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Abstract

During conversations, communication partners rapidly assess
shared knowledge based on information in utterances.
However, little is known about how this process unfolds,
particularly when background information is limited such as
when talking to strangers. Do spoken utterances provide valid
cues to speaker knowledge? To test this, we applied a cultural
consensus framework (e.g., Romney et al., 1986), and asked
humans vs. large language models (LLMs) to assess speaker
similarity based on their transcribed utterances. On each trial,
participants saw two language samples that varied in speaker
expertise (e.g., A: expert, B: novice) and were asked which one
was more similar to a third sample, which was produced by
either an expert or novice (X). Accuracy was highest for GPT-
4 followed by humans and GPT-3.5. Humans and GPT-4 were
more accurate at categorizing language samples from experts,
while GPT-3.5 was better with novices. Likewise, humans and
GPT-4 were more accurate with samples from adult compared
to child speakers, while GPT-3.5 was similar across the two.
Item-level performance by humans and GPT-4 was strongly
associated, while both were unrelated to GPT-3.5. Our findings
suggest that language-based cultural consensus may enable
reliable inferences of common ground during communication,
providing an algorithmic-level description of how partners may
infer states of the world.
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Introduction

Successful conversations require individuals to interpret
and produce utterances with respect to the shared background
with their communication partner. This mutual knowledge is
known as common ground (Clark & Marshall, 1981; Gibbs,
1987; Geurts, 2017). Inferring common ground is particularly
challenging when talking to strangers, where the lack of
historical interactions makes it difficult to deduce shared
experiences. In these circumstances, individuals must quickly
assess their partners’ knowledge based on information
provided within utterances (e.g., [ think this person is a
basketball expert) and generate probabilistic inferences about
likely knowledge in related domains (e.g., they might also
know a lot about other sports). This suggests that accessing a
speaker’s communicative intent is a joint inference about the
meaning of what is said (foreground) and the common ground
that gave rise to the utterance (background). Nevertheless,
little is known about the algorithms that listeners use to make

such inferences. In the current study, we tested the viability
of cultural consensus as the basis for assessing common
ground, and compared language-based judgments of mutual
knowledge from humans and large language models (LLMs).

To date, our best understanding of how communication
partners reason about the states of the world comes from
Rational Speech Act (RSA) models. This Bayesian
framework describes recursive steps for producing and
interpreting language by way of representing their partners’
mental states (Goodman & Frank, 2016; Degen, 2023). Yet,
there remain challenges with applying RSA-style
descriptions to real-world conversations. RSA models are
often instantiated with respect to communication within
reference-resolution tasks, where the range of meanings are
well defined and accessible. It is less clear how
communication partners infer mutual knowledge when visual
scenes do not ground utterances. Moreover, reliably
estimating parameters within a Bayesian framework is data
intensive (Vul et al., 2014; Dasgupta et al., 2018; Yung et al.,
2021), but conversations vary substantially in their duration
and information density (Mastroianni et al., 2021; Reese et
al., 2023). Are there algorithms for assessing common
ground that are sufficiently flexible across a variety of
contexts (e.g., conversations among friends vs. strangers,
short vs. long chats)?

A potential solution comes from the field of anthropology,
which faces an analogous chicken-and-egg problem when
assessing the cultural competence of previously
undocumented social groups. Systematic responses from
informants within a group can yield insights into meaningful
cultural dimensions, but a priori it is unknown what questions
will distinguish individuals in diagnostic ways. To solve this,
Romney and Batchelder (1986, 1988) developed the cultural
consensus framework, which uses agreement patterns across
test items to infer culturally shared beliefs. For a given item
(e.g., informant; judges statement; to be false), the
anthropologist makes a joint inference about the informant’s
knowledge and its diagnostic relation to a target culture by
computing the match between responses across informants.
A central premise of cultural consensus is that systems of
knowledge are not random in the world but are instead
structured according to shared experiences within a social
group (Medin et al., 2014; Shafto & Coley, 2003). These can
be reliably evaluated through a cultural consensus



framework, such that within a given domain, individuals with
aligned patterns of organizing concepts and classifying
information have similar epistemologies.

