 + E

6
√
2
√

d− log(δ/2)√
Nc2

+ η(λ∗1)
1
2σξ

6
√
2
√

dk − k log(δ/2)√
Nc3

≤ η
√

λ∗1

(√

k(λ∗1)
2 + E +

√
kσξ

)
6
√
2
√
d− log δ√
Nc1

,

where c1 = 1
2 min{c2, c3}. Thus, for any σ ≥ 0, if

√
N ≥ 192

√
d−log δ

√
λ∗
1(
√

k(λ∗
1)

2+E+
√
kσξ)

σ∆
√
c1

, with probability at least

1− δ it holds

∥U⊤
⋆ Q

τ+1
⋆ ∥ ≤ ση∆

16
√
2
.

Similarly, if
√
N ≥ 6144

√
d−log δλ∗

1(
√

k(λ∗
1)

2+E+
√
kσξ)

∆2
√
c1

, with probability at least 1− δ,

∥U⊤
⋆ Q

τ+1
⋆ ∥ ≤ η∆2

512
√
2
√
λ∗1
.

Lemma A.14 (Concentration of ∥Q̃τ+1
⋆ V⋆∥). For any t ≥ 0, assume Θτ ∈ Rs holds for all 0 < τ ≤ t. Then, we have the

following results for any 0 ≤ τ ≤ t and c2 ≥ 0 with probability at least 1− 2δ:

• If
√
N ≥ max

{
√

d−log δ√
c1

,
192
√

d−log δ
√

λ∗
1(
√

k(λ∗
1)

2+E+
√
kσξ)

σ∆
√
c1

}
, then it holds that

∥Q̃τ+1
⋆ V⋆∥ ≤

ση∆

16
√
2
.

25



Federated Representation Learning in the Under-Parameterized Regime

• If
√
N ≥ max

{
√

d−log δ√
c1

,
6144
√

d−log δλ∗

1(
√

k(λ∗
1)

2+E+
√
kσξ)

∆2
√
c1

}
, then it holds that

∥Q̃τ+1
⋆ V⋆∥ ≤

η∆2

512
√
2
√
λ∗1
.

Proof of Lemma A.14. This proof resembles the proof of Lemma A.13. According to Lemma 5.4 in Vershynin (2010), there

exists a 1
4 -net Nk on the unit sphere Sk−1 and a 1

4 -net NM on the unit sphere SM−1 so that

1

η
∥Q̃τ+1

⋆ ∥ ≤ 2 max
u∈NM ,v∈Nk

∣
∣
∣
∣
∣
∣

∑

i∈[M ]

v⊤q̃τ+1
i ui + v⊤

1

N

∑

i∈[M ]

(Bτ )⊤XiEiui

∣
∣
∣
∣
∣
∣

≤ 2 max
u∈NM ,v∈Nk

∣
∣
∣
∣
∣
∣

1

N




∑

i∈[M ]

∑

j∈[N ]

v⊤(Bτ )⊤
(
Bτwτ

i − ϕi
)
ui −

∑

i∈[M ]

∑

j∈[N ]

v⊤(Bτ )⊤xi,jx
⊤
i,j

(
Bτwτ

i − ϕi
)
ui





∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

Aτ+1
3

+ 2 max
u∈NM ,v∈Nk

∣
∣
∣
∣
∣
∣

v⊤
1

N

∑

i∈[M ]

(Bτ )⊤XiEiui

∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

Aτ+1
4

.

Let cτB = ∥Bτ∥ and recall that cτi = ∥Bτwτ
i − ϕi∥. Based on the tail bound for sub-exponential random variables, there

exists a constant c > 0 such that for any s ≥ 0,

P







1

N




∑

i∈[M ]

∑

j∈[N ]

v⊤(Bτ )⊤
(
Bτwτ

i − ϕi
)
ui −

∑

i∈[M ]

∑

j∈[N ]

v⊤(Bτ )⊤xi,jx
⊤
i,j

(
Bτwτ

i − ϕi
)
ui



 ≥ s







≤ exp

(

−Ncmin

(

s2
∑

i∈[M ](c
τ
i c

τ
B)

2
,

s

maxi{cτi cτB}

))

.

