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Abstract

Neural operators (NOs) have emerged as effec-
tive tools for modeling complex physical systems
in scientific machine learning. In NOs, a central
characteristic is to learn the governing physical
laws directly from data. In contrast to other ma-
chine learning applications, partial knowledge is
often known a priori about the physical system at
hand whereby quantities such as mass, energy and
momentum are exactly conserved. Currently, NOs
have to learn these conservation laws from data
and can only approximately satisfy them due to fi-
nite training data and random noise. In this work,
we introduce conservation law-encoded neural op-
erators (clawNOs), a suite of NOs that endow in-
ference with automatic satisfaction of such conser-
vation laws. ClawNOs are built with a divergence-
free prediction of the solution field, with which
the continuity equation is automatically guaran-
teed. As a consequence, clawNOs are compliant
with the most fundamental and ubiquitous conser-
vation laws essential for correct physical consis-
tency. As demonstrations, we consider a wide
variety of scientific applications ranging from
constitutive modeling of material deformation,
incompressible fluid dynamics, to atmospheric
simulation. ClawNOs significantly outperform
the state-of-the-art NOs in learning efficacy, espe-
cially in small-data regimes. Our code and data
accompanying this paper are available at https:
//github.com/ningliu—-iga/clawNO.
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1. Introduction

Deep neural networks (DNN) have achieved tremendous
progress in areas where the underlying laws are unknown.
In computer vision applications convolutional neural net-
works have been very popular even though it is unclear
how the lower-dimensional manifold of “valid” images is
parameterized (He et al., 2016; Ren et al., 2015; Krizhevsky
et al., 2012). That means, such a manifold has to be dis-
covered in a purely data-driven way by feeding the network
vast amounts of data. Another recent popular application of
DNNSs is the modeling and calibration process of physics-
based problems from experimental measurements (Ranade
etal., 2021; Schmidt & Lipson, 2009; Colak, 2021; Jin et al.,
2023; Vinuesa et al., 2023). A wide range of physical ap-
plications entail the learning of solution operators, i.e., the
learning of infinite dimensional function mappings between
any parametric dependence to the solution field. A prototyp-
ical instance is the case of modeling fluid dynamics, where
the initial input needs to be mapped to a temporal sequence
of flow states. Like the time integration in numerical mod-
elling, an operator is required that takes the current flow
state and maps it to the predicted state one time step later.
To this end, the neural operator (NO) (Anandkumar et al.,
2020; Li et al., 2020c; Lu et al., 2019; Gupta et al., 2021;
Cao, 2021) is introduced, which learns a surrogate mapping
between function spaces with resolution independence as
well as generalizability to different input instances. These
facts make NOs excellent candidates in discovering models
for complex physical systems directly from data.

Herein, we consider data-driven model discovery of physics-
based problems using NOs (Li et al., 2021; Goswami et al.,
2022b). In contrast to computer vision applications, physics-
based applications are often at least partially constrained
by well-known fundamental laws. As a famous example,
the motion of a particle in an external potential should con-
serve energy and momentum, while the exact form of the
potential or the expression for the momentum equations is
still unknown and needs to be inferred from observations.
However, most of the current NOs have been focused on a
pure data-driven paradigm, which neglects these intrinsic
conservation of fundamental physical laws in data. As a
result, their performances highly rely on the quantity and



Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

coverage of available data.

To improve learning efficacy and robustness in small-data
regimes, we propose to encode a series of fundamental
conservation laws into the architecture of NOs. Their infer-
ence is then constrained to a physically-consistent manifold.
Here, we focus on the conservation of mass or volume
which leads to a continuity equation for divergence-free
flow. The development is based on two key innovations.
Firstly, when the output function of a NO is divergence-free,
the continuity equation is automatically satisfied, guaran-
teeing conservation of volume and mass. Based on the
concept of differential forms, the conservation law is em-
bedded through building divergence-free output functions.
Secondly, to evaluate the differential forms, we propose
an additional linear layer in NOs, whose weights are pre-
specified based on high-order numerical differentiations on
the given grids. Given an input function and its values
on given grids, this layer evaluates the spatial derivatives
as weighted linear combinations of neighboring or global
points, mapping the function to its approximated derivatives.

Compared to existing NO methods, the proposed archi-
tecture mainly carries three significant advantages. First,
different from existing physics-informed neural operators
(Goswami et al., 2022a;b; Li et al., 2021; Wang et al., 2021),
our approach is readily applicable to learn physical systems
directly from experimental measurements, since it only re-
quires observed data pairs and does not rely on fully known
governing equations. Second, the conservation laws in our
approach are realized through built-in architectures, which
constrain the output function to a physically consistent man-
ifold independent of noisy measurement and/or scarce data
coverage. Third, our architecture is designed to encode gen-
eral conservation laws at large. Besides the conservation
of mass, linear/angular momentum as demonstrated in our
examples, it is readily applicable to the conservations of
energy and electric charge, and can be easily scaled up to
higher dimensions. In summary, the main contributions of
our work are:

* We propose clawNO, a novel neural operator architec-
ture to learn complex physical systems with conserva-
tion laws baked into the design.

* QOur architecture is realized by adding an additional
layer that employs numerical differentiation in evaluat-
ing the spatial and temporal derivatives as a weighted
linear combination of neighboring points. As a result,
our design is readily applicable as an add-on to any
neural operator architecture, with comparable network
size and computational cost.

¢ ClawNO only requires data pairs and does not rely on
a priori domain knowledge, while the guaranteed con-
servation laws improve the learning efficacy, especially

in the small-data regime.

2. Background and Related Work

Learning hidden physics. Learning and predicting com-
plex physics directly from data is ubiquitous in many scien-
tific and engineering applications (Ghaboussi et al., 1998;
1991; Carleo et al., 2019; Karniadakis et al., 2021; Zhang
et al., 2018; Cai et al., 2022; Pfau et al., 2020; He et al.,
2021; Besnard et al., 2006). Amongst these real-world
physical problems, the underlying governing laws largely
remain unknown, and machine learning models act to dis-
cover hidden physics from data through training. Successful
examples include graph neural networks (GNN5) in discov-
ering molecular properties (Wieder et al., 2020; Wu et al.,
2023a), neural ODEs in constructing strain energy formu-
lation for materials (Tac et al., 2022), and CNNs in steady
flow approximation (Guo et al., 2016), etc. In this work,
we focus on learning hidden physics from measurements
with fundamental physical laws enforced. Examples include
learning material deformation model from experimental
measurements, where the mass should be conserved, but the
constitutive law remains hidden.

Neural operator learning. Among others, NOs possess
superiority in discovering physical laws as function map-
pings. Contrary to classical neural networks (NNs) that op-
erate between finite-dimensional Euclidean spaces, NOs are
designed to learn mappings between infinite-dimensional
function spaces (Li et al., 2020a;b;c; You et al., 2022a; Ong
et al., 2022; Cao, 2021; Lu et al., 2019; 2021; Goswami
et al., 2022a; Gupta et al., 2021). As a result, NOs are often
employed to manifest the mapping between spatial and/or
spatio-temporal data pairs. Compared with classical NN,
the most notable advantages of NOs are their resolution in-
dependence and generalizability to different input instances.
Moreover, NOs only require data with no knowledge on the
underlying governing laws. All these advantages make NOs
promising tools to learn hidden physics directly from data.

Despite the aforementioned advances, purely data-driven
NOs still suffer from the data challenge: they require a
large set of paired data, which is prohibitively expensive in
many engineering applications. To resolve this challenge,
physics-informed neural operator (PINO) (Li et al., 2021)
and physics-informed DeepONets (Goswami et al., 2022a;
Wang et al., 2021) are introduced, where a PDE-based loss
is added to the training loss as a penalization term. How-
ever, these approaches often require a priori knowledge of
all the underlying physics laws (in the form of governing
PDEs). Moreover, the penalization term only imposes these
knowledge as a weak constraint.

