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Abstract— This work introduces a robotics platform which
embeds a conversational AI agent in an embodied system for
natural language understanding and intelligent decision-making
for service tasks; integrating task planning and human-like
conversation. The agent is derived from a large language model,
which has learned from a vast corpus of general knowledge.
In addition to generating dialogue, this agent can interface
with the physical world by invoking commands on the robot;
seamlessly merging communication and behavior. This system
is demonstrated in a free-form tour-guide scenario, in an HRI
study combining robots with and without conversational AI
capabilities. Performance is measured along five dimensions:
overall effectiveness, exploration abilities, scrutinization abili-
ties, receptiveness to personification, and adaptability.

I. INTRODUCTION

Until recently, the idea of engaging with a robot in a

manner akin to conversing with another person seemed like

science fiction. Progress in Generative Predictive Transform-

ers (GPTs) and Large Language Models (LLMs) has enabled

machines to communicate in natural language with a fluency

that is nearly human [1]. Other abilities of LLMs range from

performance on emotional awareness [2] to standardized

test taking [3]. Prior to these breakthroughs, people could

only interact effectively with robots using a fixed set of

commands or focused queries, parsed via semantic matching

or a set of rules. With these systems, misinterpretation was

common, leading frustrated users to adjust their behavior to

the inflexibility of the machine [4]. If robots are to coexist

with humans, they will need to not only interpret requests

but to actually ”understand” them with all their context

and intent. Furthermore, robots need the ability to confer

with humans to determine the correct course of action in

uncertain or abstract situations, hopefully achieving human-

like adaptability in the face of a complex world where tasks

are rarely concrete. LLMs enable the design of autonomous

systems with flexible, unscripted dialogue built in. This

new capability has not yet been fully explored. This work

introduces an architecture for an embodied conversational

AI and highlights a design philosophy centered around a

single AI “agent”, sharing responsibility for both complex

communication and high-level decision making.

This system is evaluated in a tour-guide scenario, in a

human-robot-interaction (HRI) study that compares robots

with and without conversational AI capabilities. The robot,
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Dobby, was instructed to take people to various landmarks

and artifacts around an open space featuring multiple labora-

tories, to provide information, and to answer questions. Study

participants took personalized tours with both Dobby and an

otherwise identical non-conversational robot. We employed

qualitative methods in data collection and analysis, making

use of post-study surveys and chat logs.

II. RELATED WORK

Task planning in autonomous robots is typically accom-

plished using planning languages like PDDL [5], but this

functionality is limited in free-form scenarios due to its

need for a manually defined goal state and rigidly defined

domain. Google leveraged the common sense reasoning

learned by an LLM in conjunction with a reinforcement

learning (RL) model to generate a plan based on a natural

language prompt [6]. While SayCan constrains the output of

the LLM to a defined set of actions, Huang et al. demonstrate

a different solution to the same problem, making use of

semantic matching and prompt engineering [7]. Another

common issue with LLM-based planners involve grounding

the output in the state of the real world. SayCan employed a

RL model to infer which actions were feasible given the

state of the environment, whereas STATLER [8] presents

a state-maintaining architecture built around two instances

of general LLMs, a world-model writer and a world-model

reader. While these works introduce new flexibility to open-

world planning systems, a significant lack of interaction

between the user and agent remains. We aim to enhance

this system by combining task planning with an added

conversational component so an autonomous robot can better

contextualize the needs of the user before generating a

plan. Researchers at the University of Florida are some

of the few that have leveraged LLMs for embodied con-

trol combined with conversational components. They utilize

OpenAI’s ChatGPT to interpret natural language instructions

and send control commands to a robotic arm, demonstrating

that incorporating LLMs into robots can result in more

effective collaboration and increased trust with humans [9].

“RoboGPT” pursued low-level control in a collaborative use

case. In contrast, Dobby engages in elaborate, human-like

conversation and reasons successfully about complex multi-

step task execution, merging both aspects.