Taking the union bound over all u ∈ NM and v ∈ Nk, with probability at least 1 − 9M+kexp
(

−

Ncmin
{

s2∑
i∈[M](c

τ
i c

τ
B)2 ,

s
maxi{cτ cτB}

})

, we haveAτ+1
3 ≤ 2s. Let s = (λ∗1)

1
2

√

k(λ∗1)
2 + E ·

√

log(1/δ)/d+ 6 ·
√
d/
√
Nc.

If N is sufficiently large such that (
√

log(1/δ)/d+ 2)
√
d/
√
Nc ≤ 1, there exits constant c2 such that with probability at

least 1− δ, we have

Aτ+1
3 ≤ η(λ∗1)

1
2

√

k(λ∗1)
2 + E

6
√
2
√

d− log δ√
Nc2

.

For term Aτ+1
4 , from the tail bound for sub-exponential random variables, there exists a constant c > 0 such that for any

s ≥ 0,

P







∑

i∈[M ]

v⊤
(Bτ )⊤XiEi

N
ui ≥ s






≤ exp

(

−Ncmin

(

s2

σ2
ξ

∑

i∈[M ] ∥uiBτ∥2 ,
s

σξ
√

2λ∗1

))

≤ exp

(

−Ncmin

(

s2

2σ2
ξλ

∗
1

,
s

σξ
√

2λ∗1

))

.

Let s =
√

2σ2
ξkλ

∗
1 ·
√

log(1/δ)/d+ 6 ·
√
d/
√
Nc. If N is sufficiently large such that (

√

log(1/δ)/d+ 2)
√
d/
√
Nc ≤ 1,

there exists constant c3 such that with a probability at least 1− δ, we have

Aτ+1
4 ≤ (λ∗1)

1
2σξ

6
√
2
√

dk − k log δ√
Nc3

.
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Combining the upper bounds ofAτ+1
3 andAτ+1

4 , we conclude that following inequality holds with probability at least 1− δ:

∥Q̃τ+1
⋆ V⋆∥ ≤ ∥Q̃τ+1

⋆ ∥ ≤ η(Aτ+1
3 +Aτ+1

4 )

≤ η(λ∗1)
1
2

√

k(λ∗1)
2 + E

6
√
2
√

d− log(δ/2)
√
Nc2

+ η(λ∗1)
1
2σξ

6
√
2
√

dk − k log(δ/2)
√
Nc3

≤ η
√

λ∗1

(√

k(λ∗1)
2 + E +

√
kσξ

)
6
√
2
√

d− log δ√
Nc1

,

where c1 = 1
2 min{c2, c3}. Thus, for any σ ≥ 0, if

√
N ≥ 192

√
d−log δ

√
λ∗
1(
√

k(λ∗
1)

2+E+
√
kσξ)

σ∆
√
c1

, with probability at least

1− δ it holds that

∥Q̃τ+1
⋆ V⋆∥ ≤

ση∆

16
√
2
.

Similarly, if
√
N ≥ 6144

√
d−log δλ∗

1(
√

k(λ∗
1)

2+E+
√
kσξ)

∆2
√
c1

, with probability at least 1− δ,

∥Q̃τ+1
⋆ V⋆∥ ≤

η∆2

512
√
2
√
λ∗1
.

Lemma A.15. Suppose η ≤ 1/6λ∗1 and σ1(Θ
τ ) ≤

√
2λ∗1. Then, it holds that

σ1(Θ
τ+1
res ) ≤

(

1 +
η

2

(
λ∗k+1 − σ2

1(Θ
τ
res)− σ2

k(Θ
τ
k)
))

σ1(Θ
τ
res) + σ1(R

τ
2d−k

).

Proof of Lemma A.15. According to Equation (15), we can rewrite Θτ+1
res as

Θτ+1
res =

1

2
Θτ

res −
η

2
Θτ

res(Θ
τ
res)

⊤Θτ−1
res +

(1

4
I2d−k +

η

2
Λ̃res

)

Θτ
res +Θτ

res

(1

4
Ik −

η

2
(Θτ

k)
⊤Θτ

k

)

+Rτ+1

2d−k
. (41)

From Lemma A.5 in Chen et al. (2023) we have the following inequalities:

σ1

(1

2
Θτ

res −
η

2
Θτ

res(Θ
τ
res)

⊤Θτ
res

)

≤ 1

2
σ1(Θ

τ
res)−

η

2
σ3
1(Θ

τ
res), (42)

σ1

((1

4
I2d−k +

η

2
Λres

)

Θτ
res

)

≤
(1

4
+
ηλ∗k+1

2

)
σ1(Θ

τ
res), (43)

σ1

(

Θτ
res

(1

4
Ik −

η

2
(Θτ

k)
⊤Θt

k

))

≤ σ1(Θτ
res)
(1

4
− η

2
σ2
k(Θ

τ
k)
)
. (44)

Substituting Equations (42) to (44) into Equation (41) proves the lemma.

