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Abstract

Federated representation learning (FRL) is a pop-
ular personalized federated learning (FL) frame-
work where clients work together to train a com-
mon representation while retaining their personal-
ized heads. Existing studies, however, largely fo-
cus on the over-parameterized regime. In this pa-
per, we make the initial efforts to investigate FRL
in the under-parameterized regime, where the FL.
model is insufficient to express the variations in
all ground-truth models. We propose a novel
FRL algorithm FLUTE, and theoretically char-
acterize its sample complexity and convergence
rate for linear models in the under-parameterized
regime. To the best of our knowledge, this is the
first FRL algorithm with provable performance
guarantees in this regime. FLUTE features a data-
independent random initialization and a carefully
designed objective function that aids the distilla-
tion of subspace spanned by the global optimal
representation from the misaligned local repre-
sentations. On the technical side, we bridge low-
rank matrix approximation techniques with the
FL analysis, which may be of broad interest. We
also extend FLUTE beyond linear representations.
Experimental results demonstrate that FLUTE out-
performs state-of-the-art FRL solutions in both
synthetic and real-world tasks.

1. Introduction

In the development of machine learning (ML), the role of
representation learning has become increasingly essential. It
transforms raw data into meaningful features, reveals hidden
patterns and insights in data, and facilitates efficient learning
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of various ML tasks such as meta-learning (Tripuraneni
et al., 2021), multi-task learning (Wang et al., 2016a), and
few-shot learning (Du et al., 2020).

Recently, representation learning has been introduced to the
federated learning (FL) framework to cope with the hetero-
geneous local datasets at participating clients (Liang et al.,
2020). In the FL setting, it often assumes that all clients
share a common representation, which works in conjunction
with personalized local heads to realize personalized pre-
diction while harnessing the collective training power (Ari-
vazhagan et al., 2019; Collins et al., 2021; Zhong et al.,
2022; Shen et al., 2023).

Existing theoretical analysis of representation learning usu-
ally assumes the adopted model is over-parameterized to
almost fit the ground-truth model (Tripuraneni et al., 2021;
Wang et al., 2016a). While this may be valid for ex-
pressive models like Deep Neural Networks (He et al.,
2016; Liu et al., 2017) or Large Language Models (Ope-
nAl, 2023; Touvron et al., 2023), it may be too restrictive
for FL on resource-constrained devices, as adopting over-
parameterized models in such a framework faces several
significant challenges, as elaborated below.

* Computation limitation. In FL, edge devices like
smartphones and Internet of Things (IoT) devices of-
ten have limited memory and lack computational power,
which are not capable of either storing or training over-
parameterized models (Wang et al., 2019; He et al., 2020;
Kairouz et al., 2021).

¢ Communication overhead. In FL, the clients need to
communicate updated model information with the server
frequently. It thus becomes prohibitive to transmit a huge
number of model updates for devices operating with lim-
ited communication energy and bandwidth.

* Privacy concern. Existing works show that excessively
expressive models may “memorize” relevant information
from local datasets, increasing the model’s susceptibility
to reconstruction attacks (Hitaj et al., 2017; Melis et al.,
2019; Wang et al., 2018; Li et al., 2020) or membership
inference (Tan et al., 2022).

"For example, two of the widely adopted neural network mod-
els suitable for IoT or embedded devices, MobileNetV3 (Howard
et al., 2019) and EfficientNet-BO (Tan & Le, 2019), only have a
few million parameters and, as an example, typically process at
most a few GFLOPS in a Raspberry Pi 4 (Ju et al., 2023).



Federated Representation Learning in the Under-Parameterized Regime

Motivated by those concerns, in this work, we focus
on federated representation learning (FRL) in the under-
parameterized regime, where the parameterized model class
is not rich enough to realize the ground-truth models across
all clients. This is arguably a more realistic setting for edge
devices supporting FL. Meanwhile, due to the inherent lim-
itation of the expressiveness of the under-parameterized
models, the algorithm design and theoretical guarantees in
the over-parameterized regime do not naturally translate
to this setting. We summarize our main contributions as
follows.

* Algorithm design. A major challenge for FRL in the
under-parameterized regime is the fact that the locally
optimal representation may not be globally optimal. As a
result, simply averaging the local representations may not
converge to the global optimal solution. To cope with this
challenge, we propose FLUTE, a novel FRL framework
tailored for the under-parameterized setting. To the best
of our knowledge, this is the first FRL framework that
focuses on the under-parameterized regime. Our algo-
rithm design features two primary innovations. First, we
develop a new regularization term that generalizes the ex-
isting formulations in a non-trivial way. In particular, this
new regularization term is designed to provably enhance
the performance of FRL in the under-parameterized set-
ting. Second, our algorithm contains a new and critical
step of server-side updating by simultaneously optimiz-
ing both the representation layer and all local head lay-
ers. This represents a significant departure from existing
approaches in FRL, particularly in over-parameterized
settings where local heads are optimized solely on the
client side. By leveraging information across these local
heads, our approach could learn the ground-truth model
more effectively.

* Theoretical guarantees. In terms of theoretical perfor-
mance, we specialize FLUTE to the linear setting and
analyze the sample complexity required for FLUTE to
recover a near-optimal model, as well as characterizing
its convergence rate. FLUTE achieves a sample com-

x{d,M}

plexity that scales in O (%) for recovering an

e-optimal model, where d is the dimension of the input
data and M is the number of clients. This result indicates
a linear sample complexity speedup in terms of M in the
high dimensional setting (i.e., d > M) compared with
its single-agent counterpart (Hsu et al., 2012). Besides,
it outperforms the sample complexity in the noiseless
over-parameterized FRL setting (Collins et al., 2021) in
terms of both M and d. Moreover, we show that FLUTE
converges to the optimal model exponentially fast when
the number of samples is sufficiently large.

* Technical contributions. In the under-parameterized
regime, we must analyze the convergence of both the
representation and personalized heads toward their op-

timal estimations. This is in sharp contrast to the over-
parameterized regime, where we only need to study the
convergence of the representation column space to the
ground truth (Collins et al., 2021; Zhong et al., 2022).
Towards this end, we adopt a low-rank matrix approxi-
mation framework (Chen et al., 2023) of the ground-truth
model. However, in contrast to conventional low-rank
matrix approximation, in FRL, the global model is not ac-
cessible a priori but must be learned from distributed
local datasets. Thus, the technical analysis needs to
bound the unavoidable gradient discrepancy in the under-
parameterized regime, as well as ensure that neither gradi-
ent discrepancy nor noise-induced errors accumulate over
iterations. To address these technical challenges, we first
provide new concentration results to ensure that the norm
of the gradient discrepancy can be bounded when local
datasets are sufficiently large. We then develop iteration-
dependent upper bounds for sample complexity, which
guarantee that the improvement in the estimation, i.e.,
the “distance’ between our estimated model and the opti-
mal low-rank model, can mitigate potential disturbances
caused by gradient discrepancy and noise.

+ Empirical evaluation.” We conduct a series of ex-
periments utilizing both synthetic datasets for linear
FLUTE and real-world datasets, specifically CIFAR-10
and CIFAR-100 (Krizhevsky et al., 2009), for general
FLUTE. The empirical results demonstrate the advantages
of FLUTE, as evidenced by its superior performance over
baselines, particularly in the scenarios where the level of
under-parameterization is significant.

2. Related Work

Representation learning. Representation learning focuses
on acquiring a representation across diverse tasks to ef-
fectively extract feature information (LeCun et al., 2015;
Tripuraneni et al., 2021; Wang et al., 2016a; Finn et al.,
2017). In the linear multi-task learning setting, Du et al.
(2020) characterize the optimal solution of the empirical
risk minimization (ERM) problem, demonstrating that the
gap between the solution and the ground-truth representation

is upper bounded by O( %), where d is the dimension

of data, M is the number of clients and NV is the number of
samples per task. Tripuraneni et al. (2021) give an upper

bound O/ 7 ) using the Method-of-Moment estimator.

Thekumparampil et al. (2021) also show the (’)(\ / ﬁ)
upper bound in their work. Duchi et al. (2022) consider
data-dependent noise and show that the sample complexity
required to recover the shared subspace of the linear mod-

*Main experiments can be reproduced with the code pro-
vided under the following link: https://github.com/
Renpuliu/flute
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els scales in O(log®(Nd)y/ 3 ). These works, however,

only focus on the over-parameterized regime in a centralized
setting.

Federated representation learning. Recently, representa-
tion learning has been introduced to FL

(Arivazhagan et al., 2019; Liang et al., 2020; Collins et al.,
2021; Yu et al., 2020). Liang et al. (2020) propose an FRL
framework named Fed-LG, where the distinct representa-
tions are stored locally and the common prediction head is
forwarded to the server for aggregation. In contrast, Ari-
vazhagan et al. (2019) propose FedPer, where a common
representation is shared among clients, with personalized lo-
cal heads kept at the client side. A similar setting is adopted
by FedRep (Collins et al., 2021), where exponential con-
vergence to the optimal representation in the linear setting
is proved. These works focus on the over-parameterized
regime, while the under-parameterized regime has largely
been overlooked.

Low-rank matrix factorization. Under-parameterized rep-
resentation learning problem considered in this work is
closely related to low-rank matrix factorization, where the
objective is to find two low-rank matrices whose product
is closest to a given matrix ®. Pitaval et al. (2015) prove
the global convergence of gradient search with infinitesimal
step size for this problem. Ge et al. (2017) demonstrate that
no spurious minima exists in such a problem and all saddle
points are strict. Based on a revised robust strict saddle prop-
erty, Zhu et al. (2021) show that the local search method
such as gradient descent leads to a linear convergence rate
with good initialization with a regularity condition on ®.
Chen et al. (2023) extend the analysis in Zhu et al. (2021)
to general ®, and show that with a moderate random initial-
ization, the gradient descent method will converge globally
at a linear rate. In the over-parameterized regime, Ye &
Du (2021) proves that the gradient descent method will
converge to a global minimum at a polynomial rate with
random initialization. We note, however, that these works
assume the perfect knowledge of ®, which is different from
the data-based representation learning problem considered
in this work.

3. Problem Formulation

Notations. We use diag(zy,---,z4) to denote a d-
dimension diagonal matrix with diagonal entries z1, - - - , 2q.
(x,y) denotes the inner product of x and y, and ||z|| denotes
the Euclidean norm of vector x. We use f o v to denote the
composition of functions f : R¥ — R™ and 1/ : R? — R,
ie, (fou)(z) = f(¥(x)). I, represents a d x d identify
matrix, and 0 is a d-dimensional all-zero vector.

FL with common representation. We consider an FL
system consisting of M clients and one server. Client ¢ has

a local dataset D; that consists of n; training samples (z, y)
where € R? and y € R™. For simplicity, we assume
n; = N for all client ¢ € [M]. For (z;;,v:;) € D;, we
assume y; j = g;(2; ;) +&;,5, where z; ; is randomly drawn
according to a sub-Gaussian distribution Px with mean 0
and covariance matrix I, g; : RY — R™ is a deterministic
function, and §; ; € R™ is an independent and identically
distributed (IID) centered sub-Gaussian noise vector with
covariance matrix o2I,.

Federated representation learning (FRL) aims at learning
both a common representation that suits all clients and an
individual head that only fits client ¢. An FL framework
adopting this principle was proposed by Arivazhagan et al.
(2019), and we follow the same framework in this paper.
More specifically, we assume that the local model of client ¢
can be decomposed into two parts: a common representation
g : R? — RF shared by all clients and a local head
Suw; R — R™, where B and w; are the parameters
of the corresponding functions. Then, the ERM problem
considered in this FRL framework can be formulated as:

. 1 1

' i€(M] " (z,y)€D;

This formulation leverages the common representation
while accommodating data heterogeneity among clients, fa-
cilitating efficient personalized model training (Arivazhagan
et al., 2019; Collins et al., 2021).

In this work, we focus on the under-parameterized setting
in FRL, which is formally defined as follows.

Definition 3.1 (Under-Parameterization in FRL). Given
a common representation class W and a collection of
local head classes {F;}},, an FRL problem is under-
parameterized if there does not exist a representation ¢ € U,
and a collection of functions f; X fo... X fiy € Fy X
Fo ... x Far such that f; o¢p = g; forall i € [M].

