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Abstract

Domain incremental learning aims to adapt to a sequence of domains with access
to only a small subset of data (i.e., memory) from previous domains. Various
methods have been proposed for this problem, but it is still unclear how they are
related and when practitioners should choose one method over another. In response,
we propose a unified framework, dubbed Unified Domain Incremental Learning
(UDIL), for domain incremental learning with memory. Our UDIL unifies various
existing methods, and our theoretical analysis shows that UDIL always achieves
a tighter generalization error bound compared to these methods. The key insight
is that different existing methods correspond to our bound with different fixed
coefficients; based on insights from this unification, our UDIL allows adaptive
coefficients during training, thereby always achieving the tightest bound. Empirical
results show that our UDIL outperforms the state-of-the-art domain incremental
learning methods on both synthetic and real-world datasets. Code will be available
at https://github.com/Wang-ML-Lab/unified-continual-learning.

1 Introduction

Despite recent success of large-scale machine learning models [35, 48, 36, 28, 92, 22, 33], continually
learning from evolving environments remains a longstanding challenge. Unlike the conventional
machine learning paradigms where learning is performed on a static dataset, domain incremental
learning, i.e., continual learning with evolving domains, hopes to accommodate the model to the
dynamically changing data distributions, while retaining the knowledge learned from previous
domains [90, 60, 41, 97, 27]. Naive methods, such as continually finetuning the model on new-
coming domains, will suffer a substantial performance drop on the previous domains; this is referred
to as “catastrophic forgetting” [46, 58, 81, 105, 52]. In general, domain incremental learning
algorithms aim to minimize the total risk of all domains, i.e.,

t—1
L7(0) = Lo(6) + L1:e-1(0) = B gy, [0y, ho(@)] + D Ewyynn, [y ho(@)], (D)
i=1

where L; calculates model hy’s expected prediction error £ over the current domain’s data distribution
Dy. L4.4—1 is the total error evaluated on the past ¢t — 1 domains’ data distributions, i.e., {Dl};;}

The main challenge of domain incremental learning comes from the practical memory constraint
that no (or only very limited) access to the past domains’ data is allowed [52, 46, 105, 74]. Under
such a constraint, it is difficult, if not impossible, to accurately estimate and optimize the past error
L1.:—1. Therefore the main focus of recent domain incremental learning methods has been to develop
effective surrogate learning objectives for £1.;—1. Among these methods [46, 81, 2, 105, 58, 10, 75,
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77,21,25,65,66,9,72,82,95, 53], replay-based methods, which replay a small set of old exemplars
during training [90, 75, 8, 4, 80, 11], has consistently shown promise and is therefore commonly used
in practice.

One typical example is ER [75], which stores a set of exemplars M and uses a replay 10ss Lyepiay as
the surrogate of £1.;—1. In addition, a fixed, predetermined coefficient 3 is used to balance current
domain learning and past sample replay. Specifically,

L(0) = Li(0) + B+ Lreptay(0) = L1(0) + 8- Ewr yry o[£y, ho ()] 2

While such methods are popular in practice, there is still a gap between the surrogate 1oss (8 Leplay)
and the true objective (£1.;—1), rendering them lacking in theoretical support and therefore calling into
question their reliability. Besides, different methods use different schemes of setting 5 [75, 8, 4, 80],
and it is unclear how they are related and when practitioners should choose one method over another.

To address these challenges, we develop a unified generalization error bound and theoretically show
that different existing methods are actually minimizing the same error bound with different fixed
coefficients (more details in Table 1 later). Based on such insights, we then develop an algorithm
that allows adaptive coefficients during training, thereby always achieving the tightest bound and
improving the performance. Our contributions are as follows:

* We propose a unified framework, dubbed Unified Domain Incremental Learning (UDIL),
for domain incremental learning with memory to unify various existing methods.

* Our theoretical analysis shows that different existing methods are equivalent to minimizing
the same error bound with different fixed coefficients. Based on insights from this unification,
our UDIL allows adaptive coefficients during training, thereby always achieving the tightest
bound and improving the performance.

» Empirical results show that our UDIL outperforms the state-of-the-art domain incremental
learning methods on both synthetic and real-world datasets.