Imposing partial physical laws in NNs. Several NN mod-
els have pursued the direction of imposing partial physics



Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

Ground Truth

Ground Truth

2004.4

6167.7

10331.0 2004.4

6167.7

s
=1
3|
%
S
<

Abs. Error

10331.0 0 716.3 1432.6

Figure 1. Predictability demo in atmospheric modeling. While FNO plausibly learns the wave propagation patterns, its relative L2 error is
twice as big as that of clawNO (cf. Section 4.3), especially in the vicinity of mountains (Fig. 6). ClawNOs automatically satisfy the

conservation law and improve physical consistency.

knowledge into the architecture of the model, with the goal
of improving efficiency in learning hidden physics. A pop-
ular approach is to design equivariant NNs (Satorras et al.,
2021; Miiller, 2023; Liu et al., 2023; Helwig et al., 2023),
which enforces symmetries in a Lagrangian represented by
NNs and guarantees that the discovered physical laws do
not depend on the coordinate system used to describe them.
As pointed out by Sarlet & Cantrijn (1981); Noether (1971),
such symmetries induce the conservation of linear and angu-
lar momentum in the learned physical system. Towards the
conservation law of other quantities, the authors in Keller
& Evans (2019); Sturm & Wexler (2022) consider the tem-
poral concentration changes of multiple species. They find
that conserving mass via a balancing operation improves
the accuracy and physical consistency of NNs. In Richter-
Powell et al. (2022), a divergence-free perspective has been
considered to impose more general conservation laws in the
framework of physics-informed neural networks (PINNs)
(Raissi et al., 2019; Cai et al., 2021) with the aid of au-
tomatic differentiation to evaluate the derivatives directly.
The same problem is also tackled by Négiar et al. (2022);
Hansen et al. (2023), where the conservation law is enforced
by projecting the solution to the constrained space (Négiar
et al., 2022) or encoded by taking the predictive update
following an integral form of the full governing equation
(Hansen et al., 2023). However, in all these conservation
law-informed neural networks the full governing PDEs are
employed to formulate the loss function or the predictive
updates/projections, and hence they are not applicable to
hidden physics discovery.

3. ClawNO: Conservation Law Encoded
Neural Operator

We consider the learning of complex physical systems based
on a number of observations of the input function values
f;(x) € F(Q;RP/) and the corresponding output function
values u;(x) € U(Q;RP+). Here, i denotes the sample
index, (2 € RP is the bounded domain of interest, and IF and
U describe the Banach spaces of functions taking values

in RPs and RP+, respectively. To model the physical laws
of such a system, we aim to learn the intrinsic operator
G : F — U, that maps the input function f(x) to the output
function u(x). In other words, given the measurements
of f; and u; on a collection of points x = {x;}}, C Q,
we seek to learn the physical response by constructing a
parameterized surrogate operator of G: G[f; 0](x) ~ u(x),
where the trainable parameter set 6 is obtained by solving
the optimization problem:

. . 1 >
Igél({)lﬁ(@) =min N[C(g[fi;ﬁ],ui)} M

BER [615:01x5) — ity |
~min — .
N S wts)lP

Here, C denotes the cost functional that is often taken as
the relative mean squared error.

Although our approach is agnostic to any NO architecture,
for the purpose of demonstration we consider the generic
integral neural operators (Li et al., 2020b;c; You et al.,
2022a;b) as the base models. In this context, an L-layer
NO has the following form:

Glf;0](x) == QoJro---0J1oPf](x), (2)

where P, Q are shallow-layer NNs that map a low-
dimensional vector into a high-dimensional vector and vice
versa. Each intermediate layer, J;, consists of a local linear
transformation operator YV, an integral (nonlocal) kernel
operator K;, and an activation function o. The architectures
of NOs mainly differ in the design of their intermediate layer
update rules. As two popular examples, when considering
the problem with structured domain €2 and uniform grid set
X, a Fourier neural operator (FNO) is widely used, where
the integral kernel operators K; are linear transformations
in frequency space. As such, the ([+1)th-layer feature func-
tion h(x, [ 4 1) is calculated based on the [th-layer feature
function h(x, ) via:

h(x,l+ 1) = 7 V°[h(x,1)] 3)
=c(Wih(x,1) + F'[A; - FIh(-, D]](x) + 1) ,
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where W}, ¢; and A; are matrices to be optimized, F and
F~1 denote the Fourier transform and its inverse, respec-
tively. On the other hand, the graph neural operator (GNO)
is often employed on general irregular domains and grids,
where the intermediate layer is invariant with respect to [,

ie, J1 = --,J = JNO, with the update of each layer
given by
h(x, 1+ 1) = 7°"[h(x,1)] “)
:= o(Wh(x,1) +/ k(x,y,f(x),f(y);w)h(y,l)dy +c) .
Q

Here, k(x,y,f(x),f(y);w) is a tensor kernel function that
takes the form of a (usually shallow) NN with parameter w.
In (4), the integral operator is often evaluated via a Riemann
sum approximation [, k(x,y, f(x), f(y);w)h(y,l)dy ~
i Z;Lil k(x, x5, f(x), f(x;);w)h(x;,1), realized through
a message passing GNN architecture on a fully connected
graph.

3.1. Built-In Divergence-Free Prediction

Intuitively, a conservation law states that a quantity of a
physical system does not change as the system evolves over
time. The most well-known examples of conserved quan-
tities include mass, energy, linear momentum, angular mo-
mentum, etc. Mathematically, a conservation law can be
expressed as a continuity equation defining the relation be-
tween the amount of the quantity and the “transport” of that
quantity:

@(x, ) +Vxu(x,t) =0,

5t for (x,t) € Qx[0,T7], (5)

where p : RPT! — R is the volume density of the quantity
to be conserved, u : RP+L 5 RP is the flux describing how
this quantity flows, and V denotes the gradient operator
with respect to the spatial dimensions. Equation 5 states
that the amount of the conserved quantity within a volume
can only change by the amount of the quantity that flows in
and out of the volume. Taking the mass conservation law as
an instance, p is the fluid’s density, and u is the velocity at
each point, and then the mass flux becomes 1 = pu. When
considering the (quasi-)static problem, i.e., p is independent
of time, we have Vy - u = 0, where the divergence is taken
only over spatial variables. Such a divergence-free equation
is also referred to as the condition of incompressibility in
fluid dynamics. Moreover, we note that (5) can always be
expressed as a divergence-free equation when considering
both spatial and temporal dimensions. As a matter of fact,
by taking X = (x,t) and U = (i, p), (5) can be re-written
as Vx - U = 0, there the gradient operator Vx is taken with
respect to both x and ¢. Then, the conservation law becomes
equivalent to the static case, if we consider the augmented
variable X on the augmented domain Q := Q x [0,7].
Hence, in the following derivation we focus on the static

case, with the goal of designing an NO architecture with the
continuity equation div(u) := Vx(u) = 0 automatically
guaranteed for its output function u.

To construct divergence-free NOs, we start from differential
forms in RP, following the derivations in e.g., Barbarosie
(2011); Kelliher (2021). More details are provided in Ap-
pendix A. Generally, an object that may be integrated over a
k—dimensional manifold is called a k—form, which can
be expressed as pu = 2191@27--.,@9 H(iy e i) ATy, A
e Ndxg, = ZI wprdzy. For instance, any scalar func-
tion g(x) € C* is a O—form, and v = >0, v;(x)dx;,
v;(x) € C*,is a 1—form. Denote d as the exterior deriva-
tive, which is an operation acting on a k—form and pro-
duces a (k + 1)—form (e.g., dg(x) = >.7_, g—idxi), and
the Hodge operator as x, which matches to each k—form
an (p — k)—form via xdz; := (—=1)°01)dx;.. Here,
I¢ := {1,--- ,n}\I is the complement set of I, and
o(1,1°) is the sign of the permutation (I, ¢). A simple
calculation yields that « x . = (—1)*=%); and ddu = 0
for any k—form p.

To see the connection of these definitions to our goal, we
note that our output function, u : R? — RP, can be equiva-
lently expressed as a 1—form u = >_7_, w;(x)dz;. Then,
the divergence of u can be expressed as d * u, and the above
fundamental properties of the exterior derivative yields
div(xdp) = d x xdp = ddp = 0 for any (p — 2)—form
. That means, any vector field u satisfying u = *dpu is
divergence-free. Our goal is therefore to parameterize the
output function of NOs in the form of *du, or equivalently,
as *d(21§i1,--~ Jip—2<p Hiq - 5ip72)dxi1 AN ./\dxi[)fZ)) =

p g Opij
i=1 j=1 Ox;

Q with p135(x) = g jye for i < jand pij(x) = —p(,i)e
otherwise, as real-valued alternating functions. That means,
taking any p = [p;;(x)] satisfies p;; = —pj; (@ p
by p skew-symmetric matrix-valued function), we have
div(xdp) = 0, where xdp = [div(u1), - - -, div(p,)]” and
1; stands for the :—th row of .

dx;. Here, 11;;(x) is a function defined on

Remark: The idea of representing the conservation-law
informed solution into the divergence of a skew-symmetric
matrix-valued function is theoretically studied in Barbarosie
(2011); Kelliher (2021), and recently employed in Richter-
Powell et al. (2022) with the PINNs architecture. However,
we point out that our scope of work is substantially different
from Richter-Powell et al. (2022) where the governing equa-
tion is given. In PINN architecture the NN is constructed
to approximate the solutions of a particular governing equa-
tion, i.e., mapping from x to the solution u(x). As such,
the differential forms are approximated with automatic dif-
ferentiation in NNs. In our work, we focus on the hidden
physics learning problem where the governing equation re-
mains unknown and employ the neural operator model to
learn the governing law as a function-to-function mapping
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directly from data. Besides the fact that we do not rely on an
equation-based loss function, in neural operators the differ-
ential forms can no longer be approximated via automatic
differentiation, and therefore we propose a pre-calculated
numerical differentiation layer as will be elaborated below.

