


TAMP that is inherently asynchronous and does not require

complex scheduling, (2) the identification of fundamental

challenges raised by this problem, and (3) the proposal of a

search algorithm that incorporates promising heuristics.

II. THE MR-TAMP REFINEMENT PROBLEM

A. Notations and assumptions

Consider R robots, indexed as {r}Rr=1
, manipulating ob-

jects to achieve a goal in a 3D workspace. The workspace

consists of M movable objects, such as cups and plates,

indexed as {m}Mm=1
and F fixed objects, such as tables

and shelves, indexed as {f}Ff=1
. We denote W workspace

regions as {w}Ww=1
, where movable objects can be placed,

such as the surface of the table and the space on the shelf,

inspired by the work [13].

While our framework is not necessarily restricted to

homogeneous robots (i.e., robots with the same shapes,

degrees of freedom, and abilities to move and manipulate),

in this paper, we consider homogeneous robots for the

sake of notational convenience. Each robot r operates in

a d-dimensional configuration space whose configuration is

represented as qr ∈ Cr ⊂ R
d. The pose of a movable

object m is denoted as pm ∈ Pm ⊂ SE (3). Then, the

composite configuration space for all robots and movable

objects becomes C =
∏R

r=1
Cr ×

∏M

m=1
Pm. We denote the

free space of the composite configuration space as CF, which

represents all possible configurations of robots and movable

objects that are positioned stably and do not collide with each

other and with fixed objects. Correspondingly, the obstacle

space is defined as CO = C \ CF.

We assume quasi-static dynamics in the world, which

implies that movable objects remain stable after being manip-

ulated by robots. Additionally, we assume that each movable

object can be manipulated by a single robot. Furthermore,

we assume deterministic transition effects, full observability,

and lossless communication among robots. While our focus

in this work is on pick-and-place tasks where geometric con-

straints are of major concern, our ultimate aim is to position

this work as a foundational framework in MR-TAMP that

can effectively address a wider range of practical challenges

in the future, including those that relax the assumptions

mentioned in this paragraph.

B. Mode-based abstract actions

We employ the notion of a mode [14]±[17], denoted by

σ, which specifies a constraint submanifold of CF, to define

actions. These modes are determined by the contact points

between the robot and the movable object (e.g., robot r

grasping movable object m), while the remaining objects

remain stationary. We consider two types of modes: a transit

mode σS where a robot moves with an empty hand, and

a transfer mode σF where a robot moves while holding a

movable object. The transition between two adjacent modes

can be facilitated through a transition configuration, which

represents the robot’s grasping or placing configuration.

We define the abstract action based on these two

modes. Let the abstract action be a =
{

σS(r,m,w,w′),
σF(r,m,w,w′)

}

. σS(r,m,w,w′) indicates that robot r

moves from workspace region w to another workspace region

w′ with an empty hand in order to grasp movable object m

located in w′. σF(r,m,w,w′) indicates that robot r, while

already grasping movable object m in workspace region w,

moves and places it in another workspace region w′. These

actions are still abstract because continuous parameters, such

as robot configurations {qr}
R
r=1

and object poses {pm}Mm=1
,

are not yet specified. Abstract actions may encompass both

arm and base motions, as illustrated in Figure 1.

C. H-CSP for refinement

We formulate the refinement of abstract actions into

fully specified actions that robots can execute as an H-

CSP problem. This problem involves assigning values from

the domains of variables while ensuring that the assigned

values do not violate any constraints. The variable set is

defined as V =
{

{vqr}
R
r=1

, {vgr}
R
r=1

, {vpm}Mm=1

}

, where vqr is

a transition configuration variable for robot r, vgr is a grasp

variable for robot r, and vpm is a pose variable for movable

object m. The domains for these variables are defined as

follows: for vqr , Dq
r = Cr; for vgr , Dg

r = ∪M
m=1

Gr,m; and

for vpm, Dp
m = Pm. Here, Gr,m ∋ gr,m = (r,m, γr,m)

indicates that robot r grasps movable object m with a

relative transformation γr,m between the pose of the robot

r’s end-effector and the pose of the object pm. The abstract

actions are associated with variables as goal variables, where

σS(r,m,w,w′) includes vqr and vgr , while σF(r,m,w,w′)
includes vqr and vpm.

