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Abstract

We present a systematic framework for real-time risk-based optimization via multi-para-
metric programming. A dynamic risk indicator is utilized to monitor online process safety
performance and provide model-based prediction of risk propagation, as a function of
safety-critical process variables. Risk-based explicit/multi-parametric model predictive
control is then developed to generate fit-for-purpose control strategies for proactive risk
management. Given the probabilistic nature of risk, the controller design is extended to
adapt a chance-constrained programming setting coupled with Bayesian inference for
continuous risk updating along the rolling time horizon. A hierarchical dynamic optimi-
zation formulation is further developed to integrate risk control, operational optimization,
and fault prognosis across multiple temporal scales in an integral but computationally
efficient manner. If a potential fault is detected and cannot be prevented by adjusting
operating actions, an alarm will be raised well ahead of time with the controller and opti-
mizer continuously performing to attenuate the fault propagation speed and severity. The
potential and efficacy of the proposed framework are demonstrated on three safety-criti-
cal case studies with increasing level of complexity: (i) Tank filling, (ii) Batch reactor at
T2 Laboratories, and (iii) Cyber-physical hydrogen water electrolysis prototype.

Keywords: Process safety management, Dynamic risk assessment, Explicit model pre-
dictive control, Multi-parametric programming, Cyber-physical energy system

1. Introduction

The ongoing transition towards industrial digitalization and smart manufacturing have
posed new challenges to chemical process safety management as plants become substan-
tially more complex, dynamic, and integrated (Lee et al., 2019). Thus, it is essential to
augment safety-critical decision making with systems-based real-time operation which
can proactively reduce process safety losses. Oriented from process control perspective,
several works have leveraged receding horizon estimation to detect faults at the early
developing stage and predict its propagation (Ahooyi et al., 2016; Bhadriraju et al., 2021).
Theoretical developments have also been made to characterize a set of state variables,
e.g. Lyapunov level set (Wu et al., 2018) and pertinent systems theory (Venkidasalapathy
and Kravaris, 2020), for guaranteed safe and stable operations under uncertainty. Despite
these efforts, key research gaps remain on: (i) Lack of a mechanistic-based understanding
and metric to quantify real-time process safety performance while considering nonlinear
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process variable interactions, dynamic control, and uncertainties, (ii) Lack of a systematic
methodology to prognostically detect fault while automatedly determining the risk con-
trol and mitigation strategy to reduce failure probability, (iii) Lack of a cyber-physical
prototype to implement and demonstrate the methods toward safe and smart manufactur-
ing systems.

To address these challenges, in this work, we introduce a dynamic risk-based control and
optimization framework via multi-parametric programming (mp-P). The remainder of
this paper is structured as follows: Section 2 introduces the methodology framework in-
tegrating dynamic risk assessment, stochastic model predictive control, and operational
optimization. Section 3 demonstrates the proposed approaches on three safety-critical
case studies including the filling of a tank, the quality control of an exothermic batch
reactor, and a proton exchange membrane water electrolysis cyber-physical prototype.

2. Dynamic Risk-based Control Optimization

In this section, we present a holistic methodology framework which tackles three major
research questions: (i) How to integrate dynamic risk assessment and model predictive
control? (ii) How to address the probabilistic nature of risk in the control scheme? and
(iii) How to identify the optimal operating trajectory accounting for process control, fault
prognosis, and operational optimization which may take place over multiple time scales?

2.1. Dynamic Risk-based Multi-Parametric Model Predictive Control (mp-MPC)
We first introduce the risk-based mp- ;
MPC approach which sets the founda-
tion for this framework. As shown in

Fig. 1, a dynamic risk indicator (RI) _Wy'
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by incorporating: (i) safety-critical
variable bounds as path constraints, (ii) risk as output variable to be controlled based on
multivariate process dynamics under uncertainty. The receding horizon estimation also
enables model-based risk propagation forecast, leading to prognostic risk mitigation by
the controller. The risk-based MPC is then re-formulated to a multi-parametric mixed-
integer quadratic programming problem, from which optimal control laws can be ob-
tained offline a priori as piecewise affine functions of process states, risks, disturbances,
etc. (Ali et al., 2023) The mp-MPC offline computation capability offers unique ad-
vantages to generate a quantitative understanding on the impact on risk of disturbances
and control action even before operating the process online. The risk controller can thus
be tuned fitting the purpose to maximize the safe operating region against disturbances.

Figure 1: Dynamic risk-based mp-MPC.

