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Abstract

Fourier neural operators (FNOs) can learn highly nonlinear mappings between
function spaces, and have recently become a popular tool for learning responses
of complex physical systems. However, to achieve good accuracy and efficiency,
FNOs rely on the Fast Fourier transform (FFT), which is restricted to modeling
problems on rectangular domains. To lift such a restriction and permit FFT on
irregular geometries as well as topology changes, we introduce domain agnostic
Fourier neural operator (DAFNO), a novel neural operator architecture for learning
surrogates with irregular geometries and evolving domains. The key idea is to
incorporate a smoothed characteristic function in the integral layer architecture of
FNOs, and leverage FFT to achieve rapid computations, in such a way that the
geometric information is explicitly encoded in the architecture. In our empirical
evaluation, DAFNO has achieved state-of-the-art accuracy as compared to baseline
neural operator models on two benchmark datasets of material modeling and airfoil
simulation. To further demonstrate the capability and generalizability of DAFNO
in handling complex domains with topology changes, we consider a brittle material
fracture evolution problem. With only one training crack simulation sample,
DAFNO has achieved generalizability to unseen loading scenarios and substantially
different crack patterns from the trained scenario. Our code and data accompanying
this paper are available at https://github.com/ningliu-iga/DAFNQ.

1 Introduction

Deep learning surrogate models provide a useful data-driven paradigm to accelerate the PDE-solving
and calibration process of scientific modeling and computing problems. Among others, a wide range
of scientific computing applications entail the learning of solution operators, i.e., the learning of
infinite dimensional function mappings between any parametric dependence to the solution field.
A prototypical instance is the case of solving Navier-Stokes equations in fluid mechanics, where
the initial input needs to be mapped to a temporal sequence of nonlinear parametric solutions. The
demand for operator learning has sparked the development of neural operator based methods (Li
et al., 2020a,b,c; You et al., 2022a,b,c; Goswami et al., 2022; Liu et al., 2022; Gupta et al., 2021; Lu
et al., 2019; Cao, 2021; Hao et al., 2023; Li et al., 2022b; Yin et al., 2022c), with one of the most
popular architectures being Fourier Neural Operators (FNOs) (Li et al., 2020c; You et al., 2022c).

The success of FNOs can be mostly attributed to its convolution-based integral kernel that learns in a
resolution-invariant manner and the computationally efficient evaluation achieved via Fast Fourier
Transform (FFT) (Brigham, 1988). While learning in the spectral domain is fast, the latter comes at a
cost: the computational domain of the underlying problem needs to be rectangular with uniformly
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meshed grids. This is often intractable as the domain of interest is, more often than not, irregular.
An often taken trick for applying FNO to irregular domains is to embed the original domain into a
larger rectangular domain and zero-pad or extrapolate on the redundant space (Lu et al., 2022). This
poses two potential problems, one being the possible numerical errors and even instabilities due to the
discontinuity at the original domain boundary (e.g., the Gibbs phenomenon (Gottlieb & Shu, 1997))
and the other, perhaps more importantly, being the fact that the padding/extrapolating techniques
cannot handle domains with shallow gaps, as is the case in object contact and crack propagation
problems. Meanwhile, another line of work emphasizes the learning of a diffeomorphic mapping
between the original domain and a latent domain with uniform grids on which FNO can be applied
(Li et al., 2022a). However, in this approach the changes on the boundary and the domain topology
can only be informed via the learned diffeomorphism, which results in approximation errors when
tested on a new domain geometry and possible failure when a change in topology is involved on the
domain geometry.

In this work, we aim to design FNO architectures that explicitly embed the boundary information
of irregular domains, which we coin Domain Agnostic Fourier Neural Operator (DAFNO). This is
inspired by the recent work in convolution-based peridynamics (Jafarzadeh et al., 2022b) in which
bounded domains of arbitrary shapes are explicitly encoded in the nonlocal integral formulation. We
argue that, by explicitly embedding the domain boundary information into the model architecture,
DAFNO is able to learn the underlying physics more accurately, and the learnt model is generalizable
to changes on the domain geometry and topology. Concretely, we construct two practical DAFNO
variants, namely, eDAFNO that inherits the explicit FNO architecture (Li et al., 2022a) and iDAFNO
that is built upon the implicit FNO (IFNO) architecture characterizing layer-independent kernels (You
et al., 2022¢). Moreover, a boundary smoothening technique is also proposed to resolve the Gibbs
phenomenon and retain the fidelity of the domain boundary. In summary, the primary contributions
of the current work are as follows:

* We propose DAFNO, a novel Fourier neural operator architecture that explicitly encodes
the boundary information of irregular domains into the model architecture, so that the
learned operator is aware of the domain boundary, and generalizable to different domains of
complicated geometries and topologies.

* By incorporating a (smoothened) domain characteristic function into the integral layer,
our formulation resembles a nonlocal model, such that the layer update acts as collecting
interactions between material points inside the domain and cuts the non-physical influence
outside the domain. As such, the model preserves the fidelity of the domain boundary as
well as the convolution form of the kernel that retains the computational efficiency of FFT.

* We demonstrate the expressivity and generalizability of DAFNO across a wide range of
scientific problems including constitutive modeling of hyperelastic materials, airfoil design,
and crack propagation in brittle fracture, and show that our learned operator can handle not
only irregular domains but also topology changes over the evolution of the solution.

2 Background and related work

The goal of this work is to construct a neural network architecture to learn common physical models
on various domains. Formally, given D := {(gi|q,,u:|q,)}).;, a labelled set of function pair
observations both defined on the domain = € ; C R®. We assume that the input {g;(x)} is a set of
independent and identically distributed (i.i.d.) random fields from a known probability distribution
on A(R%), a Banach space of functions taking values in R%. u;(x) € U(R%), possibly noisy, is
the observed corresponding response taking values in R%. Taking mechanical response modeling
problem for example, €2; is the shape of the object of interest, g; () may represent the boundary,
initial, or loading conditions, and u; () can be the resulting velocity, pressure, or displacement field
of the object. We assume that all observations can be modeled by a common and possibly unknown
governing law, e.g., balance laws, and our goal is to construct a surrogate operator mapping, G, from
A to U such that

Glg:; 0](x) = u;(x), Yo € ;. (1
Here, 6 represents the (trainable) network parameter set.
In real-world applications, the domain €2; can possess different topologies, e.g., in contact problems

(Benson & Okazawa, 2004; Simo & Laursen, 1992) and material fragmentation problems (De
Luycker et al., 2011; Agwai et al., 2011; Silling, 2003), and/or evolve with time, as is the case



in large-deformation problems (Shadden et al., 2010) and fluid—structure interaction applications
(Kuhl et al., 2003; Kamensky et al., 2017). Hence, it is desired to develop an architecture with
generalizability across various domains of complex shapes, so that the knowledge obtained from one
geometry can be transferable to other geometries.