We present the mode-specific constraints, which are pa-

rameterized, that the assigned values must satisfy as follows:

• Motion
(

qr, q
′

r;Gr = (Vr, Er)
)

represents a reachability

constraint for robot r from a start configuration qr to a goal

configuration q′r. This constraint is verified by applying ex-

isting motion planners. In our case, we utilize probabilistic

roadmap (PRM [18]) planners, which are a well-known

sampling-based motion planner. These planners generate a

roadmap data structure Gr = (Vr, Er), where the vertex

set Vr consists of robot r’s configurations, and the edge

set Er consists of edges (often straight lines in Cr) that

connect pairs of vertices in Vr. The PRM planners assist

in finding a path that connects the start configuration qr
and the goal configuration q′r.

• CFree
(

{qr}
R
r=1

, {pm}Mm=1
, {f}Ff=1

)

ensures that there

are no pairwise collisions among robots at {qr}
R
r=1

config-

urations, movable objects at {pm}Mm=1
poses, and fixed ob-

jects {f}Ff=1
. Eventually, the tensor product of individual

roadmaps {Gr}
R
r=1

, as shown in the Motion constraint,

must find R paths corresponding to R robots that satisfy

this CFree constraint.

• Kin(qr, gr,m, pm) guarantees the existence of a kinematic

solution for grasping movable object m at pose pm with

grasp gr,m and robot r’s configuration qr.

• Grasp(gr,m, pm) represents a graspability constraint, in-

dicating that a movable object at pose pm can be grasped

with grasp gr,m.

• Hold(r,m) ensures that movable object m is securely

attached to the hand of robot r. When this constraint



is activated, it affects other constraints in the following

manner. In the CFree constraint, the pose pm of movable

object m is no longer considered directly, but can be

computed based on grasp gr,m and robot r’s configuration

qr. Additionally, the collision detection between robot r

and movable object m is no longer considered in the

CFree constraint. Furthermore, it prevents the activation

of Grasp constraints for other robots besides r, ensur-

ing that the same movable object cannot be grasped by

multiple robots while it is already being held.

• Contain(m,w) constrains that movable object m is

stably placed within workspace region w.

Among the constraints, Motion, CFree, and Kin are

always applied to both types of abstract actions, σS and σF.

Grasp and Contain constraints serve as goals within the

abstract actions. The constraints applied for each type of

abstract action are presented as follows:

• σS: Motion, CFree, Kin, and Grasp.

• σF: Motion, CFree, Kin, Hold, and Contain.

Note that we do not introduce a constraint enforcing the

synchronous start and end of abstract actions for all robots,

characterizing the synchronous approach. Therefore, our

formulation strictly generalizes the synchronous formulation.

D. The proposed problem

In this work, we address a partial problem where ground

abstract actions for all robots are provided, which means

that the arguments r, m, w, and w′ are grounded in all

instances of σS and σF, as well as the ordering among abstract

actions. However, we still need to assign values to the

variables of the corresponding abstract actions that satisfy the

constraints specified in Section II-C. This particular approach

is referred to as the sequence-before-satisfy strategy in the

TAMP literature [1], and our focus is on addressing the

satisfy part, or refinement, assuming that sequencing is given.

Specifically, we are provided with a tuple
〈

{aAr

r }Rr=1
,≺

〉

,

where aAr

r represents a set of abstract actions for robot r,

and Ar is an index set specific to robot r, allowing robots

to have different cardinalities of abstract actions. ≺ is a set

of ordering constraints that determine the sequencing of the

provided abstract actions.