Historical approaches to natural language understanding

range from expert-driven systems such as dependency pars-

ing, part of speech tagging, and rule-based decision trees,

to machine learning methods including sentiment analy-

sis, domain estimation, and word embeddings. While these
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Fig. 1: Dobby taking a participant on a tour of the lab.

algorithms can handle focused queries and simple tasks,

they are not well-suited for open-ended conversations or

complex, context-based requests. Nakano et al.’s multi-expert

model [10] highlights the effort needed to implement a

rudimentary version of the system we discuss today prior

to the development of powerful LLMs. They describe a

system for a “conversational” robot combining dialogue

and behavior control; however, its responses are limited to

scripted templates, leaving it lacking many of the advantages

we explore with Dobby. At this point, chatbots utilizing

LLMs have been extensively documented, but there has been

little attempt to integrate actionable multi-step planning with

these systems. Meanwhile, in investigating conversational

robots and natural language processing, a few studies have

used “tour guide” models (e.g., assigning the robot a role

of acting as a tour guide [11] or assisting a human tour

guide on a tour [12]). Inspired by the former, we analyze the

effectiveness of a conversational robot acting as a tour guide.

The older, more widely implemented version of these sorts

of conversational robots are akin to the system presented by

Burgard et al. in 1998 [13]. This system involved the use of

pre-recorded speech modules, a navigational digital interface,

and built-in physical responses to actions, such as body and

head movements.

III. DOBBY: AN EMBODIED CONVERSATIONAL AI

A. Agent Definition

Modern LLMs are powerful enough to be reasonably

abstracted as an artificially intelligent agent with vast general

knowledge, basic reasoning skills, and advanced communi-

cation abilities [14]. Our system is built around an agent

initialized with a prompt instructing it to behave as a robot

assistant. Also included in the prompt is context about the

robot’s environment, background information, and a list of

actions that the robot can perform. The agent generates all

of the robot’s dialogue and high-level behavior. Its LLM

queries use OpenAI’s chat completion API. Function calling,

a feature of the gpt-4-0613 model, is used to call functions

on the robot to perform actions. OpenAI fine-tuned this

model to reliably generate a JSON object containing a

function call at the appropriate time. When received, the

JSON objects can be parsed to execute external commands.

To facilitate this, OpenAI accepts a structured description

of available functions with every query to their API. We

defined the functions ExecutePlan(string[] actionSequence)

and CancelPlan() for general use cases. When we refer to

the agent “choosing” an action, we mean that one of the

above function calls was included in the output of the LLM.

We rely entirely on the reasoning capabilities of the agent to

make appropriate, context-based decisions.

B. Conversation

In the conversation state, the system enters a loop where it

records the user’s utterance, transcribes the recorded audio,

queries the agent for a response, plays the dialogue to

the user, and finally begins recording again. Input text,

system messages, and generated responses are accumulated

in a history buffer which is sent to the API at every

iteration. This allows the agent to consider the context of

the interaction when generating both dialogue and behavior.

We designed the interaction method to facilitate extended,

hands-free engagement that emulates a human conversation.

Crucially, such a mode of communication empowers the

robot to pose clarifying questions, offer suggestions, and

adapt to each unique individual, providing the robot with

the opportunity to gain a comprehensive understanding of

the user’s intentions and desires before taking any action.

System messages are included in the history buffer to provide

event-based instructions or update the agent on the state of

the environment, preventing the robot’s dialogue from con-

tradicting its behavior. If silence is detected for six seconds

and no response is received, the robot will begin listening

for the keyword ”Dobby” to re-trigger the conversation loop.