The current study takes first steps in a research program to
assess whether algorithmics akin to cultural consensus are
useful for inferring common ground. These descriptions
would advance our understanding of how common ground is
inferred through language in non-referential contexts. Our
hypothesis is that conversations entail a series of “test items,”
and for a given turn, listeners evaluate the extent to which a
speaker’s utterance is generated via systems of knowledge
that are shared or different from their own. This makes two
predictions. First, longer conversations and repeated
interactions allow individuals to make more reliable
assessments of their partners’ knowledge. Second,
individuals who make similar judgments about target
utterances are more similar to each other than to those with
different response profiles. If true, it provides an algorithmic
basis for inferring common ground, and a mechanism for
increasing alignment during communicative interactions
(Clark & Marshall, 1981; Giles & Ogay, 2007).

Nevertheless, there are practical reasons why cultural
consensus might not be useful for inferring common ground,
particularly when conversations are brief and utterances are
uninformative. For example, when talking to strangers,
spoken utterances can underdetermine speaker knowledge
since people are often nervous and goals are unconstrained
(Keysar & Henley, 2002; Reece et al., 2023). Likewise,
utterances frequently co-exist with style markers of cultural
identity (e.g., talks like a woman, teenager) (Eckert, 2012),
which may lead listeners to rely on inaccurate stereotypes,
particularly when little else is known (Fuertes et al., 2012).
Finally, similar to anthropologists and their informants,
communication partners can come from different cultural
backgrounds, and this can lead to miscommunication when
individuals interpret their partners’ utterances with respect to
their own systems of knowledge, rather than appropriately
inferring corresponding systems (e.g., “community of
knowledge” - Sloman & Rabb, 2016; “double empathy
problem”- Sasson et al., 2017). Thus, a priori, it is unclear
what is the relevant benchmark for evaluating the efficacy of
cultural consensus during communication.

We turn to LLMs as agents which imitate the content and
style of human language, but do not produce spoken
utterances in social contexts like humans do. Hence,
compared to humans, LLMs may generate more accurate
evaluations of common ground. In other examples of cultural
assessments, LLMs exhibit high algorithmic fidelity in zero-
shot settings, capturing demographic variation in political
surveys (Argyle et al., 2022) and patterns of moral decision-
making based on vignettes (Dillion et al., 2023). Likewise,
LLMs approximate human performance across a variety of
language-based pragmatic tasks, including reasoning about
politeness, metaphor, persuasion, and discourse coherence
(Ziems et al., 2023; Hu et al.,, 2023). Here, model size
strongly correlates with task accuracy, suggesting that the
number of parameters and volume of pretraining data is

related to extracting reliable signals for knowledge-based
inferences (Bowman, 2023). However, since pragmatic tasks
vary substantially in their demands, it remains unclear how
prior success generalizes to other phenomena, and whether
LLMs succeed for reasons that are orthogonal to human
performance.

As a first step, the current study evaluated cultural
consensus by presenting language samples from speakers that
varied along a cultural dimension (i.e., systems of knowledge
relating to sports), and assessing categorization of speakers
in an ABX task. On each trial, humans and LLMs saw two
samples from speakers that differed in expertise (e.g., speaker
A is a self-rated sports expert, speaker B is a self-rated sports
novice) and were asked which one was more similar to a third
sample, which was produced by either an expert or novice
(X). If language-based cultural consensus generates reliable
inferences of shared knowledge, then performance on this
task should be greater than chance (50%). Moreover, if the
accuracy of cultural consensus depends on cultural
competence (e.g., sports knowledge), LLMs may outperform
humans since their knowledge base is broader than any one
individual’s (Lederman & Mahowald, 2024). Alternatively,
if common-ground assessments rely on functional
competence of language use in social interactions, humans
may outperform LLMs since they experience relevant
processes within communication (Mahowald et al. 2023;
Gordon & Van Durme, 2013). Finally, it is possible that
spoken language is a noisy signal, and brief language samples
provide insufficient information to infer common ground. In
which case, humans and LLMs may both perform at chance.

Methods

Subjects and models

64 adults (ages 18+) were recruited through Prolific, and
were paid $5 for their participation. Based on self-report, they
were based in the US, primarily spoke English, and had >95%
approval rating on Prolific. Data collection was reviewed and
approved by the Institutional Review Board. We also tested
two transformer-based models from OpenAl: gpt-3.5-turbo-
0613 and gpt-4-0613. While the exact details of their
architecture and training data are unpublished, GPT-3 models
were built with 175B parameters and fine-tuned with
reinforcement learning from human feedback (Hu et al.,
2023; Ouyang et al., 2022), and GPT-4 models are an
improvement upon prior versions (OpenAl, 2023).