It is important to note that these ordering constraints can

apply not only to abstract actions of the same robot but

also to abstract actions of different robots. For instance, if

movable object m is initially placed in workspace region w,

then the refinement of σS(r,m,w′, w′′) for robot r cannot be

carried out until another robot r′ executes σS(r′,m,w,w′),
as the movable object m is not yet located within the

workspace region w′.

Furthermore, ≺ does not specify the ordering between

every pair of abstract actions from {aAr

r }Rr=1
. ≺ is minimally

given in the sense that it only specifies the sequence of

workspace regions where each movable object is placed. Any

orderings that require geometric reasoning are not included

and must be determined by solving the refinement problem.

For instance, suppose workspace region w has limited space.

In that case, robot r can only feasibly place movable object

m in workspace region w (e.g., σF(r,m,w′, w)) after another

robot r′ removes another movable object m′ from the same

workspace region (e.g., σF(r′,m′, w, w′)), creating empty

space in workspace region w.

Let s0 =
(

(qr)
R
r=1

, (pm)Mm=1

)

represent the initial state,

specifying the initial configurations of all robots and the

initial poses of all movable objects. The refinement problem

is then defined as follows: given a tuple
〈

{aAr

r }Rr=1
,≺, s0

〉

,

the goal is to find valid assignments of variables defined in

Section II-C for all abstract actions {aAr

r }Rr=1
, potentially in-

troducing additional ordering constraints while respecting the

given ordering constraints and the mode-specific constraints.

III. ALGORITHM

Solving the proposed problem while respecting all the

constraints simultaneously is highly challenging, as even a

single robot TAMP problem is known to be intractable (i.e.,

PSPACE-hard [19]). Additionally, explicitly constructing a

composite roadmap from {Gr}
R
r=1

is computationally ex-

pensive, especially considering the exponential increase in

the number of samples required by the motion planner (such

as PRM in our case) to cover the composite configuration

space for all robots (i.e.,
∏R

r=1
Cr). Moreover, the path for an

abstract action and its length can only be determined after it

has been computed by the motion planner, making it difficult

to anticipate in advance when a robot will place a movable

object. Consequently, it is challenging to identify when the

CFree constraints are affected by the Hold constraints

without evaluating all the relevant Motion constraints.

A. Overall framework

We propose a heuristic-based search algorithm to ef-

ficiently solve the refinement problem, incorporating the

following four principles.

(1) Least commitment: We follow the least commitment

principle [20], avoiding the introduction of additional order-

ing constraints unless absolutely necessary. This approach

increases the size of the feasible solution space, leading to a

more diverse set of solutions.

(2) Sequential heuristics: Instead of solving the problem

in one step, we decompose it into a sequence of subproblems.

We relax the problem by neglecting some of the mode-

specific constraints, creating a relaxed problem that serves

as a necessary condition for the subsequent problem in

the sequence. The first subproblem is the most relaxed,

and as we progress through the sequence, the neglected

constraints are reintroduced incrementally. Additionally, the

relaxed problem provides heuristics for guiding the search

in the next subproblem. This decomposition approach is

appealing because it can efficiently find a solution if one

exists or effectively detect infeasibility in the early stage

of the sequence. The flow chart illustrating this process is

depicted in Figure 2.

(3) Implicit time representation: Unlike many existing

multi-robot task planning or TAMP approaches that explicitly

represent time for temporal planning, our formulation and

algorithm do not require explicit time representation. This

approach avoids the complexity of introducing a scheduling





ignoring other robots. As for the remaining object-related

arguments, we retrieve the collision information cached in

the previous step, which indicates which objects must be

considered for collision checking. Since collisions among

objects have already been confirmed in the previous step,

we only assess collisions between robot r and the relevant

objects using the CFree constraint.