3.2. ClawNO Architecture and Implementation

With the above analysis, we now construct an NO architec-
ture with divergence-free output. Concretely, we propose to
modify the architecture in (2) as:

GIf;0](x) :=DoQoJpo---0J1oPlf](x). (6

where the projection layer, Q, maps the last layer feature
vector h(x, L) to a dimension p(p — 1)/2 vector, such that
each dimension in this vector stands for one degree of free-
dom in the skew symmetric matrix-valued function p(x).
Then, the last layer D takes p as the input and aims to cal-
culate its row-wise divergence [div(u1), - -+, div(pp)] T
the output function u(x).

To formulate the last layer D there remains one more techni-
cal challenge: in NOs the output functions are provided on
a set of discrete grid points, X, and therefore the derivatives
are not readily evaluated. With the key observation that in
classical numerical differentiation methods the derivatives
are evaluated as weighted linear combinations of neighbor-
ing or global points, we propose to encode these weights in
D. As such, D will have pre-calculated weights and act as
a numerical approximation of [div(u), - -+ ,div(u,)]T. To
demonstrate the idea, in the following we start with uniform
grids x and (2 being a periodic piece of R?, i.e., the torus
TP, then discuss the scenarios with non-periodic domain
and non-uniform grids.

Considering T? := [[?_,[0,L%]/ ~ and x :=
{5~ SR € 0, Nz

ponent of 1 can then be approximated as a truncated Fourier
series:

}, each com-

(N N®Y
Hjk (x) ==
N (1) _ N(P) _
2 ! 2 ! R i2mEq i2mEp
E E p“jk‘(glv"' 7£p)6 (M L. .(®) s
1
G=—8D = ND
where [i;,(&1,- -+ ,&p) is the Fourier coefficient of ,ujk, cal-

.
culated via F[u,;]. Taking derivatives of MEN

and using them to approximate the derivative of ji;;, we
have the following result:

Theorem 3.1. Disap(p —1)/2 x M x M x p tensor
“,N(p)) _

- NPy

with its parameters given by: D[u] = *du(N(l)v'

where

27€
= Zf { <k§

, (Dlu))p)"

a (1\](1) N(P))

(Dlul); = Z —a—

k

[(Dlub, -

56|,
@)

then the following error estimate holds true:
[[*dp = Dlpll o = O(Az™ 1),

if i has m — 1 continuous derivatives for some m > 2 and
a m—th derivative of bounded variation. In the special case
when p is smooth, a spectral convergence is obtained. Here,
M :=T1"_|N (1) denotes the total number of grids, and
Az = max L( /N is the spatial grid size.

Proof. Derivation of (7) is provided in Appendix E.1. The
theorem is an immediate proposition of the Fourier spectral
differentiation error estimate (see, e.g., Trefethen (2000,
Page 34)). O

We now consider non-periodic domain and/or non-uniform
grids. When the domain is non-periodic but the grids are
uniform, we employ the Fourier continuation (FC) technique
(Amlani & Bruno, 2016; Maust et al., 2022) which extends
the non-periodic model output into a periodic function. In
particular, the layer parameter for D in (7) is modified as:
D:=RoDo FC, where FC and R are the FC extension
and restriction operators, respectively.

When the grids are non-uniform, the spectral method no
longer applies and we seek to generate derivatives follow-
ing the spirit of high-order meshfree methods (Bessa et al.,
2014; Trask et al., 2019; Fan et al., 2023). In particular, con-

sidering the collection of measurement points y = {x; }},,
we seek to generate consistent quadrature rules of the form

f) k

ax(i (Xl) ~ ijexﬁBa(xi)((b(Xj) - ¢(Xi))wi(,j) for each
x; € xand k =1,---,p. Here, Bs(x;) denotes the neigh-
borhood of radius § of point x;, and wgk») is a collection of

to-be-determined quadrature weights I;re—calculated from
the following optimization problem:

min E
k

(
“i,j x;EXNBs(x;)

= > ()

X exNBg(x;)

® 99
‘ ‘ s.t. axk (XZ)

—¢(xi)wi), Vo ePn(R), (8)

where P,,,(R?) is the space of m—th order polynomials
(m > 1). Assume that x is quasi-uniform, the size of x N
Bj;(x) is bounded, the domain 2 satisfies a cone condition,
and ¢ is sufficiently large, the above optimization problem
has a solution (Wendland, 2004), and we further have:

Theorem 3.2. Consider a fixed ratio of 6/ Az where Az :=
SUDy, ¢, Mily, ex\x, |[Xi — X;|[ .2, the layer parameters of

D can be formulated as: D[u] = [(D[u])1,- -+, (D[u])p]*,
where
Dlul)i(x) = D (ur(x) — pgr(xa))wiy . (9)

kE x;exNBs(xi)
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Figure 2. Proposed clawNO architecture. We start from the input function g(z). After lifting, the high-dimensional latent representation
goes through a series of iterative equivariant layers, then gets projected to a function space in the form of an antisymmetric matrix. Lastly,
we employ numerical differentiation (layer D with pre-calculated weights) to obtain the target divergence-free output.

The following error estimate holds true:
[bedp = Dlp]l| o = O(Aa™ "),
if  has m + 1 continuous derivatives.

Proof. The proof follows a similar argument as in Levin
(1998, Theorem 5), see Appendix E.2. O

The proposed architecture can be readily combined with the
FNOs in (3) and GNOs in (4). Generally, when measure-
ments are provided on regular domain and uniform grids,
we consider FNOs together with the differentiation layer
D approximated in (7) (or its FC-based extension). When
the measurements are on non-uniform grids, GNOs can be
employed with the differentiation layer D approximated
via meshfree methods (see (9)). Besides vanilla FNOs and
GNOs, to further encode laws of physics we also consider
their group-equivariant versions as the base models, namely
the invariant neural operator (INO) (Liu et al., 2023) for
non-uniform grids and the group-equivariant FNO (G-FNO)
(Helwig et al., 2023) for uniform grids. As such, the learnt
laws of physics do not depend on the coordinate system used
to describe them, together with the encoded conservation
laws guaranteed.

Remark: Although clawNOs are designed to make
divergence-free predictions, they are also applicable to
problems involving a mixture of divergence-free and non-
divergence-free fields. Assume the number of divergence-
free and non-divergence-free variable dimensions are n;
and no, respectively. In this situation, one can set the output
dimension of the projection layer to be n = n; + no, and
only pass the first n; dimensions of the output to the numer-
ical differentiation layer for prediction of divergence-free

output, and the remaining n, dimensions can be directly
trained to predict the non-divergence-free variables in the
spirit of a vanilla NO.

4. Experiments

We showcase the prediction accuracy and expressivity of
clawNOs across a wide range of scientific problems, includ-
ing elasticity, shallow water equations and incompressible
Navier-Stokes equations. We compare the performance
of clawNOs against a number of relevant machine learn-
ing techniques. In particular, we select INO (Liu et al.,
2023), GNO (Li et al., 2020a), MP-PDE (Brandstetter et al.,
2022), and MeshGraphNets (Pfaff et al., 2020) as baselines
in graph-based settings, whereas we choose FNO (Li et al.,
2020c), G-FNO (Helwig et al., 2023), UNet (Ronneberger
et al., 2015), LSM (Wu et al., 2023b), KNO (Xiong et al.,
2023a;b), UNO (Rahman et al., 2022), and BOON (Saad
et al., 2022) as baselines in datasets with uniform discretiza-
tions. We also compare with an additional non-NO baseline,
Lagrangian neural networks (LNN) (Cranmer et al., 2020;
Miiller, 2023), in the first experiment. The relative L2 er-
ror is reported as comparison metrics. We perform three
replicates of all the experiments with randomly selected
seeds, and the mean and standard deviation of the errors
are reported. To guarantee a fair comparison, we make sure
that the total numbers of trainable parameters in all models
are on the same level, and report these numbers for each
case. Additional details on the data generation and training
strategies are provided in Appendix C.
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4.1. Incompressible Navier-Stokes Equation

We start from the incompressible Navier—Stokes equations
in vorticity form, which is widely applied to the simulation
of sub-sonic flows, especially in hydromechanical and tur-
bulent dynamics modeling. The (known) mass conservation
law and (hidden) governing equation are given by:

V-u=0, w+u-Vw=vAw+f, (10)

where w and v denote the vorticity and fluid viscosity, re-
spectively, f = 0.1(sin(27(x + y)) + cos(2n(z + y)))
represents the external forcing term, and u is the velocity
field that we aim to learn. The system is modeled on a
square domain of [0, 1]? and initialized with a random vor-
ticity field wy sampled from a random Gaussian distribution.
We consider two case studies. The first study predicts a
rollout of T' = 20 subsequent timesteps conditioned on the
first T;,, = 10 timesteps, which is consistent with the setting
in G-FNOs (Helwig et al., 2023). In the second study, we
predict a rollout of 7' = 25 timesteps conditioned on the
first 15, = 5 timesteps. Compared with the first setting, this
study aims to provide a longer-term extrapolation with less
information from inputs. It is designed to further challenge
the proposed model and baselines. Both studies are carried
out in three datasets representing small, medium, and large
data regimes.