2.1 Learning solution operators of hidden physics

In real-world physical problems, predicting and monitoring complex system responses are ubiquitous
in many applications. For these purposes, physics-based PDEs and tranditional numerical methods
have been commonly employed. However, traditional numerical methods are solved for specific
boundary, initial, and loading conditions g on a specific domain (2. Hence, the solutions are not
generalizable to other domains and operating conditions.

To provide a more efficient and flexible surrogate model for physical response prediction, there has
been significant progress in the development of deep neural networks (NNs) and scientific machine
learning models (Ghaboussi et al., 1998, 1991; Carleo et al., 2019; Karniadakis et al., 2021; Zhang
et al., 2018; Cai et al., 2022; Pfau et al., 2020; He et al., 2021; Besnard et al., 2006). Among others,
neural operators (Li et al., 2020a,b,c; You et al., 2022a; Ong et al., 2022; Gupta et al., 2021; Lu
et al., 2019, 2021b; Goswami et al., 2022; Tripura & Chakraborty, 2022) show particular promise in
learning physics of complex systems: compared with classical NNs, neural operators are resolution
independent and generalizable to different input instances. Therefore, once the neural operator
is trained, solving for a new instance of the boundary/initial/loading condition with a different
discretization only requires a forward pass. These advantages make neural operators a useful tool to
many physics modeling problems (Yin et al., 2022a; Goswami et al., 2022; Yin et al., 2022b; Li et al.,
2020a,b,c; Lu et al., 2022, 2021a).

2.2 Neural operator learning

Here, we first introduce the basic architecture of the general integral neural operators (Li et al.,
2020a,b,c; You et al., 2022a,c), which are comprised of three building blocks. First, the input function,
g(x) € A, is lifted to a higher-dimensional representation via h®(x) = P|g](x) := Pz, g(z)]" +p,
where P € R(std9)xdn and p € R define an affine pointwise mapping. Then, the feature vector
function h°(x) goes through an iterative layer block, where the layer update is defined via the sum of a
local linear operator, a nonlocal integral kernel operator, and a bias function: h!*!(x) = 71 [h!](z).
Here, h!(z) € R%, [ =0,--- , L, is a sequence of functions representing the values of the network
at each hidden layer. 7', - -, 7 are the nonlinear operator layers defined by the particular choice
of networks. Finally, the output u(x) € U is obtained via a projection layer by mapping the last
hidden layer representation h%(z) onto U as: u(z) = Q[hL](x) := Q20(Q1h%(x) + q1) + qa.
@1, Q2, q1 and g are the appropriately sized matrices and vectors that are part of the learnable
parameter set, and o is an activation function (e.g., ReLU (He et al., 2018) or GeLU).

Then, the system response can be learnt by constructing a surrogate operator of (1): Q[g; 0)(x) :=
QoJlo---0JF o Plg](x) ~ u(x), by solving the network parameter set § via an optimization
problem:

N
géiél/lp(@) = gréig Z[C(g[gigﬂ],ui)] . 2)

=1
Here, C denotes a properly defined cost functional (e.g., the relative mean square error) on €2;.

2.3 Fourier neural operators

The Fourier neural operator (FNO) is first proposed in Li et al. (2020c) with its iterative layer
architecture given by a convolution operator:

J'[h)(x) =0 <Wlh(ac) + ¢ +/ k(x — y;vl)h(y)dy) , 3)
Q

where W' € R *dn and ¢! € R are learnable tensors at the [-th layer, and k € Rdnxdn jg

tensor kernel function with parameters v!. When a rectangular domain 2 with uniform meshes is

considered, the above convolution operation can be converted to a multiplication operation through

discrete Fourier transform:

J'[R)(@) =0 (W'h(x) + ' + FHF[r(50)] - FIR()]](x)) .
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Figure 1: A schematic of extending an arbitrarily shaped domain 2 to a periodic box T and its
discretized form in 2D.

where F and F~! denote the Fourier transform and its inverse, respectively, which are computed
using the FFT algorithm to each component of h separately. The FFT calculations greatly improve
the computational efficiency due to their quasilinear time complexity, but they also restrict the vanilla
FNO architecture to rectangular domains 2 (Lu et al., 2022).

To enhance the flexibility of FNO in modeling complex geometries, in Lu et al. (2022) the authors
proposed to pad and/or extrapolate the input and output functions into a larger rectangular domain.
However, such padding/extrapolating techniques are prone to numerical instabilities (Gottlieb & Shu,
1997), especially when the domain is concave and/or with complicated boundaries. As shown in
Lu et al. (2022), the performance of dgFNO+ substantially deteriorates when handling complicated
domains with notches and gaps. In Geo-FNO (Li et al., 2022a), an additional neural network is
employed and trained from data, to continuously map irregular domains onto a latent space of
rectangular domains. As a result, the vanilla FNO can be employed on the rectangular latent domain.
However, this strategy relies on the continuous mapping from the physical domain to a rectangular
domain, hence it is restricted to relatively simple geometries with no topology change.

3 Domain Agnostic Fourier Neural Operators

In this section, we introduce Domain Agnostic Fourier Neural Operator (DAFNO), which features
the generalizability to new and unseen domains of arbitrary shapes and different topologies. The key
idea is to explicitly encode the domain information in the design while retaining the convolutional
architecture in the iterative layer of FNOs. In what follows, we present the eDAFNO architecture
based on the standard/explicit FNO model (Li et al., 2020c), while the iDAFNO architecture based
on the implicit FNO model (You et al., 2022c) is provided in Appendix A.