Since the Grasp constraint is associated with the mode

σS, we first find a valid assignment for the grasp variable

vgr corresponding to the abstract action σS by sampling a

predetermined number of grasps. Once a valid grasp is found,

we compute qr with respect to the grasp gr,m using the Kin

constraint. In the case of a mobile manipulator, as used in

our experiments, computing qr involves determining a base

pose and subsequently solving an inverse kinematic problem

(i.e., Kin) to verify reachability to grasp gr,m [25]. This

computed qr is for the abstract action σS. Similarly, the same

grasp gr,m is used to find another q′r for the corresponding

abstract action σF. The computed configurations qr and q′r
are then used in their respective CFree constraints to ensure

collision-free transition configurations.

If valid transition configurations can be found for all the

abstract actions {aAr

r }Rr=1
from the set of possible grasp

samples, we can proceed to the next step. However, if valid

transition configurations cannot be found, we have three

options. First, we can choose to stop the process as explained

in the previous step, indicating that a solution cannot be

found. Second, we can backtrack to the previous step and

explore unevaluated combinations of placement samples to

potentially find valid transition configurations. To improve

efficiency, we can also inform the previous step about the

cause of failure, allowing suitable ordering constraints to

be added and prevent the same failures in future attempts.

Lastly, we can increase the number of grasp samples and

reevaluate this step to improve the chances of finding valid

transition configurations.

D. Individual motion planning

Even after obtaining feasible transition configurations, as

mentioned in the fourth principle, solving for paths of all

robots simultaneously by explicitly constructing a composite

roadmap is a challenging task. To address this complexity,

we leverage the discrete RRT (dRRT [23], [24]) algorithm,

which is built upon the subdimensional expansion concept.

The dRRT algorithm is specifically designed for solving

single-modal motion planning problems involving multiple

robots. In our algorithm, we extend the capabilities of dRRT

in two aspects: (1) individual motion planning is general-

ized to multi-modal motion planning, considering multiple

abstract actions, and (2) our algorithm accommodates robots

holding objects, which affects the collision-checking process.

In this step, we focus on considering the Motion and

Hold constraints, given feasible transition configurations.

During individual motion planning, we still disregard the

presence of other robots. Furthermore, we assume that all

movable objects, except for the one held by the correspond-

ing robot, have been placed in their respective workspace

regions, as determined in the movable object placement step.

As a result, the CFree constraint still includes the same

arguments as in the previous transition configuration step.

However, the Hold constraint allows for collision between

the robot and the movable object it holds.

Unlike the previous steps, we decompose this subprob-

lem into multiple individual motion planning problems.

Specifically, we can find a sequence of abstract actions for

each robot from
〈

{aAr

r }Rr=1
,≺

〉

and apply PRM to each

abstract action in the sequence. In this case, the transition

configurations serve as start and goal configurations, and we

generate a predetermined number of samples in the respective

configuration space Cr. Throughout this process, we apply

the CFree and Hold constraints as mentioned before. This

subproblem can be seen as verifying the reachability from

the start transition configuration of the first abstract action to

the goal transition configuration of the last abstract action.

If valid individual paths can be found for all robots, we

can proceed to the last step. Otherwise, we have the same

three options as in the transition configuration step.

E. Composite motion planning

We are now ready to consider all the intact mode-

specific constraints introduced in Section II-C by merging

the individual paths obtained from the previous step. This

step involves constructing a tensor-product roadmap from

individual roadmaps {GAr

r = (V Ar

r , EAr

r )}Rr=1
, where Ar

is the abstract action index set for robot r. We denote the

resulting tensor-product roadmap as G = (V,E). In G, the

set of vertices V is the Cartesian product of the vertices from

{GAr

r }Rr=1
, represented as V = {(v1, ..., vr, ..., vR)|∀r vr ∈

V Ar

r }. The set of edges E is defined as E =
{(

(v1, ..., vr, ..., vR), (v
′

1
, ..., v′r, ..., v

′

R)
)∣

∣∀i ∃(vr, v
′

r)
(

(vr,
v′r) ∈ EAr

r ∨ vr = v′r
)}

. Note that in E, the condition vr =
v′r allows some robots to remain stationary. However, since

robot-robot collisions and collisions between robots and

movable objects held by other robots were not considered

in the CFree constraint in the previous steps, some edges

in E may contain collision paths among robots.