Lemma A.16. Suppose σ1(Θ
t) ≤

√
2λ∗1 and η ≤ ∆2

16λ∗
1
3 . Then, it holds that

σ2
k(Θ

τ+1
k ) ≥

(

1 + η
(
λ∗k − σ2

1(Θ
τ
res)− σ2

k(Θ
τ
k)
)
− η∆

4

)

σ2
k(Θ

τ
k)− 4

√

λ∗1σ1(R
τ
k).

Proof of Lemma A.16. Denote Θ̃τ+1
k = Θτ

k + η
2 Λ̃kΘ

τ
k − η

2Θ
τ
k(Θ

τ )⊤Θτ . Based on Lemma A.6 and Lemma 2.3 in Chen

et al. (2023), we have

σ2
k(Θ̃

τ+1
k ) ≥

(

1 + η
(
λ∗k − σ2

1(Θ
τ
res)− σ2

k(Θ
τ
k)
))

σ2
k(Θ

τ
k)− η2λ∗13

≥
(

1 + η
(
λ∗k − σ2

1(Θ
τ
res)− σ2

k(Θ
τ
k)
)
− η∆

4

)

σ2
k(Θ

τ
k). (45)
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Combining with η ≤ 1
16λ∗

1
gives

σ1(Θ̃
τ+1
k ) ≤ σ1(Θτ

k) + σ1

(η

2
Λ̃kΘ

τ
k

)

+ σ1

(η

2
Θτ

k(Θ
τ )⊤Θτ

)

≤
√

2λ∗1 +
1

32

√

λ∗1 +

√
2

16

√

λ∗1

≤ 2
√

λ∗1.

Thus, σk(Θ̃
τ+1
k ) ≤ σ1(Θ̃τ+1

k ) ≤ 2
√
λ∗1. Combining with the fact that σk(Θ

τ+1
k ) ≥ σk(Θ̃τ+1

k )− σ1(Rτ+1
k ), we have

σ2
k(Θ

τ+1
k ) ≥

(

σk(Θ̃
τ+1
k )− σ1(Rτ+1

k )
)2

≥ σ2
k(Θ̃

τ+1
k )− 2σk(Θ̃

τ+1
k ) · σ1(Rτ+1

k )

≥ σ2
k(Θ̃

τ
k)− 4

√

λ∗1σ1(R
τ
k). (46)

The lemma thus follows by substituting Equation (45) into Equation (46).

Lemma A.17. Assume η ≤ 1
6λ∗

1
and σ1(Θ

0) ≤
√
2λ∗1 hold. Then, if

√
N ≥ max

{
√

d− log δ√
c1

,
96
√
λ∗1(
√

k(λ∗1)
2 + E +

√
kσξ)

√

d− log δ

σ1(Θ0
res)∆

√
c1

}

, (47)

with probability at least 1− ctδ for some constant c, we have

σ1(Θ
τ
res) ≤

(

1 +
η

2
λ∗k+1 +

η

8
∆
)τ

σ1(Θ
0
res)

holds for all τ ≤ t.

Proof of Lemma A.17. Suppose η ≤ 1/6λ∗1 and σ1(Θ
τ ) ≤

√
2λ∗1. We have

σ1(Θ
τ
res) ≤

(

1 +
η

2

(
λ∗k+1 − σ2

1(Θ
τ−1
res )− σ2

k(Θ
τ−1
k )

))

σ1(Θ
τ−1
res ) + σ1(R

τ
2d−k

)

≤
(

1 +
η

2
λ∗k+1

)

σ1(Θ
τ−1
res ) + σ1(R

τ ).

Combining Lemma A.13 and Lemma A.14, when N satisfies Equation (47), we have σ1(R
t) ≤ η

8∆σ1(Θ
0
res). The lemma

follows by induction.