2 Related Work

Continual Learning. Prior work on continual learning can be roughly categorized into three
scenarios [90, 15]: (i) task-incremental learning, where task indices are available during both
training and testing [52, 46, 90], (ii) class-incremental learning, where new classes are incrementally
included for the classifier [74, 100, 30, 45, 44], and (iii) domain-incremental learning, where the
data distribution’s incremental shift is explicitly modeled [60, 41, 97, 27]. Regardless of scenarios,
the main challenge of continual learning is to alleviate catastrophic forgetting with only limited
access to the previous data; therefore methods in one scenario can often be easily adapted for another.
Many methods have been proposed to tackle this challenge, including functional and parameter
regularization [52, 46, 81, 2], constraining the optimization process [77, 21, 58, 10], developing
incrementally updated components [ 104, 38, 53], designing modularized model architectures [73, 95],
improving representation learning with additional inductive biases [9, 66, 65, 25], and Bayesian
approaches [24, 63, 49, 1]. Among them, replaying a small set of old exemplars, i.e., memory, during
training has shown great promise as it is easy to deploy, applicable in all three scenarios, and, most
importantly, achieves impressive performance [90, 75, 8, 4, 80, 11]. Therefore in this paper, we focus
on domain incremental learning with memory, aiming to provide a principled theoretical framework
to unify these existing methods.

Domain Adaptation and Domain Incremental Learning. Loosely related to our work are domain
adaptation (DA) methods, which adapt a model trained on labeled source domains to unlabeled
target domains [68, 67, 57, 78, 79, 108, 71, 16, 17, 64, 94, 51]. Much prior work on DA focuses
on matching the distribution of the source and target domains by directly matching the statistical
attributions [67, 89, 87, 71, 64] or adversarial training [108, 57, 26, 109, 17, 102, 101, 54, 94].
Compared to DA’s popularity, domain incremental learning (DIL) has received limited attention
in the past. However, it is now gaining significant traction in the research community [90, 60, 41,
97, 27]. These studies predominantly focus on the practical applications of DIL, such as semantic
segmentation [27], object detection for autonomous driving [60], and learning continually in an
open-world setting [18]. Inspired by the theoretical foundation of adversarial DA [5, 57], we propose,
to the best of our knowledge, the first unified upper bound for DIL. Most related to our work
are previous DA methods that flexibly align different domains according to their associated given



or inferred domain index [94, 101], domain graph [102], and domain taxonomy [54]. The main
difference between DA and DIL is that the former focuses on improving the accuracy of the rarget
domains, while the latter focuses on the total error of all domains, with additional measures taken to
alleviate forgetting on the previous domains. More importantly, DA methods typically require access
to target domain data to match the distributions, and therefore are not directly applicable to DIL.

3 Theory: Unifying Domain Incremental Learning

In this section, we formalize the problem of domain incremental learning, provide the generalization
bound of naively applying empirical risk minimization (ERM) on the memory bank, derive two
error bounds (i.e., intra-domain and cross-domain error bounds) more suited for domain incremental
learning, and then unify these three bounds to provide our final adaptive error bound. We then develop
an algorithm inspired by this bound in Sec. 4. All proofs of lemmas, theorems, and corollaries can
be found in Appendix A.

Problem Setting and Notation. We consider the problem of domain incremental learning with

T domains arriving one by one. Each domain ¢ contains N; data points S; = { ( oy 7%(1)) i

where (x 51), yj(z)) is sampled from domain ¢’s data distribution D;. Assume that when domain
t € [T) 2 {1,2,...,T} arrives at time t, one has access to (1) the current domain t’s data S, (2) a
memory bank M = {M;}!=], where M; = {( z; ,53(1))}] | is a small subset (N; < N;) randomly
sampled from S;, and (3) the history model H;_; after training on the prevlous t — 1 domains. For
convenience we use shorthand notation X; £ {:cgl)}jv;l and X; £ {:ESZ)}jv;l The goal is to learn
the optimal model (hypothesis) h* that minimizes the prediction error over all ¢ domains after each
domain ¢ arrives. Formally,

h* = arg m}}nz ep, (h), ep, (h) £ Egp, [h(x) # fi(z)), (€)
i=1

where for domain 7, we assume the labels y € Y = {0, 1} are produced by an unknown deterministic
function y = f;(x) and ep, (h) denotes the expected error of domain i.

3.1 Naive Generalization Bound Based on ERM

Definition 3.1 (Domain-Specific Empirical Risks). When domain t arrives, model h’s empirical
risk €p, (h) for each domain i (where i < t) is computed on the available data at time t, i.e.,

. N Lwex, Ln@zfiw fi=t,
€D, (h) = L o @)
A Zz@} Lh@)yzpi@ i<t

Note that at time ¢, only a small subset of data from previous domains (¢ < t) is available in the
memory bank (N; < N;). Therefore empirical risks for previous domains (ép, (h) with ¢ < t) can
deviate a lot from the true risk ep, (k) (defined in Eqn. 3); this is reflected in Lemma 3.1 below.