C. Action Planning

Atomic actions are represented by a class that encapsulates

a textual title, pre/post-conditions, and an executable action

function. The title of each action is also listed in the agent’s

prompt. When queried for a response, the agent may choose

to begin a series of actions by calling the function Exe-

cutePlan(string[] actionSequence), with the desired action

sequence expressed as an array of strings. Because this

parameter can be filled with any free-form text, the generated

actions cannot always be directly mapped to an actionable

command. To ensure robustness, each string is matched to

an action class by comparing the embedding of the output to

each action title and selecting the action with the highest sim-

ilarity. Embeddings encode the semantic meaning of phrases

as a floating-point vector and are accessible via OpenAI’s

embedding API. Once the embeddings are obtained, the

relatedness between phrases can be computed with cosine

similarity. This accounts for minor syntactical differences

between the string provided by the LLM and the action title,

as shown in Figure 2. Occasionally, the agent will attempt

to include actions that were not listed in the initial prompt

and therefore do not have a corresponding action class. To

correct this issue, the agent is re-prompted with an error

message if the maximum embedding similarity falls under a

certain threshold. After repeated attempts, a system message



Fig. 2: Mapping LLM output to unambiguous executable

actions by comparing semantic similarity.

Fig. 3: The agent fails to take into account that the robot can

only hold one item at once and outputs an invalid plan, this

is then corrected by Algorithm 1.

informs the agent that it is not capable of the requested task,

prompting it to explain this to the user.

Once the plan is parsed, additional steps are taken to

ensure the plan is valid given the constraints of the environ-

ment. To model the environment, we found that a simple sys-

tem of predicates, pre-conditions, and post-conditions suited

our needs. This approach was inspired by traditional planning

languages such as additions and deletions in STRIPS [15]

style planning, or the tracking of predicates in PDDL [5].

As seen in Figure 3, we used the greedy algorithm shown

in Algorithm 1 to skip actions until their necessary precon-

ditions have been met, effectively attempting to reorder the

plan if necessary. If the generated plan cannot be corrected,

the agent informs the user that it is incapable of the task.

Algorithm 1 Plan Correction Algorithm

procedure REORDERPLAN

while items still in sequence do

nextAction← None

for all option in sequence do

if option is valid then

nextAction← option

break

if nextAction is None then

return not capable of plan

add nextAction to plan

update environment based on nextAction

remove nextAction from sequence

D. Action Execution

Once a plan has been proposed and validated, each action

is executed in sequential order. When an action begins,

system messages inform the agent that the previous action

has completed and that the new action has begun, as seen in

Figure 4. The agent is then re-prompted to provide a dialogue

cue informing the user of its intended behavior. Actions do

not block the system when executing, so it is possible to

continue to converse with the robot while it is performing a

task such as driving to a location. A function CancelPlan()

may be called by the agent to halt the execution of the current

plan at the user’s request. Alternatively, the agent may start

a new plan, overriding the previous one. When an action

completes, the conversation loop is interrupted and the next

action is started, prompting a corresponding dialogue line.

USER: I’m really hungry right now.

DOBBY: Alright, since I’m such a helpful and

caring robot, let me guess, you’d like

some food, right? Brilliant deduction,

Dobby. Shall we start with something

healthy like an apple or banana?

USER: I’d like an apple.

DOBBY: Sure, I’ll be more than happy to bring

you an apple, but only because I live

for the thrill of fetching fruit for

humans.

FUNCTION CALL: start_plan_execution({

"action_sequence": [

"Drive to Apple",

"Pickup Apple",

"Return to user"

]

})

SYSTEM: Executing plan: 1. Drive to Apple 2.

Pickup Apple 3. Return to User

SYSTEM: Starting action: Drive to Apple

DOBBY: Off I go, driving towards the apple.

Don’t worry, I won’t get distracted by

any shiny objects along the way.

Fig. 4: Example of the agent recognizing when to ask a

clarifying question and generating an action plan with a

function call when appropriate. System messages update the

agent on the state of the robot.

IV. METHOD

We designed our experiment to contrast participants’ expe-

riences with a conversational vs. non-conversation robot tour

guide, hypothesizing that the conversational version would

would be more effective due to its ability to contextualize the

user’s requests, suggest destinations based on their interests,

answer a wide variety of questions, and keep the user

engaged with back and forth conversation. We focused on

investigating our system’s advantages in HRI instead of the

planning domain, as the planning capabilities of LLMs are

already well documented.