Lemma A.18. If ∥Θ(Θ)⊤ − diag(Λ̃k,0)∥F ≤ δ for some δ > 0, then ∥BW − diag(Λk,0)∥F ≤ δ.

Proof of Lemma A.18. Note that ∥Θ(Θ)T − diag(Λ̃k,0)∥F ≤ δ implies that

∥
∥
∥

(B+W⊤
√
2

)(B+W⊤
√
2

)⊤
− 2 diag(Λk,0)

∥
∥
∥
F
≤ δ,

and
∥
∥
∥

(B−W⊤
√
2

)(B−W⊤
√
2

)⊤∥
∥
∥
F
≤ δ.

Then,

∥BW +W⊤B⊤ − 2 diag(Λk,0)∥F

=
∥
∥
∥

(B+W⊤
√
2

)(B+W⊤
√
2

)⊤
− 2 diag(Λk,0)−

(B−W⊤
√
2

)(B−W⊤
√
2

)⊤∥
∥
∥
F

≤
∥
∥
∥

(B+W⊤
√
2

)(B+W⊤
√
2

)⊤
− 2 diag(Λk,0)

∥
∥
∥
F
+
∥
∥
∥

(B−W⊤
√
2

)(B−W⊤
√
2

)⊤∥
∥
∥
F

≤ 2δ.

Combining with the fact ∥BW +W⊤B⊤ − 2 diag(Λk,0)∥F = 2∥BW − diag(Λk,0)∥F , the proof is complete.
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Lemma A.19 (Theorem 2.13 in Davidson & Szarek (2001)). Let N ≥ n and A be an N × n matrix whose entries are IID

standard Gaussian random variables. Then, for any ϵ ≥ 0, with probability at least 1− 2 exp(−ϵ2/2), we have

√
N −√n− ϵ ≤ σmin(A) ≤ σmax(A) ≤

√
N +

√
n+ ϵ.

Lemma A.20 (Eigenvalue Interlacing Theorem (Hwang, 2004)). For a symmetric matrix A ∈ R
d×d, let B ∈ R

k×k, k < d,

be a principal matrix of A. Denote the eigenvalues of A as λ1 ≥ · · · ≥ λd and the eigenvalues of B as µ1 ≥ · · · ≥ µd.

Then, for any i ∈ [k], it holds that

λi+d−k ≤ µi ≤ λi.

B. General FLUTE

B.1. Details of General FLUTE

Algorithm 2 General FLUTE

1: Input: Learning rates ηl and ηr, regularization parameter λ, communication round T
2: Initialization: Server initializes model parameters B0, {b0i }, {H0

i }
3: for t = {0, · · · , T − 1} do

4: Server samples a batch of clients It+1

5: Server sends Bt, and Ht
i to all client i ∈ It+1

6: for client i ∈ [M ] in parallel do

7: if i ∈ It+1 then

8: B
t,0
i ← Bt, bt,0i ← bti and H

t,0
i ← Hi

9: for τ = {0, · · · , T − 1} do

10: H
t,τ+1
i ← GRD(Li(B

t,τ
i , bt,τi ,Ht,τ

i );Ht,τ
i , ηl)

11: bt,τ+1
i ← GRD(Li(B

t,τ
i , bt,τi ,Ht,τ

i ); bt,τi , ηl)

12: B
t,τ+1
i ← GRD(Li(B

t,τ
i , bt,τi ,Ht,τ

i );Bt,τ , ηl)
13: end for

14: Bt+1
i ← B

t,T
i , bt+1

i ← bt,Ti and Ht+1
i ← H

t,T
i

15: Sends Bt+1
i , bt+1

i and Ht+1
i to the server

16: else

17: bt+1
i ← bti

18: end if

19: end for

20: Server updates:

21: Bt+1 = 1
rM

∑

i∈It+1 B
t+1
i

22: {Ht+1
i }i∈It+1 ← GRD(R({Ht+1

i }i∈It+1 ,Bt+1); {Ht+1
i }i∈It+1 , ηr)

23: Ht+1
i ← Ht

i, ∀i /∈ It+1

24: end for

The General FLUTE is presented in Algorithm 2, where GRD(f ; θ, α) denotes the update of variable θ using the gradient of

the function f with respect to θ and the step size α. The local loss function Li is defined as