The over-parameterization in FRL can be defined in a
symmetric form. This definition aligns with the over-
parameterized frameworks in matrix approximation, as de-
tailed in Jiang et al. (2022); Ye & Du (2021), where over-
parameterization is characterized by the rank of the repre-
sentation being no-less than that of the ground-truth model.
It also encompasses the definition in central statistical learn-
ing (Belkin et al., 2019; Oneto et al., 2023), where over-
parameterization is defined as the predictor’s function class
being sufficiently rich to approximate the global minimum.

While various algorithms have been developed and analyzed
in the over-parameterized setting (Arivazhagan et al., 2019;
Liang et al., 2020; Collins et al., 2021), to the best of our
knowledge, under-parameterized FRL has not been studied
in the literature before. This is, however, arguably a more
practical setting in large-scale FRL supported by a massive
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number of resources-scarce IoT devices, as such IoT de-
vices usually cannot support the storage, computation, and
communication of models parameterized by a large number
of parameters, while the task heterogeneity across massive
devices imposes significant challenges on the model class
to reconstruct M different local models perfectly?.

Low-dimensional linear representation. We first focus
on the linear setting in which all local models g; are linear,
ie., Yij = ¢;‘r£l}i1j +£i,j for (.’bi’j, yi,j) € D;. Denote ® :=
[p1,--+ ,dn] € R>*M and assume its rank is r. Then,
similar to the works of Collins et al. (2021); Arivazhagan
et al. (2019), we consider a linear prediction model where
(fw,o¥B)(x) can be expressed as x ' Bw;. Here, B € R?**
is the common linear representation shared across clients,
and w; € R is the local head maintained by client i. We
denote W = [wy, - ,wps]. Then, if we further consider
the /5 loss function, the ERM problem becomes

mlnM Z Z ||$ Buw; — yl*. 2)

i€[M] (a: y)ED;

We note that the existing literature usually assumes that
r < k, which falls in the over-parameterized regime (Zhu
et al., 2021). The over-parameterized assumption implies
the existence of a pair of B and W that can accurately
recover the ground-truth model @, i.e., BW = &. Thus,
the learning goal in the over-parameterized regime is to
identify such a pair using available training data (Du et al.,
2020; Tripuraneni et al., 2021; Collins et al., 2021; Shen
et al., 2023).

In contrast to the existing works, in the under-parameterized
regime given in Definition 3.1, we have r > k, i.e., there
does not exist matrices B € R?* and W € R**M gyuch
that BW = @®. Our objective is to learn a common repre-
sentation and local heads (B, W) in the federated learning
framework such that | BW — &®||% reaches its minimum,
although @ is not explicitly given but embedded in local
datasets.

4. The FLUTE Algorithm

In this section, we present the FLUTE algorithm for the
linear model. We will first highlight the unique challenges
the under-parameterized setting brings, and then introduce
our algorithm design.

3Continuing the previous example of MobileNet, which can
be adapted for object detection for autonomous driving (Chen
et al., 2021), it is known that a single model may not capture
very detailed or complex features of the complete environment,
including pedestrians, cyclists, and various road signs (Chen et al.,
2022).

4.1. Challenges

In order to understand the fundamental differences between
the over- and under-parameterized regimes, we first assume
® is known beforehand, and consider solving the following
optimization problem:
(B",W*) =

arg min IBW — ®|%2. (3)

BeRdxk Weka]\/[

Denote the singular value decomposition (SVD) of ® as
UAVT, where U and V are two unitary matrices, and
A is a diagonal matrix. When & > r, i.e., the model
is over-parameterized, B* and W* can be explicitly con-
structed from the SVD of ®, i.e., any (B, W) satisfying
BW = UAV' is an optimizer to Equation (3). When
k < r,i.e., in the under-parameterized regime, we can no
longer recover the full matrix ® with B* and W*. In-
stead, existing result (Golub & Van Loan, 2013) states
that we can only determine that the solution must satisfy
B*W* = U,A, V], where A is a k x k diagonal ma-
trix with the & largest singular values of ® as the diagonal
entries.

Compared with the over-parameterized setting, learning
B* and W* from decentralized datasets is more challeng-
ing in the under-parameterized setting. Let BY be the lo-
cally optimized representation at client 4, i.e., (B, wy) =
argmin | B;w; — ¢;]|2. Then, in the over-parameterized
setting, BY will always stay in the same column space
as B*, ie., span(BY) C span(B*), Vi € [M]. How-
ever, for the under-parameterized setting, it is possible that
span(BY) ¢ span(B*), 3i € [M]. How to aggregate the lo-
cally obtained BY to correctly span the column space of B*
thus becomes a unique challenge in the under-parameterized
setting and requires novel techniques different from those
in the existing over-parameterized literature.
Example 1. Consider a scenario that ® € R4*M with
M < d. We assume ® = Udiag(\y,---,Ay), where
U := [u,...,up] is a unitary matrix and A\; > Ao >
> Ay > 0. Assume & = 1. Then, we have
B*W* = wu;)\;. Assume each client ¢ can perfectly re-
cover its local model ¢; = u;\; with B; = u;\; /w;. Then,
depending on the value of w;’s, the aggregated representa-
tion B := % >, B; may exhibit different properties. For
example, if w; = A;, we have B = L. 3 u;, which de-
viates significantly from the column space of B*. On the
other hand, if W; = y/ AI/M, then Bi = U/ M)\l, while
B = ), u;/Ai/M. Thus, u; will have a heavier weight
in the aggregated representation, which will eventually help
recover the column space of B*. Intuitively, to accurately
recover the column space of B*, in the under-parameterized
setting, it requires a more sophisticated algorithm design not
just to estimate the column space of ®, but also distill the
most significant components of it from distributed datasets
in each aggregation.
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4.2. A New Loss Function

Motivated by the observation in Example 1, instead of con-
sidering the original problem in (2), we introduce two new
regularization terms and consider the following ERM prob-
lem:

min
Ba{wl}qﬂi1

Y% Y T Bwi-y? 4)

i€[M]  (z,y)€D;
—71[BW|% +12(|BTB|% + [[WWT|%) .
(0] (I

In Equation (4), we introduce the regularization term (I)
into the loss function, with the purpose of preserving the
top-k significant components of BW. By preserving the
significant components in B, the term (I) mitigates local
over-fitting induced during local updates. However, min-
imizing term (I) alone would result in a uniform enlarge-
ment of all k£ singular values of BW. To address this, we
further incorporate the regularization term (II). This term
is specifically formulated to promote the £ most signifi-
cant components and suppress the less significant ones. By
doing so, it aids the server in accurately distilling the cor-
rect subspace spanned by the optimal representation. We
note that when v; = 29, (I) and (I) together recover the
conventional penalty term |[BTB — WW T||2,, which has
been previously adopted for low-rank matrix approxima-
tion (Chen et al., 2023; Zhu et al., 2021; Wang et al., 2016b)
and multi-task learning (Tripuraneni et al., 2021).

4.3. FLUTE for Linear Model

In order to solve the optimization problem given in (4), we
introduce an algorithm named FLUTE (Ferated Learning
in Under-parameTerized REgime), which is compactly de-
scribed in Algorithm 1. Specifically, for each epoch, the al-
gorithm consists of three major steps, namely, server broad-
cast, client update, and server update.

Server broadcast. At the beginning of epoch ¢, the server
broadcasts the representation B!~ to all clients, and wf_l
(i.e., the i-th column of W*~1) to each individual client 3.

Client update. Denoting the local loss function as L; =
2T Bw; — y||?, the client calculates the gra-

1
N Z(x,y)eDi
dient of L; with respect to wﬁfl and Bffl, respectively, and
uploads them to the server.

Server update. After receiving V_:-1L; and Vg:-1L;

from all clients, the server first aggregates them to update
the global representation and local heads as follows:

B' =B~ Y Vgl (wﬁ_l,Bt*I),
1€[M] (5)
) Y (wf—l, Bt‘l),Vi e [M],

wy

Algorithm 1 FLUTE Linear

1: Input: Learning rates 7; and 7,., regularization parame-
ter A\, communication round 7°, constant «

2: Initialization: All entries of B? and WY are indepen-

dently sampled form N(0, a?).

for ¢ € [T] do
Server sends B!~ and w! ™" to client 4, Vi € [M].
for client ¢ € [M] in parallel do

Voi-1Li (wf’l,Bt*) and

Vai-1L; (wf-_l, Bt_1> .
7: Sends gradients to the server.
8: end for
9:  Server updates according to Equations (5) to (6).
10: end for

AN AN

Calculates

after which it constructs matrix W? by setting W* :=
[wh, -+ wh,]. It then performs another step of gradient
descent with respect to the regularization term in (4) to re-
fine the global representation and local heads and obtain B?
and W*:

B! = B! + 411, Vg1 |BTIWIT|2, (6)
— 220 Ve ([|(BH B E + (WL W H T3,
W' = W'+ 310, Vi [[BTTW 13

— 920, Vet (BT "B E 4+ [WH W) T R).

The procedure repeats until some stop criterion is satisfied.

Remark 4.1. When « is small, the initialization of B°
and WY would ensure that the largest singular value of
BY(W"T is sufficiently small with high probability. As
we will show in the next section, such initialization guaran-
tees that FLUTE converges to the global minimum.

The major differences between FLUTE and existing FRL
algorithms such as FedRep (Collins et al., 2021), Fe-
dRod (Chen & Chao, 2021), and FedCP (Zhang et al.,
2023a) lie in the server-side model updating. While these
existing algorithms typically involve transmitting only the
shared representation layers of local models to the server,
with local heads being optimized and utilized exclusively
at the client side, FLUTE requires clients to transmit both
the shared representation layers and the local heads to the
server. The increased communication cost is fundamentally
necessary due to the unique nature of FRL in the under-
parameterized regime, as it allows for server-side optimiza-
tion, not just aggregation, of the entire model. Furthermore,
FLUTE introduces additional data-free penalty terms to the
server-side updates. These terms are designed to guide the
shared representation to converge toward the global mini-
mum by leveraging the information in the local heads. This
approach represents a significant paradigm shift in federated
learning, aiming to enhance the overall global performance
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of the FRL model.

5. Theoretical Guarantees

Before introducing our main theorem, we denote d =
min{d, M} and d = max{d, M}. We also denote \; >
A2 > -+ > )Ag as the ordered singular values of ® with
A = 2(Ay — Agg1). Denote E = 3. A?. We assume
A > 0 throughout the analysis.

5.1. Main Results

Theorem 5.1 (Sample complexity). Setyy = and v, = &
in Equation @). Let 0 < a S 10d’ andn =mn =n <
228/\ 5505—5- Lhen, for any € > 0, under Algorithm I, there exists
positive constants ¢ and ¢’ such that when the number of

samples per client satisfies

A1k(d + log 5 + loglog 1)

YVE)2+ E + VEo)?

N>e

MUQAG 2
andt > log(iﬂiiz/c;g VE) , with probability at least 1 —6,
1
7 > IBw) - Brwj|| < e (7
1€[M]

Remark 5.2. Theorem 5.1 indicates that the per-client sam-
O mdx{d M}
Me?

the single-client setting, which is essentially a noisy linear
regression problem with sample complexity (9(6%) (Hsu
etal., 2012), FLUTE achieves a linear speedup in terms of
M in the high dimensional setting (i.e., d > M). When
d < M, the sample complexity of FLUTE becomes inde-
pendent with M, which is due to the fact that each client
requires a minimum number of samples to have the local
optimization problem non-ill-conditioned. Compared with

44 1og(M)) of FRL in the
noiseless over-parameterized setting (Collins et al., 2021),
FLUTE achieves more favorable dependency on M.

ple complexity scales in . Compared with

the sample complexity O (

Remark 5.3. We note that the dependency on A and
A1, especially A, is unique for the under-parameterized
FRL. For the special case when \; , = 0, the
problem we consider essentially falls into the over-
parameterized regime, and FLUTE can still be applied.
Theorem 5.1 shows that the sample complexity scales in
O(%(%)w). We note that under the assumption
that B* consists of orthonormal columns, the SOTA sam-
ple complexity in the over-parameterized regime scales in
O(% #x*) (Tripuraneni et al., 2021), where k =

((W*)TW*)/J ((W*)TW*).  Under the same as-
sumption on B*, we have A} = /o1 (W*)TW*), A =

or((W*)TW=*), and our sample complexity then be-
max{d,M} 5).

e The additional order of s in

comes O(

the bound is due to an initial state-dependent quantity

bounded by ’\A—I. The detailed analysis can be found in
Appendix A.2.3.