Lemma 3.1 (ERM-Based Generalization Bound). Let H be a hypothesis space of VC dimension

d. When domain t arrives, there are N; data points from domain t and N; data points from each
previous domain i < t in the memory bank. With probability at least 1 — §, we have:

Zepi(h)gz/e\pi(h)—&- (Nt+z >8dlog 2eN) 4 8log (2)). Q)

Lemma 3.1 shows that naively using ERM to learn / is equivalent to minimizing a loose generahzatlon
bound in Eqn. 33. Since N; < N;, there is a large constant Zt ! 1 compared to F’ making the
second term of Eqn. 33 much larger and leading to a looser bound



3.2 Intra-Domain and Cross-Domain Model-Based Bounds

In domain incremental learning, one has access to the history model H;_; besides the memory
bank {Ml}f;%, this offers an opportunity to derive tighter error bounds, potentially leading to better
algorithms. In this section, we will derive two such bounds, an intra-domain error bound (Lemma 3.2)
and a cross-domain error bound (Lemma 3.3), and then integrate them two with the ERM-based

bound in Eqn. 33 to arrive at our final adaptive bound (Theorem 3.4).

Lemma 3.2 (Intra-Domain Model-Based Bound). Let h € H be an arbitrary function in the
hypothesis space H, and H,_1 be the model trained after domain t — 1. The domain-specific error
ep, (h) on the previous domain i has an upper bound:

ep,(h) <ep,(h,Hi—1)+ep,(Hi—1), (6)

where ep, (h, Hy_1) = Egop, [h(x) # Hi_1(z)].

Lemma 3.2 shows that the current model h’s error on domain ¢ is bounded by the discrepancy between
h and the history model H;_; plus the error of H;_; on domain .

One potential issue with the bound Eqn. 34 is that only a limited number of data is available for each
previous domain 4 in the memory bank, making empirical estimation of ep, (h, H;—1) + €p, (H¢—1)
challenging. Lemma 3.3 therefore provides an alternative bound.

Lemma 3.3 (Cross-Domain Model-Based Bound). Let h € H be an arbitrary function in the
hypothesis space H, and Hy_1 be the function trained after domain t — 1. The domain-specific error
ep, (h) evaluated on the previous domain i then has an upper bound:

ep,(h) < ep, (h, Hi—1) + 3d3an(Di, Dy) + ep, (He—1), @)

where dyan (P, Q) = 2suppepyay |Pra~p[h(x) = 1] — Pryog[h(z) = 1]| denotes the HAH-
divergence between distribution P and Q, and ep, (h, Hy_1) = Egop, [h(x) # Hi—1()).

Lemma 3.3 shows that if the divergence between domain ¢ and domain ¢, i.e., dyaw (D;, Dy), is
small enough, one can use H;_;’s predictions evaluated on the current domain D; as a surrogate loss
to prevent catastrophic forgetting. Compared to the error bound Eqn. 34 which is hindered by limited
data from previous domains, Eqn. 35 relies on the current domain ¢ which contains abundant data and
therefore enjoys much lower generalization error. Our lemma also justifies LwF-like cross-domain
distillation loss ep, (h, H;—1) which are widely adopted [52, 23, 100].

3.3 A Unified and Adaptive Generalization Error Bound

Our Lemma 3.1, Lemma 3.2, and Lemma 3.3 provide three different ways to bound the true risk
Zle ep, (h); each has its own advantages and disadvantages. Lemma 3.1 overly relies on the limited
number of data points from previous domains ¢ < ¢ in the memory bank to compute the empirical
risk; Lemma 3.2 leverages the history model H;_; for knowledge distillation, but is still hindered
by the limited number of data points in the memory bank; Lemma 3.3 improves over Lemma 3.2
by leveraging the abundant data D; in the current domain ¢, but only works well if the divergence
between domain ¢ and domain ¢, i.e., dyay (D;, Dt ), is small. Therefore, we propose to integrate
these three bounds using coefficients {;, 5, Vi f;i (with «; + B; + ; = 1) in the theorem below.

Theorem 3.4 (Unified Generalization Bound for All Domains). Let H be a hypothesis space of
VC dimension d. Let N = N; + 2271 N; denoting the total number of data points available to the

training of current domain t, where Ny and ]\~/'2 denote the numbers of data points collected at domain
t and data points from the previous domain i in the memory bank, respectively. With probability at



Table 1: UDIL as a unified framework for domain incremental learning with memory. Three
methods (LwF [52], ER [75], and DER++ [8]) are by default compatible with DIL setting. For the
remaining four CIL methods (iCaRL [74], CLS-ER [4], EMS-ER [80], and BiC [100]), we adapt their
original training objective to DIL settings before the analysis. For CLS-ER [4] and EMS-ER [80], A
and )\’ are the intensity coefficients of the logits distillation. For BiC [100], ¢ is the current number of
the incremental domain. The conditions under which the unification of each method is achieved are
provided in detail in Appendix B.

