
Flavio Manenti, Gintaras V. Reklaitis (Eds.), Proceedings of the 34th European Symposium on 
Computer Aided Process Engineering / 15th International Symposium on Process Systems Engi-
neering (ESCAPE34/PSE24), June 2-6, 2024, Florence, Italy 
© 2024 Elsevier B.V. All rights reserved.  

A Real-Time Risk-Based Optimization Framework 
for Safe and Smart Operations 
Austin Braniffa, Sahithi Srijana Akundib,c,d, Yuanxing Liub,c,d, Faisal Khanb,c, 
Efstratios N. Pistikopoulosb,d, Yuhe Tiana* 
a Department of Chemical and Biomedical Engineering, West Virginia University, 
Morgantown, WV, United States 

b Artie McFerrin Department of Chemical Engineering, Texas A&M University  
c Mary Kay O’Connor Process Safety Center, Artie McFerrin Department of Chemical 
Engineering, Texas A&M University, College Station, TX, United States 
d Texas A&M Energy Institute, Texas A&M University, College Station, TX, United States 

Abstract 
We present a systematic framework for real-time risk-based optimization via multi-para-
metric programming. A dynamic risk indicator is utilized to monitor online process safety 
performance and provide model-based prediction of risk propagation, as a function of 
safety-critical process variables. Risk-based explicit/multi-parametric model predictive 
control is then developed to generate fit-for-purpose control strategies for proactive risk 
management. Given the probabilistic nature of risk, the controller design is extended to 
adapt a chance-constrained programming setting coupled with Bayesian inference for 
continuous risk updating along the rolling time horizon. A hierarchical dynamic optimi-
zation formulation is further developed to integrate risk control, operational optimization, 
and fault prognosis across multiple temporal scales in an integral but computationally 
efficient manner. If a potential fault is detected and cannot be prevented by adjusting 
operating actions, an alarm will be raised well ahead of time with the controller and opti-
mizer continuously performing to attenuate the fault propagation speed and severity. The 
potential and efficacy of the proposed framework are demonstrated on three safety-criti-
cal case studies with increasing level of complexity: (i) Tank filling, (ii) Batch reactor at 
T2 Laboratories, and (iii) Cyber-physical hydrogen water electrolysis prototype. 

Keywords: Process safety management, Dynamic risk assessment, Explicit model pre-
dictive control, Multi-parametric programming, Cyber-physical energy system 

1. Introduction 
The ongoing transition towards industrial digitalization and smart manufacturing have 
posed new challenges to chemical process safety management as plants become substan-
tially more complex, dynamic, and integrated (Lee et al., 2019). Thus, it is essential to 
augment safety-critical decision making with systems-based real-time operation which 
can proactively reduce process safety losses. Oriented from process control perspective, 
several works have leveraged receding horizon estimation to detect faults at the early 
developing stage and predict its propagation (Ahooyi et al., 2016; Bhadriraju et al., 2021). 
Theoretical developments have also been made to characterize a set of state variables, 
e.g. Lyapunov level set (Wu et al., 2018) and pertinent systems theory (Venkidasalapathy 
and Kravaris, 2020), for guaranteed safe and stable operations under uncertainty. Despite 
these efforts, key research gaps remain on: (i) Lack of a mechanistic-based understanding 
and metric to quantify real-time process safety performance while considering nonlinear 
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process variable interactions, dynamic control, and uncertainties, (ii) Lack of a systematic 
methodology to prognostically detect fault while automatedly determining the risk con-
trol and mitigation strategy to reduce failure probability, (iii) Lack of a cyber-physical 
prototype to implement and demonstrate the methods toward safe and smart manufactur-
ing systems. 

To address these challenges, in this work, we introduce a dynamic risk-based control and 
optimization framework via multi-parametric programming (mp-P). The remainder of 
this paper is structured as follows: Section 2 introduces the methodology framework in-
tegrating dynamic risk assessment, stochastic model predictive control, and operational 
optimization. Section 3 demonstrates the proposed approaches on three safety-critical 
case studies including the filling of a tank, the quality control of an exothermic batch 
reactor, and a proton exchange membrane water electrolysis cyber-physical prototype.   