Remark 5.4. The sample complexity in Theorem 5.1 re-
quires that the size of each local dataset be sufficiently
large. This is in stark contrast to the sample complexity re-
sult in existing works (Collins et al., 2021), which imposes
a requirement on the fotal number of samples in the system
instead of on each individual client/task. We need the size
for each local dataset to be sufficiently large to ensure that
every ¢, can be locally estimated with a small error so that
the top & components of the ground truth ® can be correctly
recovered.

Theorem 5.5 (Convergence rate). Set 1, v2 and n as in
Theorem 5.1. Denote kr = (1— %)T. Then, for a constant
T’r (defined in Equation (16) in Appendix A) and any T >
TR, there exist positive constants ¢y and co such that when

N> o (d— 10g5+10gT)(W+f0 , for all T <

t < T, with probability at least 1 — §, we have

Cg)\\f( nAN?

NITIE 1——).(8)

t * ¥
= 3 Bt - B < T

1€[M]

Remark 5.6. Theorem 5.5 shows that when the number of
samples per client NV is sufficiently large, FLUTE converges
exponentially fast. We note that the required number of sam-
ples grows exponentially in the total number of iterations.
Such an exponential increase in the required number of sam-
ples is essential to guarantee that the ‘noise’ level, which
is the gradient estimation error, decays at least as fast as
the decay rate of the representation estimation error, which
is exponential. Similar phenomenon has been observed in
the literature (Mitra et al., 2021; Zhang et al., 2023b). In
our problem, there are essentially two parts of ‘noise’ in
the learning process. One is the sub-exponential label noise
&i.5> and the other is the gradient discrepancy arising from
the under-parameterized nature. This discrepancy persists
even when B? and W are nearly optimal, leading to an
unavoidable gap between BEW? and ®. This gap behaves
similarly to the sub-Gaussian noise in the convergence anal-
ysis, as elaborated in Section 5.2. Therefore, an exponential
increase in the number of samples is required to cope with
both parts of the noise and ensure the one-step improvement
of the estimation error as iteration grows.

Remark 5.71. We also note that both the sample complexity
in Theorem 5.1 and the convergence rate in Theorem 5.5 are
influenced by A, the gap between A\, and A4 1. A smaller
A signifies a growing challenge in correctly identifying the
top-k principal components of ®, leading to increased sam-
ple complexity and slower convergence. This is due to the
challenge of accurately distinguishing and recovering the
k-th and (k + 1)-th significant components from the dataset
when A is small. Note that in order to successfully distin-
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guish o and 011, we need to estimate them to be A/2-
accurate, i.e., —okt1] < AJ2.
Hence, the required number of samples per client would
grow significantly when A is small, and this is arguably
inevitable.

5.2. Proof Sketch

In this subsection, we outline the major challenges and
main steps in the proof of Theorem 5.5 while deferring
the complete analysis to Appendix A. Theorem 5.1 can be
proved once Theorem 5.5 is established.

Challenges of the analysis. The analytical frameworks
proposed by Collins et al. (2021) and Zhong et al. (2022)
for over-parameterized learning scenarios, as well as by
Chen et al. (2023) for low-rank matrix approximation, can-
not handle the unique challenges that arise in the under-
parameterized FRL framework, as elaborated below.

The first major challenge we encounter is to bound the
gradient discrepancy on the update of Bt denoted as
BW! — &)(WH)T = 3,y XX (Bt — ) (w!) T
Such difficulty is absent in the analyses 1n Colhns et al.
(2021) and Zhong et al. (2022) because, in the over-
parameterized regime and with a fixed number of samples
per client per iteration, the error caused by the gradient dis-
crepancy decays at a rate comparable to that of the represen-
tation estimation error. Therefore, the gradient discrepancy
will gradually converge to zero. However, for the under-
parameterized setting, even with the optimal (B, W), i.e.,
when BEW! = B*W*, gradient discrepancy can still be
non-zero, as the optimal representation cannot recover all
local models, i.e., B¥W™* = ®. Instead, it only decreases
when the number of samples /V increases. This phenomenon
indicates that an increase in the number of samples is es-
sential to ensure one-step improvements of the estimated
representations toward the ground-truth representation as
the iteration progresses.

Another main challenge is ensuring that neither the gradi-
ent discrepancy nor noise-induced errors accumulate over
iterations. This is critical as error accumulation can lead
to significant deviation from the optimal solution, result-
ing in poor convergence and degraded model performance.
To achieve this, we need to ensure the improvement of the
estimation can dominate the effect of potential disturbances.

To tackle these new challenges, we first prove two con-
centration lemmas (Lemma A.13 and Lemma A.14 in Ap-
pendix A.2.5) to ensure that the norm of the gradient discrep-
ancy can be bounded when local datasets are sufficiently
large. Next, to address the second challenge of avoiding
the accumulation of gradient discrepancy and noise-induced
errors over iterations, we develop iteration-dependent up-
per bounds for sample complexity (Lemma A.10 and

Lemma A.11 in Appendix A.2.3). These bounds guarantee
that the improvement in estimation, i.e., the distance’ im-
provement between our estimated model and the optimal
low-rank model, can mitigate potential disturbances caused
by gradient discrepancy and noise. We establish this by in-
troducing a novel approach to derive an accuracy-dependent
upper bound for the per-client sample complexity, ensuring
the error caused by the gradient discrepancy decays as fast
as the increase of the signal-to-noise ratio (SNR), formally
introduced in Appendix A.

Main steps of the proof. First, we transform the asym-
metric matrix factorization problem into a symmetric prob-
lem by appropriately padding O columns or rows to Bf
and W? and constructing the updating matrices @ (see
Appendix A). Our goal is then to prove that @¢(®*) T con-
verges. We first show that, with a small random initializa-
tion, @ will enter a region containing the optima with high
probability. Then, utilizing Lemma A.13 and Lemma A.14,
we demonstrate that when ®* enters the region R, it will
remain in this region with high probability despite gradient
discrepancy and noise. Finally, utilizing Lemma A.10 and
Lemma A.11, we show that when N is sufficiently large,
©!(®")T converges at a linear rate with high probability
under the influence of gradient discrepancy and noise, pro-
vided that the initialization condition satisfies @° € R.

6. General FLUTE

In this section, we extend FLUTE designed for linear models
to more general settings. Specifically, we use 1 to denote
the representation, and assume linear local heads f;(z) =
H, » + b;, where H; € R¥*™ b, € R™. This is motivated
by the neural network architecture where all layers before
the last layer are abstracted as the representation layer, and
the last layer is linear. Then, the objective function becomes

B{H}{b}MZ Z

eM] " (z,y)€ED;
+AR({H;},B), ()

HT,(/)B + bza y)

where R({H;}, B) is the regularization term to encourage
the alignment of local models with the global optimum
structure.

The general FLUTE algorithm for solving problem (9) is
provided in Algorithm 2 in Appendix B. Given the non-
linearity of ¢g, the penalty introduced in linear FLUTE is
not directly applicable to the general problem. We thus
formulate and design new penalty terms, following the same
principles that motivated the design in the linear setting.
This is to mitigate the local over-fitting induced by local
updates and to encourage a structure benefit to global opti-
mization. As a concrete example, we present a design of the
penalty term for the classification problem with CNN as a
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prediction model in Section 7.2.

7. Experimental Results
7.1. Synthetic Datasets

We generate a synthetic dataset as follows. First, we ran-
domly generate ¢; according to a d-dimensional standard
Gaussian distribution. For each ¢;, we then randomly gen-
erate N pairs of (z,y), where z is sampled from a standard
Gaussian distribution, £ is sampled from a centered Gaus-
sian distribution with variance o2, and y = ¢, * + &.

In Figure 1, we compare FLUTE with FedRep (Collins et al.,
2021). We measure the quality of the learned representa-
tion B* and W' over the metric ; iy IBfwi — o4]l.
We emphasize that FedRep requires empirical covariance
estimated from the local datasets to be transmitted to the
server for the initialization. Thus, it begins with a good esti-
mate of the subspace spanned by B*. In contrast, FLUTE
commences with a random initialization of both the repre-
sentation and the heads. As a result, FedRep converges to
a relatively small error within the few initial epochs, while
FLUTE needs to go through more epochs to obtain a good
estimate of the representation. However, as the learning
progresses over more epochs, FLUTE eventually outper-
forms FedRep. To validate this hypothesis, we introduce
FedRep(RI) in our experiments, which has the same initial-
ization as FLUTE but is otherwise identical to FedRep. We
see from Figure 1 that when FedRep is randomly initialized,
FLUTE outperforms FedRep(RI) in much fewer iterations.

We also observe that the performance gain of FLUTE is
more pronounced in highly under-parameterized scenarios,
i.e., where k is relatively small. As k increases, the gap
between the convergence rates of FLUTE and FedRep nar-
rows. These results demonstrate that FLUTE achieves better
performance in the under-parameterized regime. In the ad-
ditional experimental results included in Appendix C, we
also observe that when the number of participating clients
M increases, the average error of the model learned from
FLUTE decreases, which is consistent with Theorem 5.5.

7.2. Real World Datasets

Datasets and models. We now evaluate the performance
of general FLUTE on multi-class classification tasks with
real-world datasets CIFAR-10 and CIFAR-100 (Krizhevsky
et al., 2009). For all experiments, we adopt a convolutional
neural network (CNN) with two convolution layers, two
fully connected layers with ReLLU activation, and a final
fully connected layer with a softmax activation function.
A detailed description of the CNN structure is deferred to
Appendix C of the Appendix.

Algorithms for comparison. We compare FLUTE with sev-
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Figure 1. Experimental results with synthetic datasets.

eral baseline algorithms, including FedAvg (McMahan et al.,
2017), Fed-LG (Liang et al., 2020), FedPer (Arivazhagan
etal., 2019), FedRep (Collins et al., 2021), FedRod (Chen
& Chao, 2021) and FedCP (Zhang et al., 2023a). Fed-LG
is designed to learn a common head shared across clients
while allowing for localized representations, while FedPer
and FedRep both assume shared representation and person-
alized local heads. FedRod extends the model considered in
FedRep by adding another head layer into the local model,
and FedCP further equips a conditional policy network into
the local model. We also consider variants of FLUTE and
FedRep, denoted as FLUTE* and FedRep*, respectively,
under which we vary the number of updates of the local
heads in each communication round, as elaborated later.

Loss function and penalty. For algorithms other than
FLUTE and FLUTE*, the local loss function is chosen as
Li = N Xeyen, Lee(B Yn(x) + b, y), where Lcg is
the cross entropy loss. The local loss function for FLUTE
and FLUTE* are specialized as

1
Li(B,b,H) = ~ Z Lee(H vB(2) + biy)+
(z,y)€D;

Mlvs (@) 12 + A2 Hill7 4+ AsNCi(Hy),

(10)

where y € R™ is a one-hot vector whose k-th en-
try is 1 if the corresponding x belongs to class k, Aq,
A2 and A3 are non-negative regularization parameters.
NC;(H;) is motivated by Papyan et al. (2020) and set as

‘ H, H, L_uwu/ oI, - 11,1])

HIE Vit , where

u; is an m-dimensional one-hot vector whose c-th entry
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Table 1. Average test accuracy on CIFAR-10 and CIFAR-100.