| UDIL (Ours) | LwF[52] ER[75] DER++[8] iCaRL[74] CLS-ER[4] EMS-ER [80] BiC[100]

o [0,1] 0 0 0.5 1 M (142 N /(142 1/(2t—1)
Bi [0,1] 1 0 0 0 0 0 (t-1)/(2t-1)
Vi [0,1] 0 1 0.5 0 1+ /(4" t=1/(2t-1)

least 1 — 0, we have:

Z ep, (h) < {X_: [vi€p, (h) + asep, (h, Ht—l)]} + {Ept (h) + (X_: Bi)ép, (h, Ht—l)}

1=1 =1 =1
t—1 t—1
+ 3 Biduan(Di, D) + Y _(ai + Bi)ep, (Hi—1)
=1 i=1
t—1 )
1 ?:% i 2 i TG e
) (22 3 ) (st () s 1)
i=1
= g(tht—hQ)7 (8)

where €p, (h, Hy_1) = ]% Yees Wn@)zt, 1@y €0, (hy Hi1) = 5 Y pcr, Ln(@)2H,_, (x), and
Q= {oy, Bi, v}t

Theorem 3.4 offers the opportunity of adaptively adjusting the coefficients («;, 5;, and ;) according
to the data (current domain data S; and the memory bank M = { Mi}z;}) and history model (H;_1)
at hand, thereby achieving the tightest bound. For example, when the HAH divergence between
domain ¢ and domain ¢, i.e., dyy a3 (D;, D;), is small, minimizing this unified bound (Eqn. 8) leads to
a large coefficient 5; and therefore naturally puts on more focus on cross-domain bound in Eqn. 35
which leverages the current domain ¢’s data to estimate the true risk.

UDIL as a Unified Framework. Interestingly, Eqn. 8 unifies various domain incremental learning
methods. Table 1 shows that different methods are equivalent to fixing the coefficients {«;, 5;, v: f;i
to different values (see Appendix B for a detailed discussion). For example, assuming default
configurations, LwF [52] corresponds to Eqn. 8 with fixed coefficients {o; = v; = 0,58; = 1};
ER [75] corresponds to Eqn. 8 with fixed coefficients {a; = f; = 0,v; = 1}, and DER++ [8]
corresponds to Eqn. 8 with fixed coefficients {a;; = 7; = 0.5, 5; = 0}, under certain achievable
conditions. Inspired by this unification, our UDIL adaptively adjusts these coefficients to search for
the tightest bound in the range [0, 1] when each domain arrives during domain incremental learning,
thereby improving performance. Corollary 3.4.1 below shows that such adaptive bound is always
tighter, or at least as tight as, any bounds with fixed coefficients.

Corollary 3.4.1. For any bound g(h, Hi_1, Qjiveq) (defined in Eqn. 8) with fixed coefficients Qizeq,
e.8g, Qivea = Qer = {o, = 5, =0,v;, = l}f;i for ER [75], we have

t
> eoi(h) <ming(h, Hy, Q) < g(h, Heo1, Qsea).  Vh, Hyy € H. ©)

Corollary 3.4.1 shows that the unified bound Eqn. 8 with adaptive coefficients is always preferable
to other bounds with fixed coefficients. We therefore use it to develop a better domain incremental
learning algorithm in Sec. 4 below.



4 Method: Adaptively Minimizing the Tightest Bound in UDIL

Although Theorem 3.4 provides a unified perspective for domain incremental learning, it does not
immediately translate to a practical objective function to train a model. It is also unclear what
coefficients €2 for Eqn. 8 would be the best choice. In fact, a static and fixed setting will not suffice,
as different problems may involve different sequences of domains with dynamic changes; therefore
ideally 2 should be dynamic (e.g., «; # a;11) and adaptive (i.e., learnable from data). In this section,
we start by mapping the unified bound in Eqn. 8 to concrete loss terms, discuss how the coefficients
) are learned, and then provide a final objective function to learn the optimal model.

4.1 From Theory to Practice: Translating the Bound in Eqn. 8 to Differentiable Loss Terms

(1) ERM Terms. We use the cross-entropy classification loss in Definition 4.1 below to optimize
domain #’s ERM term ép, (h) and memory replay ERM terms {~;ép, (h)}:Z1 in Eqn. 8.

Definition 4.1 (Classification Loss). Let h : R — SE~1 be a function that maps the input € R™
to the space of K -class probability simplex, i.e, SK~1 £ {z e RE : 2, > 0,3, 2, = 1}; let X be a
collection of samples drawn from an arbitrary data distribution and [ : R™ — [K] be the function
that maps the input to the true label. The classification loss is defined as the average cross-entropy
between the true label f(x) and the predicted probability h(x), i.e.,

Ta(h) 2 iy > {_ Z; 1s(a)—; - log ([h(w)]j)] : (10)

Following Definition 4.1, we replace €p, (h) and €p, (k) in Eqn. 8 with £, (h) and £, (h).