Ablation study We first perform an ablation study in case
1 (i.e., T' = 20 and T;, = 10) by adding the proposed
divergence-free architecture to FNO and comparing its per-
formance with the vanilla FNO and clawGFNO. The cor-
responding results are listed in Table 1, where we observe
a consistent performance improvement with the proposed
divergence-free architecture in all data regimes. In partic-
ular, by comparing clawGFNO to GFNO, we observe a
boost in accuracy by 59.1%, 37.2% and 61.2% in small,
medium and large data regimes, respectively. Our findings
are consistent when we compare clawFNO to the vanilla
FNO, where an enhancement by 43.8%, 9.0% and 0.7%
is obtained, respectively. Therefore, in small training data
regimes, imposing the conservation law has enhanced the
data efficiency. This argument is further verified when com-
paring the distribution of test errors for clawGFNO and
GFNO as demonstrated in Figure 3, from which one can
see that clawGFNO has smaller errors on out-of-distribution
test samples. Note that it is expected that the performance
improvement of clawNOs becomes less pronounced as we
march from the small data regime to the large data regime,
as the baseline NOs are anticipated to learn the conservation
laws from data as more data becomes available. The per-
formance of clawNOs and the baseline NOs will eventually
converge in the limit of infinite data. However, this is typi-
cally prohibitive as data generation is expensive in general,
especially in the scientific computing community where one
simulation can take hours to days to complete. On the other

hand, clawGFNO further outperforms clawFNO in all data
regimes, benefiting from the equivariant architecture of the
model.

Comparison against additional baselines We choose to
work with clawGFNO in the 2nd case study owing to its out-
standing performance compared to clawFNO. Herein, we
compare the performance of clawGFNO against additional
baselines in Table 1. Among all baselines in case 1, KNO
has achieved the best performance in small data regime,
while clawFNO and clawGFNO still outperform it by 37.4%
and 40.3%, respectively. By investigating in the direction
from small data regime to large data regime, clawGFNO
achieves the best performance in all cases and beats the best
baselines by 40.3%, 16.2% and 17.6% in case 1 and 39.9%,
26.8% and 9.1% in case 2. ClawGFNO also manifests its
robustness as the learning task becomes more challenging
across the two case studies, as compared to other baselines
whose performance deteriorates notably. Additionally, in
order to maintain a similar total number of trainable param-
eters, we reduce the latent width of GFNO from 20 to 11,
leading to possible expressivity degradation in GFNO. In
fact, when increasing the latent dimension of GFNO to 20
to match the dimension of FNO, on the large data regime of
case 1 the test error is decreased to 1.19% =+ 0.16%, achiev-
ing a comparable performance to FNO. Note also that LNN
in case 1 seemingly cannot learn the correct solution as the
test error remains above 20% across all three data regimes.
This is due to the fact that LNN predicts the acceleration
from current position and velocity, and then updates the
velocity. Since this dataset is relatively sparse in time, it
leads to large errors from temporal integration in LNNs.

4.2. Radial Dam Break

In this example, we explore the shallow water equations that
are derived from the compressible Navier—Stokes equations,
which find broad applications in tsunami and general flood-
ing simulation. Specifically, we simulate a circular dam
removal process where the water is initially confined in the
circular dam and suddenly released due to the removal of
the dam. The (known) mass conservation law and (hidden)
governing PDE describing the system are as follows:

Oh+V - (hu) =0,
1
Oy (ha) + V - (huu”) + F9Vh* +ghVb=0, (D

where ¢ is the gravitational acceleration, h describes the
water height, u denotes the velocity field, (h, hu) is the
3D divergence-free field we aim to learn, and b denotes a
spatially varying bathymetry. The simulation is performed
on a square domain of [—2.5,2.5]2, and the initial height hq
is specified as hy = 2.0 when r < /22 + y2 and hg = 1.0
otherwise, with r being the radial distance to the dam center,
which is uniformly sampled from (0.3, 0.7).
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Table 1. Test errors and the number of trainable parameters for the incompressible Navier-Stokes problem, where bold numbers highlight

the best method. Rollouts are of length 7" conditioned on the first 75, time steps.

Case 2D models #param # of training samples
10 100 1000
clawGFNO 853,231 | 12.10%+1.08%  4.76 % +0.24% 1.21%+0.09 %
clawFNO 928,861 | 12.68%+0.85% 5.17%=+0.27% 1.46%+0.11%
GFNO-p4 853,272 | 29.56%+3.32% 7.59%+0.34% 3.11%=+0.93%
FNO 928,942 | 22.57%+1.87% 5.68%=+0.41% 1.47%+0.18%
T =10.T =20 UNet 920,845 | 56.81%+9.91% 16.62%+2.47% 6.07%=+0.36%
o ’ LSM 1,211,234 | 31.79%=+2.11% 13.30%+0.15% 5.52%=0.08%
UNO 1,074,522 | 21.48%+1.49% 11.41%+0.38% 5.29%=0.09%
KNO 890,055 | 20.26%+1.50% 11.40%+3.12% 9.09%+1.70%
LNN 1,056,768 | 25.73%+0.96% 24.27%+3.16% 21.36%+2.46%
BOON 928,942 | 23.02%=+2.00% 6.21%=+0.48% 2.25%=0.13%
clawGFNO 853,131 | 16.02%+0.57%  4.84%+0.49% 1.57%+0.18 %
T =5 T =025 GFNO-p4 853,172 | 36.35%+4.47% 10.67%=+3.00% 2.68%40.60%
e FNO 928,742 | 26.65%+5.31% 6.61%=+0.83% 1.73%+0.23%
UNet 919,855 | 76.12%+14.04%  34.45%410.59%  7.39%+0.83%

Table 2. Test errors and the number of trainable parameters for the radial dam break problem, where bold numbers highlight the best

method. Rollouts are of length 24 conditioned on the first time step, following the setting of Helwig et al. (2023).

3D models | #param # of training samples

2 10 100
clawFNO 4,922,303 | 21.24%+1.17% 2.69%+0.04% 1.84%=+0.01%
clawGFNO | 4,799,732 | 23.29%=3.10% 2.87%+0.03%  1.83%=+0.01%
FNO 4,922,303 | 29.88%=£0.17% 4.04%+0.10%  1.88%=+0.05%
GFNO-p4 4,799,732 | 27.31%=+2.80% 3.80%+0.28%  1.90%=+0.07%
UNet 5,080,113 | 338.08%+£553.62%  5.62%=+0.19%  2.98%=+0.20%

We report in Table 2 our experimental observations us-
ing clawGFNO and clawFNO, along with the compari-
son against FNO, GFNO, and UNet. ClawNOs continue
to achieve the lowest test errors across all three selected
datasets, where clawFNO shows the best performance in the
small and medium data regimes and clawGFNO becomes
slightly more superior in the large data regime. As the radial
dam break problem is fairly simple and the solution exhibits
strong symmetries, the performances of non-claw baselines
quickly converge to clawNQOs with only 100 training sam-
ples. Nevertheless, clawNOs consistently outstand the best
non-claw baseline in performance by 22.2% in small data
regime and 29.2% in medium data regime.

4.3. Atmospheric Modeling

In this example, we use the general circulation model
SpeedyWeather.jl to simulate gravity waves in the Earth’s
atmosphere. The shallow water equations for relative vortic-
ity ( = V X u, divergence D = V - u, and the displacement
71 from the atmosphere’s rest height H = 8500 m are de-

scribed as the given mass conservation law % +V-(uh) =
0 together with other (hidden) governing laws:

& 4V (u(c+ ) =0,

9D G (u(¢+ £) = — V(L ul + gm)

ot 12

The equations are solved in spherical coordinates with
latitude 6 € [—r, 7], longitude A € [0, 27 on a sphere of ra-
dius R = 6371 km. The layer thicknessis h =n+ H — H,
with the Earth’s orography H, = H,()\, ¢) and gravity
g = 9.81 ms~2. The Coriolis force uses the parameter
= 2Qsin(0) with Q = 7.29 - 107° s~ ! the angular fre-
quency of Earth’s rotation. The simulations start from rest,
u = 0, but with random waves in 1 with wave lengths
of about 2000 to 4000 km and maximum amplitudes of
2000 m. These random initial waves propagate at a phase
speed of ¢,, = v/gh (about 300 ms™!) around the globe,
interacting non-linearly with each other and the underlying
Earth’s orography. For details on the model setup and the
simulation see Appendix C.3.