Due to limited space, we provide a brief explanation of

how dRRT works and how we modify it for our problem. For

detailed explanations, please refer to the works [23], [24].

dRRT is based on RRT [26] and serves as the underlying

framework for constructing the composite search graph G.

dRRT incrementally builds G by sampling configurations in

the composite configuration space
∏R

r=1
Cr and connecting

them using an oracle function that searches for neighboring

vertices. The oracle function finds the nearest neighbor vertex

vr and another neighbor vertex v′r within the individual

roadmap GAr

r for a given sampled configuration. During the

composite search, the intact CFree and Hold constraints,

as explained in Section II-C, are used to ensure collision-free

and object-holding paths.

During the composite search, when the goal configuration

(i.e., transition configuration) of one robot’s roadmap is

reached, the next roadmap for the same robot is considered.

The ordering constraints ≺ are taken into account in the



composite search, ensuring that no adjacent edges connected

to a goal configuration of the corresponding roadmap are

used until another robot’s roadmap, as determined by ≺, is

reached.

If the modified dRRT algorithm finds a valid composite

path for all robots, we declare that a solution path satisfying

the mode-specific constraints and ordering constraints has

been found, given the input
〈

{aAr

r }Rr=1
,≺, s0

〉

. dRRT has its

own time limit, and if this limit is exceeded, we backtrack

to the previous step. Additionally, we set an overall time

limit for the entire process, and if this limit is exceeded, the

algorithm terminates with no solution.

IV. EXPERIMENTS

We perform two sets of experiments in PyBullet [27] to

evaluate the performance of the proposed algorithm. (1) Ab-

lation study: We analyze the effectiveness of decomposition

by comparing planning time with merged hierarchies. (2)

Comparison with the synchronous approach: We evaluate the

makespan (i.e., the execution time of the last robot) of our

algorithm against the synchronous method to highlight our

method’s ability to discover more effective solutions.

All the experiments are conducted using the task shown in

Figure 1. We consider mobile manipulators as our robots with

three and seven-dimensional configuration spaces for base

motion and arm motion, respectively. Each abstract action

consists of a sequence of three motion planning problems:

base motion reaching a desired base position, arm motion

grasping a target object, and arm motion returning to a home

position. Base poses and grasp poses are all sampled, as

is typically done in the literature [16], [25]. Due to the

limited space, we provide the details of the task, such as

specifications of input tuple
〈

{aAr

r }Rr=1
,≺

〉

, in the video.

As the task contains 15 abstract actions, there are a total

of 45 individual motion planning problems to solve the task.

We report the results in Table I, where statistics are collected

by solving the problem with 25 different random seeds.

Algorithms Our algorithm MERGE 1&2 MERGE 1±3

Planning time (s) 324.7± 40.2 371.2± 54.6 −

Algorithms Our algorithm Synchronous

Makespan (simulation steps) 5118.3± 148.4 7432.1± 211.8

TABLE I: Experimental results. The numbers represent mean and
95% confidence interval. − implies that all instances take longer
than 10 minutes to solve.

Ablation study: Since the importance of the decompo-

sition between Steps 3 and 4 is emphasized in dRRT [23],

[24], we focus on the importance of decomposition among

Steps 1, 2, and 3. The first ablation is to merge Steps 1 and

2 (i.e., MERGE 1&2), and the second one is to merge Steps

1, 2, and 3 (i.e., MERGE 1±3).