Planet Word corpus

The materials came from a corpus of language samples
produced by 359 individuals visiting the Planet Word
Museum, in Washington, D.C. between June 2022 and
November 2023. Research assistants stationed around the
museum asked visitors if they would like to participate in a
research study about expertise and language. After obtaining
consent, visitors were asked to select a topic they knew a lot
about from a list of 10 topics, such as cooking/baking, video
games, music, and sports (“expert”: self-rated 5.4 on a 7-pt



Table 1: Sample item in the cultural-consensus task

Task Instructions ~ Type ID Text Query
Um sports are games or sort of athletic activities that people do in competition. Um I guess sometimes
in competition with oneself, but typically in competition against others, um which involves sort of
physical exertion or physical ah yeah, activities or contests. So for instance in soccer you kick a ball
Expert (text1} around and have to kick it into a net to get um to get goals in basketball, you put a ball through a hoop

to get points. Um These kinds of things, but other sports are like bike racing, where you're racing

against other people or or running where you're racing against other people and in that case right, you're
not sort of scoring points but you're trying to outperform your opponents. So I guess in summary, maybe

Imagine the first
person says {textl}.

sports are sort of physical activities where you outperform your opponents.

And then a second
person says {text2}.

Sports are a way of showing physical talent, as well as expressing one's competitive nature. Like art, it
is also something pretty universal that people can participate. Any people of all gender backgrounds and

And then a third Novice {text2} races can participate in. And like art, it requires a certain, a certain proficiency to be able to do it at a at
person says {text3}. a high level.
Based on what they

said, is the third . .
person more similar So sports are often a type of physical exermse.that k_eeps you enga.gedA Some sports can last short term.
to the first person or Um And some are more long term. I know quite a bit about collegiate sports as I was a collegiate

to the second athlete. Um There are three different levels of sports. The first is going to be D. One level at college that
person? typically has the most time commitment. Um Often times D. One sports or things like football, soccer,
lacrosse, field hockey. Um And then each school plays against other schools that are at that same D.
Expert {text3} One level. Then you go down to the middle. That would be the you've got you've got intramural club

sport which is in the middle. Club sports are going to be sports. Typically college students practice 2 to
3 times a week. Um Club sports. There are some that are similar to D. One sports like soccer and
swimming. Um But then you also have club sports like rugby and ultimate frisbee. And I'll circle back
to ultimate frisbee in a second and then last but not least. You have intramural sports which typically
you carry around 1 to 2 times a week and they're more in a tournament style.

scale). Next, they were asked to provide a 30- to 60-second
spoken description of the topic based on the prompt “What is
___?”. This prompt was selected after piloting as it was
judged to yield general, knowledge-based descriptions from
participants rather than personal experiences and anecdotes.
Visitors then repeated the same procedures but for a topic that
they knew little about (“novice”: self-rated 2.1). Finally, they
filled out a demographic survey about their age, race, gender
identity, education level, country and/or state of residence, as
well as what languages they knew fluently.

Within the corpus, visitors ranged in age from 5 to 84
years. To minimize effects of task familiarity, the order of
presentation (expert vs. novice) was counterbalanced across
visitors. Raw audio was recorded using Shure SM35
Performance Headset Condenser Microphones connected to
iPads, and uploaded to Phonic, which provided automated
transcriptions. For the current study, we focused on the
“sports” topic, which yielded a mix of samples from experts
(n=27) and novices (n=47). Seventy-four transcribed
language samples ranged from 17 to 414 words. Length did
not vary by expertise (p>.50).

Cultural-consensus task

Based on the language samples, we created a task that used
zero-shot prompting to elicit model responses based only on
the prompt and pre-training. This was closely aligned with
the human task, wherein participants were given individual
texts to compare with no previous or subsequent context
available to update knowledge or expectations. Human data
was collected in Qualtrics, while model prompts were
supplied via OpenAl’s API.