Concretely, we enclose the physical domain of interest, €2, by a (slightly larger) periodic box T, as
shown in Figure 1. Next, we define the following domain characteristic function:

1 €9
x(«’v)={0 zeT\Q’ “)

which encodes the domain information of different geometries. Inspired by Jafarzadeh et al. (2022b),
we incorporate the above-encoded domain information into the FNO architecture of (3), by multiply-
ing the integrand in its convolution integral with x(x)x(y):

7'lh] =o ( [ x@nwinte — y: ) hly) - by + Wh(z) + cl) o ®

Herein, we have followed the practice in You et al. (2022a) and reformulated (3) to a nonlocal
Laplacian operator, which is found to improve training efficacy. By introducing the term x (x)x(y),
the integrand vanishes when either point « or y is positioned inside 2 and the other is positioned
outside. This modification eliminates any undesired interaction between the regions inside and
outside of (2. As a result, it tailors the integral operator to act on {2 independently and is able to
handle different domains and topologies. With this modification, the FFT remains applicable, since
the convolutional structure of the integral is preserved and the domain of operation yet spans to the
whole rectangular box T. In this context, (5) can be re-organized as:

7'lh] =o (x<w> ([ 5o~ yo (it — hia) [

k(x — y; vl)X(y)dy + Wlh(w) + cl)> )
T

Note that multiplying W'h(z) + ¢! with x(z) does not alter the computational domain. Now that
the integration region is a rectangular box T, the FFT algorithm and its inverse can be readily applied,
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Figure 2: An illustration of the proposed DAFNO architecture. We start from the input function
g(x). After lifting, the iterative Fourier layers are built that explicitly embed the encoded domain
information, y. Lastly, we project the last hidden layer representation to the target function space.

and hence we can further express the eDAFNO architecture as:

T =0 (x(w)(I(x(-)h(‘);vl) — h(@)Z(x(-);0) + W'h(z) + cl)) ,

where Z(o;v'):= F~! [F[H('évl)] - Flo]] .

(6)

An illustration of the DAFNO atchitecture is provided in Figure 2. Note that this architectural
modification is performed at the continuum level and therefore is independent of the discretization.
Then, the box T can be discretized with structured grids (cf. Figure 1), as is the case in standard FNO.

Although the proposed DAFNO architecture in (6) can handle complex generalization in domains, it
has a potential pitfall: since the characteristic function is not continuous on the domain boundary,
its Fourier series cannot converge uniformly and the FFT result would present fictitious wiggling
near the discontinuities (i.e., the Gibbs phenomenon (Day et al., 1965)). As a consequence, the
introduction of y can potentially jeopardize the computational accuracy. To improve the efficacy of
DAFNO, we propose to replace the sharp characteristic function, x, with a smoothed formulation:

x(x) := tanh(Bdist(x, 9Q))(x(x) — 0.5) + 0.5 . 7

Here, the hyperbolic tangent function tanh(z) := %, dist(z, 0Q) denotes the (approxi-

mated) distance between x and the boundary of domain €2, and 3 controls the level of smoothness,
which is treated as a tunable hyperparameter. An illustration of the effect of the smoothed  is
displayed in Figure 3, with additional plots and prediction results with respect to different levels of
smoothness, 3, provided in Appendix B.1. In what follows, the ~ sign is neglected for brevity.

Remark: We point out that the proposed smoothed geometry encoding technique, although simple,
is substantially different from existing function padding/extrapolation techniques proposed in Lu
et al. (2022) who cannot handle singular boundaries (as in the airfoil tail of our example 2) nor
notches/shallow gaps in the domain (as in the crack propagation of our example 3). Our proposed
architecture in (5) is also more sophiscated than a trivial zero padding at each layer in that the charac-
teristic function x () is multiplied with the integrand, whereas the latter breaks the convolutional
structure and hinders the application of FFTs.

4 Numerical examples

In this section, we demonstrate the accuracy and expressivity of DAFNO across a wide variety
of scientific problems. We compare the performance of DAFNO against other relevant scientific
machine learning models, including FNO (Li et al., 2020c), Geo-FNO (Li et al., 2022a), IFNO
(You et al., 2022c), F-FNO (Tran et al., 2022), GNO (Li et al., 2020a), DeepONet (Lu et al., 2019),
and UNet (Ronneberger et al., 2015). In particular, we carry out three experiments on irregular
domains, namely, constitutive modeling of hyperelasticity in material science, airfoil design in fluid
mechanics, and crack propagation with topology change in fracture mechanics. For fair comparison,
the hyperparameters of each model are tuned to minimize the error on validation datasets, including
initial learning rate, decay rate for every 100 epochs, smoothing parameter, and regularization
parameter, while the total number of epochs is restricted to 500 for computational efficiency. The
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Figure 3: An illustration on a hyperelasticity sample: (a) sharp characteristic function Y, (b) smoothed
characteristic function Y, (c) ground truth, (d) eDAFNO (trained using 41 x41 discretization) predic-
tion from the same resolution, and (e) zero-shot super-resolution prediction from eDAFNO (trained
using 41 x41 discretization and evaluated directly on 161x 161 discretization).

relative L2 error is reported as comparison metrics for both the training and test datasets. The
experiments of each method are repeated on 5 trials with 5 different random seeds, and the mean and
standard deviation of the errors are reported. Further details and additional results are provided in
Appendix B.

4.1 Constitutive modeling of hyperelasticity

We start with a hyperelasticity problem in material science that models the fundamental principle of
constitutive relations. The high-fidelity synthetic data in this benchmark is governed by
0%u
Por
where p denotes the mass density, u and o represent the corresponding displacement and stress fields,
respectively. The computational domain is enclosed by a unit cell [0, 1]? of which the center exists a
randomly shaped void, as described by its radius r = 0.2 + 722y and 7 ~ N(0,4%(=V +3%)71).
The bottom edge is fixed and the top edge is subjected to a tensile traction of ¢ = [0, 100]. The
underlying hyperelastic material is of the incompressible Rivlin-Saunders type. For training, we
directly adopt the dataset in Li et al. (2022a), where a total of 1000, 200, 200 samples are selected
for training, validation and testing, respectively. For this problem, the input is represented as point
clouds and the target is the resulting stress field.

+V-.0o=0, (®)

Table 1: The total number of parameters (in millions) of selected models for hyperelasticity dataset.