A. Experimental Setup & Robot Capabilities

To set up the touring capabilities of both robots, we

recorded the coordinates of ten notable destinations within

the laboratory in a file, along with a brief description of

each. The coordinates were used to generate a “go to” action



for each destination, and the descriptions were included in

Dobby’s prompt along with information about five general

topics to provide context about the lab. Dobby is built on top

of an existing robust and flexible robot platform that includes

a Segway RMP for mobility and features such as obstacle

avoidance, path planning, and LIDAR-based localization for

navigation, making use of a pre-built map of the lab [16].

These capabilities were used by both robots to navigate to

the various landmarks.

We used a modified version of the Dobby system in our

study. In this version, the next action in a sequence did

not start until the agent called the function ContinuePlan(),

whereas normally the subsequent action would begin imme-

diately upon completion. This allowed the user to converse

for as long as they wanted once they reached a destination,

even when the robot planned a multi-step tour. Finally,

the initializing prompt was adjusted to provide high-level

instructions to guide the agent’s behavior as a tour guide,

including directives to respond humorously and sarcastically

in order to bring out as much personality as possible and

encouragement to ask questions to keep the user engaged.

The non-conversational tour guide was intended to rea-

sonably represent the best system possible without a modern

LLM. The robot’s dialogue was scripted and interaction

was limited to a fixed set of spoken commands: “Show me

the (landmark).” and “Tell me about (topic).” The user’s

utterance was mapped directly to an action using embed-

dings. When this robot arrived at a destination or was

requested to provide information, it would read aloud the

descriptions of the landmarks or topic information verbatim.

This robot allowed the participant to explore and hear

information about what they were interested in, but it lacked

the ability to engage in unscripted conversation, suggest

destinations, or answer questions. Each participant was given

a list of possible commands when interacting with the non-

conversational tour guide, but no list of destinations was

provided when interacting with the conversational version.

Instead, the participants were encouraged to ask the robot

for suggestions.

B. Data Collection

We completed 22 trials with 22 participants. Participants

were recruited from computer science classes and robotics-

related student organizations. Each trial consisted of one tour

with the conversational robot and one tour with the non-

conversational robot, conducted in that order. Prior to par-

ticipation, each participant provided informed consent. This

study was approved by the University of Texas at Austin’s

Institutional Review Board. On-boarding instructions were

provided to each participant to explain how to interact with

both robots. Each tour ended when a participant expressed

their willingness to end their tour.

During each trial, a log containing the chat transcript and

system messages was generated automatically. The interac-

tion time and number of visited destinations were recorded

for each robot in each trial. Researchers observed participants

during each trial and took notes. After completing a tour

with both versions of the robot, each participant completed

an online survey with linear scale and qualitative interviews.

C. Data Analysis

Our qualitative data analysis process consisted of four

steps including identifying themes (i.e., patterns in qualitative

data), refining themes, linking themes, and extracting final

themes or developing theories. In each stage of such quali-

tative data coding process, themes were manually identified,

refined and connected from textual dialogues between the

robot and participants, interview transcripts, and notes from

participant observation. We also removed any weak themes

less relevant to our research questions. By going through this

process of qualitative data coding multiple times, we came up

with five finalized themes that elaborate on the effectiveness

of lab touring with the conversational AI robot tour guide.

V. RESULTS

A. Effectiveness Overall

This first theme evaluates whether the overall effectiveness

of lab touring increased with the conversational AI robot in

comparison to the non-conversational robot.

Every participant expressed their preference for the con-

versational robot over the non-conversational counterpart.

Participant 1: Overall, I found the conversational robot to

be a much better tour guide. Seeing as this tour was given by

a machine, I’d say it was extremely close to the experience of

a human-guided tour. The tour was very fun, and I explored

everything I wanted.