The structure with each trial was based on an ABX task
(Table 1). Initial instructions were nearly identical for both
humans and the models (see Table 1), but instructions for the
models included an additional directive to output only a
numerical response (“1” or “2”) corresponding to their
answer. This was added to preclude unexpected textual
responses from the models. For human participants, “1” or
“2” were the only two available multiple-choice response
options. As an ABX task, each query consisted of three
separate texts corresponding to transcribed language samples
from our corpus. For each trial, at least one sample was that
of'an “expert” (A) a second that of a “novice” (B) and a third
of either an “expert” or a “novice" (X). All participants
completed 42 total trials.

To evaluate the extent to which judgments are based on
properties of speakers, we manipulated dimensions that are
known to affect the content and style of utterances. Half of
the items asked for judgments of an expert speaker (i.e., X in
the ABX task is an expert), while the other half asked for a
novice. Thirty-six items featured samples from adult speakers
(M = 33 yrs, SD = 14 yrs) and six items were from child
speakers (M = 10 yrs, SD = 2 yrs). Age was manipulated
across items to avoid confounds with expertise. Two
presentation lists were created to counterbalance the order of
trial presentation. Each list was randomized to ensure that no
more than two expert or novice matches appeared in a row,
as well as to ensure that items from different age groups were
equally distributed across each half. Since there were more
samples from novices compared to experts, samples occurred
1-3 times across items, within a list. Half of the human
participants and half of all model prompts were presented
with List A while the other half were presented with List B.
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Figure 1: Accuracy in the cultural-consensus task. Chance performance is 50%. (A) Speaker-expertise effect,
(B) Speaker-age effect, (C) Association between human and LLMs, (D) Relative advantage of humans vs. LLMs.
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Results

We assessed language-based cultural consensus in two
ways. First, we evaluated the accuracy of similarity-based
judgments on group-level performance (humans, GPT-3.5,
GPT-4), and examined the extent to which performance was
affected by speaker properties such as expertise and age.
Second, we evaluated performance at the item level, and
examined the extent to which accuracy correlated across
groups. For humans, we also evaluated the extent to which
individual differences in subject-matter expertise conferred a
task advantage. Finally, we examined possible task strategies
that agents might have employed to make judgments, and
evaluated the extent to which these account for the current
data patterns.

Group differences

Accuracy ranged from 36% to 74% across all agents, with
an overall mean of 54% (SD=7%). This confirms that
language-based assessments of common ground in zero-shot
settings is a difficult task. Accuracy was highest for GPT-4
(M=58%, SD=5%) followed by humans (M=54%, SD=7%)
and GPT-3.5 (M=50%, SD=5%). This led to a main effect of
group (F=31.92, p<.001). Planned comparisons revealed

that task performance for humans was significantly different
from GPT-3.5 (F=11.67, p<.01) and GPT-4 (F=17.54,
p<.01). While humans and GPT-4 performed above chance
(t’s>4, p’s<.001), GPT-3.5 did not (t<0.40, p>.60).

Follow-up analyses revealed patterns of alignment and
divergence across agent performance. Fig. 1A illustrates that
similarity-based judgments were more accurate when the
target speaker (i.e., X in the ABX task) was a novice
compared to an expert for GPT-3.5 (F=9.24, p<.01) and GPT-
4 (F=25.56, p<.001). In contrast, humans did not perform
differently when identifying novices versus experts (F=0.07,
p>.70). Together, this generated a significant interaction
between expertise and group (F=6.29, p<.01).

Fig. 1B illustrates that the accuracy of similarity-based
judgments was higher for language samples from adult
speakers compared to child speakers in humans (F=38.57,
p<.001) and GPT-4 (F=259.58, p<.001). In contrast, GPT-3.5
performed similarly across the two (F=1.68, p>.20).
Together, this generated a significant interaction between age
and group (F=49.90, p<.001).

Item-level performance

Fig. 1C illustrates that item-level performance by humans
and GPT-4 were associated. For a given item, GPT-4’s



success moderately predicted human success (r=.61, p<.001).
In contrast, GPT-3.5’s performance was neither associated
with performance in humans (r<.15, p>.50) or GPT-4 (1<.10,
p>.50).

Fig. 1D illustrates the relative advantage of humans
compared to LLMs ordered by item-level accuracy. Items on
the left of the graph are ones where human performance
exceeds LLMs (above zero on the y-axis) while items on right
are ones where LLMs show an advantage over humans
(below zero on the y-axis). This graph suggests that the GPT-
4’s success on this task lies in its ability to minimize
differences from humans on items that show a human-
advantage compared to GPT-3.5. Likewise, GPT-4 shows a
small but consistent advantage over humans across many
items. On-going analyses predict features of expertise in
language samples by training bag-of-words classifiers and
fine-tuning BERT encoder models.

