
Harnessing the Power of Neural Operators with Automatically Encoded

Conservation Laws

Ning Liu * 1 Yiming Fan * 2 Xianyi Zeng 2 Milan Klöwer 3 Lu Zhang 2 Yue Yu 2

Abstract

Neural operators (NOs) have emerged as effec-

tive tools for modeling complex physical systems

in scientific machine learning. In NOs, a central

characteristic is to learn the governing physical

laws directly from data. In contrast to other ma-

chine learning applications, partial knowledge is

often known a priori about the physical system at

hand whereby quantities such as mass, energy and

momentum are exactly conserved. Currently, NOs

have to learn these conservation laws from data

and can only approximately satisfy them due to fi-

nite training data and random noise. In this work,

we introduce conservation law-encoded neural op-

erators (clawNOs), a suite of NOs that endow in-

ference with automatic satisfaction of such conser-

vation laws. ClawNOs are built with a divergence-

free prediction of the solution field, with which

the continuity equation is automatically guaran-

teed. As a consequence, clawNOs are compliant

with the most fundamental and ubiquitous conser-

vation laws essential for correct physical consis-

tency. As demonstrations, we consider a wide

variety of scientific applications ranging from

constitutive modeling of material deformation,

incompressible fluid dynamics, to atmospheric

simulation. ClawNOs significantly outperform

the state-of-the-art NOs in learning efficacy, espe-

cially in small-data regimes. Our code and data

accompanying this paper are available at https:

//github.com/ningliu-iga/clawNO.

*Equal contribution 1Global Engineering and Materials, Inc.,
Princeton, NJ 08540, USA 2Department of Mathematics, Lehigh
University, Bethlehem, PA 18015, USA 3Earth, Atmospheric
and Planetary Sciences, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA. Correspondence to: Yue Yu
<yuy214@lehigh.edu>, Ning Liu <ningliu@umich.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction

Deep neural networks (DNN) have achieved tremendous

progress in areas where the underlying laws are unknown.

In computer vision applications convolutional neural net-

works have been very popular even though it is unclear

how the lower-dimensional manifold of “valid” images is

parameterized (He et al., 2016; Ren et al., 2015; Krizhevsky

et al., 2012). That means, such a manifold has to be dis-

covered in a purely data-driven way by feeding the network

vast amounts of data. Another recent popular application of

DNNs is the modeling and calibration process of physics-

based problems from experimental measurements (Ranade

et al., 2021; Schmidt & Lipson, 2009; Çolak, 2021; Jin et al.,

2023; Vinuesa et al., 2023). A wide range of physical ap-

plications entail the learning of solution operators, i.e., the

learning of infinite dimensional function mappings between

any parametric dependence to the solution field. A prototyp-

ical instance is the case of modeling fluid dynamics, where

the initial input needs to be mapped to a temporal sequence

of flow states. Like the time integration in numerical mod-

elling, an operator is required that takes the current flow

state and maps it to the predicted state one time step later.

To this end, the neural operator (NO) (Anandkumar et al.,

2020; Li et al., 2020c; Lu et al., 2019; Gupta et al., 2021;

Cao, 2021) is introduced, which learns a surrogate mapping

between function spaces with resolution independence as

well as generalizability to different input instances. These

facts make NOs excellent candidates in discovering models

for complex physical systems directly from data.

Herein, we consider data-driven model discovery of physics-

based problems using NOs (Li et al., 2021; Goswami et al.,

2022b). In contrast to computer vision applications, physics-

based applications are often at least partially constrained

by well-known fundamental laws. As a famous example,

the motion of a particle in an external potential should con-

serve energy and momentum, while the exact form of the

potential or the expression for the momentum equations is

still unknown and needs to be inferred from observations.

However, most of the current NOs have been focused on a

pure data-driven paradigm, which neglects these intrinsic

conservation of fundamental physical laws in data. As a

result, their performances highly rely on the quantity and

1

Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

coverage of available data.

To improve learning efficacy and robustness in small-data

regimes, we propose to encode a series of fundamental

conservation laws into the architecture of NOs. Their infer-

ence is then constrained to a physically-consistent manifold.

Here, we focus on the conservation of mass or volume

which leads to a continuity equation for divergence-free

flow. The development is based on two key innovations.

Firstly, when the output function of a NO is divergence-free,

the continuity equation is automatically satisfied, guaran-

teeing conservation of volume and mass. Based on the

concept of differential forms, the conservation law is em-

bedded through building divergence-free output functions.

Secondly, to evaluate the differential forms, we propose

an additional linear layer in NOs, whose weights are pre-

specified based on high-order numerical differentiations on

the given grids. Given an input function and its values

on given grids, this layer evaluates the spatial derivatives

as weighted linear combinations of neighboring or global

points, mapping the function to its approximated derivatives.