F-FNO
3.21

UNet
3.03

eDAFNO
2.37

iDAFNO FNO
0.60 2.37

model IFNO Geo-FNO GNO DeepONet

0.60 3.02 2.64 3.10

nparam

Table 2: Test errors for the hyperelasticity problem, where bold numbers highlight the best method.

Model # of training samples
10 100 1000
Proposed model gDAFNO 16.446%+0.472%  4.247%=+0.066% 1.094% +0.012 %
iDAFNO 16.669%+0.523%  4.214%+0.058%  1.207%=+0.006%
FNO w/ mask 19.487%+0.633%  7.852%+0.130%  4.550%=+0.062%
IFNO w/ mask 19.262%+0.376%  7.700%=+0.062%  4.481%+0.022%
Baseline model Geo-FNO 28.725%+2.600%  10.343%+4.446% 2.316%+0.283%
GNO 29.305%+0.321%  18.574%+0.584%  13.007%=+0.729%
DeepONet 35.334%+0.179%  25.455%=+0.245%  11.998%+0.786%
F-FNO 35.672%+3.852%  12.135%+5.813%  3.193%+1.622%
UNet 98.167%+0.236%  34.467%=+2.858%  5.462%=+0.048%
Ablation study FNO w/ smooth x | 17.431%+0.536%  5.479%+0.186% 1.415%=+0.025%
IFNO w/ smooth x | 17.145%+0.432%  5.088%=+0.146% 1.509%=+0.018%

Ablation study We first carry out an ablation study by comparing (a) the proposed two DAFNO
models with (b) the baseline FNO/IFNO with the sharp characteristic function as input (denoted
as FNO/IFNO w/ mask), and (c) the original FNO/IFNO with our proposed smoothened boundary



characteristic function as input (denoted as FNO/IFNO w/ smooth ). In this study, scenarios (b) and
(c) aim to investigate the effects of our proposed boundary smoothing technique, and by comparing
scenarios (a) and (c) we verify the effectiveness of encoding the boundary information in eDAFNO
architecture. In addition, both FNO- and IFNO-based models are tested, with the purpose to evaluate
the model expressivity when using layer-independent parameters in iterative layers. Three training
dataset sizes (i.e., 10, 100, and 1000) are employed to explore the effect of the proposed algorithms
on small, medium, and large datasets, respectively. The number of trainable parameters are reported
in Table 1. Following the common practice as in Li et al. (2022a), the hyperparameter choice of each
model is selected by tuning the number of layers and the width (channel dimension) keeping the total
number of parameters of the same magnitude.

The results of the ablation study are listed in Table 2. Firstly, by directly comparing the results of FNO
(and IFNO) with mask and with smooth boundary encoding, one can tell that the boundary smoothing
technique helps to reduce the error. This is supported by the observation that FNO and IFNO with
smooth  consistently outperform their counterparts with mask in all data regimes, especially when
a sufficient amount of data becomes available where a huge boost in accuracy can be achieved (by
over 300%). On the other hand, by encoding the geometry information into the iterative layer, the
prediction accuracy is further improved, where eDAFNO and iDAFNO outperform FNO and IFNO
with smoothed x by 22.7% and 20.0% in large-data regime, respectively. Another interesting finding
is that eDAFNO is 9.4% more accurate compared to iDAFNO in the large-data regime, although
only a quarter of the total number of parameters is needed in iDAFNO due to its layer-independent
parameter setting. This effect is less pronounced as we reduce the amount of available data for training,
where the performance of iDAFNO is similar to that of eDAFNO in the small- and medium-data
regimes. This is because iDAFNO has a much smaller number of trainable parameters and therefore
is less likely to overfit with small datasets. Given that the performance of eDAFNO and iDAFNO is
comparable, it is our opinion that both architectures are useful in different applications. In Figure
3, an example of the computational domain, the smoothened boundary encoding, the ground truth
solution, and the eDAFNO prediction are demonstrated. To demonstrate the capability of prediction
across resolutions, we train eDAFNO using data with 41x41 grids then apply the model to provide
prediction on 161x 161 grids—one can see that eDAFNO can generalize across different resolutions.

Comparison against additional baselines We further compare the performance of DAFNO against
additional relevant baselines, including GNO, Geo-FNO, F-FNO, DeepONet, and UNet. Note that
the results of GNO, DeepONet, and UNet are obtained using the same settings as in Li et al. (2022a).
Overall, the two DAFNO variants are significantly superior to other baselines in accuracy, with
eDAFNO outperforming GNO, DeepONet, UNet, Geo-FNO, and F-FNO by 1088.9%, 975.0%,
399.3%, 111.7%, and 191.9%, respectively, in large-data regime. DAFNO is also more memory
efficient compared to Geo-FNO (the most accurate baseline), as it foregoes the need for additional
coordinate deformation network. As shown in Table 1, when the layer-independent parameter setting
in iDAFNO is taken into account, DAFNO surpasses Geo-FNO by 407.4% in memory saving.

4.2 Airfoil design

Ground Truth eDAFNO Prediction

15 175
1.0 1.0
0.5 0.5
0.0 0.0

Figure 4: An illustration on a test sample from the airfoil design problem. From left to right: an
illustration of the discretized computational domain, the smoothed boundary encoding (i.e., smoothed
%), the ground truth, and the eDAFNO prediction.

Computational Domain Boundary Encoding (B = 5)
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0.4 . 06

In this example, we investigate DAFNQO’s performance in learning transonic flow around various
airfoil designs. Neglecting the effect of viscosity, the underlying physics can be described by the
Euler equation:

0 0
l+V-(pv)=0, ﬁ+V~(pv®'u+pI[)=0,

E
ot ot — TV (E+pv)=0. )

ot



Table 3: Results for the airfoil design problem, where bold numbers highlight the best method.