2. Dynamic Risk-based Control Optimization  
In this section, we present a holistic methodology framework which tackles three major 
research questions: (i) How to integrate dynamic risk assessment and model predictive 
control? (ii) How to address the probabilistic nature of risk in the control scheme? and 
(iii) How to identify the optimal operating trajectory accounting for process control, fault 
prognosis, and operational optimization which may take place over multiple time scales? 
2.1. Dynamic Risk-based Multi-Parametric Model Predictive Control (mp-MPC) 
We first introduce the risk-based mp-
MPC approach which sets the founda-
tion for this framework. As shown in 
Fig. 1, a dynamic risk indicator (!") 
is used to monitor online process 
safety considering fault probability 
and severity as a function of safety-
critical process variables (#!) devia-
tion from nominal operating condi-
tions (Bao et al., 2011). Risk-based 
MPC is then formulated which pro-
vides dual layers of risk management 
by incorporating: (i) safety-critical 
variable bounds as path constraints, (ii) risk as output variable to be controlled based on 
multivariate process dynamics under uncertainty. The receding horizon estimation also 
enables model-based risk propagation forecast, leading to prognostic risk mitigation by 
the controller. The risk-based MPC is then re-formulated to a multi-parametric mixed-
integer quadratic programming problem, from which optimal control laws can be ob-
tained offline a priori as piecewise affine functions of process states, risks, disturbances, 
etc. (Ali et al., 2023) The mp-MPC offline computation capability offers unique ad-
vantages to generate a quantitative understanding on the impact on risk of disturbances 
and control action even before operating the process online. The risk controller can thus 
be tuned fitting the purpose to maximize the safe operating region against disturbances. 
2.2. Stochastic Risk Control via Chance-Constrained Programming 
Herein, we extend the above risk-based mp-MPC approach with considerations of the 
probabilistic nature of risk. We propose a novel stochastic risk control approach via 
chance-constrained programming (SRC-CCP) as shown in Fig. 2, which stands as a ver-
satile and adaptive method to manage uncertainties within complex systems. This ap-
proach seamlessly integrates crucial elements. Firstly, it employs Receding Horizon 

Figure 1: Dynamic risk-based mp-MPC. 
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MPC, constantly adjusting con-
trol inputs by considering the 
system’s changing dynamics. 
Secondly, it integrates dynamic 
probabilistic constraints, tacti-
cally embedding real-time risk 
management within the control 
framework to ensure the system 
operates within specified risk 
boundaries. Additionally, it in-
cludes a Bayesian update mechanism, dynamically adapting these risk thresholds based 
on current system observations. The probabilistic constraints are deterministically incor-
porated via chance-constrained programming. This holistic strategy emphasizes safety 
while allowing the system to flexibly optimize performance amidst uncertain conditions, 
an effective solution crafted for modern engineering challenges. The method approxi-
mates probabilistic constraints by converting them into deterministic forms, focusing spe-
cifically on normal distributions. For the constraint, $(ℎ(') > ℎ"#$|') ≤ ,! ,	a determin-
istic approximation is derived. ℎ(') is a safety-critical process variable such as the tank 
liquid level adapted in Section 3.1. This involves calculating the inverse normal z-score 
(/! =	1%&(,!)) using standard deviation (2!)	and mean (3!)	of the current probability 
distribution. The resultant formulation in Eq. 1 sets a threshold for ℎ(') based on ℎ"#$, 
z-score, and standard deviation 2!, aiding in risk management within predefined limits. 