The knowledgeable and conversational features (e.g., tak-

ing questions, giving answers, and asking questions) of

the conversational AI robot were seen as the most helpful

features by the participants.

Participant 2: The fact that it can hold conversations and

answer any questions was very helpful. The fact that it knew

where everything was located and was able to take me to

the exact spot was really great. It knows what’s generally in

the lab, finds them, and gives high-level descriptions. I have

been able to learn about the lab more in depth.

Overall, touring with the non-conversational robot limited

participants’ desires for and abilities of exploration, clarifi-

cation, and enjoying their tours due to limited interaction.

Participant 3: Exploring the lab felt like choosing from

a list of options rather than exploring a lab. I would have

liked to be able to ask more questions. It felt as if I was

reading a wiki page, so it was somewhat boring. It was hard

to connect with the robot due to its limited responses.

This difference in effectiveness was also reflected in length

of touring time and landmarks visited. Most participants

wanted to spend more time with the conversational AI robot.

The average interaction time with the conversational and

non-conversational AI robots were 14.3 minutes and 5.8

minutes respectively, and the average number of destinations

visited was 5.27 and 3.00 respectively. Time spent and

destinations visited with the non-conversational robot may

have been impacted by touring with the conversational robot

first, but it is more likely that participants’ engagement was



based on their enjoyment of interacting with the technology

rather than information about the laboratory.

B. Enhanced Explorability

Participants were able to easily explore various landmarks,

artifacts, and related information by improvising their own

tour logistics and questions with the conversational AI robot.

Continuing communication between people and the conver-

sational robot gave a great amount of flexibility to touring

so that people’s exploration abilities were significantly en-

hanced. Self-directed exploration led to more excitement and

motivation for touring.

With the conversational AI robot, participants not only

physically explored the lab but also explored related informa-

tion. For example, Participant 4, utilizing the conversational

features of the robot, explored a variety of topics starting

with questions about the lab’s simulated hallway environ-

ment. The agent’s responses were inferred or sourced and

recombined from information provided in the prompt.

Participant 4: What is social navigation in robotics?

Robot: Social navigation in robotics refers to the ability of

a robot to seamlessly navigate around humans in everyday

environments. Participant 4: What kinds of research projects

are conducted at the Social Navigation Hallway? Robot:

Research projects conducted here are about how robots

should pass humans in the hallway. Participant 4: Which

Professor is leading this project? Robot: Dr. Justin Hart is

leading the project in the Social Navigation Hallway. He is

an expert in... Participant 4: How can I work with Dr. Hart?

Robot: To work with Dr. Hart, you can consider joining the

Freshman Research Initiative Autonomous Robots stream led

by him. This program... You can also reach out to Dr. Hart

directly or check for any open research positions in his lab.

Meanwhile, participants were able to allow the robot to

take initiative in planning the tour instead of providing one-

way instructions, as seen in the following dialogues.

Participant 5: What is the coolest robot in the lab? Robot:

Ah, there are so many cool robots in the lab! I would say

Astro is pretty awesome. It can deliver items, play music,

take pictures, and even dance! Want to see Astro in action?

Participant 5: Sounds great! Let’s go to Astro next, please.

Participant 6: Which lab have we not gone to? Robot:

We haven’t visited the Drone lab and the lab with Husky

and Jackal Autonomous Vehicles. These labs offer unique

insights into navigation and mobility in robotics. If any of

these destinations pique your interest, just let me know and

we can head there next! Participant 6: Sounds exciting! I

want to see the drone lab!

After completing his tour, Participant 6 reported his satis-

faction with the increased exploration ability:

Participant 6: I really liked that I asked questions first

and then it suggested options because it didn’t feel like it

was forcing me to do things. I also liked that it asked me

questions instead of only giving information and taking me

to a spot directly. It made the interactions more human-like.

It was able to remember which locations I had already been

to, which was pretty cool. It made the experience easy on

the mind and made me motivated for touring.