Model Train error Test error
Proposed model f:DAFNO 0.329%+0.020%  0.596 % 1-0.005 %
iDAFNO 0.448%+0.012%  0.642%+0.020%
eDAFNO on irregular grids | 0.331%+0.003%  0.659%=+0.007%
Geo-FNO 1.565%4+0.180%  1.650%=+0.175%
Baseline model  F-FNO 0.566%+0.066%  0.794%+0.025%
FNO w/ mask 2.676%+0.054%  3.725%+0.108%
UNet w/ mask 2.781%+1.084%  4.957%=+0.059%

with p, p and F being the fluid density, pressure and the total energy, respectively, and v denoting
the corresponding velocity field. The applied boundary conditions are: p,, = 1, Mach number
Mo, = 0.8, and po, = 1 on the far field, with no penetration enforced on the airfoil. The dataset used
for training is directly taken from Li et al. (2022a), which consists of variations of the NACA-0012
airfoil and is divided into 1000, 100, 100 samples for training, validation and testing, respectively.
For this problem, we aim to learn the resulting Mach number field based on a given mesh as input.
An example of the computational domain, the smoothened boundary encoding, the ground truth, and
the eDAFNO prediction is illustrated in Figure 4.

We report in Table 3 our experimental observations using eDAFNO and iDAFNO, along with the
comparison against FNO, Geo-FNO, F-FNO and UNet, whose models are directly attained from
Li et al. (2022a); Tran et al. (2022). We can see that the proposed eDAFNO achieves the lowest
error on the test dataset, beating the best result of non-DAFNO baselines by 24.9% and Geo-FNO by
63.9%, respectively. Additionally, iDAFNO reaches a similar level of accuracy with only a quarter
of the total number of parameters employed, which is consistent with the findings in the previous
example. With the properly trained DAFNO models, efficient optimization and inverse design are
made possible.

Physical space Computational space - eDAFNO

Prediction in physical space eDAFNO prediction eDAFNO on irregular grids iuu

Figure 5: eDAFNO applied to the airfoil dataset on irregular grids. (a): the highly irregular and
adaptive grids in the physical space is firstly deformed (via either an analytical mapping f or a
trainable neural network for grid deformation) to uniform grids in the computational space, on which
eDAFNO is applied to learn the underlying physics. The learned prediction is then converted back
to the physical space via the inverse mapping f ! or with another trainable neural network. (b): an
illustration of the absolute error distribution of predictions in Geo-FNO, eDAFNO trained on uniform
grids, and eDAFNO trained on irregular grids.

Aside from the enhanced predictability, DAFNO can also be easily combined with the grid mapping
technique in Geo-FNO to handle non-uniform grids. In particular, no modification on the model
architecture is required, where one just needs to include an analytical or trainable mapping from



non-uniform/irregular mesh grids to uniform mesh grids. As a demonstration, we consider irregular
grids of the airfoil dataset and use a pre-computed function to map irregular grids to regular grids. In
the irregular grid set, we place more grid points near the airfoil to provide a better resolution near
the important parts. The test error is provided in Table 3, where the test loss using the eDAFNO
learned model is 0.659% =+ 0.007%, which is similar to the DAFNO results on uniform grids. In
Figure 5, we demonstrate the irregular mesh and the absolute error comparison across Geo-FNO,
DAFNO on regular grids, and DAFNO on irregular grids. One can see that, while both DAFNOs
substantially outperform Geo-FNO, the error contours from eDAFNO with an irregular mesh show a
smaller miss-match region near the airfoil, illustrating the flexibility of DAFNO in meshing and its
capability in resolving fine-grained features.

4.3 Crack propagation with topology change in domain

In this example, we aim to showcase DAFNO’s capability in handling evolving domains by modeling
crack propagation in brittle fracture. We emphasize that DAFNO represents the first neural operator
that allows for learning with topology change. In the field of brittle fracture, a growing crack can be
viewed as a change in topology, which corresponds to an evolving x(¢) in the DAFNO architecture.
In particular, we define the following time-dependent characteristic function:

1 zeQ(t)
wan={y 220, (10)
where Q(t) denotes the time-dependent domain/evolving topology. Employing time-dependent x in
(6) keeps the neural operator informed about the evolving topology. In general, the topology evolution
rule that determines §2(¢) can be obtained from a separate neural network or from physics as is the
case in the current example. The high-fidelity synthetic data in this example is generated using 2D
PeriFast software (Jafarzadeh et al., 2022a), which employs a peridynamics (PD) theory for modeling
fracture (Bobaru et al., 2016). A demonstration of the evolving topology, as well as further details
regarding the governing equations and data generation strategies, is provided in Appendix B.3.

In this context, we select eDAFNO as the surrogate model to learn the the internal force density
operator. Specifically, let uy (x, t), us(, t) denote the two components of the displacement field u
at time ¢, and L, Lo be the two components of the internal force density £]u]. Given uy, us and x
as input data, we train two separate eEDAFNO models to predict L; and Lo, respectively. Then, we
substitute the trained surrogate models in the dynamic governing equation and adopt Velocity—Verlet
time integration to update u for the next time step, whereafter {2 and x are updated accordingly.

The problem of interest is defined on a 40 mm x 40 mm thin plate with a pre-crack of length 10 mm
at one edge, which is subjected to sudden, uniform, and constant tractions on the top and bottom
edges. Depending on the traction magnitude, crack grows at different speeds, may or may not
bifurcate, and the final crack patterns can be of various shapes. Our training data is comprised of
two parts, one consisting of 450 snapshots from a crack propagation simulation with a fixed traction
magnitude of o = 4 MPa, and the other consisting of randomized sinusoidal displacement fields and
the corresponding L1, Lo fields computed by the PD operator. The sinusoidal subset contains 4,096
instances without fracture and is used to diversify the training data and mitigate overfitting on the
crack data. For testing, we use the trained models in two scenarios with traction magnitudes different
from what is used in training, which allows us to evaluate the generalizability of eDAFNO. Note that
these tests are highly challenging for the trained models, as the predictions of the previous time step
are used as the models’ input in the current step, which leads to error accumulation as the simulation
marches forward.

Figure 6 displays the test results on the crack patterns under different traction magnitudes, where the
low traction magnitude (left column) shows a slow straight crack, the mid-level traction results in a
crack with a moderate speed and a bifurcation event (middle column), and the highest traction leads
to a rapid crack growth and initiates a second crack from the other side of the plate (right column).
The trained eDAFNO model is able to accurately predict the left and right examples while only seeing
the middle one, indicating that it has correctly learned the true constitutive behavior of the material
and generalized well to previously unseen loading scenarios and the correspondingly changed domain
topology. To further verify eDAFNQO’s generalizability to unseen geometries, in Figure 7 we compare
eDAFNO with the baseline FNO w/ smoothed mask model, and plot their relative errors in x and w.
As observed, the FNO predictions become unstable at a fairly early time in the two test scenarios,
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Figure 6: Comparison of the fracture patterns with different loading scenarios between the high-
fidelity solution and eDAFNO prediction.
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Figure 7: Comparison of relative errors in the characteristic function x (left) and displacement fields
(right) of the evolving topology predicted using the trained eDAFNO and FNO with mask at each
time step for the training (loading = 4 MPa) and testing (loading = 2 MPa and 6 MPa) scenarios.

since it creates a mask which is out of training distribution, while DAFNO can handle different crack
patterns by hard coding it in the architecture, so the results remain stable for a much longer time.