We list in Table 3 our experimental results along with com-
parisons against selected baselines. For this problem, since
the spherical coordinate system in latitudes and longitudes
stay the same and thus the equivariance property plays lit-
tle role, we directly employ clawFNO as our representa-
tive clawNO model, as the latent dimension of clawFNO
is much higher than that of clawGFNO for similar total
numbers of model parameters. In other words, clawFNO
possesses more expressivity power. This is rather impor-
tant in atmospheric modeling at the entire globe scale, as
the wave propagation patterns are more localized compared
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Table 3. Test errors for the weather modeling problem and the number of trainable parameters (in millions), where bold numbers highlight
the best method. Rollouts are of length 10 conditioned on the first time step.

Model clawFNO FNO GFNO UNet
#param (M) 49.57 49.57 53.70 51.58
Test error 6.64%+0.23% 12.54%4+0.26% 14.34%+0.55% 20.89%+0.87%

Table 4. Test errors and the number of trainable parameters for the material deformation problem. Bold numbers highlight the best method.

2D models #param # of training samples
2 20 100
clawINO 4,747,521 | 1412%+0.23%  5.41%+0.67% 1.00%+0.02%
INO 4,747,521 16.75%+1.24% 7.69%+0.51%  2.40%=+0.53%
GNO | 18,930,498 19.73%+3.60%  12.59%+0.24%  8.51%+5.29%
MP-PDE | 18,368,610 | 23.07%=+20.39% 12.38%+0.41%  1.30%=+0.55%
MeshGraphNets | 18,694,914 | 38.57%+17.84% 7.35%+0.54%  1.79%+0.81%

to other examples. In this context, clawFNO outperforms
the best non-claw baseline by 47% in accuracy. Addition-
ally, it is worth mentioning that the majority of the errors
accumulate in the vicinity of mountains, as evidenced in
the rollout demonstration in Figures 13-15 (compare to Fig.
6a). This is expected as the interaction with the orography
causes wave reflection and dispersion through changes in
the wave speed, which generally limits predictability more
than in other regions. Furthermore, the training strategy
(Appendix C.5) disregards wave numbers higher than 22
which, however, are more pronounced around rough orogra-
phy. Our simulations resolve orography up to wave number
63 (Appendix C.3).

4.4. Constitutive Modeling of Material Deformation

In this example we test the efficacy of the proposed clawNO
in graph-based settings. Specifically, we consider the in-
compressible material deformation of the Mooney—Rivlin
type, where the (hidden) constitutive law reads:

—V .o =f,where 0 = —pI +2C,B — 2C,B~ 1, (13)
ulpo =up,

with Dirichlet boundary conditions, and the (known) mass
conservation law V - u = 0 imposed. Here o is the stress
tensor, u denotes the displacement, f denotes the body load,
A and p are the Lame constants. B is the left Cauchy—Green
deformation tensor, B := FFT =~ I + 2sym(Vu) for in-
finitesimal strains. Under this setting, the Dirichlet bound-
ary condition and the body load are treated as inputs. To
investigate the efficacy on irregular grids, we consider a
circular domain of radius 0.4. We set the material constants
C1 = C5 = 0.075, and the body load f is randomly gener-
ated following:

2
f(z,y) = Z Ak, iy sin(krmz) sin(kemy),
k1 ka=1

Akhkz = exp(_0-1k1k2)§ s 5 ~ U[—2.572.5] .

We report in Table 4 the numerical results of clawINO,
along with the comparison against GNO, INO, MP-PDE
and MeshGraphNets in various data regimes. Consistent
with the findings on regular grids, clawINO outperforms
other graph-based models in all data regimes, beating the
best non-claw baseline by 15.7%, 26.4%, and 23.1% in
the considered three data regimes, respectively. Note that
the total number of parameters in GNO is roughly four
times the number of parameters in INO-based models, as
the parameters in INO-based models are layer-independent,
which also results in an advantage in memory saving.

5. Conclusion

We introduce a series of clawNOs that explicitly bake funda-
mental conservation laws into the neural operator architec-
ture. In particular, we build divergence-free output functions
in light of the concept of differential forms and design an ad-
ditional layer to recover the divergence-free target functions
based on numerical differentiation. We perform extensive
experiments covering a wide variety of challenging scientific
machine learning problems, and show that it is essential to
encode conservation laws for correct physical realizability,
especially in small-data regimes.

For future work, we plan to explore more fundamental laws
in other application domains. In some applications such as
the shock capturing problem (Hansen et al., 2023), the solu-
tion regularity deteriorates and error estimates in this work
do not apply. It would be interesting to modify the differen-
tiation layer in clawNOs based on discontinuity capturing
methods such as the Essentially Non-Oscillatory method
(Shu, 1999) and the discontinuous Galerkin method (Huerta
et al., 2012). We also point out that the idea of incorporating
numerical PDE techniques into NOs can also be extended.
For instance, the quadrature weights can provide a more
accurate numerical integration in evaluating the cost func-
tional, as compared to the current mean squared error widely
employed in NOs.
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A. Related concepts of differential forms

Differential forms aim to provide a unified approach to define integrands. In this section, we briefly review a few related
mathematical concepts in the paper, which can be found in Richter-Powell et al. (2022); Do Carmo (1998); Weintraub
(2014).

Definition A.1. Let k be a non-negative integer and p(x) = f(x1,---,2,) be a smooth function on RP, a monomial
k—form on RP? is an expression pdx;, A --- Adx;, = pdxy, where I := {i1,--- ,i,. A k—form is a sum of monomial
k—forms, which will be denoted as
U= Z H(iy yeoe i) ATy N+ N dxg, ::Zﬂldxl-
1<iq,i2, i <p I

Definition A.2. The wedge product, A, is an associative operation on differential forms. When w is a k—form and 7 is a
[—form, w A nis a (k + [)—form. Moreover, A satisfies the following properties:

* (Distribution Law) (w1 +wa) An=wi An+wi An,wA (1 +12) =wAn +w A ns.
* (Associative Law) (fw) An = f(w An).

* (Skew Symmetry) n A w = —w A 1.

Here w, wy, wo are k—forms, 7, 11, 2 are [—forms, and f is a function.
Definition A.3. The exterior derivative (or differential) operator d maps a k—form to a (k + 1)—form. In particular, given a
k—form p = 21§i1<i2<~~<ik§p H(iy e i) dTiy A -+ Adz, , one has

dp = Z dpgiy ... iy dxiy, N N dxg,

1<iy,ig, i <p

Oy, i
= Z Z del/\dxil/vu/\dxik.

1<iq,d2, i, <p 1<I<p

Moreover, the following properties hold for the exterior derivative operator:

e For each function f, ddf = 0, and df A df = 0.
¢ For each k—form w, ddw = 0.
* For each function f and k—form w, d(fw) = df Aw + fdw.

Definition A.4. The Hodge x-operator on R? is a function that takes a k—form to a (p — k)—form defined as follows:

o Let I = {41, - ,ix} be an ordered subset of {1, --- ,p} and I® = {31, - - , j,—x } be its complement, ordered so that
dxs, N---dxy, Ndxj A--- dxjpik =dxy A--- Ndxp, then

xdxy = x(dxi, A---dwy,) = drj, A---drj, = dxre.
* Givenany k—form = o, ;. o [y, i) dTi, Ao Adz,, then

*p = Z iy, ig) * (dgy Ao Adg,).

1<y, ig, ik <p
Then, the following property holds for any k—form p:
ox = (=1)FPR
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Given a vector-valued function on R? u(x) = [u1(x), - -, up(x)], its divergence div(u) = 7_; g“l can be defined via
exterior derivative:
P P P 4
d* Z widz; =d Z u; *dr; =d Z(—l)l_luidﬂc{l,... I\
i=1 i i
P P
ou;
z 1 7
Z du; A dac{l S\ = %dx{l’... n}

i=1 i=1
Therefore, one can denote the divergence of u as d » u. On the other hand, combining the fundamental properties of x
and d yields div(xdu) = d % xdp = (—=1)*P=*®ddy = 0 for any k—form p. Therefore, when u = dy, where y is a
(p — 2)—form, it is guaranteed to be divergence free. Since any (p — 2)—form p can be represented as

H= D e )BT A ATy, = Y ) * (dei A dag),

1<iy, - ip—2<p 1<i,j<p

where p1(; ;) := (—1)7 Wb liinal)yy L when {i, 5} U {i1, -+ ip—2} = {1,--- ,p}. And note that the skew

symmetry property of A yields p(; jy := pij = —puj;. We further expand the representation of xdy as:

*dp = * Z dpgi gy * (dxs A daj)

1<i,5<p

Ot Ol
- % Z T?d;pi A *(dz; A dxj) — 837] dxj A *(dz; Adxj)

1<igj<p " J

Opig Ou;
= % Z 81‘: dl‘, A *(dlﬂ A dﬂjj) 833: dIZ A *(d;m A d;p])

1<i,5<p

=2 % Z aau”dxl/\*(dxl/\d:vj)f2* Z ;”*dxj

— X LT
1<i,j<p 1<i,j<p

8/”' a//fz
=2 > 6x7**dxj— P 122( j) ;.