Dataset | CIFAR-10 \ CIFAR-100

Partition \ 50 x 2 \ 50 x 5 \ 100 x 2 \ 100 x 5 \ 100 x 5 \ 100 x 10 \ 100 x 20 \ 100 x 40
FedAvg 34.460+1.083 | 47.217+0395 | 41.584+0433 | 51.876+0675 | 20.21240574 | 31.533+0519 | 34.659+0482 | 32.902-+0.195
FedAvg-FT | 83.996-+0948 | 71.465+0701 | 84.688+0437 | 70.884+0697 | 78.342+0574 | 66.660+0370 | 54.464+0.178 | 44.858+0.119
Fed-LG 82.724+2.137 | 61.820+0409 | 83.019+0431 | 62.957+0.895 | 72.526+0.692 | 53.526+0.151 | 34.445+0375 | 22.702+0315
FedPer 85.173+1082 | 74.015+0724 | 86.168+0.703 | 73.666+0.281 | 76.001+0454 | 67.100+£0229 | 56.066+0389 | 44.689+0.411
FedRep 86.133+0775 | 71.737+0296 | 86.685+0.766 | 73.808=+0.561 | 78.621+0.159 | 68.530+0.255 | 56.360+0245 | 43.061+0.476
FedRep* 87.320+1.485 | 75.766+0220 | 87.177+0489 | 75.296+0.505 | 78.892+0410 | 68.630+0705 | 56.654+0609 | 42.025+0.404
FedRoD 79.476+2966 | 68.728+1.750 | 83.296+1545 | 72.116+0.788 | 74.299+0338 | 66.462+0284 | 57.280+0.105 | 48.120=+0.186
FedCP 85.361+1.605 | 71.603+03885 | 84.798+0480 | 71.344+0587 | 74.266+0559 | 66.426+0372 | 57.067+0483 | 43.638+0415
FLUTE 87.012+0453 | 76.478+0484 | 86.128+1.007 | 76.918+0.712 | 77.750+0615 | 70.598+0282 | 59.243+0334 | 48.169+0.597
FLUTE* 87.713+1365 | 76.543+0.921 | 88.567+0.457 | 78.255+0.688 | 79.560-+0.627 | 70.844+0.419 | 59.714+0.448 | 48.170+0.440

is 1if ¢ € C;, and ® denotes the Hadamard product. We
specialize the regularization term optimized on the server
side as R({H;}) = >, NC;(H;). Note that for general
FLUTE specified to a classification problem, we penalize
¥ ()| instead of directly penalizing the parameter B.
Since ||¢B(x)|| depends on data, the regularization term is
optimized partially on the client side and partially on the
server side.

Compared with the objective function in Equation (4) for
the linear case, the term A3 C;(H;) replaces term (I) and
A |[YB(2)]13 + A2||H;||% replaces term (II). The primary
goal of introducing A3N'C;(H;) is to mitigate local over-
fitting that occurs during local updates in the training pro-
cess. As elaborated in Appendix B.3, such a regularization
term promotes a beneficial structure for the global model,
facilitating efficient learning performance. This term shares
the same motivation as the term (I) in the linear scenario,
which focuses on distilling significant components from
the model to mitigate local over-fitting effects. For term
(I), we only replace | BT B||% with |[¢g(x)|?, since the
representation is not linear in general.

Implementation and evaluation. We use m to denote the
number of classes assigned to each client. For CIFAR-10
dataset, we consider four (N, m) pairs: (50,2), (50,5),
(100,2) and (100, 5); For CIFAR-100 dataset, we con-
sider four (N, m) pairs: (100, 5), (100, 10), (100, 20) and
(100, 40).

For experiments conducted on the CIFAR-10 dataset, all
algorithms are executed over 100 communication rounds.
For LG-Fed, FedPer, FedRoD, FedCP and FLUTE, each
client performs one round of local updates in each commu-
nication round. FedRep performs one epoch of local head
update and an additional epoch for the local representation
update. Compared with FedRep, FedRep* processes 10
epochs to update its local heads and one epoch to update
its representation. For comparison, FLUTE* also runs 11
rounds of local updates, updating both representation and
local head in the first round, followed by 10 rounds of only
updating the local head.

The experiments on the CIFAR-100 dataset also use 100
communication rounds. The number of local updates for
LG-Fed, FedPer, FedRoD, FedCP and FLUTE are set to 5.
FedRep is configured to update the local representation and
head for 5 epochs each, while FedRep* allocates 5 epochs
for updating the local representation and 10 for updating the
local head. FLUTE* runs 15 epochs of local updates, where
the initial 5 epochs update both the representation and local
head while the subsequent 10 epochs solely update the local
head.

Averaged performance. The results are reported in Table 1.
It is evident that FLUTE and FLUTE* consistently outper-
form other baseline algorithms in all experiments conducted
on CIFAR-10 and CIFAR-100 datasets. This superior perfor-
mance is attributed to the tailored design that encourages the
locally learned models to move towards a global optimal so-
Iution rather than a local optimum. We also observe that the
gain of FLUTE and FLUTE* becomes more prominent with
larger N and m. Intuitively, larger N and m implies more
severe under-parameterization for the given CNN model,
and our algorithms exhibit more advantage for such cases.

8. Conclusion

To the best of our knowledge, this paper represents the first
effort in the study of federated representation learning in
the under-parameterized regime, which is of great practi-
cal importance. We have proposed a novel FRL algorithm
FLUTE that was inspired by asymmetric low-rank matrix
approximation. FLUTE incorporates a novel regularization
term in the loss function and solves the corresponding ERM
problem in a federated manner. We proved the convergence
of FLUTE and established the per-client sample complex-
ity that is comparable to the over-parameterized result but
with very different proof techniques. We also extended
FLUTE to general (non-linear) settings which are of prac-
tical interest. FLUTE demonstrated superior performance
over existing FRL solutions in both synthetic and real-world
tasks, highlighting its advantages for efficient learning in
the under-parameterized regime.
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Notations. Throughout this paper, bold capital letters (e.g., X) denote matrices, and calligraphic capital letters (e.g., C)
denote sets. We use tr(X) to denote the trace of matrix X, opyin(X) and omax(X) to denote the minimum and maximum
singular values of X, respectively, and diag(z1, - - - , z4) to denote a d-dimensional diagonal matrix with diagonal entries
x1,- -+ ,x4. |C| denotes the cardinality of set C, and { X },c|n) denotes the set { X1, ---, Xy }. We use (x, y) to denote the
inner product of z and y, and ||x| to denote the Euclidean norm of vector z. We use f o 1) to denote the composition of
functions f : R¥ — R™ and ¢ : R? — R¥,ie., (fot)(x) = f(¥(x)). a < bindicates a < Cb for a positive constant C.
I,; represents a d x d identity matrix, and O is a d-dimensional all-zero vector.

Denote d := max{d, M}, d := min{d, M}, and ®, € R4 a5 the matrix constructed from ® € R by padding all-
zero columns or rows. Define its SVD as &, = U*A*VI. Denote A = diag(2A,,—2A ) andlet A\ > M5 > .- > )\;E

be the eigenvalues of A, with A = A% — \* +1- Note that the definition of A is consistent with the definition in Section 5.
For clarity of presentation, we use o¢ to denote the standard deviation of the noise ¢ instead of o that is used in the main

paper.
A. Analysis of the FLUTE Linear Algorithm
A.1. Preliminaries

We start with the updating rule of B* and W* in Algorithm 1.

For B!, from FLUTE we have the following updating rule:

B+l =gt _ L Z Z oy x”B w! _ym)( t)T _ ﬂBt((Bt)TBt _Wt(wt)T)

ze[M}]e N] 2
t Z X XT ,w . ¢z)( )T o gBt((Bt)TBt . Wt(wt)—r).
zE[M

Since data points {x; ;} are sampled from a standard Gaussian distribution, for large N, it holds that X; X, /N ~ I. Then,
we introduce the following definition:

X X XZEZ U);5 T
Q=0 Y (Blw) —¢i)(wh) T —n Y T (Blwl — i) (wh) T+ % (11)
i€[M] i€[M] i€[M]

With this definition, the updating rule of B can be rewritten as

Bt+1 _ Bt o n(BtWt o @) (Wt)T o gBt((Bt)TBt o Wt(wt)T) + Qt+l~

Now we consider the updating rule of W. Observe that each of its columns satisfies
41t t t, .t
w;t = w; Z (BY) x” (i,5) Bwi*yi,j)
JE (N]

= w} (Bt)TX X! (Bfw! — ¢;).

We define Q+! == [¢i1, - - | ¢4F'], where each of its columns is given by
gt =nB"T (B'w} — ¢;) — %(Bt)TXinT (Bfwj — ¢:) + %(Bt)TXiEr (12)

Then, W is updated according to

Wi — Wt — n(Bt)T(BtWt —®)+ g((Bt)TBt _ Wt(Wt)T)Wt + Qt-‘,—l.

Recall the SVD of ® is denoted as @ = UAV " . Further denote B! = UTB? and W! = W*V. Then, we have
Bitl — Bt _ n(BtWt B A) (Wt)T B g]:g’t«Bt)TEt . Wtq(wt)r) + UTQt+17

13
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W= W (BT (BW' - A) — (BB - WHWH )W QY.

Similar to the definition of ®,, we construct B € R¥* and W! € R*¥*? by padding all-zero columns or rows to B and

W, respectively. Similarly, we obtain Q% € R™* and Q! € R**4 by padding all-zero columns or rows to Q' and Q°,
respectively. Then, we define @* and R as

o — {(Bif WL (BT - Wi] '
V2 V2 |
R — {(Qi)TU* + in* (Q)'U, — in*} '
V2 V2 '

Then, the updating rule of @ can be described as
O+ =o'+ JAe' - J'(0) e’ + R (13)

Let © = [(©}) (O

)TT and R = [(Rf)T (RL;_)T]" where ©} € R**F @, € RI-Mxk Rl € RF*F and

Rl € R(24=k)xk_Then, we decompose the updating rule of @ as
O, =0} '+ A0 - Jo; (e )Te' + R, (14)
Ol = O + TR0 — 1010 ) O + RY, . (1s)

A.2. Proof of Theorem 5.5

First, we restate Theorem 5.5 as follows.

Theorem A.1 (Restatement of Theorem 5.5). Set A and n as in Theorem 5.1. Then for constant Tr and any
T > Tg, there exist positive constants c; and ce such that when the number of samples per client satisfies N >
i e 2

(d—log 5+logT)(:2 A(jl)z+E+\/EU£) ,Jorall T <t < T we have

C1

1 k ANt
— 3 IB'w! - B*uw|| < carv (1 - L) :
M 2 N 16

. . A
with probability at least 1 — 6, where kp = (1 — 12)7.

Overview of the proof. The proof of Theorem 5.5 consists of three main steps.

* Step 1: We show that with a small random initialization, ®* will enter a region containing the optima with high probability
(see Appendix A.2.1).

* Step 2: We show that once ®! enters this region, it will stay in it with high probability (see Appendix A.2.2).

* Step 3: We show that when N is sufficiently large, with high probability it holds that |©*(®%)T — diag(Ay,0)||
converges to 0 at a linear rate when the initialization satisfies ®° € R (see Appendix A.2.3).

We then put pieces together and prove Theorem 5.5 in Appendix A.2.4. We introduce some auxiliary lemmas in Ap-
pendix A.2.5.

A.2.1. STEP 1: ENTERING A REGION WITH SMALL RANDOM INITIALIZATION

We first introduce the following definitions, adapted from the proof in Chen et al. (2023). Recall that A = \; — A;, ;. We

define
@t
r-{of - || ertloien < v, el

res

<A A2 ol(O]) > A/4},

14
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— t _ 611; 2dxk| 2
Re=1¢0O"= o' eR o7

res

(@Y <2);, oi(e! )<A;;—A/2}.

res

Then, we establish the following proposition.

Proposition A.2. Assume n < 6}\* and all entries of B® and W° are independently sampled from N(0,a?) with a
1

sufficiently small o. Then, if

W>max{‘/ “logo 3456\/ —log 5/ Ni( +E+fa£)}

\/a mln{al( res) 0'1(@965)}A\/7
with probability at least 1 — ctd for some constant ¢ > 0, @ will enter region R for some t € [T, where
log(A/(407(©4)))

= . 16
2log(1 + 2(A; — A/2)) (16)

The proof of Proposition A.2 relies on Lemma A.4 and Lemma A.5, which will be introduced shortly. Before that, we state
the following claim introduced in Chen et al. (2023):

Claim A.3. 0%(©°%) < )}, 02(©Y,
log(1+ )\k+1+8A) <1
log(1+g()\zfA/2)) :

1—r/2

) <A —A/2,02(0F) < AJdand 03(OY,) < c1 - o (O, where ¢ = B

and Kk =

The following lemma shows that with a small random initialization, Claim A.3 holds with high probability.