5 Conclusion

We introduce two DAFNO variants to enable FNOs on irregular domains for PDE solution operator
learning. By incorporating the geometric information from a smoothed characteristic function in the
iterative Fourier layer while retaining the convolutional form, DAFNO possesses the computational
efficiency from FFT together with the flexibility to operate on different computational domains. As
a result, DAFNO is not only highly efficient and flexible in solving problems involving arbitrary
shapes, but it also manifests its generalizability on evolving domains with topology change. In two
benchmark datasets and a real-world crack propagation dataset, we demonstrate the state-of-the-art
performance of DAFNO. We find both architectures helpful in practice: eDAFNO is slightly more
accurate while iDAFNO is more computationally efficient and less overfitting with limited data.

Limitation: Due to the requirement of the standard FFT package, in the current DAFNO we focus
on changing domains with uniformly meshed grids. However, we point out that this limitation can
be lifted by using nonuniform FFT (Greengard & Lee, 2004) or an additional mapping for grid
deformation, as shown in the airfoil experiment. Additionally, in our applications, we have focused
on applying the same types of boundary conditions to the changing domains (e.g., all Dirichlet or
all Neumann). In this context, another limitation and possible future direction would be on the
transferability to PDEs with different types of boundary conditions.
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A Detailed iDAFNO architecture

Similar to the eDAFNO architecture shown in (6), we present the iDAFNO version by incorporating
the layer-independent parameter definition characterized in the IFNO structure (You et al., 2022c):

Jh|(z) :=h(z) + 70 (X(ﬂﬂ) (Z(x()R();v) = h(z)Z(x();v) + Wh(z) + C)> :
where Z(ojv) := F ! [F[r(;;v)] - Flo]] .

(11)

1
Here, 7 = 7 is the reciprocal of the total number of layers employed. Note that the superscript [ is

dropped because the model parameters are layer-independent in the iDAFNO architecture, which
leads to significant computational saving.

B Problem settings and additional experimental results

In order to maintain consistency with other baselines, the dimension of representation in the first
two examples is set to d, = 32, with a total of 4 Fourier layers and 12 Fourier modes being used in
each direction. The output at each point is obtained via a projection layer in the form of a 2-layer
multilayer perceptron (MLP) with width (d},, 128, d,,), where d,, is the intended number of output. In
the third example, dj, is set to 16. A total of 3 Fourier layers with 32 Fourier modes in each direction
are employed. The width of the projection MLP is set to (dp, 2dp,, dy,).

B.1 Experiment 1 — Constitutive modeling of hyperelasticity

The dataset is obtained from Li et al. (2022a), which consists of an interpolated dataset of 41 x 41
point cloud on uniformly structured grids. The parameter of each method is given in the following,
where the parameter choice of each model is selected by tuning the number of layers and the width
(channel dimension) keeping the total number of parameters on the same magnitude.

* eDAFNO: In these cases, we use neural operators to construct mapping from grid location
x as the input, and the stress field as the output. To perform fair comparison with the results
reported in Li et al. (2022a), we employ the same hyperparameters here: in particular, four
Fourier layers with mode 12 and width 32 are used.

* iDAFNO: The iDAFNO cases employ the same hyperparameters as the eDAFNO cases,
with the iterative layer structure demonstrated in (11). In iDAFNO, all Fourier layers share
the same set of trainable parameters, while different layers have different parameters in
eDAFNO. Hence, iDAFNO reduces the number of trainable parameters by almost 75%,
when using the same hyperparameters as in eDAFNO.

* FNO (with mask or smooth x): Following the same practice as in Li et al. (2022a), we
train a plain FNO model (Li et al., 2020c), with the input as [z, x ()] (in the “with mask”
cases) or as [z, Y(z)] (in the “with smoothed x” cases). Herein, we employ the same FNO
architecture as reported in Li et al. (2022a), where four Fourier layers are used with mode
12 and width 32.

IFNO (with mask or smooth x): Similar to the FNO cases, we also use [z, x(«)] (in the
“with mask™ cases) or [x, ¥(x)] (in the “with smoothed " cases) as the input, with four
Fourier layers, mode 12, and width 32. On the Fourier layers, the implicit architecture
proposed in You et al. (2022c) is employed, such that all four Fourier layers share the same
set of trainable parameters. Therefore, the number of trainable parameters in IFNOs is
roughly 1/4 of that in FNOs.

* Geo-FNO: As a baseline model for FNOs with various geometries, we employ the Geo-FNO
architecture from Li et al. (2022a), where an additional deformation neural network is
trained together with FNO to provide a diffeomorphism from uniform grids to the deformed
domain.

* F-FNO: Following the settings in Li et al. (2022a), we train the F-FNO model (Li et al.,
2020c) with the input [z, x (x)]. We adopt the same F-FNO architecture as reported in Tran
et al. (2022), where four Fourier layers are used with mode 16 and width 64.
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* GNO: The graph neural operators are flexible on the problem geometry, which have been
widely used for complex geometries (Li et al., 2020a; Liu et al., 2022). To carry out fair
comparison, we build a full graph with edge connection radius r = 0.2, width 32 and kernel
width 512. As a result, the total number of parameters in GNOs is on the same magnitude as
in FNOs.

* DeepONet: As another neural operator baseline model, the deep operator network (Lu et al.,
2022) is composed of two neural networks — a trunk net and a branch net to represent the
basis and coefficients of the operator. In this baseline, we use five layers for both the trunk
net and branch net, each with a width of 256.

* UNet: Analogous to the setup in Li et al. (2022a), we train a UNet model (Ronneberger
et al., 2015) on uniform grids, where 4 downsampling and upsampling blocks with 20 hidden
channels are employed.