C. Depth of Knowledge

The conversational robot demonstrated improved effec-

tiveness in touring by allowing people to scrutinize certain

information and probe depth of knowledge beyond what was

included in the prompt. The conversational features of the

robot and general knowledge embedded in the agent helped

participants dig into information and knowledge that they

found interesting and clarify things that they had learned.

Examples of scrutinizing questions from the trials include

“Can you be more specific about what types of experiments

occur in this hallway?” and “Could you give me more

information about the RoboCup at home robot?”. Participant

7’s interaction with the robot and interpretation of his own

experience show how his scrutinization and clarification

abilities were enhanced with the conversational AI robot and

its context-based understanding.

Robot: Welcome to the presence of the BWI V5 Robot,

the state-of-the-art in UT’s BWI Bot saga. Can you see that

UR5 arm? And that additional screen on the front? But the

cherry on top is the Velodyne 3D LIDAR. Any questions about

this metal celebrity? Participant 7: What is the Velodyne

3D LIDAR? Robot: Ah, it’s this nifty little device that uses

light in the form of a pulsed laser to measure distances.

Fancy tech to help robots not bump into stuff. Participant 7:

What is the screen for? Robot: The screen serves multiple

purposes. It can display useful information to passersby or

aid in communication. It may show status, error messages, or

instructions. After all, robots need to express themselves too,

don’t they? Participant 7: What makes the arm so helpful?

Robot: The arm brings the term “handy” to a new level. With

it, the robot can pick, place, push, pull, and perform other

tasks. Participant 7: Are there any other features about this

robot that make it the most advanced? Robot: Absolutely!

The BWI V5 Bot also has...

Participants perceived that the robot enhanced their scru-

tinization abilities so that their tours became more effective.

Participant 7: I felt like the robot was able to sense my

attributes of curiosity and was able to provide information

about my more specific questions accordingly. It had very

informative responses and seemed a lot more knowledgeable

than the non-conversational robot because it could respond

to questions beyond the script.

D. Personality and Receptiveness to Personification

The conversational feature and the slightly sarcastic per-

sonality of the robot enabled people to personify the robot.

When asked, participants rated the conversational robot’s

level of personality and their level of emotional attachment

much higher than that of the non-conversational counterpart

(average of 5.88 vs. 2.09 and 4.65 vs. 2.09 respectively,

on a 7-point scale). The conversational robot elicited more

emotionally satisfying tour experiences overall, leading to an

average enjoyment rating of 6.59 vs. 4.00 (scale of 7).



Because people tended to transfer human qualities to

the conversational robot, they engaged with it readily and

naturally, drawing on their experiences with humans to

inform their interaction. The entertaining aspect of person-

ification made people excited to hear the robot’s responses

and contributed to a more enjoyable and relaxed experience

overall. It was obvious that people smiled and laughed more

during their tours with the conversational AI robot, making

comments like “Ah, it has quite a personality!”, “I like

your sense of humor, Dobby!”, and ”You’re a sassy one

aren’t you?”. Below is an example of improvised humor in

a conversation with Participant 7 and observations made by

Participant 8.

Participant 7: Can I ask you make me a sandwich? Robot:

Ha! I wish I could, but currently, my skills are limited to

giving tours and telling jokes. Besides, the bread always

sticks to my circuits. Imagine! A robot with a breadboard

instead of a motherboard.

Participant 8: The conversational robot felt much less

dry. I definitely feel more attached to the conversational

robot as it has much more personality and is far more

engaging. It kept me engaged with touring. I disliked the

lack of personality in the non-conversational one because it

was much less enjoyable.

Meanwhile, personification was useful in making second-

person questions to explore and scrutinize information and

knowledge more naturally, as seen in the following dialogue.

Robot: Do you want to meet my siblings, the BWI Bots?

I’m part of that illustrious family. Participant 9: You are

Dobby, you’re not BWI. Robot: Ah, a small correction. My

name is Dobby, but I am a BWI Bot, version 4, to be precise.