2.2. Stochastic Risk Control via Chance-Constrained Programming

Herein, we extend the above risk-based mp-MPC approach with considerations of the
probabilistic nature of risk. We propose a novel stochastic risk control approach via
chance-constrained programming (SRC-CCP) as shown in Fig. 2, which stands as a ver-
satile and adaptive method to manage uncertainties within complex systems. This ap-
proach seamlessly integrates crucial elements. Firstly, it employs Receding Horizon
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boundaries. Additionally, it in- Figure 2: SRC-CCP formulation.
cludes a Bayesian update mechanism, dynamically adapting these risk thresholds based
on current system observations. The probabilistic constraints are deterministically incor-
porated via chance-constrained programming. This holistic strategy emphasizes safety
while allowing the system to flexibly optimize performance amidst uncertain conditions,
an effective solution crafted for modern engineering challenges. The method approxi-
mates probabilistic constraints by converting them into deterministic forms, focusing spe-
cifically on normal distributions. For the constraint, P(h(t) > h,q,|t) < €, a determin-
istic approximation is derived. h(t) is a safety-critical process variable such as the tank
liquid level adapted in Section 3.1. This involves calculating the inverse normal z-score
(ze = ¢ (€,)) using standard deviation (o,) and mean (y,) of the current probability
distribution. The resultant formulation in Eq. 1 sets a threshold for h(t) based on h,,q,,
z-score, and standard deviation oy, aiding in risk management within predefined limits.

h(t) > hmax + (Ztat) (1)

2.3. Fault-Prognostic Control and Operational Optimization

We present another key aspect of this framework to simultaneously account for risk man-
agement, process control, and operational optimization which occur at distinct character-
istic time scales. For example, there may exist a trade-off on the optimal batch time be-
tween reaching the end-point product quality (after hours or days) versus maintaining the
operation at a low risk level (for every second or minute). To this purpose, a hierarchical
control optimization formulation (Fig. 3) is developed coupling a short-term risk control-
ler with a long-term economics and safety optimizer. The optimizer also provides a longer
fault prognosis horizon, which can be chosen tailored to the process-specific operator
response time, independent of the control output horizon estimation. The decision making
of the controller and optimizer are fully integrated. Namely, the optimal operating trajec-
tory determined by the optimizer at large time steps (e.g., for real-time optimization, end-
point quality control) are used to continually update the set points of the controller. On
the other hand, the optimizer is aware of the controller decisions by using the process
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Figure 3: Integrated risk control and operational optimization.
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model with closed-loop control laws. In certain cases, the difference between these two
time spans may be significant, such as in process systems with very fast dynamics and/or
requiring long forecasting horizon. A time-bridging surrogate model becomes essential
to smoothly transition the operating decisions of the optimizer at large time steps to be
achievable set points for the controller at smaller time steps. The mathematical formula-
tions for the controller, optimizer, and surrogate modeling are provided in Fig. 3, which
are all solved via mp-P to obtain optimal decisions offline a priori as explicit functions of
process variables. This is a key advantage to ensure computational efficiency for multi-
time-scale dynamic optimization. Another online real-time risk-based optimization strat-
egy has also been developed, the detail of which can be found in Ali et al. (2023).

3. Hlustrative Case Studies

3.1. Tank filling

The section implements SRC-CCP to manage a cylindrical storage tank system, which
comprises a single inlet and outlet, storing a non-reactive, single-phase fluid. Central to
this framework is the regulation of the safety-critical variable liquid level (h) in the tank at
a setpoint (hsp), facilitated by a control valve upstream of the tank. The remaining system
variables and parameters include inlet volumetric flowrate (Qin), outlet volumetric flowrate
(Qout), cylindrical cross-sectional area (A). The control formulation is presented in Eq. 2.
The optimization objective revolves around minimizing a cost function that considers the
deviation of the level from setpoint. This includes a probabilistic assessment for safety
through Chance-Constrained Programming. Bayesian updating is employed to refine the
estimation of level changes over time, utilizing a likelihood function that supports a higher
probability towards minimizing the difference between the current level and the setpoint.

OH-1
min, J = Z (((hi — hy)”) + INLF (h, hs,,)) (2a) Bayesian Update:
=1 P[4h > 0|t + 1] = L(h(t)) * P[Ah > 0]¢] fortinT(Ze)
st h+ D= (1-5)rm + (2) 0 ) (h@-hep)?
+(Gwo oy H0O) = Few (-T2 @
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P(Ah > O|t) < & (2d)

where Ah is the current state (tank level) of the system with respect to the boundary h,,,,,. This constraint helps
the user to set a threshold €, to the maximum risk allowed.