1<ij<p

That means, taking any p := [11;;(x)] satisfies y;; = —pj; (a p by p skew-symmetric matrix-valued function), we have
div(xdp) = 0, where xdp = [div(p1), - -+, div(u,)]T and ; stands for the i—th row of p.

B. Equivariance of the differentiation layer

The projection layer (u to u) is realized as a numerical divergence operator. Therefore, under the translation of coordinates,
X = x + g, we have

0 0
Vg p = = Mik = —— i = Vi« lh.
x My §k 8$k 12213 §k al'k Hik x * My
That means, the divergence operator is invariant under coordinate translation, and therefore D is also invariant. On the other

. . - . 0 0
hand, under the rotation of coordinates, X = Rx, we have the chain rule: e =3 1 Bir, == Therefore,
g

01
0 0
-(Rp;) = Za~ kzzk:%zl:l%kluﬂzgzafxluﬂzvx'w-

That means, the coefficients in D is also invariant under coordinate rotation.

When the previous layers are translational invariant and rotational equivariant, we have fi;(X) = i;(Rx + g) = Rpu;(x) for
the j—th row of p. Therefore, D[fi](%X) = RD][u|(x), which results in the translational invariant and rotational equivariant
output.
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C. Data generation and training strategies
C.1. Example 1 — incompressible Navier-Stokes equation

For the two case study datasets in the incompressible Navier-Stokes example, we generate a total of 1,200 samples using the
pseudo-spectral Crank-Nicolson solver available in Li et al. (2020c). Here, the models are trained to predict the two velocity
components in the two directions. We then split the generated dataset into 1,000, 100 and 100 for training, validation
and testing, respectively. A histogram demonstration of the dataset distributions in small, medium and large data regimes
is illustrated in Figure 3, where the test set of the small dataset of ntrain=10 samples exhibits a wider data distribution
compared to its training dataset, which is aimed to test the data efficiency and out-of-distribution performances of the learned
models. The fluid viscosity employed in the physics solver is v = 104, and the timestep size is At = 10~*s. The solutions
are obtained on a 256 x 256 spatial grid and the total duration of the simulation is 24 s. The obtained solutions are then
downsampled to a 64 x 64 x 30 grid, with the 3rd dimension being the temporal dimension. Note that, in downsampling the
spatial dimensions, we employ a 2 x 2 mean pooling. This strategy is suggested in Helwig et al. (2023) to mitigate the
spurious numerical errors not existed in the original data.

To provide more details on the model performance, we plot the per-time-step prediction errors in terms of L2 relative
error on the test dataset in Figure 4 using the best models trained with ntrain=1000 samples. Perhaps unsurprisingly, the
prediction error increases as the prediction time step grows, due to the accumulation of error. All models have a similar
growth rate, while clawNOs, together with FNO, significantly outperform other baselines in accuracy. We also list a number
of performance metrics in Table 5, including the total number of model parameters, the per-epoch runtime, the inference
time, as well as the peak GPU usage. To quantitatively evaluate the divergence of the predicted solutions, we compute the
averaged L2-norm of the divergence on the test dataset for all the models trained with ntrain=1000 samples (cf. the last row
of Table 5). Because the additional layer in clawNOs are with pre-calculated weights, it barely adds any extra burden into
GPU memory compared with its NO base model. Similar observation also applies to the runtime in large data regime. The
inference time has a minor increase, due to the fact that the inferred solution will go through the an additional layer which
avoidably increases the computational cost. When comparing the divergence of predicted solutions, we can see that both
clawNOs predictions have much smaller divergence compared with all baselines. However, we point out that the solution
divergence from clawNOs is not exactly zero, due to the numerical errors as discussed in Theorem 3.1.

Remark: The complexity of our clawNOs is very simular to their NO counterparts. Taking clawFNOs for example, the
trainable part of the clawNO model consists of two fixed-size MLPs for the lifting layer and the projection layer, and L
numbers of Fourier layers between them. Denote d,, as the input function dimension, H as the latent dimension after lifting,
M as the total number of grids, m as the number of Fourier modes on each dimension after truncation (which is often taken
as half of the number of grids in each dimension, M /7, in practice), and p as the problem dimension. During the lifting layer
a vector valued input function taking values in R% is linearly and locally mapped to the first layer feature function h(-,0)
taking values in R, and hence the number of trainable parameters is Hd,, + H. Then, each iterative Fourier layers involves
the integral with a trainable kernel weight matrix in the Fourier domain, which is of size 2H?m? = 2'"PH?M, and a local
linear transformation which involves H? 4+ H numbers of trainable parameters. Then, the last iterative layer feature function,
h(-, L), is projected to the skew symmetric matrix-valued function p with a two-layer MLP. Since the skew symmetric
matrix-valued function p is of degree of freedom p(p — 1)/2 at each point x, the projection layer maps a size H input
vector to a size p(p — 1)/2 vector. Assume that the hidden layer of this MLP is of d¢ neurons, the total number of trainable
parameters in projection layer will be Hdg +dg +dop(p—1)/2+ p(p—1)/2. Finally, 1 will go through the pre-calculated
differentiation layer, with p?(p — 1)M?/2 = p?(p — 1)m?? /2 numbers of non-trainable parameters in the FNO case. From

dg +1
the above calculation, we can see that clawFNO involves (dg + H (d,, +dg+L+1)+LH?)+ %p(p —1)+2LH?*mP

numbers of trainable parameters, while the vanilla FNO involves (dg + H (d, +dg+ L+1)+ LH?)+(dg+1)p+2LH?*m?
numbers of trainable parameters. Therefore, the number of trainable parameters in clawFNO and FNO only differs in the

dg+1
second part of their projection layer, where clawFNO has % p(p — 1) numbers of parameters and FNO has (dg + 1)p.

When p > 3, clawFNO will have a larger number of trainable parameters. However, we want to point out that since the
number of parameter in the iterative layer (2L H?mP) grows exponentially with dimension p, it dominates the cost, and the
differences between clawFNO and FNO are negligible. This is consistent with what we observed in Table 5: the number of
trainable parameters and the GPU cost of clawNOs and their counterparts are almost the same. During the inference, the
non-trainable parameters in clawNO will play a role and we therefore observe an increase in the inference time.
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Figure 3. The data distribution of velocity in L2 norm, in the incompressible Navier-Stokes dataset. Left: the © component of velocity.
Right: the y component of the velocity. Cases (a)-(c) represent the histogram of sample distributions in the small, medium and large data
regimes, respectively, with blue representing the test samples and orange for the training samples. The per-sample relative L2 error on the
test set is also plotted in (a), comparing clawGFNO (in navy) with GFNL (in yellow). This result demonstrates the improved the accuracy
of clawNO, comparing to its counterpart, in small data regime.
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Figure 4. The per-time-step prediction error on the test dataset of the incompressible Navier-Stokes case 1: ntrain=10 (left) and ntrain=1000
(right).

Table 5. Performance comparison of selected models in incompressible Navier-Stokes case 1, in terms of the total number of parameters,
the per-epoch runtime, inference time, peak GPU usage, and the L2-norm divergence of prediction. The runtime is evaluated on a single
NVIDIA V100 GPU. Note that the case of ntrain=10 requiring more time to run compared to ntrain=100 is due to the reduced batch size
of 2, as opposed to the batch size of 20 in ntrain=100.