Finally, we asked humans to rate their own expertise on
sports, and found a range within self-assessment (M=3.9,
SD=1.3 on a 7-point scale). As a group, these individuals
were less knowledgeable than experts in the corpus but more
knowledgeable than novices (F=88.09, p<.001). Curiously,
participants who rated themselves as knowing more about
sports were not more accurate at distinguishing speakers in
the current task (r<.01, p>.90). While the lack of association
between self-rated expertise and speaker expertise is difficult
to interpret, it may reflect in part the heterogeneity of systems
of knowledge and presence of subcultures. We will return to
this issue in the Discussion.

Ruling out task strategies

Since humans and LLMs frequently detect and leverage
task regularities, we explored the possibility that low-level
response strategies could explain the current patterns. First,
we tested sensitivity to trial sequences. Recall that there were
two lists (Lists A and B), which presented the same items but
in reverse order. If judgments on earlier trials influenced
performance on subsequent trials, we might expect accuracy
to differ across lists. Instead, we found no effect of list or
interaction with group (F<1.00, p>.30). Likewise, analysis of
first- and second-half trials revealed no effect of half or
interaction with group (F<1.00, p>.30).

Next, it is possible that humans and LLMs tracked the
sequences of responses and developed switching rules to
avoid repeating the same response in a row (e.g., no more
than two “1” responses in a row). We coded trials based on
whether the answers to the previous two trials were identical,
and analyzed accuracy based on trials that did or did not
follow repeated sequences. All agents showed greater
accuracy following sequences compared to non-sequences,
leading to a main effect of sequence (F=31.04, p<.001) but
no interaction with group (F=1.64, p>.20). Thus, to the extent
that this response strategy was useful, its benefits cannot
account for variation in agent performance.

Finally, we returned to the LLMs’ advantages for making
judgments about novices over experts. While the numbers of
trials were equated, one possibility is that this pattern is

driven by a general response bias to assume that X is a novice.
This would generate hits when X is a novice but also false
alarms when X is an expert. We recoded responses in terms
of matches to the novice, and calculated d-prime as hits minus
false alarms. Values greater than O indicate that responses
exceed chance guessing. This was true for humans (M=8%,
t=4.59, p<.001) and GPT-4 (M=17%, t=13.61, p<.001) but
not GPT-3.5 (0.1%, t=0.52, p>.60), leading to a main effect
of group (F=31.92, p<.001). This suggests that even though
GPT-3.5 and GPT-4 both show an advantage for novices, the
basis for these effects may differ.

Discussion

The current study evaluated the extent to which linguistic
signals within spoken utterances offer reliable cues for
assessing common ground. Adopting a cultural consensus
framework, we compared judgments of speaker similarity
made by humans and LLMs. Accuracy varied substantially
across agents, and was above chance for humans and GPT-4,
but not for GPT-3.5. Moreover, humans and GPT-4 were
similarly affected by the age and expertise of speakers, and
their performance strongly correlated across test items.
Together, the simplicity and flexibility of cultural consensus
offer a potentially powerful algorithm for inferring common
ground, providing a mechanism for evaluating mutual
knowledge between communication partners in contexts
where the space of possibilities is vast, non-referential, and
opaque to strangers. Moreover, the high degree of cultural
consensus between humans and GPT-4 presents promising
avenues for using silicon samples to delineate pathways
between cultural experiences and communicative
interactions with precision.

The current findings address key limitations in
implementing  RSA  models  within  real-world
communication. While reliably estimating Bayesian

parameters requires data that are abundant and informative,
humans make near optimal decisions with very few samples
across a variety of domains (Gigerenzer & Goldstein, 1996;
Gershman et al., 2015; Yung et al., 2021). This paradox is
solved by the fact that many real-world decisions do not
require precise parameter estimates to distinguish action
plans. In models of 2-alternative forced-choice tasks, Vul and
colleagues (2014) found that the majority of decision-making
accuracy is gained after the first sample. Moreover, the value
of additional sampling depended on how costly it is to acquire
this information and the penalties associated with inaccurate
decisions. This has implications for understanding common-
ground assessments during communication, and the range of
strategies available when talking with strangers (Mastroianni
et al., 2021; Reese et al., 2023). In particular, it suggests that
the decision to stop vs. continue a conversation may depend
on the information gained from first impressions, likelihood
of future interactions, and extent to which common-ground
errors are detrimental. Future research will investigate these
dynamics by applying cultural consensus to multi-turn
interactions.