ℎ(') > ℎ"#$ + (/!2!)																	(1)	
2.3. Fault-Prognostic Control and Operational Optimization  
We present another key aspect of this framework to simultaneously account for risk man-
agement, process control, and operational optimization which occur at distinct character-
istic time scales. For example, there may exist a trade-off on the optimal batch time be-
tween reaching the end-point product quality (after hours or days) versus maintaining the 
operation at a low risk level (for every second or minute). To this purpose, a hierarchical 
control optimization formulation (Fig. 3) is developed coupling a short-term risk control-
ler with a long-term economics and safety optimizer. The optimizer also provides a longer 
fault prognosis horizon, which can be chosen tailored to the process-specific operator 
response time, independent of the control output horizon estimation. The decision making 
of the controller and optimizer are fully integrated. Namely, the optimal operating trajec-
tory determined by the optimizer at large time steps (e.g., for real-time optimization, end-
point quality control) are used to continually update the set points of the controller. On 
the other hand, the optimizer is aware of the controller decisions by using the process 

Figure 2: SRC-CCP formulation. 

Figure 3: Integrated risk control and operational optimization. 

s.t. 
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model with closed-loop control laws. In certain cases, the difference between these two 
time spans may be significant, such as in process systems with very fast dynamics and/or 
requiring long forecasting horizon. A time-bridging surrogate model becomes essential 
to smoothly transition the operating decisions of the optimizer at large time steps to be 
achievable set points for the controller at smaller time steps. The mathematical formula-
tions for the controller, optimizer, and surrogate modeling are provided in Fig. 3, which 
are all solved via mp-P to obtain optimal decisions offline a priori as explicit functions of 
process variables. This is a key advantage to ensure computational efficiency for multi-
time-scale dynamic optimization. Another online real-time risk-based optimization strat-
egy has also been developed, the detail of which can be found in Ali et al. (2023).  

3. Illustrative Case Studies 
3.1. Tank filling 
The section implements SRC-CCP to manage a cylindrical storage tank system, which 
comprises a single inlet and outlet, storing a non-reactive, single-phase fluid. Central to 
this framework is the regulation of the safety-critical variable liquid level (h) in the tank at 
a setpoint (hsp), facilitated by a control valve upstream of the tank. The remaining system 
variables and parameters include inlet volumetric flowrate (Qin), outlet volumetric flowrate 
(Qout), cylindrical cross-sectional area (A). The control formulation is presented in Eq. 2. 
The optimization objective revolves around minimizing a cost function that considers the 
deviation of the level from setpoint. This includes a probabilistic assessment for safety 
through Chance-Constrained Programming. Bayesian updating is employed to refine the 
estimation of level changes over time, utilizing a likelihood function that supports a higher 
probability towards minimizing the difference between the current level and the setpoint. 
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           0 ≤ ℎ(") ≤ ℎ789 (2c)  
           8(:ℎ	 > 	0|>) ≤ H1 (2d)  

where !ℎ is the current state (tank level) of the system with respect to the boundary ℎ!"#. This constraint helps 
the user to set a threshold #$ to the maximum risk allowed.  