Lemma A.4. Assume all entries of B® and W are independently sampled from N'(0, ). Then, for any § € [0, 1], if v is
sufficiently small, Claim A.3 holds with probability at least 1 — 0.

Proof of Lemma A.4. Using Lemma A.19, we have 01(©°%) < /A} and 01(©%,) < \/A; — A/2 hold with prob-
ability at least 1 — 2exp(—(Zz/Af — A/2 — 20/d)?/2), and k(@) < VA/2 holds with probablhty at least
1 —2exp(—(VA/(2a?) — Q\f )2/2). Then for o small enough such that

VA A —A)2 }
4vd + 2+/210g(2/8") 2V d + \/210g(2/8") )
01(0%) < /Af, 01(@Y) < /A — A/2 and 01,(©Y) < v/A/2 hold with probability at least 1 — 24’ for any §’ € [0, 1].

From Rudelson & Vershynin (2008), there exists a constant K that only depends on ¢’ such that with probability at least
1 — ¢, we have 04 (©9) > o> KV/k.

agmin{

4-2(1+k) < %, with probability at least 1 — &, we have

c10K(O)' " > 1 (P KVE)' > o*(2Vd + /210g(2/0"))”
Note that from Lemma A.19, with probability at least 1 — §’ we have
02(@Y,) < a*(2Vd + /210g(2/8"))?

Then we conclude that with probability at least 1 — 48’, we have 01(@°) < \/A}, 01(OL) < \/Aj — A/2, 04(O)) <
VA/2 and 03(®Y,) < ¢1 - 0 (©Y)1**. Finally the lemma follows by setting § = 46’ O

Thus, when « is sufficiently small such that o

Next, we introduce the following lemma, which shows that when Claim A.3 holds, ®! will enter the region R in a short
time period.

Lemma A.S. Assumen < ¢ BY and Claim A.3 holds. Then, if
vd—1logé 3456\/ —log 8/ N (kN2 + E + Vkoy)
VN = max { ! } (17)
VAS! mln{al( res) Ul(gres)}A\/

. . log(A /407 (O}
with probability at least 1 — ctd, we have o1,(®4) > /A /2 for some t € |0, 21028(§+/%4(;;(_£)/)2))].

15
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Proof of Lemma A.5. With Claim A.3 holds, we have 07 (©") < 2\}, 07(©%,) < A\; — A/2. Then, based on Lemma A.17,
for N satisfying inequality (17), we have

t M\ UINY% 0
I = 5 Q o res/s
(9 es) (1 + 2)‘k+1 + 8A) 1<® )

holds with probability at least 1 — ctd. Combining with Claim A.3, we obtain

(1 + 77)\k+1 + 8A)T 1oy, = (40,§(A®2))K/2 i

Then, for all t < Tz, we have

Mys n My» n A\ TR Nye  TMA) A
(1 + 5)‘k+1 + gA) a7 (Op,) < (1 + §>‘k+1 + gA) a7 (Op,) < (1 + 5% - ZA) W"k(gg)-
Let 7" = min{t > 0|07 (©%) > A/4}. We then aim to prove that
¢ My M AY 0 : /
We prove it by induction.
Assume Equation (18) holds for some 7 < ¢, where t < rnin{TR7 T'}. Then we have
T n 0 /AN n T 0 A -
e _(1+ ey + A) ) < (1+7A —7A>a ) < = o (O).
( es) k+1 ( € 8\/>\>* 2 k+1 4 k( k) &/ﬁ k( k)

We consider the next time step 7 + 1. Note that 0, (@7 ") can be lower bounded as
on(O]") = 01(O] + 54,07 — JO}(©7)TO7) — oy (R] )

> 0(0] + JAO] — JO7(0])O]) — J01(O](07,) Or) — o1 (R™H).

res

Applying Lemma D.4 in Jiang et al. (2022) gives

res ) res )

n ~
o ;+§’Ak@; @T(@T)T@T)ffal(@T(@T Ter

> 1= R e Ten 1+ Iane @0 (1 — To2(er ere.)Ter
—( 2 Jl( k( k) k))( +2 k)Jk( k)( QJk( k)) 201( ( res) res)

- (- O0) (4 50) (1 22 ot - oo

Then, for n < we have

18)\*‘3’

e 71 -
B A@)Uk(g ) (19)

o1(O] + 5 A10] — JOL(0])TO]) — 101 (O7(OF,) O = (1+

According to Lemma A.13 and Lemma A.14, if

Wzmax{ d—logd 3456\/T*,/ )2+ E + Vkoe)y/d —logd }

Ve ok (OF)A/ex
then, with probability at least 1 — 26, we have o1 (R™™!) < zonAocy(©Y).
Combining with Equation (19) gives

or(©7) > (1415 —ya T )0, (OF) — srnAai(©))
2 288 288

16



Federated Representation Learning in the Under-Parameterized Regime

> (1+ n; - nAJ@) (13- %A)TU’“(@% 288”AU’“(@O)
()14 D0 ) ot g 1+ - 1) v
= (1+ 3% - ZA)TH%(@Q).

Then, we conclude that with probability at least 1 — ctd for some constant ¢, we have
o(0}) > (1+m/2 ~ A /1) o(©)).
Here we claim Tr < T’ always holds, since if Tr > T”, we must have
ou(©7%) > (1+a3/2 - nd/a) “ou(©)) > VA2,
which contradicts the definition of 7”. The proof is thus complete. O

A.2.2. STEP 2: TRAPPED IN THE ABSORBING REGION

We start by introducing Lemma A.6, Lemma A.7 and Lemma A.8.

Lemma A.6. Assume n < % and ©° € R,. Then, if VN > 12v2y dk—klogd ”E\/gkbg&for constant cy, with probability at least
1 — 2td, we have 01(©7T) < \/2A} hold for all T < t.

Proof of Lemma A.6. Assume that ®™~! € R. Then, utilizing Equation (13), we have

51(07) < 0y (O 1)(1 + gx; - gﬁ(@ﬂ)) + o (R7).

Note that o1 (©71)(1 + ZA] — Z0f(©7 1)) reaches its maximum at o1(©7 1) = ‘/2+77)‘ For ) < 5/\*, we have

\/% > /2X;. Thus, 01(©7 1) (1 + ZX; — 207(©7 1)) is monotonically increasing for o1 (©771) € [0, /2X]].
Then,

01 (@) < \/W(l - f)\*) +o1(R7).

We prove 01 (®7) < /2X% by induction. First, since O € R,, we have o1 ( @O < /2\}. Then, assume 01 (O7) < /2X}
holds for time step 0 < 7 < t. According to Lemma A.13 and Lemma A.14, if 01(©7) < /2A}, and VN >

12v2 — dk— klog , with probability at least 1 — 24, we have o1 (R™T1) < f n(A1)%. Thus,

o1 (®7F1) < \/2X7 (1 — g)\*{) + o (R7HY) < /21

Then, by induction, with probability at least 1 —2t4, we have 01 (©7) < /2% for all 7 < ¢. Then the proof is complete. [

Lemma A.7. Assume n < 6/1\,{ and ©° € R,. Then, if

VN > max Vd—logd 48\/)\7*\/ X2+ E + Vkoe)/d —logd
\/T Cl /\>'< A/Q

for constant ¢y, with probability at least 1 — 2t0, we have 01(OL,) < /A /2 holds for all T < t.

17



Federated Representation Learning in the Under-Parameterized Regime

Proof of Lemma A.7. We prove it by induction. Note that o1 (@) < \/A\f — A/2since ®° € R,. Assume 71 (O] ') <
VAx — A/2 holds for some 7. We aim to show that the inequality holds for o1 (®7) as well.

res

Based on Lemma A.15, forp < 1/6A7 and 01(©7) < /2\}, we have
01(07) < (145 (Awr —oH(©O) =02 (O] 7)) r1(OY) + o (R )
< (14 2 (N — 03O ) )n (@) + 1 (R, )-

Note that when o1 (@7 1) > 0, (1 +2(Npyq — 0T (O 1)))01(®T 1) is maximized at o1 (@71) = 2+n/\’“+1 . Since

res res

we assume 7 < 6/\* < m, it holds that 4 /% > \/A; — A/2. Then, (1 + %(AZH 03Oy 1)))0—1(@:68 1)

is monotonically increasing for 0 < o1 (©7; ') < \/A; — A/2. We thus have

res

A
01(OL) < /N~ A/2(1 - 15) + o1 (R7). 20)

According to Lemma A.13 and Lemma A.14, if /N > max {¥ - 10g6 18Ny Z(j/ )Jrfji;;)) Vd—log6 }, with probabil-
c1(

ity at least 1 — 24, we have

Any/ XA —A)2
1 .

) < /A 2. The proof is thus complete. O

Lemma A.8. Assume 1) < m*g, ak(@g)z\/ﬁﬂ and ©7 € R, forall 0 < 7 < t. Then, if
JN > ma { d—1logd  6144\/N;(VEOD)2 + E + Vkoe)y/d —log }
X b) )
- Ver AJer
for some contact ¢y, with probability at least 1 — 2t6, we have ak(GZ) > \/K/2 hold for all 0 < 7 < t.

o1 (R7) < 2n

Then by combining (20) and (21), we have o1 (©

Proof of Lemma A.8. We prove it by induction. First note that o4 (©9) > v/A/2 under the assumption of Lemma A.8.
Assume that 0, (®F) > v/A/2 holds for some ¢. We then show that o1, (©7 ") > v/A/2 holds as well.

Since for all 7 < t it holds that @™ € R, and N satisfies the condition described in Lemma A.8, based on Lemmas A.13
2
and A.14, with probability at least 1 — 2t4, it holds that al(Rg) < 51’;% for all 0 < 7 < t. From the intermediate result

of Lemma A.16, for n < we have

16)\*37
R (OF) = (141N — o2(OF,) — 0}(8])) ) e(©f) — 1AT* — 4y/ N (RY).

Combining with the fact that

T T T * UAQ
o} (O = (1+n(\ — o}(OF) — o}(©])) )oF (OF) —n*x;” - 15
we have
nA?
HOr) = (1+n(8/2 - o}(O]) JoR(O]) — *Ai° — 2
2 nA?
> (1+n(A)2— AJ4)A/4 — 2P - o8
JA L AT A2 A
=7 "6 " T32 T 18
A
> =
=4
The proof is thus complete. L)
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Combining Lemmas A.6 and A.7, we conclude that for NV sufficiently large, R is an absorbing region with high probability,
i.e., starting from ®° € R, the subsequent @ will stay in R for all ¢ > 0 with high probability, which is summarized in
the following proposition.

Proposition A.9. Assume ©° € R. If VN > ¢ VRO )2+E+fo) Vd-log

at least 1 — t6, we have O7 € R forall 0 < 7 < t.

for some constant c, then, with probability

A.2.3. STEP 3: LoCAL CONVERGENCE OF ©!(®%)T

We next show that when N is sufficiently large, with high probability, |©*(©*)T —diag(Ay, 0)|| converges to 0 exponentially

fast when ®° € R.