The results in the first row of Table I indicate that

useful heuristics can be found by decomposition, and thus, a

solution is found quickly. MERGE 1±3 takes longer than 10
minutes in all instances due to the generation of unnecessary

motion planning problems in Step 3 that do not lead to a

solution. We observe some differences between our algorithm

and MERGE 1&2, but they are not significant. This implies

that, although MERGE 1&2 had to solve many unnecessary

inverse kinematic problems, the heuristic found by Step 2 is

powerful in solving the rest of the problem, as Steps 3 and

4 consume the majority of planning time.

Comparison with the synchronous approach: In the

synchronous approach, all robots either leave and arrive at

their corresponding transition configurations at the same time

or remain idle during that time period. In tasks where robots

manipulate objects in the same workspace regions (e.g., all

robots converge at workspace region 3), if the planner does

not find feasible transition configurations for all robots, some

robots need to remain idle. Moreover, robots 2 and 3 can only

start moving to workspace region 3 after robot 1 places an

object there.

Makespan results in the second row of Table I support

that our asynchronous algorithm is more execution time

efficient than the synchronous one, which aligns with the

above observations. In any case, the synchronous approach

is impractical; if one of the abstract actions requires a robot

to move a long distance, all the remaining robots must wait.

V. RELATED WORK

In this section, we briefly review existing MR-TAMP

research, in addition to those referred to in the introduc-

tion, which rely on pre-discretization or the synchronous

approach. Various task types have been investigated, such

as assembly [28]±[30] and clutter removal [31]. Challenges

that have not been addressed in this work are discussed in

the context of MR-TAMP, including decentralized commu-

nication [5] and spatial and temporal uncertainty [32].

One distinguishing feature of this work is its implicit time

representation, whereas the majority of existing works [29],

[30], [33], [34] reason about time explicitly, which incurs the

relatively complex overhead of task scheduling.

To solve MR-TAMP problems efficiently, various approxi-

mations have been introduced, including state space decom-

position [34]±[36] and shared space graph [37]. Although

incorporating approximations may lead to a loss of feasibility

guarantees, it is an interesting avenue for future research.

Optimization-based approaches [29], [38] have made

progress in MR-TAMP by leveraging logic-geometric pro-

gramming [39]. The most recent work [29] in this direction

focuses on the assembly task but still relies on explicit time

representations.

VI. CONCLUSION

In this work, we formulate a general MR-TAMP problem

as H-CSP when a task plan is given, which is inherently

asynchronous. We propose a refinement planning algorithm

driven by design principles and evaluate its efficiency and

advantages over the synchronous approach in simulation.

An immediate direction for future work is to develop a

partial-order task planner capable of generating the input

tuple of abstract actions and ordering constraints to complete

the framework. This framework should facilitate bidirectional

communication between the task planner and the proposed

refinement planner to support full integration.



REFERENCES

[1] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kael-
bling, and T. Lozano-PÂerez, ªIntegrated task and motion planning,º
Annual review of control, robotics, and autonomous systems, vol. 4,
pp. 265±293, 2021.

[2] R. Stern, N. Sturtevant, A. Felner, S. Koenig, H. Ma, T. Walker, J. Li,
D. Atzmon, L. Cohen, T. Kumar et al., ªMulti-agent pathfinding: Defi-
nitions, variants, and benchmarks,º in Proceedings of the International

Symposium on Combinatorial Search, vol. 10, no. 1, 2019, pp. 151±
158.

[3] A. Madridano, A. Al-Kaff, D. MartÂın, and A. De La Escalera, ªTra-
jectory planning for multi-robot systems: Methods and applications,º
Expert Systems with Applications, vol. 173, p. 114660, 2021.

[4] K. Brown, O. Peltzer, M. A. Sehr, M. Schwager, and M. J. Kochen-
derfer, ªOptimal sequential task assignment and path finding for
multi-agent robotic assembly planning,º in 2020 IEEE International

Conference on Robotics and Automation (ICRA). IEEE, 2020, pp.
441±447.