The comparison of the total number of parameters of the selected models used in the hyperelasticity
problem is listed in Table 13. In addition, the average runtime for each method on the hyperelasticity
problem with 1000 training samples is provided in Table 4. All tests are performed on a NVIDIA
RTX A6000 GPU card with 48GB memory. From this table, we can see that in DAFNOs the runtime
increases slightly compared with the corresponding FNOs, but they are still substantially more
efficient than other baselines, such as Geo-FNO.

For each method, we tune the learning rate from the range [1e-3,1e-1], the decay rate from the range
[0.4,0.9], the weight decay parameter from from the range [1e-6,1e-2], and the smoothing coefficient
(where applicable) from the range [5,100], then report the model with the best validation error. A
typical training curve can be found in Figure 8. As a supplement of Table 2, the full table of all
training and testing errors from different models is provided in Table 5.

Table 4: The per-epoch runtime (in seconds) of selected models for the hyperelasticity problem.

model eDAFNO iDAFNO FNO [IFNO Geo-FNO GNO DeepONet UNet F-FNO
runtime 2.00 1.70 1.81 1.62 5.12 98.37 940.12 5.04 3.41

eDAFNO ntrain=100

L2 Relative Error

0 100 200 300 400 500
Epoch

Figure 8: Demonstration of a typical training curve for eDAFNO.

To demonstrate the effect of the smoothing level when using different smoothing coefficient 3, we
illustrate the smoothed x on an exemplar test sample in Figure 9. We also perform tests on the
hyperelasticity example with a total of 1000 training samples and show the errors on the test dataset
in Table 6. For each value of /3, we search for the optimal initial learning rate, the decay rate, and the
weight decay parameter based on the validation dataset, and report the optimal values.

*We note that the numbers of trainable parameters for the “Geo-FNO” and “FNO” cases are different from
the ones provided in Li et al. (2022a). For fair comparison with methods using real-valued trainable parameters,
we count each complex-valued trainable parameter as two degrees of freedom.
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Table 5: Results for the hyperelasticity problem, where bold numbers highlight the best method
according to the test error.

Model, Dataset # of training samples
10 100 1000

eDAFNO, train 6.800%+0.670% 2.050%=+0.035% 0.664%+0.014%
eDAFNO, test 16.446%+0.472%  4.247%=+0.066% 1.094% £0.012 %
iDAFNO, train 7.266%+0.923% 2.038%+0.036% 0.812%+0.012%
iDAFNO, test 16.669%+0.523%  4.214%+0.058%  1.207%=+0.006%
FNO w/ mask, train 2.907%+0.318% 2.277%=+0.240% 0.881%+0.015%
FNO w/ mask, test 19.487%+0.633%  7.852%=+0.130% 4.550%+0.062%
FNO w/ smooth y, train | 2.876%=+0.152% 2.058%+0.132% 0.815%+0.012%
FNO w/ smooth Y, test 17.431%+0.536%  5.479%=+0.186% 1.415%+0.025%
Geo-FNO, train 0.547%+0.336% 0.689%+0.676% 1.192%+0.232%
Geo-FNO, test 28.725%+2.600%  10.343%+4.446%  2.316%=+0.283%
IFNO w/ mask, train 2.274%=0.248% 1.687%+£0.047% 2.701%=0.041%
IFNO w/ mask, test 19.262%+0.376%  7.700%=+0.062% 4.481%+0.022%
IFNO w/ smooth x;, train | 3.704%=+0.299% 1.683%+0.029% 1.013%+0.014%
IFNO w/ smooth Y, test 17.145%+0.432%  5.088%+0.146% 1.509%+0.018%
GNO, train 27.337%+0.501%  18.713%+0.669%  13.321%+0.681%
GNO, test 29.305%+0.321%  18.574%=+0.584%  13.007%=+0.729%
DeepONet, train 23.071%+5.963%  22.700%+0.984%  7.937%=+0.309%
DeepONet, test 35.409%+0.408%  25.925%+0.724%  11.760%+0.827%
UNet, train 98.042%+0.260%  34.569%+2.676% 1.760%+0.115%
UNet, test 98.167%+0.236%  34.467%+2.858% 5.462%+0.048%

Mask/Computational domain  Smooth level B = 10 Smooth level B =25 Smooth level B =50 Smooth level f =100

Figure 9: An illustration of the effect of varying the smoothing coefficient on the resulting boundary
encoding. The larger the smoothing level S is, the sharper and narrower the encoded boundary
becomes. In effect, 3 can be treated as a hyperparameter and tuned according to the validation error
to either smoothen the boundary or keep the original boundary untouched.

Table 6: The effect of the smoothing coefficient 3 on test loss in the hyperelasticity example with a
total of 1000 training samples.

initial learning rate  decay rate  weight decay parameter [ train loss  test loss
4.5 x 1072 0.5 3x 1076 5 0.564%  1.155%
4.0 x 1072 0.5 1x107° 10 0.637%  1.064%
2.0 x 1072 0.5 1x107° 20 0454%  1.120%
1.5 x 1072 0.5 3x107° 30 0516% 1.147%
2.5 x 1072 0.5 3x107° 40  0.608%  1.135%
1.5 x 1072 0.5 3x107° 50  0.504%  1.179%
1.5 x 1072 0.5 2x107° 60  0498%  1.194%
1.5 x 1072 0.5 3x 1075 70 0.508%  1.240%
1.5 x 1072 0.5 3x107° 80  0.515% 1.275%
1.5 x 1072 0.5 3x107° 90  0.529%  1.306%
3.0x 1072 0.5 3x 1075 100  0.675%  1.338%
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B.2 Experiment 2 — Airfoil design
The airfoil dataset is directly taken from Li et al. (2022a), which is an interpolated dataset of 101 x 101

point cloud on uniformly structured grids. The analytical mapping function f and the corresponding
inverse mapping function f~! used in Figure 5 are defined in the following:

x| X[\ 0.909 tan~! (1.965X) 12
y] =T\ [¥]) = [o714tan (3.46Y +0.173sin (0.9097 tan~" (1.965X))) | ° 12)
X| (=] _ 0.509 tan (1.1x) 13
v| = Uyl ) = [0.289 tan (1.4y) — 0.05 sin (xz) | ° (13)

where upper- and lower-case letters indicate the coordinate systems in the physical and computational
spaces, respectively.