Firstly, we establish the following lemma that lower bounds the number of samples needed for the inverse SNR to converge
exponentially fast with high probability.

t41
Lemma A.10. Denote O'ref = m( - %) . Assume n < A%/(36)33), ®7 € R forall 0 < 7 < t, and

VR 2 cmax /- 1ogs, Vg RO T+ Vo) - Tog i (VEGRPT E + Vo) )

t+1
ref A

Sfor some constant c. Then, with probability at least 1 — (t 4 1)d, we have

(®t+1)

res

\[ *

Proof of Lemma A.10. Based on Lemma A.20, we have o1 (R71! ) < o1 (R™"!) and o1 (R[™") < 01 (R7T!). Then, it
follows that

IR ) <\ (QE)TUL) +0HQIIVL) and oy(RET) < \/o2(Q0F)TUL) + 3@V,

t+1
ot - Then, if

U 5 o | VA~ 108D 192/T—Tog3\/XT(/EOT?  E + Vo) 6144/d ~log o0 (v/ENT "+ B + Vo)
U e LTAYG NG ,

with probability at least 1 — 29, we have

Substitute the ¢ in Lemmas A.13 and A.14 by o

attipA A2
5 < Tret 12 and R 777. 22
o1(R3q_) < 16 a1 (R}) < 5124/ (22)

We prove the lemma by considering two cases. In the first case, we assume o1 (©%,) > on'l forall 0 < 7 < ¢. In the

second case, we assume there exists at least one time step in [0, ¢] such that 01 (OF) < f; , and we denote the last time
step satisfying this condition as ¢'.
We start from the first case. Combining Equation (22) with Lemma A.15 gives
T T T T ((-)T ) A
(ere—:l) (1 +3 ()‘k:+1 (eres) - O—I% (G)k))) (eres) %&S (23)

= (1+ 2 (Nis +A/8 - 03(OF) — a2(O])) )1 (7).

where in Equation (23) we use the assumption that c't' < 71 (®F,).

Then, using the fact that 0?(©7) < 2} and n < ﬁ we obtain
o (Oi) < (14 1N + A/8 = 0H(OF,) — 0} (O]) + 47°X?) r3(OF,) (24)
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* T T A T
< (14 1(Nie + A/8 = 02(OF,) — 0}(0]) + 1 )o}(OF,)

< (1-na/8+ (N - A/2— 0}(©F,) — oE(0]) s (OF), (25)

where Equation (24) holds since (A, + A/8 — 03 (OF,) — ai(@%))Q < 16M*2

Next, combining Lemma A.16 and Equation (22) leads to

oR(O7) = 0 (7)) — 4/ Mo (RTT)

T 77A2
> i kﬂ)—m
T 77A T
> 0 (O ) = 5-ok(OF) (26)
. r 1A A T
> (1+0(\ - o}(©F) — o}(©]) — L= )at(f) — L=t (e])
= (1+nA/8+ (N - /2 - 0}(©7,) — 0}(O])) ) (O], @7)

where in Equation (26) we use the fact 0, (©7) > %.

Then, combining Equation (25) with Equation (27) we have

2ory  (1=na/8+0(\; - A/2 = 3(OF,) - 03(0])) )03 (OF,)
CHCI I (1 + A8+ (A — AJ2 - 02(O7,) — ag(@;)))ag(@;)

3/2—nA/8 o2(OF,) (28)
=~ 3/2+nA/8 o(OF)

(1 B @) a7 (05,

< 21\ Pres)
- 6 / 03(©7)

nAN201(OF,)
< (1-12) 0\ Bk 2
- ( 16) U%(@Z) ’ (29)

where Equation (28) holds when —1/2 < n(\f — A/2—0}(O%,) —02(©F)) < 1/2, which is valid when < A2/(36);%),

and Equation (29) holds since (1 — nA/6) < (1 —nA/16) is valid for positive 7.
Then, with probability at least 1 — 2(¢ + 1)J, we have

AN 2(t41) 52(@0 /\*2 AN 2(t41)
G%(®t+1) < ( n ) 01( res)gi(@?—l) < 1 (1_ L) )

res 16 A 16

i (8})

) > ot Similar

For the second case, note at time step ' we have o (©L,) < o'*, and for all #/ < 7 < ¢ we have 0 (O, of

ref > res

to the previous analysis, we show that with probability at least 1 — 2(t + 1 — t’)4, we have

E)t-&-l—t’ (05;1)2

2 t+1 < 1
A <(-F) e

res

G
8\} 1\ 2 nAN 2(t+1-t")
= (o) (1 - ﬁ)

8)\’{2 (1 B E>2(2t+2—t’)

<

<
- A 16
*2 2(t+1
< 8AT (1 B E) ( ).
- A 16
The proof is complete by combining the two cases. O
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The following lemma characterizes the number of samples needed for ®;, to converge to A, which is based on the
convergence of the inverse SNR.

Lemma A.1l. Assume n < AZ%/(36)\;3), ©®' € R for all 0 < 7 < t and N satisfies VN > ¢
max {\/d —logé, - d—log i Vti(fi)uEﬁ/E%) } for some constant c. Then, with probability at least 1 — (t + 1),
9p

we have

o1 (Dt+1) S

200} ( _ E)Hl
nA2 16 ’
where ') = min {3)\’{, (1- %)t“;\%}.

Proof of Lemma A.11. We denote D™ = @7 (©7])" — Ay, For (:)Z defined in Lemma A.16, we have

D7 =0}(0])" — Ax + OL(R])" + RI(O)" +RL(R}) . (30)
Let 05! = min {3x;, (1 28y A0 } Then, if
Vd—logé 1152\/ —1og 0X; (\VE(A)2 + E + Vkoy)
VN > max i (31)
Cl + A\/>
we have |R]|| < (;163 1A Tt follows that
t+1
~ 77A
OL(RL) | <
1OR®D)" < 222,
and
O't+1’]7A t+lnA
RT RT T D ) < , 32
IRERD T < (5675 5 (32)
t+1
where Equation (32) holds since % < 1. Then, with probability at least 1 — 29, we have
1
7 T T ~‘r ’T T 77A t+1

We prove the lemma by considering two cases: In the first case, we assume o1 (D7) > JEH for all 0 < 7 < ¢; In the second

case, we assume there is at least one time step in [0, ¢] such that o1 (D7) < U’gl, and we denote the latest time step satisfies

this condition as t'.

We start from the first case. From Section A.3 in Chen et al. (2023), we have

o1 (D7) < (1 - %)Ul(DT_l) ot (O ) + na ot

res ].6
77A T—1 77A 2(t—1) 8)‘1 77A T—1
< (1-1= _ 1= 271
<1 8)al(D )+ (1 16) A T 1 o1 (D7)
A T—1 nA 2(7—1) 8/\T2

Then, for N satisfying Equation (31), with probability at least 1 — 2(¢ 4 1), we have

o1 (DY) ’ 8AY?
(- =) 53 (1-00) s

=0

21



Federated Representation Learning in the Under-Parameterized Regime

130\*2
0 1
<o (D7) + nA2
200A*2
AT (33)

where Equation (33) follows from the fact that A} /nA2 > 1 and o1 (D°) < 3\* < 3\1?/nAZ2. Therefore, we conclude that
*2
01(D) < (1 —nA/16)1+1 - 207,

For the second case, note at time step ¢’ we have o (Dt/) < atDH, and for all ¢’ < 7 < t we have o1 (D7) > otDH. Similar

to the previous analysis, we show that with probability at least 1 — 2(t + 1 — ') exp(—ca(d + k)), it has

01 (D) W sy
_ 2 ) <5 (D 1-9AJ16 ) —— L
— i o1(D7) + Z nA/16 (1-nA/16)A’

(1 i=0
A 1My 130A7°
— nA2 16 A2
2007}
nA?
The proof is complete by combining the two cases. O

Then, we aim to show the local convergence property of @' stated in the following proposition.

Proposition A.12. Assume ©° € R, n < A?/(36)\3) and N satisfies

VN > max { YA~ logd 1152V —log S(VEOD? + B + Viae) 6144v/d — log X (yEA])? + F + Vo)
X
B ver KA /fcr NG

*2
for constant ¢; and Kkt = (1 — q—A)tH. Define xk = %. Then, with probability at least 1 — ctd, we have

(34)

- A
|©(@4)T — diag(Ay, 0)||F < 4oo,<u-f(1 - %)

Proof. First, by combining Lemmas A.6 to A.8, we conclude that if N satisfies (34), ®™ € R” holds for all 7 < ¢t with
probability at least 1 — ctd.

Then, based on Lemma A.10, if N satisfies Equation (34), with probability at least 1 — 2¢J, we have

n(@L) < 22X (1 12y (35)

VA 16

Define D' = ©%(@%)T — A;. Based on Lemma A.11, we have

N > 1152+/d — log 6 (/k(\))2 + E + Vkoy) 1152\/ —log 6A;(v/E(A))? +E+\Fa§
RNV t“A\F

Under the same conditions in Equation (34), it holds that

20042 nAN?
ty < 1 _n=
1D = =53 (1 16 ) (36)
By combining Equation (35) and Equation (36), we have
1©*(©") — diag(Aw, 0)]| 7 < VEID'|| + 2/kA|O%| (37
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VENE2 \/E)\*{Q}(l B E)t
VA T nA? 16/ °
Note that the randomness in {©®*}; comes from {R!'};. If N satisfies Equation (34), we have Equation (35) Equation (36)

VEANT S VEAIZY L VEAR2
VA 7 nAZ [T nAz >

< 400 max {

and the event ®” € R7,V0 < 7 < t holds with probability at least 1 — ctd. Noting that max{
the proof is complete.

A.2.4. PUTTING ALL TOGETHER

Combining Propositions A.2, A.9 and A.12, it is straightforward to show that if ¢ > Tgx, N satisfies N >
(d—log §+log T)(\/k(A\})2+E+Vkoe)?
C2 K2, A2

~ t
stated in Proposition A.2, then it holds that || @*(©*) T — diag(Ay, 0)||r < C4H\/E< - %) for all ¢ satisfies T <t < T

for some constant cs, and O° satisfies the small random initialization condition

with probability at least 1 — d, where kp = (1 — %)T and constant ¢4 = 400( . %) B

Applying Lemma A.18, with probability at least 1 — §, we have
L t
IB'W! — diag(Ay, 0)[|» < 04/@[(1 - ﬁ)

Note that |B'W! — B*W*||p = | B'W' — diag(A, 0)]| ». Combing with the fact that 3,1, [|B'w! — B*w;||> =
|B'W! — B*W*||2, we have

AN 2t
3 [Blwl - Brw|f? < cim%@ - ”1—6) .
i1€[M]

Then, applying the Cauchy-Schwarz inequality gives
A
(Z IBtw! — B w 2||) gﬁMﬁk(l—%) ,
i€[M]
which immediately implies that

1 t,t * ok k T]A
i Z |IB*w; — B wi||§C4/£\/M<1—E)

1€[M]

A.2.5. AUXILIARY LEMMAS

Lemma A.13 (Concentration of ||U*T Q7 Y)). Forany T > 0, assume © € R holds for all 0 < 7 < t. Then, we have
the following results for any 0 < 7 < t and co > 0 with probability at least 1 — 26:

« IfVN > max{ V- log(S 192V 410 0/ (VRO )2+ B+ Vo) } then it holds that

ocA\/c1
A
UT T+1 an 38
0. QX = 44 6v3 (38)
o If VN > max { - logé 6144y d— logﬁ)‘A(;\kﬁ(A )2+E+\rgg)} then it holds that
nA?
U;QH < 7%~ (39)
5122/}
Proof of Lemma A.13. Recall that Q71! is defined as
X, Ei(w])"
Q"' =n > (Blw] —¢ui)(w]) —n Z (Biw] — ¢u)(w]) " +n > % (40)
1€[M] 1€[M] 1€[M)]
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where ¢,; and X,; are padded versions of ¢; and X;, respectively. To upper bound the norm of Q7 !, we decompose it
into two parts:

1 X ZX*T'L T T T X LE‘ Z- !
Sl < Y (Blw] =) (w])" = Y = (BIw] = du) (w]) |+ D] #

. 1€[M] 1€[M] , 1€[M]

41 741
A A3

For AIH,by applying Lemma 5.4 in Vershynin (2010), there exists a i—net N}, on the unit sphere S*~! and a %—net Ny on
the unit sphere S?~! such that

1
AT < QUEJ\IBi)éNk Z N Z u' (BTw] — Ty — Z Z u' xwx” Twl — ¢;)(w]) vl
i€M] zG[JW] JEIN
Denote ¢] = ||[B™w] — ¢;| and ¢}, = max;{[|lw][|}. Observe that u'x; ;z]; ( - ¢;)(w])Tv —u’ (BTw]

#:)(w]) Tv is a sub-exponential random variable with sub-exponential norm ¢’c] 7, for some constant ¢, where ¢’ depends
on the distribution of z. Then, based on the tail bound for sub-exponential random variables, there exists a constant ¢ > 0
such that for any s > 0,

Z Z UT( —¢z Ty — Z Z u' Ildng Tw] —qbi)(wZ)Tv > s

i1€[M] jE€[N] i€[M] jE€[N]

<exp| — Nchmin Gl i
= eXP 2 e (€fe)? max{cfcy,} | |

Taking the union bound over all u € ANy and v € Nj, with probability at least 1 — 9d+kexp( —

.2

/ H S S
Negmind - seregye: et } ). we have

3 (BTl — )W) — Y (BTl — ¢i) (w]) || < 2s.

i€[M] ic[M]
Since 02(©7) < 2%, we have
I(B™)TB™ + WT(WT)T|| = 0}(©7) < 2A].
Note that (B7) TB” and W7(W7)T are PSD matrices. It follows that
IB7I <v/2X] and W7 < /22,

which implies that |B7|| < /2A7 and |[WT7| < /2A}. Since ¢] = [B7w] — ¢;|| and ¢}, = max;{||w]
we have ZiE[M](czc;)g < 22X BTWT — ®[2 < 4Mi(k(AD)? + E) and max;{cTcl} < 3v2(A\})?, where
E =Y .(\)% Lets = /18X (k(\})2 + E) - \/log(1/8)/d + 6 - V/d/\/Nch. Then, if N is sufficiently large such

that (1/log(1/8)/d + 2)V/d/+/Nch < 1, we have

S 82

> .
3v2(\0) 72 VI8N (k( E) ~ 18N (k(A\)2 + E)

Then, with probability at least 1 — &, we have

XT
S B - ) @) = 3 %(BTw[—gbi)(w[)T < 2\/18X; (k(\))? + E) - \/Iog(1/0) [ + 6 - | .