Li(B, b,H) =
1

N

∑

(x,y)∈Di

L
(
H⊤fB(x) + b, y

)
. (48)

In this work, we instantiate the general FLUTE by a federated multi-class classification problem. In this case, the local loss

function is specialized as

Li(B, b,H) =
1

N

∑

(x,y)∈Di

LCE

(
H⊤

i fB(x) + bi, y
)
+ λ1∥fB(x)∥22 + λ2∥Hi∥2F + λ3NCi(Hi), (49)

where y ∈ R
m is a one-hot vector whose k-th entry is 1 if the corresponding x belongs to class k and 0 otherwise, and λ1,

λ2 and λ3 are non-negative regularization parameters. LCE(·) is the cross-entropy loss, where for a one-hot vector y whose
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k-th entry is 1, we have:

LCE(ŷ, y) = − log

(

exp(ŷk)
∑

i∈[c] exp(ŷi)

)

. (50)

NCi(Hi), inspired by the concept of neural collapse (Papyan et al., 2020), is defined as

NCi(Hi) =

∥
∥
∥
∥
∥

H⊤
i Hi

∥HT
i Hi∥F

− 1√
m− 1

uiu
⊤
i ⊙

(

Im −
1

m
1m1⊤

m

)
∥
∥
∥
∥
∥
F

, (51)

where ui is an m-dimensional one-hot vector whose c-th entry is 1 if c ∈ Ci and 0 otherwise. Also, we specialize the

regularization term optimized on the server side as R({Hi}) =
∑

iNCi(Hi).

B.2. Additional Definition

Definition B.1 (k-Simplex ETF, Definition 2.2 in Tirer & Bruna (2022)). The standard simplex equiangular tight frame

(ETF) is a collection of points in R
k specified by the columns of

M =

√

k

k − 1

(

Ik −
1

k
1k1

⊤
k

)

. (52)

Consequently, the standard simplex EFT obeys

M⊤M = MM⊤ =
k

k − 1

(

Ik −
1

k
1k1

⊤
k

)

. (53)

In this work, we consider a (general) simplex ETF as a collection of points in R
d, d ≥ k specified by the columns

of M̃ ∝
√

k
k−1P

(
Ik − 1

k1k1
⊤
k

)
, where P ∈ R

d×k is an orthonormal matrix. Consequently, M̃⊤M̃ ∝ MM⊤ =
k

k−1

(
Ik − 1

k1k1
⊤
k

)
.

B.3. More Discussion on General FLUTE

Firstly, we explain the concept of neural collapse.

Neural collapse. Neural collapse (NC) was experimentally identified in Papyan et al. (2020), and they outlined four

elements in the neural collapse phenomenon:

• (NC1) Features learned by the model (output of the representation layers) for samples within the same class tend to

converge toward their average, essentially causing the within-class variance to diminish;

• (NC2) When adjusted for their overall average, the final means of different classes display a structure known as a

simplex equiangular tight frame (ETF);

• (NC3) The weights of the final layer, which serves as the classifier, align with this simplex ETF structure;

• (NC4) Consequently, after this collapse occurs, classification decisions are made based on measuring the nearest class

center in the feature space.

Next, we discuss some observations on the vanilla multi-classification problem, i.e., no additional regularization term and no

client-side optimization, which is given as

Li(B, b,H) =
1

N

∑

(x,y)∈Di

LCE

(
H⊤

i fB(x) + bi, y
)
+ λ1∥fB(x)∥22 + λ2∥Hi∥2F . (54)

The first observation, which directly comes from Theorem 3.2 in Tirer & Bruna (2022), describes the phenomena of local

neural collapse, which could happen when the model is locally trained for long epochs.
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Observation B.2. When fB(·) is sufficiently expressive such that fB(x) can be viewed as a free variable. and the feature

dimension k is no smaller than the number of total classes m, locally learned B and Hi that optimize the objective function

(54) must satisfy:

fB∗(x1) = fB∗(x2), ∀x1, x2 ∈ Dc
i , c ∈ Ci (55)

⟨fB∗(x), h∗i,c⟩
∥fB∗(x)∥ · ∥h∗i,c∥

= 1, ∀x ∈ Dc
i , c ∈ Ci (56)

H⊤
i Hi

∥H⊤
i Hi∥F

=
1√

m′ − 1
uiu

⊤
i ⊙

(

Im −
1

m′1m1⊤
m

)

, (57)

where ui is a m-dimensional one-hot vector whose c-th entry is 1 if c ∈ Ci and 0 otherwise, and m′ is the number of classes

per client.