The current findings also have implications for research in
social science, which relies heavily on demographic variables
as proxies of cultural background (e.g., race, gender, SES)
(Argyle et al., 2022; Shaikh et al., 2023). While such
approaches capture on-average differences across social
groups, they do not offer sufficient precision for describing
communication interactions between individuals. Since each
person’s lifetime experiences are an idiosyncratic mix of
multiple cultures, this generates substantial individual
variability in knowledge systems within demographic
categories (Romney et al., 1998; Eckert, 2012). Moreover,
since language is a communicative signal that transmits task-
relevant thoughts, its style and content will vary depending
on the needs of a context (Bell, 2001; Giles & Ogay, 2007).
As an algorithm, cultural consensus is well equipped to
handle this vast variability across individuals and contexts,
since it treats common-ground assessment as an iterative
process of inferring systems of knowledge from various
signals, and applies computations that are applicable across
situations (e.g., for a given utterance, do we have shared
knowledge?).

Future research will examine the conditions under which
bottom-up inferences from cultural consensus can be
combined with top-down cues to systems of knowledge.
Oftentimes, conversations with strangers are not random, and
occur in the presence of informative cues such as community
membership (e.g., meeting at church) or physical co-presence
(e.g., waiting for EV chargers) (Clark & Marshall, 1981). To
understand these dynamics, we can manipulate the extent to
which the top-down situational goals are known and
constrain inferences about shared knowledge. Likewise,
within society, the generative engines of knowledge systems
themselves are not random (Gordon & Van Durme, 2013;
Lederman & Mahowald, 2024). For example, healthcare
institutions invent language to describe new concepts (e.g.,
paxlovid, covid-19), and individuals acquire these systems by
participating in institutions in different ways (e.g., scientists,
doctors, patients). This suggests that common-ground
inferences may be more efficient when they combine
information from language in utterances with top-down
knowledge of how systems of knowledge are generated. To
understand this process, future studies can manipulate
properties of institutions that are topically equivalent but vary
in ways that are communicationally relevant. For example,
since heterogeneous communities are made up of a collection
of institutions (e.g., sports), we predict less common ground
among individuals compared to homogenous communities,
which comprise a narrower set of institutions (e.g.,
basketball).

Finally, the current findings are relevant for use-inspired
applications of LLMs and human-centered Al. LLMs provide
the architecture for state-of-the art chatbots, and current
applications focus on improving the accuracy of text
generation by harnessing regularity through more pretraining
data or task-specific fine tuning. Importantly, communicative
interactions occur between individuals and in service of
specific goals, and understanding how mutual knowledge is

inferred within conversational turns may support the
development of technology to adapt to specific
communication partners. Focusing on the role of culture may
be a productive approach, since it describes systems of
knowledge that are structured within social groups (Medin et
al., 2014; Shafto & Coley, 2003) and yield representations
that are isomorphic to language (Kemp et al., 2018; Lewis et
al., 2023). Recent work in NLP demonstrates that including
cultural dimensions increases the accuracy of machine
translation and common-sense inferring (Hershcovich et al.,
2022; Palta & Rudinger, 2023; Shaikh et al., 2023).
Understanding how shared knowledge is inferred through
language use may lead to the creation of technology that
detects misalignments across partners and promotes mutual
understanding in conversations.

Acknowledgments

This work has benefited from insightful conversations with
Eusebia Mont and Charlotte Vaughn. We also thank the
research assistants at the Language Science Station, Preethi
Pai, and Daniel Borowski for their help with recruitment and
data collection. This work was supported by NSF grants
BCS-1844194 (Huang) and BCS-2116959 (Vaughn, Huang).

References

Argyle, L. P., Busby, E. C., Fulda, N., Gubler, J. R., Rytting,
C., & Wingate, D. (2023). Out of one, many: Using
language models to simulate human samples. Political
Analysis, 31(3), 337-351.

Batchelder, W. H., & Romney, A. K. (1986). The statistical
analysis of a general Condorcet model for dichotomous
choice situations. In B. Grofman & G. Owen (Eds.),
Information pooling and group decision making (pp. 103-1
12). Greenwich, CT: JAI Press.