. ) Nc
i€[M] 1€[M]
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Therefore, with probability at least 1 — 9, we have

; o 6v2\/d —1log?
AT < \/Al(k(Al)M—E)Wg,

!
where ¢, = 2.

Next, we consider AT'H Similar to the above analysis, note that u " xT & .;(w]) Tvis a centered sub-exponential random

variable with sub-exponential norm ¢ o¢ ||w] || for some constant ¢””. Based on the tail bound for sub-exponential random
variables, there exists a constant cg > 0 such that for any s > 0,

X E wl)T 52 s
T *1 *z /o
—————v >s5, <exp| — Ncsmin 5 — = .
& ( (o oo

Combining with the fact |[WT||% < 2k} and taking the union bound over all u € Ny and v € N}, we have that inequality
X*'iE:i(wiT)T : 13 _ qd+k o : s2 s
‘ ZiE[M] s H < 2s holds with probability at least 1 — 9 exp( Ncmm{rgk)\; oy }) Then, let

s = \/20210\;2- V1og(1/8)/d + 6 - v/d/v/Ne. If N is sufficiently large such that (y/log(1/8)/d + 2)vV/d/\/Ncy < 1 we

. 2 . ey
have min{ 20§k pyile \;W} = 20;; YR Therefore, with a probability at least 1 — , we have

i, V2+/dk = klogd
AFH <24 /202kA; - \/log(1/6) /d 1/ (A}) ,
o og(1/8)/d + NS

where c3 = %. Combining the upper bounds of A7** and A5, we conclude that following inequality holds with
probability at least 1 — §:

M

U QTH < 1QTHY| < m(ATH + AFHY)
)2 +E6\/§ d —1og(5/2) oo 6v/2+/dk — klog(5/2)

N

< n(A7) N ¢ N
< WFQ/ 21 B+ Vo )val"g
where ¢; = % min{cg, c3}. Thus, for any o > 0, if VN > IQQW@E\V\/IQAT)%E—F@%) , with probability at least
1 — ¢ it holds
. onA
JuTQi < oo
Similarly, if vV N > 6144/d—Tog 5A; ( A; \ﬁ S+ E+VEoe) , with probability at least 1 — 6,
nA?

U7 QI <
5122,/

O

Lemma A.14 (Concentration of ||QI+1V*H). Foranyt > 0, assume ©7 € R holds for all 0 < 7 < t. Then, we have the
Sfollowing results for any 0 < 7 < t and co > 0 with probability at least 1 — 2§:

o IfVN > max{ Vd— log‘s 192y/d—log§ \/jirvk()\ D2+ E+Vhoe) }, then it holds that
onA

~T+1V* < .
A
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* If\/ﬁ > max{ Y E\;ggé, 6144y d—log 6)\IA(2V\/]ZL1)\I)2+E+\/EU§) }, then it holds that

_ At
512v/2/\F

Proof of Lemma A.14. This proof resembles the proof of Lemma A.13. According to Lemma 5.4 in Vershynin (2010), there
exists a Z-net \Vj, on the unit sphere S*~! and a %-net \j; on the unit sphere S*~! so that

IQTH V.| <

1 ~ 1
T+1 T~ 7’+1 T NI B ..
Q<2 max d v i+l Z (B™) X, E;u;
1€[M] 1€[M]
1 T T\ T T B w”
S2u€/\/’r§\1ﬁ‘1}){€l\/’k N Z Z Y (B) ( w _¢ Wi = Z Z QIL]JZ‘ ( w; _d)i)ul
i€[M] jE[N] ie[M] jE[N]
AZHT
+2 max le (B™) "X, Eu;
wEN M ,VENT, N e
i€[M]
ATt

Let ¢, = ||B7|| and recall that ¢] = |B"w] — ¢;||. Based on the tail bound for sub-exponential random variables, there
exists a constant ¢ > 0 such that for any s > 0,

Z Z UT(BT)T( Z Z x”x;rj(BTwiT—qSi)ui > s

i€[M] jE[N] i€[M] jE[N]

< exp Ncmin i i
S eX - c T T ) T T :
Zie[M] (cfcp)? max;{c]ch}

Taking the union bound over all v € ANj; and v € N}, with probability at least 1 — 9M +kexp( —

: s2 s T *\ 1 * g 7
Ncmln{ S @) mak e g }), we have AT < 2s. Let s = (A\})2/E(\D)Z + E-/log(1/8)/d +6- \/ﬁ/\/Nc.

If N is sufficiently large such that (1/log(1/8)/d + 2)V'd/v/Ne < 1, there exits constant c5 such that with probability at
least 1 — 8, we have

6v/2+/d — log &
\/NCQ '

For term AZH, from the tail bound for sub-exponential random variables, there exists a constant ¢ > 0 such that for any
s >0,

Nl

AT < (A2 k() + B

T (BT)'XE; , 52 s
v ——————u; > s <exp| — Ncmin 7
iEX[:M] N 08 D iep [wiB7I1?7 o¢ /23]

<exp| — Ncmin i 5
=P 2080 0¢\/2X] ) )
Let s = /202kA} - \/log(1/8)/d + 6 - Vd/v/Ne. If N is sufficiently large such that (y/log(1/6)/d + 2)Vd/v/Ne¢ < 1,

there exists constant c3 such that with a probability at least 1 — §, we have

. w1 6V2y/dk —klogé
'A4+1 < ()‘1)205 \/N763 :
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Combining the upper bounds of AT‘H and .AT‘H we conclude that following inequality holds with probability at least 1 — ¢:
QI VL < IQTH < m(AFT! + AT

6v/2¢/dk — klog(6/2)

6v/21/d — log(6/2)

< D3RO + B—— e+ (M) F0e =
<n\/)?<,/ 2 + E+Vko )GJ”NC log 9 ,

where ¢; = 5 mm{cz, c3}. Thus, for any o > 0, if VN > 192 d-logd \/fi\ﬁvk()\ DB VRoe) , with probability at least
1-4it holds that

onA

~T+1V* < .
Qv < 2

Similarly,

, with probability at least 1 — 4,

. 61444/ d—log 62} (\/k(\1)2+E+Vko
if VNV > e s

nA?

1TVl < =7~
* 512v/2/X;

Lemma A.15. Suppose n < 1/6\} and 01(©7) < /2%, Then, it holds that
™ Ny« - - - -
(Gre_a‘—l) (1 + 5( k+1 — (erea) - O.IQC(Gk)))Ul(Qres) + o1 (RQE,;C)'

Proof of Lemma A.15. According to Equation (15), we can rewrite @751 as

T T Nar T T 1 X T T T T T
®re:_1 7®res - ®res(®res)T®res ! (ZI2E—I§ + §Ares) ®res + ®res< k= 7(9 )TG) ) RQ:{Ik- (41)

From Lemma A.5 in Chen et al. (2023) we have the following inequalities:

1
01 (307 — TOL(00,)70L,) < 51 (OF,) — Lo} (e7), (“2)

1 n - 1
7 (Gln + pAe)O) < (5

o1 (O (1 - L©pTe}L)) <or(0n)(; — aten). (@4

)o1(OF), (43)

Substituting Equations (42) to (44) into Equation (41) proves the lemma. O]

Lemma A.16. Suppose o1(©!) < \/2X\} and n < 1?%. Then, it holds that
1

O™ = (14 (¥ — 0@ — o(O]) - 2)o2(@f) - 4y/Nion (RD).

Proof of Lemma A.16. Denote O] = ©f + g[&k@; — 107(©7)"O". Based on Lemma A.6 and Lemma 2.3 in Chen
et al. (2023), we have

R (O7 ) = (14 0(\ - 03(OF,) — 0}(©]) ) o2(©F) — n*A}°

> (1400~ 2(O7) — F(®]) ~ =)ot (). @)
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Combining with n < 4= )\* gives

71 (O7F) < 01(O]) + 0 (ﬂAk@;) Yo (g@;(@T)T@T)

3
2M7 + —= VA VAT
+ 32 6 16

AL

Thus, 0% (@7 11) < 01(©] ™) < 2,/X}. Combining with the fact that o4 (@} 1) > 04 (O ™) — o1 (R ™), we have
. 2
o} (O7) = (on(O]) — n(R]))

> O_i((:)-r+1) — 20% (é-r+1) . 1(R;+1)

> 2(O7) — 41/ N o1(R]). (46)
The lemma thus follows by substituting Equation (45) into Equation (46). [
Lemma A.17. Assume n < GA* and o1(©°) < /2\% hold. Then, if

W>max{“/ —logé 96\//\>*~/ A)2 + E 4+ Vkoe)\/d —logd } )
( rev)Af ’

with probability at least 1 — ctd for some constant ¢, we have
(@;—es) = (1 + A k+1 + A) Ul(e)(r)es)
holds for all T < t.

Proof of Lemma A.17. Suppose 7 < 1/6A7 and 01(©7) < /2)}. We have
01(07) < (145 (Aows — 0H(©) =02 (O]71) ) o1(OY) + o (R _,)
< (1 + 5)‘k+1)01<®res ) + o1 (RT)

Combining Lemma A.13 and Lemma A.14, when N satisfies Equation (47), we have o1 (R') < $Ac1(©y,,). The lemma

follows by induction. O
Lemma A.18. If|©(©)" — diag(Ay,0)|r < 6 for some § > 0, then | BW — diag(Ay, 0)||r < 4.