The above observation states that NC1, NC2, and NC3 happen locally, implying: 1) hi,c = 0 if c /∈ Ci; and 2) the sub-matrix

of Hi constructed by columns hi,c with c ∈ Ci will form a K-Simplex ETF (c.f. Definition B.1) up to some scaling and

rotation. We conclude that if there exist B and H1, · · · ,HM such that they are the optimal models for all clients, then the

data from the same class may be mapped to different points in the feature space by fB∗ when data are drawn from different

clients. However, this condition usually cannot be satisfied in the under-parameterized regime, due to the less expressiveness

of the under-parameterized model.

To further demonstrate the phenomenon in the under-parameterized regime, we assume that in the under-parameterized

regime, a well-performed representation fB should map data from the same class but different clients to the same feature

mean:

Condition 1. For client i and j, if class c ∈ Ci and c ∈ Cj , then 1
|Dc

i |
∑

x:(x,y)∈Dc
i
fB(x) =

1
|Dc

j |
∑

x:(x,y)∈Dc
j
fB(x).

With this condition, we have the following observation that also comes from Theorem 3.1 in Zhu et al. (2021), which

describes the neural collapse in the under-parameterized regime.

Observation B.3. When Condition 1 holds and the feature dimension k is no smaller than the number of total classes m,

any global optimizer B∗,H∗
1, · · · ,H∗

M of (54) satisfies

fB∗(x1) = fB∗(x2), ∀x1, x2 ∈ Dc
i , i ∈ [M ], c ∈ Ci, (58)

⟨fB∗(x), h∗i,c⟩
∥fB∗(x)∥ · ∥h∗i,c∥

= 1, ∀x ∈ Dc
i , i ∈ [M ], c ∈ Ci, (59)

H⊤
i Hi

∥H⊤
i Hi∥F

=
1√
m− 1

uiu
⊤
i ⊙

(

Im −
1

m
1m1⊤

m

)

, ∀i ∈ [M ], (60)

where ui is a m-dimensional one-hot vector whose c-th entry is 1 if c ∈ Ci and 0 otherwise.

Comparing these two observations, we conclude that in the under-parameterized case, the optimal models hi,c and hj,c are

of the same direction when class c is included in both Ci and Cj . It implies that the globally optimized model performs

differently compared with the locally learned model. In Figure 2, we present an example to illustrate how H performs

differently when it is globally or locally optimized.

In Figure 2, we consider the scenario that the number of clients M = 3, total number of data classes m = 3, number of

data classes per client m′ = 2, client 1 contains data of class 1 and class 2, client 2 contains data of class 1 and class 3, and

client 3 contains data of class 2 and class 3. The first row of the three sub-figures shows the structure of normalized columns

of H1, H2, and H3 when they are locally optimized, and the second row of the three sub-figures shows those optimize

(54). We observe that under this setting, the locally optimized heads are in opposite directions, which perform differently

compared with the global optimal heads.

Inspired by such observations, we add NCi to the local loss function and also optimize R({Hi}), to ensure that the

personalized heads also contribute to the global performance. This principle aligns with our motivation to design the linear

FLUTE.
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Figure 2. Behavior of locally optimized heads and globally optimized heads.

C. Additional Experimental Results

C.1. Synthetic Datasets

Implementation Details. In the experiments conducted on synthetic datasets shown in Figure 3, Λ ∈ R
d×d is generated

by setting the i-th singular value to be
2d
i+1 . We randomly generate U ∈ R

d×d with d orthonormal columns and V ∈ R
d×M

with d orthonormal rows. The ground-truth model is then Φ = UΛV⊤, where each column ϕi represents the local

ground-truth model for client i. Each client generates N samples (x, y) from y = x⊤ϕi + ξi, where x is sampled from a

standard Gaussian distribution and every entry of ξi is IID sampled from N (0, 0.3). The learning rate is set to η = 0.03,

and for random initialization, we set α = 1
10d .

Parameter Settings. For experiments on synthetic datasets shown in Figure 3, we set d = 10. We select the value of k
from the set {2, 4, 6, 8}, M from the set {15, 30}, and N from the set {12, 20}.