Batchelder, W. H., & Romney, A. K. (1988). Test theory
without an answer key. Psychometrika, 53(1), 71-92.

Bell, A. (2001). Back in style: Reworking audience design.
In P. Eckert & J. R. Rickford (Eds.), Style and
Sociolinguistic Variation (pp. 139-169). Cambridge:
Cambridge University Press.

Bowman, S. R. (2023). Eight things to know about large
language models. arXiv preprint arXiv:2304.00612.

Clark, H. H., & Marshall, C. R. (1981). Definite reference
and mutual knowledge. In A. K. Joshi, B. L. Webber, & 1.
A. Sag (Eds.), Elements of Discourse Understanding (pp.
10-63). Cambridge: Cambridge University Press.

Dasgupta, 1., Schulz, E., Goodman, N. D., & Gershman, S. J.
(2018). Remembrance of inferences past: Amortization in
human hypothesis generation. Cognition, 178, 67-81.

Degen, J. (2023). The rational speech act framework. Annual
Review of Linguistics, 9, 519-540.

Dillion, D., Tandon, N., Gu, Y., & Gray, K. (2023). Can Al
language models replace human participants? Trends in
Cognitive Sciences, 27, 597-600.

Eckert, P. (2012). Three waves of variation study: The
emergence of meaning in the study of sociolinguistic
variation. Annual Review of Anthropology, 41, 87-100.



Fuertes, J. N., Gottdiener, W. H., Martin, H., Gilbert, T. C.,
& Giles, H. (2012). A meta-analysis of the effects of
speakers' accents on interpersonal evaluations. Furopean
Journal of Social Psychology, 42(1), 120-133.

Gershman, S. J., Horvitz, E. J., & Tenenbaum, J. B. (2015).
Computational rationality: A converging paradigm for
intelligence in brains, minds, and machines. Science,
349(6245), 273-278.

Geurts, B. (2017). Presupposition and givenness. In Yan
Huang (ed.), Oxford Handbook of Pragmatics, 180—198.
Oxford, UK: Oxford University Press.

Gibbs, R. (1987). Mutual knowledge and the psychology of
conversational inference. Journal of Pragmatics, 11(5),
561-588.

Gigerenzer, G., & Goldstein, D. G. (1996). Reasoning the fast

and frugal way: models of bounded rationality.
Psychological Review, 103(4), 650.
Giles, H., & Ogay, T. (2007). Communication

accommodation theory. In B. Whaley & W. Samter (Eds.),
Explaining communication: Contemporary theories and
exemplars (pp. 293-310). Lawrence Erlbaum Associates.

Goodman, N. D., & Frank, M. C. (2016). Pragmatic language
interpretation as probabilistic inference. Trends in
Cognitive Science, 20(11), 818-829.

Gordon, J., & Van Durme, B. (2013, October). Reporting bias
and knowledge acquisition. In Proceedings of the 2013
workshop on Automated knowledge base construction (pp.
25-30).

Hershcovich, D., Frank, S., Lent, H., de Lhoneux, M., Abdou,
M., Brandl, S., Bugliarello, E., Cabello Piqueras, L.,
Chalkidis, I., Cui, R., Fierro, C., Margatina, K., Rust, P., &
Segaard, A. (2022). Challenges and strategies in cross-
cultural NLP. In S. Muresan, P. Nakov, & A. Villavicencio
(Eds.), Proceedings of the 60th Annual Meeting of ACL
(Volume 1: Long Papers) (pp. 6997-7013).

Hu, J., Floyd, S., Jouravlev, O., Fedorenko, E., & Gibson, E.
(2023). A fine-grained comparison of pragmatic language
understanding in humans and language models. In A.
Rogers, J. Boyd-Graber, & N. Okazaki (Eds.), Proceedings
of the 61st Annual Meeting of ACL (pp. 4194-4213).

Kemp, C., Xu, Y., Regier, T. (2018). Semantic typology and
efficient communication. Annual Review of Linguistics, 4,
109-128.

Keysar, B., & Henly, A. (2002). Speakers’ overestimation of
their effectiveness. Psychological Science, 13(3),207-212.