(2) Intra- and Cross-Domain Terms. We use the distillation loss below to optimize intra-
domain ({ep, (h, H;—1) ';;%) and cross-domain (ép, (h, H—1)) model-based error terms in Eqn. 8.

Definition 4.2 (Distillation Loss). Let h, H,_; : R™ — S¥~1 both be functions that map the input
x € R" to the space of K-class probability simplex as defined in Definition 4.1; let X be a collection
of samples drawn from an arbitrary data distribution. The distillation loss is defined as the average
cross-entropy between the target probability H,_1 (x) and the predicted probability h(x), i.e.,

K

Zx(h’Ht_l) = Ii/%f\ ZmGX {_ Zj:

Accordingly, we replace €p, (h, H;—1) with in (h, Hi—1) and €p, (h, H;_1) with th (h,He—1).

| [Hi1 ()], - log ([h(m)]j)} : (an

(3) Constant Term. The error term Zf;i (i + Bi)ep, (H¢—1) in Eqn. 8 is a constant and contains
no trainable parameters (since H;_; is a fixed history model); therefore it does not need a loss term.

(4) Divergence Term. In Eqn. 8, Z:;i Bidyan(Di, Di) measures the weighted average of the
dissimilarity between domain ¢’s and domain ¢’s data distributions. Inspired by existing adversarial
domain adaptation methods [57, 26, 109, 17, 102, 101, 94], we can further tighten this divergence
term by considering the embedding distributions instead of data distributions using an learnable
encoder. Specifically, given an encoder e : R® — R™ and a family of domain discriminators
(classifiers) H4, we have the empirical estimate of the divergence term as follows:

t—1 t—1 t—1
T : 1 1
'271 Bidyan(eUs), e(Uy)) =2 Eﬂ Bi — 2;252 Eﬂ Bi | E 1a,@)>0 + 77 E 1A,-(w)<o] ,

xclU; xcly

where U; (and U;) is a set of samples drawn from domain D; (and D;), d : R™ — St~lisa
domain classifier, and A;(x) = [d(e(x))]; — [d(e(x))]: is the difference between the probability
of x belonging to domain ¢ and domain ¢. Replacing the indicator function with the differentiable

cross-entropy loss, Zf;i Bidwan(e(U;), e(Uy)) above then becomes

23 -2 in 36 | & 3 s (lde@)))] + 4 Y - log<[d<e<w>>}t>]] )

deH
° reX; zeS,



Algorithm 1 Unified Domain Incremental Learning (UDIL) for Domain ¢ Training

Require: history model H;_y = P;_1 o E;_1, current model hy = poe, discriminator model dg;
Require: dataset from the current domain S;, memory bank M = {M;}!_1;

Require: training steps S, batch size B, learning rate 7;

Require: domain alignment strength coefficient A4, hyperparameter for generalization effect C'.

1: hg < Hi_1 > Initialization of the current model.
2: Q= {ay, Bi, i}« {V/3,1/3,1/3}, for Vi € [t — 1] > Initialization of the replay coefficient ).
3: fors=1,---,5do
4: By ~ 8B ~ M, Vi€ [t —1] > Sample a mini-batch of data from all domains.
5: G od—n-Aa-VyVi(d, e, Q) > Discriminator training with Eqn. 16.
6: Q< Q—n-VaoVoi(h, Q) > Find a tighter bound with Eqn. 15.
7 0 0—n-Vo(Vi(he, Q) — AiVa(d,e,))  >Model training with Eqn. 14 and Eqn. 16.
8: end for
9: Ht «— h
10: M <« BalancedSampling(M, S;)
11: return H; > For training on domain ¢ + 1.

4.2 Putting Everything Together: UDIL Training Algorithm

Objective Function. With these differentiable loss terms above, we can derive an algorithm that
learns the optimal model by minimizing the tightest bound in Eqn. 8. As mentioned above, to
achieve a tighter dy a3, we decompose the hypothesis as h = p o e, where e : R™ — R™ and
p: R™ — SE~1 are the encoder and predictor, respectively. To find and to minimize the tightest
bound in Theorem 3.4, we treat Q = {ay, 53, 'yi}f;% as learnable parameters and seek to optimize

the following objective (we denote as T = sg(x) the ‘copy-weights-and-stop-gradients’ operation):

min max Vi(h, ) + Vo1 (h, Q) — AaVa(d, e,Q2) (13)
{Q,h=poe} d

8.Lt. a; + Bi +vi =1, Vie{l1,2,...,t —1}
g, B,y >0, Vie{l,2,....t—1}

Details of V;, Vj.1, and V. V] is the loss for learning the model &, where the terms KA() are
differentiable cross-entropy losses as defined in Eqn. 10 and Eqn. 11:

[ () + @il (b He )| + s, () + (3 B)ls, (b Hiy). (14)

t

Vi) =3

Vb-1 is the loss for finding the optimal coefficient set ). Its loss terms use Definition 3.1 and Eqn. 12
to estimate ERM terms and HA’H-divergence, respectively:

t—1

o o [¢] t—1 [¢]
Voa(h Q) =3 {ma;i(h) + aiep, (h,Ht_n] + <Z, Bi)ep, (h, Hy-1)
t—1 ~
+ %27::1 Bidwan ( (Xi), e(Sy) ) + Z (a; + Bi)ep, (He-1)
(+3121 8)? = (iai)?
+c-\/< . +Zi_1<vj@>). (15)

In Eqn. 15, €.(-) uses discrete 0-1 loss, which is different from Eqn. 14, and a hyper-parameter

C = /8dlog (2eN/d) + 8log (2/9) is introduced to model the combined influence of H’s VC-
dimension and 4.

V,; follows Eqn. 12 to minimize the divergence between different domains’ embedding distribu-
tions (i.e., aligning domains) by the minimax game between e and d with the value function:

Va(d, e, ) (ZBJ > [~ log ([d( +Z° > [~log ([d(e(z))],)].  (16)

xS zeX;



(a) Example: 3D-Balls (b) Labels (c) Domains (d) Joint (91.083%, Oracle)

g™
(e) ER (82.255%) (f) DER++ (79.322%) (g) CLS-ER (85.844%) (h) UDIL (86.872%, Ours)

Figure 1: Results on HD-Balls. In (a-b), data is colored according to labels; in (c-h), data is colored
according to domain ID. All data is plotted after PCA [6]. (a) Simplified HD-Balls dataset with 3
domains in the 3D space (for visualization purposes only). (b-c) Embeddings of HD-Balls’s raw
data colored by labels and domain ID. (d-h) Accuracy and embeddings learned by Joint (oracle),
UDIL, and three best baselines (more in Appendix C.5). Joint, as the oracle, naturally aligns different
domains, and UDIL outperforms all baselines in terms of embedding alignment and accuracy.

Here in Eqn. 16, if an optimal d* and a fixed €2 is given, maximizing V(d*, e, ) with respect to the en-
coder e is equivalent to minimizing the weighted sum of the divergence Z:;} Bidyan(e(D;), e(Dy)).
This result indicates that the divergence between two domains’ embedding distributions can be ac-
tually minimized. Intuitively this minimax game learns an encoder e that aligns the embedding
distributions of different domains so that their domain IDs can not be predicted (distinguished) by a
powerful discriminator given an embedding e(x). Algorithm 1| below outlines how UDIL minimizes
the tightest bound. Please refer to Appendix C for more implementation details, including a model
diagram in Fig. 2.

S Experiments

In this section, we compare UDIL with existing methods on both synthetic and real-world datasets.

5.1 Baselines and Implementation Details

We compare UDIL with the state-of-the-art continual learning methods that are either specifi-
cally designed for domain incremental learning or can be easily adapted to the domain incre-
mental learning setting. For fair comparison, we do not consider methods that leverage large-
scale pre-training or prompt-tuning [99, 98, 53, 88]. Exemplar-free baselines include online Elas-
tic Weight Consolidation (0EWC) [81], Synaptic Intelligence (SI) [105], and Learning without
Forgetting (LWF) [52]. Memory-based domain incremental learning baselines include Gradient
Episodic Memory (GEM) [58], Averaged Gradient Episodic Memory (A-GEM) [10], Experience
Replay (ER) [75], Dark Experience Replay (DER++) [8], and two recent methods, Complementary
Learning System based Experience Replay (CLS-ER) [4] and Error Senesitivity Modulation based
Experience Replay (ESM-ER) [80] (see Appendix C.5 for more detailed introduction to the baseline
methods above). In addition, we implement the fine-tuning (Fine-tune) [52] and joint-training (Joint)
as the performance lower bound and upper bound (Oracle).

We train all models using three different random seeds and report the mean and standard deviation.
All methods are implemented with PyTorch [70], based on the mammoth code base [7, 8], and run
on a single NVIDIA RTX A5000 GPU. For fair comparison, within the same dataset, all methods
adopt the same neural network architecture, and the memory sampling strategy is set to random



Table 2: Performances (%) on HD-Balls, P-MNIST, and R-MNIST. We use two metrics, Average
Accuracy and Forgetting, to evaluate the methods’ effectiveness. “1” and “|” mean higher and
lower numbers are better, respectively. We use boldface and underlining to denote the best and the
second-best performance, respectively. We use “-” to denote “not appliable”.