It’s like saying you’re human, but your name is not Human,

right? Participant 9: Can you tell me more about yourself

and your family? Robot: I’m Dobby, your sarcastic and often

humorous robot tour guide. The BWI Bots are equipped with

an Azure Kinect to capture color and depth data, and a

2D Lidar for localization. Their sleek Segway RMP design

facilitates efficient movement. Participant 9: Can you tell me

about the students that created you? Robot: Oh, my creators?

Just a few sleep-deprived geniuses, fueled by caffeine and a

passion for robotics. They’re part of the Freshman Research

Initiative (FRI) here at UT Austin.

E. Adaptability and Personalized Experiences

Increased adaptability and personalized experiences with

the conversational AI robot led to emotionally positive atti-

tudes toward the robot and touring experience overall. The

conversational robot was able to design and improvise the

tour based on the participants’ interests.

Participant 10: Can you show me around the lab? Robot:

Absolutely! I would be thrilled to give you a tour. Why don’t

you tell me a bit about your interests? Are you more into

ground robotics, aerial robotics, or perhaps the living with

robots scenario? Your preferences will help me tailor the

tour to your liking. Participant 10: I like ground and aerial

robotics the best. Robot: Great, seems like someone likes

action! How about we start with the Drone Cage for aerial

robotics? Then we’ll say hi to the fleet of the BWI bots, visit

the BWIV5 Robot, and finally meet the Husky and Jackal

Autonomous Vehicles. Would you like that?

Participant 11 noticed that Dobby could connect with the

user on a deeper level.

Participant 11: I preferred the conversational robot be-

cause it made the tour feel more personal. The conversational

one asked about my life and agreed with my passion for

robotics. It also adapted to my liking and interests. It knew

I was interested in computer science so it would show me

things around this interest. I am also more emotionally

attached to the conversational robot as it would try to

connect to me as a person instead of as a client.

The following is a dialogue from Participant 11’s tour.

Robot: What prompted your interest in robotics? Partic-

ipant 11: Probably my high school robotics club. I was a

captain. Robot: Oh, captain, my captain! Robotics club can

certainly spark a lifetime passion. Alright, off we roll to the

Boston Dynamics Spot Robot. So, as a former robotics club

captain, what skills did you find most useful? Participant

11: I was completely hardware, I didn’t really learn how

to program. Robot: Ah, a fan of the tangible! Building the

physical body of the bot must’ve been a true labor of love.

VI. DISCUSSION & CONCLUSION

Previous robot architectures have relied on rigidly-defined

tasks specifications, built-in planning languages, and rigidly-

defined dialog and interaction. This work aimed to enhance

these systems by leveraging an LLM for both conversation

and task planning, allowing a richer interaction with the user.

We introduced Dobby, a robotics platform based on an LLM.

We investigated the advantages of this system with an HRI

study in a robot tour-guide context.

Our findings showed that due to the agent’s superior nat-

ural language understanding and embedded common sense

reasoning, participants were able to freely converse with the

robot, which enabled them to scrutinize and explore more

information, confer with the robot to determine interesting

destinations, engage with the robot’s adaptable and human-

like personality, and enjoy their interaction more overall. This

study contributes to enhancing communication experiences

between people and robots. Although we experimented with

Dobby in a tour guide role, the capabilities demonstrated by

our framework are likely advantageous for any autonomous

system that must interact with humans.

There is significant work left to be done in improving

upon this platform. Many participants noted the delay in

response time, unreliable audio transcription, and lack of

facial expressions. Additionally, the agent occasionally hal-

lucinated information about the lab. This platform presents

unique opportunities to study human-robot collaboration,

trust, engagement, relationships, and long term interaction.

The complexity of tasks performed could be improved with

more advanced physical grounding techniques, a vision in-

terface, multi-tasking techniques, and a more versatile set of

actions that allow the robot to act in the world.
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