Case ntrain  clawGFNO clawFNO GFNO FNO UNet LSM UNO KNO
nparam (M) 0.85 0.93 0.85 0.93 0.92 1.21 1.07 0.89
10 7.10 4.76 6.14 3.80 4.85 9.86 4.24 4.31

runtime (s) 100 4.89 2.42 4.39 2.03 2.39 4.98 2.69 2.35
1000 41.75 19.56 40.06 17.38 20.80 37.86 18.78 18.20

inf, time (s) 0.077 0.072 0.062 0.058 0.075 0.183 0.066 0.045
GPU (GB) 1000 0.68 0.34 0.68 0.34 0.12 13.20 2.14 0.16
L2(div) 1000 1.2e-3 3.8¢-4 6.6e-2 47e-2 35e-1 54e-1 58e-1 1.8e-1

C.2. Example 2 - radial dam break

In generating the radial dam break dataset, we closely follow the numerical procedure in Takamoto et al. (2022), where we
slightly modify the code to output the velocity fields in addition to the water height. The model then aims to learn three
channels of (h, hug, hu,). A total of 1,000 samples are generated and are subsequently split into 744, 100, 100 and
training, validation, and testing, respectively, with n,,;, the size of the training dataset depending on the adopted data
regime. We run the numerical simulation on a 128 x 128 x 100 grid and downsample the obtained solution to 32 x 32 x 25
for training, where the first two dimensions are the spatial dimensions and the last is the temporal dimension. Analogous
to the incompressible NS dataset, we perform 2 x 2 mean pooling in downsampling the spatial dimensions to maintain
symmetry in data. In addition, we demonstrate the zero-shot super-resolution predictability of clawNO in Figure 5, where
we use the clawFNO trained on 32 x 32 spatial resolutions to directly make predictions on 128 x 128 grids.

C.3. Example 3 — atmospheric modeling

As SpeedyWeather.jl uses spherical harmonics to solve the shallow water equations, we set the initial conditions 7y for
the aforementioned random waves through random coefficients of the spherical harmonics. The spherical harmonics
are denoted as Y} ,,, with degree ¢ > 0 and order m with —¢ < m < {. Using a standard complex normal distribution
CN(0,1) = N(0, 3) + iN(0, 1), the random coefficients 7y, are drawn for degrees 10 < ¢ < 20 from CA/(0, 1), but
ne.0 ~ N (0, 1) for the zonal modes m = 0, and 7y, ,,, = 0 otherwise. The wave lengths are 2 R¢~!, about 2000 to 4000 km.
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Ground Truth clawFNO prediction Abs. Error

2.000 2.000 0.706

1135 1135 0.353

water depth

0.270 0.270 0.000

0.534 0534 0.170

0.000 0.000 0.085

-0.534 -0.534 0.000

0.538 0538 0.166

0.000 0.000 0.083

0.538 -0.538 0.000

Figure 5. Demonstration of zero-shot super resolution of clawFNO using the radial dam break dataset, where clawFNO is trained on
32 x 32 spatial resolutions and directly make predictions on 128 x 128 grids.

The initial ug, vg, 79 on a grid can be obtained through the spherical harmonic transform as

UO:’UO:O,

Lrax

4
o = A Z Z n@,m}/f,m'

£=0 m=—¢

(14)

The amplitude A is chosen so that max(|rno|) = 2000 m. The resolution of the simulation is determined by the largest
resolved degree /4., we use £,,,, = 63. In numerical weather prediction this spectral truncation is widely denoted as
T63. We combine this spectral resolution with a regular longitude-latitude grid of 192x95 grid points (AX = Af = 1.875°,
about 200 km at the Equator, no grid points on the poles), also called a full Clenshaw-Curtis grid because of the underlying
quadrature rule in the Legendre transform (Hotta & Ujiie, 2018). Non-linear terms are calculated on the grid, while the
linear terms are calculated in spectral space of the spherical harmonics, and the model transforms between both spaces on
every time step. This is a widely adopted method in global numerical weather prediction models.

For numerical stability, an implicitly calculated horizontal diffusion term of the form —v V3¢, —v V8D, is added to the
vorticity and the divergence equation, respectively. The power-4 Laplacian is chosen to be very scale-selective such that
energy is only removed at the highest wave numbers, keeping the simulated flow otherwise largely unaffected. In practice,
we use a non-dimensional Laplace operator V2 = R2V?2, such that the diffusion coefficient becomes an inverse time scale of
7 = 2.4 hours. The shallow water equations, (12), do not have a forcing or drag term such that the horizontal diffusion is the
only term through which the system loses energy over time. The shallow water equations are otherwise energy conserving.

SpeedyWeather.jl employs a RAW-filtered (Williams, 2011) Leapfrog-based time integration with a time step of At = 15 min
at T63 resolution. At this time step, the CFL number C' = c,, At(Az)~! with equatorial Az = 27TR£—0’\, is typically
between C' = 1 and C = 1.4, given wave speeds c,;, = /gh between 280 and 320 ms~". Thanks to a centred semi-implicit
integration of the linear terms (Hoskins & Simmons, 1975), the simulation remains stable without aggressively dampening
the gravity waves with larger time steps or with a backwards implicit scheme. The continuity equation with the centred

semi-implicit leapfrog integration reads as (the RAW-filter is neglected)

Nit1 — Thi—
HTtl = *%V “(wip1hiv1) — %V “(wi—1hi—1) (15)

with previous time step ¢ — 1, and next time step ¢ + 1. The RAW-filter then acts as a weakly dampening Laplacian in time,
coupling the tendencies at 7 — 1,7 and ¢ + 1 to prevent a computational mode from growing.
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Figure 6. Atmospheric gravity waves as simulated by SpeedyWeather.jl. a, Layer thickness ~ and b displacement 7 after ¢ = 6 hours at a
resolution of T255 (about 50 km). The layer thickness h includes, in contrast to 7, clearly the signal of the underlying orography of Earth.
¢ Time series of 1 over the USA (45°N, 90°W, marked with a black star in a,b). Black circle markers denote the time step At = 15 min
used for model integration and training data. Both simulations, T63 and T255, started from the same initial conditions, illustrating the
limited predictability of the shallow water equations.

While the initial conditions contain only waves of wave lengths 2000 to 4000 km shorter waves are created during the
simulation due to non-linear wave-wave interactions and interactions with the Earth’s orography (Fig. 6). The time scale
of these gravity waves is on the order of hours (Fig. 6c¢), which is why we use a training data sampling time step of
At = 15 min. Much longer time steps as used by Gupta & Brandstetter (2022) would therefore fail to capture the wave
dynamics present in the shallow water simulations. It is possible to use initial conditions that are closer to geostrophy,
such that the presence of gravity waves from geostrophically-unbalanced initial conditions is reduced. In such a setup, the
predictability horizon is given by the chaotic vorticity advection and turbulence that evolves over longer time scales, which
would justify a longer data sampling time step. However, the Gupta & Brandstetter (2022) setup includes a strong gravity
wave in the initial conditions that propagates meridionally, while also including some slowly evolving vortices. Our setup
therefore represents a physically clearer defined problem, one that focuses on the non-linear gravity wave propagation in the
shallow water system. Following (14), our setup can be easily recreated in other models for further studies. In this context,
we generate a total of 1,200 samples and split them into 1,000/100/100 for training/validation/testing, respectively.

In this context, the mass conservation in spherical coordinates can be expressed as: % + V - (uh) = 0, where 7 is the

displacement from the atmosphere’s rest height H = 8500 m, h = n + H — H, is the layer thickness, H, = H,(}\, ¢)

is the Earth’s orography, and A, ¢ are the longitude and colatitude, respectively. We note that % = ‘?9—?, and V - (uh) in

the spherical coordinate can be rewritten. as: V- (uh) = Rsin 5 a(gf\h) + Rslin 7 8(.“1’595 in 6) (here definitions using latitudes
replace the sin with a cos). Based on this formulation, we first rescale the equation by R, then set the clawNO model to

learn (uzh, uyhsin @, Rhsin §) and require the output to be divergence-free:

. ) _ O(ugh)  O(uyhsin®) O(Rhsin®)  O0(ugh) O(uyhsinf) . 0n
(Ox, 09, 0¢)-(uzh,uyhsind, Rhsinf) = B\ + 50 + 5 =~ + 50 +R8m68t =0.
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As such, the mass conservation equation is guaranteed. Once the output field u = (uzh, u,hsin 8, Rhsin 0) is obtained, we
post-process the prediction to obtain (u,, u,, k) (e.g., by dividing the second component u,,h sin § by the third component
Rh sin § and multiplying the result by R, to obtain u,). In this way, we can leave our skew symmetric matrix and numerical
differentiation layer unchanged while being able to handle spherical data.

C.4. Example 4 — constitutive modeling of material deformation

We generate the material deformation dataset using an incompressible Mooney—Rivlin material model. We run the numerical
simulation on a 80x 80 uniform mesh and downsample the solution to a grid of 246 spatial points through interpolation
on a circular domain of radius 0.4 that centers at the origin (cf. Figure 7). A total of 300 samples are generated and are
subsequently split into 14yq4n, 100, 100 for training, validation, and testing, respectively, with 1,4, the size of the training
dataset depending on the adopted data regime.