Experimental Results. From the experiments in Figure 3, we observe that, with the dimensions d, M , and N fixed,

an increase in k results in a diminishing discrepancy in convergence speeds between FLUTE and FedRep. This trend

demonstrates FLUTE’s superior performance in under-parameterized settings. Furthermore, keeping d, k, and N unchanged

while increasing the number of clients M , we see a reduction in the average error of models generated by FLUTE. This

observation aligns with our theoretical findings presented in Theorem 5.5.

Varying γ1 and γ2. In Figure 4, we report the results of the following experiments where d = 10, k = 6, M = 10, and N
selected from the set {8, 9, 10, 11}. For comparison, we use three pairs of γ1 and γ2: γ1 = 2γ2, γ1 = γ2, and γ1 = 2

3γ2.

We do not set γ1 > 2γ2 because in this setting, ∥BW∥F usually diverges. From the experimental results, we observe that

when N = 8, 9, or 10, γ1 = γ2 shows the best performance among the three settings of γ1 and γ2.
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Figure 3. Experimental results with synthetic datasets.
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Figure 4. Experimental results with synthetic datasets.

C.2. Real-world Datasets

Implementation Details. For our experiments on the CIFAR-10 dataset, we employ a 5-layer CNN architecture. It

begins with a convolutional layer Conv2d(3, 64, 5), followed by a pooling layer MaxPool2d(2, 2). The second

convolutional layer is Conv2d(64, 64, 5), which precedes three fully connected layers: Linear(64*5*5, 120),

Linear(120, 64), and Linear(64, 10). In contrast, for the CIFAR-100 dataset, we also use a 5-layer CNN, but

with some modifications to accommodate the higher complexity of the dataset. The initial layer is Conv2d(3, 64, 5),

followed by pooling and dropout layers: MaxPool2d(2, 2) and nn.Dropout(0.6). The subsequent convolutional

layer is Conv2d(64, 128, 5). This is succeeded by three fully connected layers: Linear(128*5*5, 256),

Linear(256, 128), and Linear(128, 100).

Experimental Results. In this section, we plot Figure 5 to Figure 12 to illustrate the detailed convergence behavior of the

test accuracy of the trained models reported in Table 1 as a function of the training epochs. We augment the test accuracy

results by introducing two different metrics. The first one is Global NC2, which is measured by

1

M

∑

i∈[M ]

∥
∥
∥
∥
∥

H⊤
i Hi

∥H⊤
i Hi∥F

− 1√
m− 1

uiu
⊤
i ⊙

(

Im −
1

m
1m1⊤

m

)
∥
∥
∥
∥
∥
F

.

The second one is Averaged Local NC2, referred to as

1

M

∑

i∈[M ]

∥
∥
∥
∥
∥

H⊤
i Hi

∥H⊤
i Hi∥F

− 1√
m′ − 1

uiu
⊤
i ⊙

(

Im −
1

m′1m1⊤
m

)
∥
∥
∥
∥
∥
F

.

These two metrics are inspired by Observation B.3 and Observation B.2, respectively. Global NC2 aims to measure the

similarity between the learned models and the optimal under-parameterized global model. In contrast, Averaged Local NC2

assesses the similarity between the learned models and the optimal local models. Note that these two metrics are positively

correlated, meaning that when one is small, the other is usually small as well. In some results, such as those shown in

Figure 5 and Figure 7, the gaps between FedRep* and FLUTE* in terms of Averaged Local NC2 are significantly larger than

those in terms of Global NC2, suggesting that the models learned by FLUTE* are closer to the global optimizer than those

learned by FedRep*.
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Figure 5. Experimental results for CIFAR10 when M = 50,m′
= 2.

Figure 6. Experimental results for CIFAR10 when M = 50,m′
= 5.

Figure 7. Experimental results for CIFAR10 when M = 100,m′
= 2.

Figure 8. Experimental results for CIFAR10 when M = 50,m′
= 5.
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Figure 9. Experimental results for CIFAR100 when M = 100,m′
= 5.

Figure 10. Experimental results for CIFAR100 when M = 100,m′
= 10.

Figure 11. Experimental results for CIFAR100 when M = 100,m′
= 20.

Figure 12. Experimental results for CIFAR100 when M = 100,m′
= 40.
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