[5] Y. Chen, U. Rosolia, and A. D. Ames, ªDecentralized task and path
planning for multi-robot systems,º IEEE Robotics and Automation

Letters, vol. 6, no. 3, pp. 4337±4344, 2021.

[6] R. Shome and K. E. Bekris, ªSynchronized multi-arm rearrangement
guided by mode graphs with capacity constraints,º in Algorithmic

Foundations of Robotics XIV: Proceedings of the Fourteenth Workshop

on the Algorithmic Foundations of Robotics 14. Springer, 2021, pp.
243±260.

[7] T. Pan, A. M. Wells, R. Shome, and L. E. Kavraki, ªA general task
and motion planning framework for multiple manipulators,º in 2021

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). IEEE, 2021, pp. 3168±3174.

[8] H. Zhang, S.-H. Chan, J. Zhong, J. Li, S. Koenig, and S. Nikolaidis,
ªA mip-based approach for multi-robot geometric task-and-motion
planning,º in 2022 IEEE 18th International Conference on Automation

Science and Engineering (CASE). IEEE, 2022, pp. 2102±2109.

[9] J. Ahn, C. Kim, and C. Nam, ªCoordination of two robotic manipula-
tors for object retrieval in clutter,º in 2022 International Conference

on Robotics and Automation (ICRA). IEEE, 2022, pp. 1039±1045.

[10] T. Lozano-PÂerez and L. P. Kaelbling, ªA constraint-based method
for solving sequential manipulation planning problems,º in 2014

IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2014, pp. 3684±3691.

[11] M. De Weerdt and B. Clement, ªIntroduction to planning in multiagent
systems,º Multiagent and Grid Systems, vol. 5, no. 4, pp. 345±355,
2009.

[12] A. Torreño, E. Onaindia, A. Komenda, and M. Štolba, ªCooperative
multi-agent planning: A survey,º ACM Computing Surveys (CSUR),
vol. 50, no. 6, pp. 1±32, 2017.

[13] D. Berenson, S. Srinivasa, and J. Kuffner, ªTask space regions: A
framework for pose-constrained manipulation planning,º The Interna-

tional Journal of Robotics Research, vol. 30, no. 12, pp. 1435±1460,
2011.

[14] T. SimÂeon, S. Leroy, and J.-P. Lauumond, ªPath coordination for
multiple mobile robots: A resolution-complete algorithm,º IEEE trans-

actions on robotics and automation, vol. 18, no. 1, pp. 42±49, 2002.

[15] K. Hauser and J.-C. Latombe, ªMulti-modal motion planning in non-
expansive spaces,º The International Journal of Robotics Research,
vol. 29, no. 7, pp. 897±915, 2010.

[16] C. R. Garrett, T. Lozano-Perez, and L. P. Kaelbling, ªFfrob: Lever-
aging symbolic planning for efficient task and motion planning,º The

International Journal of Robotics Research, vol. 37, no. 1, pp. 104±
136, 2018.

[17] W. Vega-Brown and N. Roy, ªAsymptotically optimal planning un-
der piecewise-analytic constraints,º in Algorithmic Foundations of

Robotics XII. Springer, 2020, pp. 528±543.

[18] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, ªProb-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,º IEEE transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566±580, 1996.

[19] J. Canny, The complexity of robot motion planning. MIT press, 1988.

[20] D. S. Weld, ªAn introduction to least commitment planning,º AI

magazine, vol. 15, no. 4, pp. 27±27, 1994.

[21] C. Boutilier and R. I. Brafman, ªPartial-order planning with concurrent
interacting actions,º Journal of Artificial Intelligence Research, vol. 14,
pp. 105±136, 2001.

[22] G. Wagner and H. Choset, ªSubdimensional expansion for multirobot
path planning,º Artificial Intelligence, vol. 219, pp. 1±24, 2015.