Lederman, H., & Mahowald, K. (2024). Are language models
more like libraries or like librarians? bibliotechnism, the
novel reference problem, and the attitudes of LLMs. arXiv
preprint arXiv:2401.04854.

Lewis, M., Cahill, A., Madnani, N., & Evans, J. (2023). Local
similarity and global variability characterize the semantic
space of human languages. Proceedings of the National
Academy of Sciences, 120(51), ¢2300986120.

Mahowald, K., Ivanova, A. A., Blank, I. A., Kanwisher, N.,
Tenenbaum, J. B., & Fedorenko, E. (2023). Dissociating
language and thought in large language models: A
cognitive perspective. arXiv preprint arXiv:2301.06627.

Mastroianni, A. M., Gilbert, D. T., Cooney, G., & Wilson, T.
D. (2021). Do conversations end when people want them
to? Proceedings of the National Academy of Sciences,
118(10), e2011809118.

Medin, D., Ojalehto, B., Marin, A., & Bang, M. (2014).
Culture and epistemologies: Putting culture back into the
ecosystem. In M. J. Gelfand, C. Chiu, & Y. Hong (Eds.),
Advances in Culture and Psychology (pp. 177-217).
Oxford Academic.

OpenAl. (2023). GPT-4 Technical
https://arxiv.org/pdf/2303.08774.pdf

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.
L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray,
A., Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens,
M., Askell, A., Welinder, P., Christiano, P., Leike, J., &
Lowe, R. (2022). Training language models to follow
instructions with human feedback. Advances in Neural
Information Processing Systems, 35, 27730-27744.

Palta, S., & Rudinger, R. (2023, July). FORK: A bite-sized
test set for probing culinary cultural biases in
commonsense reasoning models. In Findings of the
Association for Computational Linguistics: ACL 2023 (pp.
9952-9962).

Reece, A., Cooney, G., Bull, P., Chung, C., Dawson, B.,
Fitzpatrick, C., Glazer, T., Knox, D., Liebscher, A., &
Marin, S. The CANDOR corpus: Insights from a large
multimodal dataset of naturalistic conversation. Science
Advances, 9(13), eadf3197.

Romney, A. K., Weller, S. C., & Batchelder, W. H. (1986).
Culture as consensus: A theory of culture and informant
accuracy. American Anthropologist, 88(2), 313-338.

Sasson, N. J., Faso, D. J., Nugent, J., Lovell, S., Kennedy, D.
P., & Grossman, R. B. (2017). Neurotypical peers are less
willing to interact with those with autism based on thin
slice judgments. Scientific Reports, 7(1), 1-10.

Shafto, P., & Coley, J. D. (2003). Development of
categorization and reasoning in the natural world: Novices
to experts, naive similarity to ecological knowledge.
Journal of Experimental Psychology: Learning, Memory,
and Cognition, 29(4), 641-649.

Shaikh, O., Ziems, C., Held, W., Pariani, A. J., Morstatter, F.,
& Yang, D. (2023). Modeling cross-cultural pragmatic
inference with codenames duet. arXiv preprint
arXiv:2306.02475.

Sloman, S. A., & Rabb, N. (2016). Your understanding is my
understanding: Evidence for a community of knowledge.
Psychological Science, 27(11), 1451-1460.

Vul, E., Goodman, N., Griffiths, T. L., & Tenenbaum, J. B.
(2014). One and done? Optimal decisions from very few
samples. Cognitive Science, 38(4), 599-637.

Yung, F., Jungbluth, J., & Demberg, V. (2021). Limits to the
rational production of discourse connectives. Frontiers in
Psychology, 12, 660730.

Ziems, C., Held, W., Shaikh, O., Chen, J., Zhang, Z., & Yang,
D. (2023). Can large language models transform
computational ~ social  science?  arXiv  preprint
arXiv:2305.03514.

Report.



	Assessing Common Ground through Language-based Cultural Consensus
	in Humans and Large Language Models
	Sophie Domanski1,2(smd@umd.edu), Rachel Rudinger3 (rudinger@umd.edu), Marine Carpuat3 (marine@umd.edu), Patrick Shafto4 (patrick.shafto@rutgers.edu), Yi Ting Huang1,2 (ythuang1@umd.edu)
	Abstract
	Introduction
	Methods
	Subjects and models
	Planet Word corpus
	Cultural-consensus task

	Results
	Discussion
	Acknowledgments
	References