HD-Balls P-MNIST R-MNIST

Method Buffer Avg. Acc (1) Forgetting (1) Avg. Acc () Forgetting () Avg. Acc (t) Forgetting ()

Fine-tune - 52.319+0.024  43.520+0079  70.102+2945 27.522+3.042 47.803+1.703  52.281+1.797
oEWC [81] - 54.131+0.193  39.743+1388  78.476+1223  18.068+1.321  48.203+0827  51.181+0.867
SI[105] - 52.303+0.037  43.175+0041  79.045+1357 17.409+1.446  48.251+1381  51.053+1.507
LwF [52] - 51.523+0065  25.15540264  73.545+2646  24.556+2789  54.709+0515  45.473+0.565
GEM [58] 69.747+0656  13.5914+0779  89.097+0.149  6.975+0.167  76.619+0581  21.289+0.579
A-GEM [10] 62.777+02905 12.878+1.588  87.560+0.087  8.577+0053  59.654+0.122  39.196+0.171
ER [75] 82.255+1552 9.524+1655  88.339+0044  7.180+0.029  76.794+0.69  20.696+0.744
DER++ [8] 400 79.332+1347  13.762+1514  92.950+0361  3.378+0.245 84.258+0.544  13.692+0.560
CLS-ER [4] 85.844+0.165  5.29740.281 91.598+0.117  3.795+0.144  81.771+0354  15.45540.356
ESM-ER [80] 71.995+3.833  13.245+5397  89.829+0.698  6.888+0738  82.192+0.164  16.195+0.150
UDIL (Ours) 86.872+0.195  3.428+0359  92.666+0.108  2.853+0.107  86.635+0.686  8.506+1.181
Joint (Oracle) oo 91.083+0.332 - 96.368+0.042 - 97.150+0.036 -

balanced sampling (see Appendix C.2 and Appendix C.6 for more implementation details on training).
We evaluate all methods with standard continual learning metrics including ‘average accuracy’,
‘forgetting’, and ‘forward transfer’ (see Appendix C.4 for detailed definitions).

5.2 Toy Dataset: High-Dimensional Balls

To gain insight into UDIL, we start with a toy dataset, high dimensional balls on a sphere (referred
to as HD-Balls below), for domain incremental learning. HD-Balls includes 20 domains, each
containing 2,000 data points sampled from a Gaussian distribution N (u, 0.221). The mean p is
randomly sampled from a 100-dimensional unit sphere, i.e., {r € R : ||p||o = 1}; the covariance
matrix X is fixed. In HD-Balls, each domain represents a binary classification task, where the decision
boundary is the hyperplane that passes the center p and is tangent to the unit sphere. Fig. 1(a-c)
shows some visualization on HD-Balls.

Column 3 and 4 of Table 2 compare the performance of our UDIL with different baselines. We can see
that UDIL achieves the highest final average accuracy and the lowest forgetting. Fig. 1(d-h) shows the
embedding distributions (i.e., e(x)) for different methods. We can see better embedding alignment
across domains generally leads to better performance. Specifically, Joint, as the oracle, naturally
aligns different domains’ embedding distributions and achieves an accuracy upper bound of 91.083%.
Similarly, our UDIL can adaptively adjust the coefficients of different loss terms, including Eqn. 12,
successfully align different domains, and thereby outperform all baselines.

5.3 Permutation MNIST

We further evaluate our method on the Permutation MNIST (P-MNIST) dataset [50]. P-MNIST in-
cludes 20 sequential domains, with each domain constructed by applying a fixed random permutation
to the pixels in the images. Column 5 and 6 of Table 2 show the results of different methods. Our
UDIL achieves the second best (92.666%) final average accuracy, which is only 0.284% lower than
the best baseline DER++. We believe this is because (i) there is not much space for improvement
as the gap between joint-training (oracle) and most methods are small; (ii) under the permutation,
different domains’ data distributions are too distinct from each other, lacking the meaningful rela-
tions among the domains, and therefore weakens the effect of embedding alignment in our method.
Nevertheless, UDIL still achieves best performance in terms of forgetting (2.853%). This is mainly
because our unified UDIL framework (i) is directly derived from the total loss of all domains, and (ii)
uses adaptive coefficients to achieve a more balanced trade-off between learning the current domain
and avoiding forgetting previous domains.