Proof of Lemma A.18. Note that | ©(©)7 — diag(Ay,0)||r < & implies that

H(BJ:/;NT)(B;;NT)T2diag(Ak,0)HF§57
and
_wWT wT
H(B\/‘;’)(B\/;V )| <o
Then,

IBW + W BT — 2diag(A,0)|

_ H(B+WT)(B+WT)T — 2diag(Ay,0) — (

") C) |,

oRRASY VoRRAGG
<|CF ) (Fg) sl (570 (55 |,

< 26.
Combining with the fact [BW + W BT — 2diag(Ay,0)||r = 2||BW — diag(Ay, 0)||r, the proof is complete. O
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Lemma A.19 (Theorem 2.13 in Davidson & Szarek (2001)). Let N > n and A be an N X n matrix whose entries are IID
standard Gaussian random variables. Then, for any € > 0, with probability at least 1 — 2 exp(—e?/2), we have

\/N_\/ﬁ_ego'min(A) Samax(A) S \/N"' \/ﬁ+€

Lemma A.20 (Eigenvalue Interlacing Theorem (Hwang, 2004)). For a symmetric matrix A € R%d Jot B € RE*k |k < d
be a principal matrix of A. Denote the eigenvalues of A as \y > --- > A\g and the eigenvalues of B as 1 > -+ > liq.
Then, for any i € [k, it holds that

Aitd—k < pi < A

B. General FLUTE

B.1. Details of General FLUTE

Algorithm 2 General FLUTE

1: Input: Learning rates 7; and 7,., regularization parameter A, communication round 7'
2: Initialization: Server initializes model parameters B®, {09}, {H?}

3: fort={0,---,T—1} do

4:  Server samples a batch of clients Z!*1

5. Server sends B, and H! to all client i € Z!*!

6:  for client ¢ € [M] in parallel do

7: if i € Z'™! then

8: B!’ « B, 0" « bl and H? « H,

9: f0r7:£0,---,7'—1}d0

10: H) ™« GRD(L(BY7, 007, HYT), HYT )
11: by < GRD(L;(BY™, b7 HY T ) 007, )
12: Bl GRD(L;(BY7, b0, HYT); BET )
13: end for

14: Bt BET it — b7 and H  HET
15: Sends B!, bt and H! ™ to the server

16: else

17: biTt bt

18: end if

19:  end for
20:  Server updates:
21: Bl = L% ;B!
22: {H " }iczen < GRD(R({H; " Yiczeen, BY) {Hi  Yiezenn, )
23: H;™ « Hf,vi ¢ Tt
24: end for

The General FLUTE is presented in Algorithm 2, where GRD( f; 6, ) denotes the update of variable 6 using the gradient of
the function f with respect to 6 and the step size . The local loss function £; is defined as

1
£i(B,b,H) = + > L(HT fe(x)+b,y). (48)
(w7y)€Di

In this work, we instantiate the general FLUTE by a federated multi-class classification problem. In this case, the local loss
function is specialized as

1

Li(B,b,H) = — Y Lee(H{ fo(@) +biy) + Ml fe(@)]5 + Aol HillF + AN Ci(Hy), (49)
(z,y)€D;

where y € R™ is a one-hot vector whose k-th entry is 1 if the corresponding z belongs to class k and 0 otherwise, and A,

A2 and A3 are non-negative regularization parameters. Lcg(-) is the cross-entropy loss, where for a one-hot vector y whose
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k-th entry is 1, we have:

Lew(f,y) = —log <Zexp(yk)> - (50)

i€[c] exp(:&l)

NC;(H;), inspired by the concept of neural collapse (Papyan et al., 2020), is defined as

H/H; 1
H/H;||p m—1

) D
F

./\/Cl(Hz) = H | uiu;r ® <Im — ;1,n1;)

where u; is an m-dimensional one-hot vector whose c-th entry is 1 if ¢ € C; and 0 otherwise. Also, we specialize the
regularization term optimized on the server side as R({H;}) = >, NC;(H;).
B.2. Additional Definition

Definition B.1 (k-Simplex ETF, Definition 2.2 in Tirer & Bruna (2022)). The standard simplex equiangular tight frame
(ETF) is a collection of points in R* specified by the columns of

k 1
M=/— (I — —1,1; ). 52
— < R k) (52)
Consequently, the standard simplex EFT obeys
T T k 1 T

In this work, we consider a (general) simplex ETF as a collection of points in R%, d > k specified by the columns
of M %P(Ik — %lklkT), where P € R?*¥ is an orthonormal matrix. Consequently, MM o« MM'T =
ot (e = 3 1e1y)-

B.3. More Discussion on General FLUTE

Firstly, we explain the concept of neural collapse.

Neural collapse. Neural collapse (NC) was experimentally identified in Papyan et al. (2020), and they outlined four
elements in the neural collapse phenomenon:

* (NC1) Features learned by the model (output of the representation layers) for samples within the same class tend to
converge toward their average, essentially causing the within-class variance to diminish;

e (NC2) When adjusted for their overall average, the final means of different classes display a structure known as a
simplex equiangular tight frame (ETF);

* (NC3) The weights of the final layer, which serves as the classifier, align with this simplex ETF structure;

* (NC4) Consequently, after this collapse occurs, classification decisions are made based on measuring the nearest class
center in the feature space.

Next, we discuss some observations on the vanilla multi-classification problem, i.e., no additional regularization term and no
client-side optimization, which is given as

1
£i(B,b,H) = + > Lee(H] fo(2) + biyy) + Ml fo(@)]15 + Aol [Hil| 5 (54)
(z,y)€D;

The first observation, which directly comes from Theorem 3.2 in Tirer & Bruna (2022), describes the phenomena of local
neural collapse, which could happen when the model is locally trained for long epochs.
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Observation B.2. When fg(-) is sufficiently expressive such that fg(x) can be viewed as a free variable. and the feature
dimension k is no smaller than the number of total classes m, locally learned B and H; that optimize the objective function
(54) must satisfy:

fB* (JJ1) = fB* (332), thl‘g € Df,c € Ci (55)
<fB*(:L' 3h2<c> .
_ =] A D¢ C; 56
o @k 0 CET0eE (56)
H'H; T 1 T
v = UL I, ——1,.1 57
R~ v © (In rinih) 7

where w; is a m-dimensional one-hot vector whose c-th entry is 1 if ¢ € C; and 0 otherwise, and m/ is the number of classes
per client.

The above observation states that NC1, NC2, and NC3 happen locally, implying: 1) h; . = 0if ¢ ¢ C;; and 2) the sub-matrix
of H; constructed by columns h; . with ¢ € C; will form a K-Simplex ETF (c.f. Definition B.1) up to some scaling and
rotation. We conclude that if there exist B and Hy, - - - , Hj; such that they are the optimal models for all clients, then the
data from the same class may be mapped to different points in the feature space by fg+ when data are drawn from different
clients. However, this condition usually cannot be satisfied in the under-parameterized regime, due to the less expressiveness
of the under-parameterized model.

To further demonstrate the phenomenon in the under-parameterized regime, we assume that in the under-parameterized
regime, a well-performed representation fg should map data from the same class but different clients to the same feature
mean:

Condition 1. For client  and j, if class ¢ € C; and ¢ € C;, then ‘D—lﬂ > wi(eyyens fB(2) = ﬁ Yo(eyyen: fB(2).
With this condition, we have the following observation that also comes from Theorem 3.1 in Zhu et al. (2021), which
describes the neural collapse in the under-parameterized regime.

Observation B.3. When Condition 1 holds and the feature dimension k is no smaller than the number of total classes m,
any global optimizer B*, H, - -- | H}, of (54) satisfies

fB*(xl):fB*(xQ)a vxthelDicaie[MLceciv (58)
(fB+(2), hi ) :
B h el vy eDEie [M],ceC, (59)
o @I -T2 M
H, H, 1 - ( 1 T) _
- = uu; © I, - 71m1m ’ Vi e [M ; (60)
IH/ H;[|[r Vm—1 m [M]

where u; is a m-dimensional one-hot vector whose c-th entry is 1 if ¢ € C; and 0 otherwise.

Comparing these two observations, we conclude that in the under-parameterized case, the optimal models h; . and h; . are
of the same direction when class c is included in both C; and C;. It implies that the globally optimized model performs
differently compared with the locally learned model. In Figure 2, we present an example to illustrate how H performs
differently when it is globally or locally optimized.

In Figure 2, we consider the scenario that the number of clients M = 3, total number of data classes m = 3, number of
data classes per client m’ = 2, client 1 contains data of class 1 and class 2, client 2 contains data of class 1 and class 3, and
client 3 contains data of class 2 and class 3. The first row of the three sub-figures shows the structure of normalized columns
of H;, Hs, and H3 when they are locally optimized, and the second row of the three sub-figures shows those optimize
(54). We observe that under this setting, the locally optimized heads are in opposite directions, which perform differently
compared with the global optimal heads.

Inspired by such observations, we add N'C; to the local loss function and also optimize R({H;}), to ensure that the
personalized heads also contribute to the global performance. This principle aligns with our motivation to design the linear
FLUTE.
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Figure 2. Behavior of locally optimized heads and globally optimized heads.

C. Additional Experimental Results

C.1. Synthetic Datasets

Implementation Details. In the experiments conducted on synthetic datasets shown in Figure 3, A € R4*4 is generated
by setting the i-th singular value to be %. We randomly generate U € R?*< with d orthonormal columns and V € RZ*M
with d orthonormal rows. The ground-truth model is then @ = UAV ", where each column ¢; represents the local
ground-truth model for client i. Each client generates N samples (z,) from y = x| ¢; + &;, where z is sampled from a
standard Gaussian distribution and every entry of &; is IID sampled from A/(0, 0.3). The learning rate is set to = 0.03,
and for random initialization, we set o = 15-.

Parameter Settings. For experiments on synthetic datasets shown in Figure 3, we set d = 10. We select the value of &
from the set {2, 4, 6,8}, M from the set {15,30}, and N from the set {12,20}.

Experimental Results. From the experiments in Figure 3, we observe that, with the dimensions d, M, and N fixed,
an increase in k results in a diminishing discrepancy in convergence speeds between FLUTE and FedRep. This trend
demonstrates FLUTE’s superior performance in under-parameterized settings. Furthermore, keeping d, k, and N unchanged
while increasing the number of clients M/, we see a reduction in the average error of models generated by FLUTE. This
observation aligns with our theoretical findings presented in Theorem 5.5.

Varying v; and ~,. In Figure 4, we report the results of the following experiments where d = 10, kK = 6, M = 10, and N
selected from the set {8,9, 10, 11}. For comparison, we use three pairs of v, and va: 1 = 272, 71 = 2, and 71 = %72.
We do not set y; > 2o because in this setting, || BW || ¢ usually diverges. From the experimental results, we observe that
when NV = 8, 9, or 10, y; = 72 shows the best performance among the three settings of y; and s.
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Figure 3. Experimental results with synthetic datasets.
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Figure 4. Experimental results with synthetic datasets.

C.2. Real-world Datasets

Implementation Details. For our experiments on the CIFAR-10 dataset, we employ a 5-layer CNN architecture. It
begins with a convolutional layer Conv2d (3, 64, 5), followed by a pooling layer MaxPool2d (2, 2). The second
convolutional layer is Conv2d (64, 64, 5), which precedes three fully connected layers: Linear (64x5x5, 120),
Linear (120, 64),and Linear (64, 10). In contrast, for the CIFAR-100 dataset, we also use a 5-layer CNN, but
with some modifications to accommodate the higher complexity of the dataset. The initial layer is Conv2d (3, 64, 5),
followed by pooling and dropout layers: MaxPool2d (2, 2) and nn.Dropout (0.6). The subsequent convolutional
layer is Conv2d (64, 128, 5). This is succeeded by three fully connected layers: Linear (128x5x5, 256),
Linear (256, 128),and Linear (128, 100).

Experimental Results. In this section, we plot Figure 5 to Figure 12 to illustrate the detailed convergence behavior of the
test accuracy of the trained models reported in Table 1 as a function of the training epochs. We augment the test accuracy
results by introducing two different metrics. The first one is Global NC2, which is measured by

1
T T
-|- u;u, © <Im - 1m1m)
E[M H ||H, Hz||p m—1 m h
The second one is Averaged Local NC2, referred to as
1
T T
H T~ v © )
F

These two metrics are inspired by Observation B.3 and Observation B.2, respectively. Global NC2 aims to measure the
similarity between the learned models and the optimal under-parameterized global model. In contrast, Averaged Local NC2
assesses the similarity between the learned models and the optimal local models. Note that these two metrics are positively
correlated, meaning that when one is small, the other is usually small as well. In some results, such as those shown in
Figure 5 and Figure 7, the gaps between FedRep* and FLUTE* in terms of Averaged Local NC?2 are significantly larger than
those in terms of Global NC2, suggesting that the models learned by FLUTE* are closer to the global optimizer than those
learned by FedRep*.
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Figure 8. Experimental results for CIFAR10 when M = 50, m’ = 5.
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Figure 10. Experimental results for CIFAR100 when M = 100, m’
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Figure 11. Experimental results for CIFAR100 when M = 100, m’ = 20.
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Figure 12. Experimental results for CIFAR100 when M = 100, m’ = 40.
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