[23] K. Solovey, O. Salzman, and D. Halperin, ªFinding a needle in an
exponential haystack: Discrete rrt for exploration of implicit roadmaps
in multi-robot motion planning,º The International Journal of Robotics

Research, vol. 35, no. 5, pp. 501±513, 2016.
[24] R. Shome, K. Solovey, A. Dobson, D. Halperin, and K. E. Bekris,

ªdrrt*: Scalable and informed asymptotically-optimal multi-robot mo-
tion planning,º Autonomous Robots, vol. 44, no. 3, pp. 443±467, 2020.

[25] R. Diankov, ªAutomated construction of robotic manipulation pro-
grams,º 2010.

[26] S. M. LaValle et al., ªRapidly-exploring random trees: A new tool for
path planning,º 1998.

[27] E. Coumans and Y. Bai, ªPybullet, a python module for physics sim-
ulation for games, robotics and machine learning,º http://pybullet.org,
2016±2021.

[28] R. A. Knepper, T. Layton, J. Romanishin, and D. Rus, ªIkeabot:
An autonomous multi-robot coordinated furniture assembly system,º
in 2013 IEEE International conference on robotics and automation.
IEEE, 2013, pp. 855±862.

[29] V. N. Hartmann, A. Orthey, D. Driess, O. S. Oguz, and M. Toussaint,
ªLong-horizon multi-robot rearrangement planning for construction
assembly,º IEEE Transactions on Robotics, vol. 39, no. 1, pp. 239±
252, 2022.

[30] J. Chen, J. Li, Y. Huang, C. Garrett, D. Sun, C. Fan, A. Hofmann,
C. Mueller, S. Koenig, and B. C. Williams, ªCooperative task and
motion planning for multi-arm assembly systems,º arXiv preprint

arXiv:2203.02475, 2022.
[31] W. N. Tang, S. D. Han, and J. Yu, ªComputing high-quality clutter

removal solutions for multiple robots,º in 2020 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE, 2020,
pp. 7963±7970.

[32] M. Faroni, A. Umbrico, M. Beschi, A. Orlandini, A. Cesta, and
N. Pedrocchi, ªOptimal task and motion planning and execution for
multiagent systems in dynamic environments,º IEEE Transactions on

Cybernetics, 2023.
[33] A. Messing, G. Neville, S. Chernova, S. Hutchinson, and H. Ravichan-

dar, ªGrstaps: Graphically recursive simultaneous task allocation,
planning, and scheduling,º The International Journal of Robotics

Research, vol. 41, no. 2, pp. 232±256, 2022.
[34] H. Karami, A. Thomas, and F. Mastrogiovanni, ªTask allocation for

multi-robot task and motion planning: A case for object picking
in cluttered workspaces,º in International Conference of the Italian

Association for Artificial Intelligence. Springer, 2021, pp. 3±17.
[35] J. Motes, R. SandstrÈom, H. Lee, S. Thomas, and N. M. Amato, ªMulti-

robot task and motion planning with subtask dependencies,º IEEE

Robotics and Automation Letters, vol. 5, no. 2, pp. 3338±3345, 2020.
[36] J. Motes, T. Chen, T. Bretl, M. M. Aguirre, and N. M. Amato,

ªHypergraph-based multi-robot task and motion planning,º IEEE

Transactions on Robotics, 2023.
[37] I. Umay, B. Fidan, and W. Melek, ªAn integrated task and motion plan-

ning technique for multi-robot-systems,º in 2019 IEEE International

Symposium on Robotic and Sensors Environments (ROSE). IEEE,
2019, pp. 1±7.

[38] M. Toussaint and M. Lopes, ªMulti-bound tree search for logic-
geometric programming in cooperative manipulation domains,º in
2017 IEEE International Conference on Robotics and Automation

(ICRA). IEEE, 2017, pp. 4044±4051.
[39] M. Toussaint, ªLogic-geometric programming: An optimization-based

approach to combined task and motion planning,º in Twenty-Fourth

International Joint Conference on Artificial Intelligence, 2015.