B.3 Experiment 3 — Crack propagation with topology change

t=tg t=t t=t, b }, -

Figure 10: An illustration of the crack propagation problem, showing the topology change in DAFNO
(left) and the physical problem setup (right), where a 2D plate with a pre-crack is subjected to external
tractions (denoted as o with a slight abuse of notation) on the top and bottom edges.

An illustration of the time-dependent domain evolution, as well as the problem setup, is shown in
Figure 10. The governing PD equation of motion for brittle fracture used in generating the dataset is
given below:

0%u

P = L)+ b L) (@) = [ ey 0f @y )y (14)

Ha

In (14), u is the displacement field, p is mass density, ¢ is time, b is the external force density (a.k.a.
the body force), and £(w) is the internal force density. £(u) is the divergence of stress in local theory,
but in PD, it is defined by the integral described in (14). #, denotes a finite-size neighborhood
of point . f(x,y,t) is the dual force density representing the pairwise force acting between unit
volumes at points  and y in its neighborhood H,. f depends on the PD constitutive model, and
u(x,y,t) is a binary history-dependent quantity representing material damage. p is either 0 or 1 for
brittle fracture models, where p = 0 denotes a lost interaction for material points « and y while 4 = 1
implies an intact connection between the two. For the material model, we choose to work with the
linearized bond-based model, and for the damage model we adopt the pointwise energy-based model
provided in the PeriFast software. According to the employed damage model, topology evolution due
to growing crack is a function of strain energy which depends on the updated displacement field, i.e.,
O(t) = Q(u(t)). Additional details regarding the PD formulation can be found in Jafarzadeh et al.
(2022b).

The physical parameters used in generating the data are: Young’s modulus £ = 150 GPa, Poison’s
ratio v = 0.33, mass density p = 1000 kg/m>, and fracture energy Gy = 200 J/m?. The relative
computational parameters are: PD horizon (the radius of the neighborhood for nonlocal interactions)
0 = 2.07 mm, extended domain (i.e., the periodic box) size 44.14 mm x 44.14 mm with 64 x 64
discretization, and time step At = 2 x 10~8 s. For the crack data subset in training, we run PeriFast
software with the above parameters and the traction magnitude of 4 MPa. We record w1, us, X,
L1, and L, for 450 consecutive time steps. For the sinusoidal data subset used in training, we set
u] = csin (2"';;“) sin (2"2“), and us = 0 for m,n = 1,2,---,32, where L is the length of
the square box, 7 and x5 are the 2D coordinates, and ¢ = 0.01/32 is a scaling factor to make
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the generated displacement in the same scale as the crack data. Additionally, we set u; = 0 and
us = csin (22721) sin (2"2“ ). This results in a total of 2,048 instances of sinusoidal displacement
fields. Next, we set x = 1 for all nodes and use the PD operator in PeriFast to compute the

corresponding L, and Ls fields.

Following the common practice in PD simulations (Ha & Bobaru, 2010), we employ the following
two additional techniques to help with training and stabilizing crack propagation. Firstly, we do not
allow damage to initiate from boundaries. This technique has been used in previous PD simulations
and is referred to as the “no-fail zone”. It effectively stops unrealistic distributed damage from
initiating on the boundaries. Secondly, given that the physical problem is symmetric, we enforce the
damage growth in the simulation with eDAFNO to be symmetric as well. Note that the whole domain
is used for training, and the predictions on the entire domain is used for next time step evaluation.
Symmetry is enforced only when the topology characteristic function X is updated.

eDAFNO Prediction on eDAFNO Prediction on
Ground Truth 128x128 and At=0.02 ps 128x128 and At=0.01 ps

1
0.8
’ 0.6
0.4
0.2
5.82 us 5.82 us 5.82 us 0
Figure 11: Demonstration of the resolution-independence property of eDAFNO trained using a spatial

discretization of 64 x64 and time step of 0.02 us and tested on a spatial discretization of 128 <128
and time step of 0.01 us. The three rows correspond to the x, u1, and us fields, respectively.

Besides the resolution-independence property of DAFNO as shown in Figure 3, we further inves-
tigate the generalizability of DAFNO in both physical and temporal resolutions with this example.
Specifically, the eDAFNO model is trained on a spatial resolution of 64x64 and a time step of 0.02
us, and it is here tested on both a finer spatial resolution of 128x128 and a finer time step of 0.01 us.
As shown in Figure 11, the performance of the low-resolution-trained eDAFNO on high resolutions
is compared with the high-fidelity peridynamics simulation results, where visually identical results
are observed. Note that, although the time marching is computed with an ODE solver in this example,
the temporal resolution independence is still worth investigating because, as the number of time steps
increases, the number of times that the error accumulates in the dynamic solver increases as well.
Our results show that eDAFNO prediction remains independent of the time step employed.

B.4 Experiment 4 — Pipe flow

We perform an additional experiment of pipe flow, in which the dataset is obtained from Li et al.
(2022a). We closely follow their problem setup and briefly document the comparison against Geo-
FNO in what follows.
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Using 1000 samples for training, eDAFNO has achieved a similar performance to Geo-FNO: when
comparing the relative L? errors, eDAFNO’s test error on the pipe dataset is 0.71%, while the test
error of Geo-FNO is 0.67%. When comparing the maximum absolute error (cf. Figure 12), eDAFNO
has 0.051, while Geo-FNO has 0.061. This is probably due to the fact that all pipes have a very
simple geometry, which can be accurately represented with the pre-specified mapping in Geo-FNO.
Note that such a pre-specified mapping for grid deformation can be easily added in DAFNO, as
demonstrated in the airfoil experiment. In this circumstance, DAFNO becomes exactly the same as
Geo-FNO in the pipe flow setup.

eDAFNO 0.00297
0.00264
0.00231
0.00198

0.00165

Geo-FNO 0.00132

0.00099

0.00066

0.00033

0.00000

Figure 12: An illustration of the absolute error distribution of predictions from Geo-FNO and
eDAFNO on the pipe dataset. The maximum absolute errors of Geo-FNO and eDAFNO are 0.061
and 0.051, respectively. In the vicinity of the outlet where most errors accumulate, eDAFNO is also
more accurate compared to Geo-FNO.
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