Table 3: Performances (%) evaluated on Seq-CORe50. We use three metrics, Average Accuracy,
Forgetting, and Forward Transfer, to evaluate the methods’ effectiveness. “1” and “]”” mean higher
and lower numbers are better, respectively. We use boldface and underlining to denote the best and
the second-best performance, respectively. We use “-” to denote “not appliable” and “x” to denote
out-of-memory (OOM) error when running the experiments.

Di:3 Dy:s Dr.9 Dio:11 Overall
Method Bufer Avg. Acc (1) Avg. Acc (1) Forgetting (1) Fwd. Transfer ()
Fine-tune - 73.707+13.144  34.551+1254  29.40642579  28.689+3.144  31.832+1034  73.296+1399 15.153+0.255
oEWC [81] - 74.567+13360 3591540260 30.174+3.195 28.291+2522 30.813+1.154  74.563+0.937 15.041+0.249
SI[105] - 74.661+14162  34.345+1001  30.127+2971  28.83943.631 32.469+1315  73.144+1.588 14.837+1.005
LwF [52] - 80.383+10.190 28.357+1.143  31.386+0787 28.711+2981 31.692+0768  72.990+1.350 15.356+0.750
GEM [58] 79.852+6864 38.961+1.718 39.258+2614 36.859+0842 37.701+0273 22.724+1.554 19.030+0.936
A-GEM [10] 80.348+9394  41.472+3304 4321341542  39.18143.999 43.181+2025 33.775+3.003 19.033+0.792
ER [75] 90.838+2.177  79.343+2699 68.151+0226 65.034+1571  66.605+0214  32.750+0.455 21.735+0.802
DER++ [8] 500 92.444+1764  88.652+1.854 80.391+0.107 78.038+0591  78.629+0.753  21.910+1.094 22.488+1.049
CLS-ER [4] 89.834+1323  78.909+1.724  70.591+0322 * * * *
ESM-ER [80] 84.905+6471  51.905+3257  53.815+1770 50.178+2.574 52.751+1296  25.444+0.580 21.435+1.018
UDIL (Ours) 98.152+1.665 89.814+2302 83.052+0.151  81.547+0.269 82.103+0279 19.589-+0.303 31.215+0.831
Joint (Oracle) oo - - - - 99.137+0.049 -

5.4 Rotating MNIST

We also evaluate our method on the Rotating MNIST dataset (R-MNIST) containing 20 sequential
domains. Different from P-MNIST where shift from domain ¢ to domain ¢ + 1 is abrupt, R-MNIST’s
domain shift is gradual. Specifically, domain ¢’s images are rotated by an angle randomly sampled
from the range [9° - (¢ — 1),9° - ¢). Column 7 and 8 of Table 2 show that our UDIL achieves the
highest average accuracy (86.635%) and the lowest forgetting (8.506%) simultaneously, significantly
improving on the best baseline DER++ (average accuracy of 84.258% and forgetting of 13.692%).
Interestingly, such improvement is achieved when our UDIL’s j3; is high, which further verifies that
UDIL indeed leverages the similarities shared across different domains so that the generalization
error is reduced.

5.5 Sequential COReS50

CORe50 [55, 56] is a real-world continual object recognition dataset that contains 50 domestic objects
collected from 11 domains (120,000 images in total). Prior work has used CORe50 for settings such
as domain generalization (e.g., train a model on only 8 domains and test it on 3 domains), which
is different from our domain-incremental learning setting. To focus the evaluation on alleviating
catastrophic forgetting, we retain 20% of the data as the test set and continually train the model on
these 11 domains; we therefore call this dataset variant Seq-CORe50. Table 3 shows that our UDIL
outperforms all baselines in every aspect on Seq-CORe50. Besides the average accuracy over all
domains, we also report average accuracy over different domain intervals (e.g., D;.3 denotes average
accuracy from domain 1 to domain 3) to show how different model’s performance drops over time.
The results show that our UDIL consistently achieves the highest average accuracy until the end.
It is also worth noting that UDIL also achieves the best performance on another two metrics, i.e.,
forgetting and forward transfer.

6 Conclusion

In this paper, we propose a principled framework, UDIL, for domain incremental learning with
memory to unify various existing methods. Our theoretical analysis shows that different existing
methods are equivalent to minimizing the same error bound with different fixed coefficients. With
this unification, our UDIL allows adaptive coefficients during training, thereby always achieving the
tightest bound and improving the performance. Empirical results show that our UDIL outperforms
the state-of-the-art domain incremental learning methods on both synthetic and real-world datasets.
One limitation of this work is the implicit i.i.d. exemplar assumption, which may not hold if memory
is selected using specific strategies. Addressing this limitation can lead to a more powerful unified
framework and algorithms, which would be interesting future work.
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