To evaluate the control efficacy, a closed-loop validation is performed and compared 
against the original open-loop tank level simulation (Fig. 4a). The results have showcased 
the remarkable stability of the tank level when employing Risk-informed Model Predic-
tive Control via SRC-CCP. This approach consistently maintains the level within pre-
scribed constraints, unlike the uncontrolled fluctuations in the open-loop scenario. While 
the tank levels remain within boundaries and close to reference value, the analysis focuses 
on the evolution of #$ (acceptable risk level or maximum allowable probability of failure) 
in Fig. 4b. This trend indicates a deliberate strategy shift, integrating Chance-Constrained 
Programming to introduce a calculated margin for potential safety constraint violations. 
This prioritizes system performance over rigid adherence to safety constraints, allowing 
adaptability to changing conditions and disturbances. The gradual increase in #$	reflects 
the sought balance between safety and performance optimization, highlighting the pivotal 
role of SRC-CCP in managing this delicate trade-off in dynamic environments. 
3.2. T2 batch reactor 
In what follows, we investigate a batch reactor adapted from the incident that occurred at 
T2 Laboratories in 2007. There are two exothermic reactions in this process. The main 
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reaction produces sodium methylcyclopentadiene as the desired product. Due to the very 
large pre-exponential factor, the side reaction rate increases significantly at high reactor 
temperatures and ultimately leads to uncontrollable thermal runaway. As such, reactor 
temperatures beyond 480K are defined as the high-risk region in which runaway has a 
higher probability to occur. Dynamic risk is computed as a function of real-time temper-
ature deviations from its nominal value (460K). The manipulated variable for risk control 
is the heat transfer coefficient which is in a pseudo-linear relationship with cooling utility 
flowrate. The control optimization objectives are to: (i) Control the reactor at low risk 
level throughout the batch, (ii) Optimize the operation while reaching pre-specified end-
point product quality. Following Fig. 3, a short-term risk controller is designed with the 
control horizon as 5 min and output horizon as 10 min. A long-term quality optimizer is 
then formulated based on the closed-loop process dynamics forecasting the entire batch 
duration with an upper limit of 8 hours. We have firstly validated the effectiveness of the 
risk-aware controller to maintain the process at low risk level, without which open-loop 
operation will enter the high-risk region. Fig. 5 illustrates the integrated decision making 
with long-term quality optimizer. Fig. 5a presents the time profiles of reactant concentra-
tion at quality target specifications of 0.1, 0.05, and 0.01 mol/L. It can be inferred that 
our proposed methods are successful in meeting end-of-batch quality targets. By further 
examining the temperature trajectory in Fig. 5b, the optimizer adapts the maximum con-
trollable risk (~ 470K) to meet end-product specifications efficiently and safely.        

3.3. PEM water electrolysis  
Proton exchange membrane water electrolysis (PEMWE) is a key technology for green 
hydrogen production, while ensuring its safe and efficient operation remains a challenge. 
To achieve this, several key components have been investigated as part of the framework:  
1. Lab-Scale Experimental Prototype: A lab-scale PEMWE experimental prototype is de-
veloped to gain a better understanding of the system behavior under different operating 

Figure 4b: Acceptable risk level with time. Figure 4a: Open-loop and close-loop tank level. 

Figure 5a: Concentration under various quality targets. Figure 5b: Temperature profiles. 
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conditions. The exper-
imental configuration 
has four main units: (1) 
water supply, (2) elec-
trolyzer, (3) power 
supply, and (4) data 
acquisition and control 
unit. As shown in Fig-
ure 6, the experimental setup situated on the left generates the vital data, which is then 
transmitted to the target computer on the right for monitoring and control in real-time. It 
provides a platform to test system performance with different control strategies. 
2. Digital Twin: A digital twin, based on the physical laws governing the PEMWE sys-
tem, is developed. The virtual replica allows for real-time monitoring and control. This 
provides valuable insights into PEMWE system dynamics to optimize its performance. 
3. Multi-parametric Control Optimization: To obtain optimal control strategies, multi-
parametric programming is used for explicit model predictive control while considering 
multiple parameters and constraints to maximize efficiency and minimize risk. 
4. Integration of mpMPC-on-a-chip Controller: The above mpMPC algorithm is then in-
tegrated into a microcontroller. This advanced controller enables real-time monitoring 
and control of the hydrogen production process, ensuring optimal performance and safety. 
5. Risk Identification and Process Safety Management: Risk identification and process 
safety management are also performed using the Hazard and Operability (HAZOP) 
method. This method systematically analyzes the PEMWE system to identify potential 
hazards and risks and implements appropriate measures to mitigate them. The integration 
of risk assessment and safety management aims to enhance the overall safety of PEMWE. 

4. Concluding Remarks 
This work has presented a framework for dynamic risk-based control and optimization 
via multi-parametric programming. Ongoing work is investigating error-tolerant risk con-
trol using robust MPC and cyber-physical systems integration.  
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Figure 6: Experimental configuration of PEMWE system. 