To evaluate the control efficacy, a closed-loop validation is performed and compared
against the original open-loop tank level simulation (Fig. 4a). The results have showcased
the remarkable stability of the tank level when employing Risk-informed Model Predic-
tive Control via SRC-CCP. This approach consistently maintains the level within pre-
scribed constraints, unlike the uncontrolled fluctuations in the open-loop scenario. While
the tank levels remain within boundaries and close to reference value, the analysis focuses
on the evolution of ¢, (acceptable risk level or maximum allowable probability of failure)
in Fig. 4b. This trend indicates a deliberate strategy shift, integrating Chance-Constrained
Programming to introduce a calculated margin for potential safety constraint violations.
This prioritizes system performance over rigid adherence to safety constraints, allowing
adaptability to changing conditions and disturbances. The gradual increase in ¢, reflects
the sought balance between safety and performance optimization, highlighting the pivotal
role of SRC-CCP in managing this delicate trade-off in dynamic environments.

3.2. T2 batch reactor
In what follows, we investigate a batch reactor adapted from the incident that occurred at
T2 Laboratories in 2007. There are two exothermic reactions in this process. The main
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Figure 4a: Open-loop and close-loop tank level. ~ Figure 4b: Acceptable risk level with time.

reaction produces sodium methylcyclopentadiene as the desired product. Due to the very
large pre-exponential factor, the side reaction rate increases significantly at high reactor
temperatures and ultimately leads to uncontrollable thermal runaway. As such, reactor
temperatures beyond 480K are defined as the high-risk region in which runaway has a
higher probability to occur. Dynamic risk is computed as a function of real-time temper-
ature deviations from its nominal value (460K). The manipulated variable for risk control
is the heat transfer coefficient which is in a pseudo-linear relationship with cooling utility
flowrate. The control optimization objectives are to: (i) Control the reactor at low risk
level throughout the batch, (ii) Optimize the operation while reaching pre-specified end-
point product quality. Following Fig. 3, a short-term risk controller is designed with the
control horizon as 5 min and output horizon as 10 min. A long-term quality optimizer is
then formulated based on the closed-loop process dynamics forecasting the entire batch
duration with an upper limit of 8 hours. We have firstly validated the effectiveness of the
risk-aware controller to maintain the process at low risk level, without which open-loop
operation will enter the high-risk region. Fig. 5 illustrates the integrated decision making
with long-term quality optimizer. Fig. 5a presents the time profiles of reactant concentra-
tion at quality target specifications of 0.1, 0.05, and 0.01 mol/L. It can be inferred that
our proposed methods are successful in meeting end-of-batch quality targets. By further
examining the temperature trajectory in Fig. 5b, the optimizer adapts the maximum con-
trollable risk (~ 470K) to meet end-product specifications efficiently and safely.
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Figure 5a: Concentration under various quality targets. Figure 5b: Temperature profiles.

3.3. PEM water electrolysis

Proton exchange membrane water electrolysis (PEMWE) is a key technology for green
hydrogen production, while ensuring its safe and efficient operation remains a challenge.
To achieve this, several key components have been investigated as part of the framework:
1. Lab-Scale Experimental Prototype: A lab-scale PEMWE experimental prototype is de-
veloped to gain a better understanding of the system behavior under different operating
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conditions. The exper-
imental configuration
has four main units: (1)
water supply, (2) elec-
trolyzer, (3) power
supply, and (4) data B
acquisition and control
unit. As shown in Fig-
ure 6, the experimental setup situated on the left generates the vital data, which is then
transmitted to the target computer on the right for monitoring and control in real-time. It
provides a platform to test system performance with different control strategies.

ation of PEMWE system.

Figure 6: Exerimental config

2. Digital Twin: A digital twin, based on the physical laws governing the PEMWE sys-
tem, is developed. The virtual replica allows for real-time monitoring and control. This
provides valuable insights into PEMWE system dynamics to optimize its performance.
3. Multi-parametric Control Optimization: To obtain optimal control strategies, multi-
parametric programming is used for explicit model predictive control while considering
multiple parameters and constraints to maximize efficiency and minimize risk.

4. Integration of mpMPC-on-a-chip Controller: The above mpMPC algorithm is then in-
tegrated into a microcontroller. This advanced controller enables real-time monitoring
and control of the hydrogen production process, ensuring optimal performance and safety.

5. Risk Identification and Process Safety Management: Risk identification and process
safety management are also performed using the Hazard and Operability (HAZOP)
method. This method systematically analyzes the PEMWE system to identify potential
hazards and risks and implements appropriate measures to mitigate them. The integration
of risk assessment and safety management aims to enhance the overall safety of PEMWE.

4. Concluding Remarks

This work has presented a framework for dynamic risk-based control and optimization
via multi-parametric programming. Ongoing work is investigating error-tolerant risk con-
trol using robust MPC and cyber-physical systems integration.
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