In this example, we impose the kinematic condition of incompressibility with infinitesimal deformation, div(u) = 0. This
is equivalent to the mass conservation law only under the assumption that the density remains a constant, i.e., p = const,
and then div(u) = 0 guarantees that the total mass of a volume does not change under any applied deformation, i.e., its
total mass is conserved. In solid mechanics, the deformation gradient writes F = I + Vu, and the total mass of a volume

Oui % =~ 0, and therefore
Oz Oxy

does not change when det(F) = 1. Under an infinitesimal deformation assumption, one has

det(F) ~ 1 + div(u). That means, the incompressibility condition is equivalent to divu = 0.
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Figure 7. An illustration of the grid points and circular domain uused in example 4.

C.5. Training strategies

We run three replicates for all the experiments and report the mean and standard deviation of the L2 relative error for
comparison metrics. For all Fourier-domain models, we closely follow the model setup in Helwig et al. (2023), employing
four Fourier layers and keeping only the 12 lowest Fourier modes in all the 2D models and 8 spatial and 6 temporal lowest
modes in all the 3D models. An exception is in the atmospheric modeling problem, where we truncate the spatial Fourier
modes to 22 for correct physical realizability. For fair comparison, we adopt Cartesian encoding in all the models.

Similar to the model size in Helwig et al. (2023), we set the latent dimension in FNO and clawFNO to 20, whereas we
counterbalance the additional dimensions introduced due to equivariance in GFNO and clawGFNO by reducing the latent
dimension to 10 in all the 2D models and 11 in all the 3D models. For UNet, in order to arrive at a similar number of model
parameters, we increase the first-layer dimension to 11 in the incompressible NS problem, to 15 in the radial dam break
problem, and to 96 in weather modeling.

As suggested in Tran et al. (2022) and Helwig et al. (2023), we turn to the teacher forcing strategy to facilitate the learning
process. We set the batch size to 20 for all 2D models and 10 for all 3D models, with the exception in small and medium
data regimes, where we set batch size to 2 and 1 when the training datasets are of size 10 and 2, respectively. We employ
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cosine annealing learning rate scheduler that decays the initial learning rate to 0. All the 2D models are trained for a total of
100 epochs whereas all the 3D models are trained for 500 epochs with an early stop if the validation loss stops improving for
consecutive 100 epochs. 2D models are trained with less number of epochs as one training sample in 3D corresponds to
(T — T;y,) training samples in 2D. We directly take the baseline models in GFNO (Helwig et al., 2023), and further tune
the hyperparameters (i.e., the learning rate and weight decay in the Adam optimizer) in clawNOs. All the experiments are
carried out on a single NVIDIA A6000 40GB GPU.

For both of the two graph-based models (i.e., INO and GNO), we closely follow the model setup in Liu et al. (2023) and Li
et al. (2020c). In order to be consistent across clawINO, INO and GNO, the latent width is set to 64 and the kernel width
is set to 1,024 in all models. We employ a total of 4 integral layers in all models, whereas the shallow-to-deep technique
is equipped for initialization in INO-based models. The batch size is set to 2 for all the irregular-mesh models, with the
exception in the first case in the constitutive modeling example where a batch size equal to 1 is employed. We adopt the
cosine annealing learning rate scheduler that decays the initial learning rate to 0. All the models are trained for 500 epochs
with an early stop if the validation loss stops improving for consecutive 200 epochs.

D. Rollout visualizations

We illustrate the rollout of randomly selected trajectories in the test dataset using clawNO predictions, along with the
comparisons against ground truth data and the corresponding absolute errors. The rollouts of incompressible NS, radial dam
break, and atmospheric modeling are showcased in Figure 8, Figures 10 and 11, Figures 13 and 2, respectively. We also
showcase the material deformation prediction in 6 different test samples in Figure 17. To provide a visual comparison across
models, we plot the final-step prediction of all the models in the incompressible NS example in Figure 9, the radial dam
break example in Figure 12, and the atmospheric modeling example in Figure 16.

E. Detailed error estimates for the differentiation layer
E.1. Proof of theorem 3.1

Since the Fourier spectral differentiation error estimate is a direct result of Trefethen (2000, Page 34), we provide the
detailed derivation of (7) in this section. According to the basic properties of Fourier transform, if f is a differential and
periodic function on [0, L] with its Fourier representation:

N/2-1
f) =Y feerr,

E=—N/2

its derivative can be given as
N/2-1 . )
2m€ 5, 2
re= Y ErEfgenta m |2 A
E=—N/2

@ .. N®)
oply
As such, (7) can be obtained by applying the above property to approximate every derivative term Hik 3

g
E.2. Proof of theorem 3.2

o
It suffices to show that B—xk(xz) — ZXZEXmBé(X'L)(¢(Xl) - w(xi))wgﬁ) < CAz™*! for any ) € C™T(Q)). Denote

I[Y](x;) = %(xi), Ina[V](x:) = 25, exnps (i) (Y (X1) — w(xi))wfﬁ) and let ¢,,, denote the m—th order truncated

Taylor series of v about x; with associated remainder r,,, such that

V() = bmy) +rmy) = D %!(Xi)(y—xz’)“r > Rely)ly—x)’,

la|<m |B|=m+1
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where  Rs(y) = |§'|f01(1 — IFIF1Dfu(y + 7(y — x;)dr and therefore |Rs(y)| <

Dy(y)| < Cllv|

E MaX|q|=m+1 MAXyc B (x;) cm+1. We then have

[V = dml¥) =lrml ) = | D Re)y —x)"

|Bl=m+1

<y —xI™ Y |Ra(y)| < Ol
|Bl=m-+1

o ly — x|

To bound the approximation error, we apply the triangle inequality and the reproducing condition of polynomial ¢, :

H[](xi) = Lax [Y](x)| <H[9](%) = Tdm](xi)| + [ Pm] (i) = Laz[](x)]
=[I[$)(xi) = I[om](xi)| + [Laz[¢m] (%) — Inz[v](x4)]-

Here, the first term vanishes since ¢,, is the truncated Taylor series of ¢) and m > 1, and for the second term we have

Lnelbml(x) = Il € 50 [0x1) = () = G (1) + b (30) e

x1€ExNBs (xi)

= Y ) - em)lwl)

x1€EXNBs (%)
k
SCH'LpHcm-H Z |x; 7Xi|m+1|wz‘(,l)‘
x1EXNBs (x1)

cmir Az Z |wl(]?)| < CAz™

x;ExNBs (%)

<Cll¢|

Here, the last inequality can be proved following the argument in Levin (1998, Theorem 5): for each fixed &k and ¢, the

coefficient wﬁ) is a continuous function of x;. Moreover, the size of x N Bs(x) is bounded. Thus, for a fixed Az it follows

leeané(xi) wz(ﬁ)\ < C where C is independent of Az, k, and x;. And therefore we obtain |I[1)](x;) — Ia.[¥](x;)] <
CAz™"" and finish the proof.

E.3. Performance comparison of different numerical differentiation schemes

To evaluate the empirical performance of the differentiation layer, we compare the performance of the FFT and
meshfree methods discussed in Theorems 3.1 and 3.2. In particular, we take an analytical divergence-free function,
f = [sin 2 sin y, cos z cos y], and use the numerical differentiation layer to evaluate its divergence and report the L? error.
This result can be found in Figure 18. Here, the L? divergence errors using FFT remain near machine precision irregardless
of the variation of grid sizes, because the spectrum generation is exact on the provided analytical function. On the other
hand, for the meshfree method we have generated quadrature rules for 5—th order polynomials, i.e., m = 5. A 6—th order
convergence is observed, which is consistent with the analysis in Theorem 3.2.
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Figure 8. Rollout of incompressible Navier-Stokes case 1.



Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

Xx-component velocity y-component velocity
Ground Truth Prediction Abs. Error Ground Truth Prediction Abs. Error

~

clawGFNO

UNet

GFNO-p4 clawFNO

FNO

LSM

UNO

KNO

| —

0.000 0.030 0.059

A . /
. Yl

o
=3
S
3
3

0.023 0.04

Figure 9. Last-step prediction comparison across models in incompressible Navier-Stokes case 1.
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Figure 10. Rollout of water depth in radial dam break modeling.
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Figure 11. Rollout of velocity in radial dam break modeling.
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Figure 12. Last-step prediction comparison across models trained with ntrain=10 samples in radial dam break dataset.

28



Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

Ground Truth ClawNO Prediction Abs. Error

——

B

—— —
2004.4 6167.7 10331.0 2004.4 6167.7 10331.0

(=]

716.3 1432.6

Figure 13. Rollout of layer thickness in atmospheric modeling.
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Figure 14. Rollout of zonal wind velocity in atmospheric modeling.
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Figure 15. Rollout of meridional wind velocity in atmospheric modeling.
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Figure 16. Last-step prediction comparison across models in atmospheric modeling dataset.
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Figure 17. Demonstration of the constitutive modeling of material deformation.
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Figure 18. Numerical error of the differentiation layer, with refinement on grids.
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