Compared to existing NO methods, the proposed archi-

tecture mainly carries three significant advantages. First,

different from existing physics-informed neural operators

(Goswami et al., 2022a;b; Li et al., 2021; Wang et al., 2021),

our approach is readily applicable to learn physical systems

directly from experimental measurements, since it only re-

quires observed data pairs and does not rely on fully known

governing equations. Second, the conservation laws in our

approach are realized through built-in architectures, which

constrain the output function to a physically consistent man-

ifold independent of noisy measurement and/or scarce data

coverage. Third, our architecture is designed to encode gen-

eral conservation laws at large. Besides the conservation

of mass, linear/angular momentum as demonstrated in our

examples, it is readily applicable to the conservations of

energy and electric charge, and can be easily scaled up to

higher dimensions. In summary, the main contributions of

our work are:

• We propose clawNO, a novel neural operator architec-

ture to learn complex physical systems with conserva-

tion laws baked into the design.

• Our architecture is realized by adding an additional

layer that employs numerical differentiation in evaluat-

ing the spatial and temporal derivatives as a weighted

linear combination of neighboring points. As a result,

our design is readily applicable as an add-on to any

neural operator architecture, with comparable network

size and computational cost.

• ClawNO only requires data pairs and does not rely on

a priori domain knowledge, while the guaranteed con-

servation laws improve the learning efficacy, especially

in the small-data regime.

2. Background and Related Work

Learning hidden physics. Learning and predicting com-

plex physics directly from data is ubiquitous in many scien-

tific and engineering applications (Ghaboussi et al., 1998;

1991; Carleo et al., 2019; Karniadakis et al., 2021; Zhang

et al., 2018; Cai et al., 2022; Pfau et al., 2020; He et al.,

2021; Besnard et al., 2006). Amongst these real-world

physical problems, the underlying governing laws largely

remain unknown, and machine learning models act to dis-

cover hidden physics from data through training. Successful

examples include graph neural networks (GNNs) in discov-

ering molecular properties (Wieder et al., 2020; Wu et al.,

2023a), neural ODEs in constructing strain energy formu-

lation for materials (Tac et al., 2022), and CNNs in steady

flow approximation (Guo et al., 2016), etc. In this work,

we focus on learning hidden physics from measurements

with fundamental physical laws enforced. Examples include

learning material deformation model from experimental

measurements, where the mass should be conserved, but the

constitutive law remains hidden.

Neural operator learning. Among others, NOs possess

superiority in discovering physical laws as function map-

pings. Contrary to classical neural networks (NNs) that op-

erate between finite-dimensional Euclidean spaces, NOs are

designed to learn mappings between infinite-dimensional

function spaces (Li et al., 2020a;b;c; You et al., 2022a; Ong

et al., 2022; Cao, 2021; Lu et al., 2019; 2021; Goswami

et al., 2022a; Gupta et al., 2021). As a result, NOs are often

employed to manifest the mapping between spatial and/or

spatio-temporal data pairs. Compared with classical NNs,

the most notable advantages of NOs are their resolution in-

dependence and generalizability to different input instances.

Moreover, NOs only require data with no knowledge on the

underlying governing laws. All these advantages make NOs

promising tools to learn hidden physics directly from data.

Despite the aforementioned advances, purely data-driven

NOs still suffer from the data challenge: they require a

large set of paired data, which is prohibitively expensive in

many engineering applications. To resolve this challenge,

physics-informed neural operator (PINO) (Li et al., 2021)

and physics-informed DeepONets (Goswami et al., 2022a;

Wang et al., 2021) are introduced, where a PDE-based loss

is added to the training loss as a penalization term. How-

ever, these approaches often require a priori knowledge of

all the underlying physics laws (in the form of governing

PDEs). Moreover, the penalization term only imposes these

knowledge as a weak constraint.

Imposing partial physical laws in NNs. Several NN mod-

els have pursued the direction of imposing partial physics

2

Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

2004.4 6167.7 10331.0 2004.4 6167.7 10331.0 0 716.3 1432.6

G
ro

u
n
d

 T
ru

th

G
ro

u
n
d
 T

ru
th

c
la

w
N

O

F

N
O

A
b
s
.

E
rr

o
r

 A
b
s
.
E

rr
o

r

Figure 1. Predictability demo in atmospheric modeling. While FNO plausibly learns the wave propagation patterns, its relative L2 error is

twice as big as that of clawNO (cf. Section 4.3), especially in the vicinity of mountains (Fig. 6). ClawNOs automatically satisfy the

conservation law and improve physical consistency.

knowledge into the architecture of the model, with the goal

of improving efficiency in learning hidden physics. A pop-

ular approach is to design equivariant NNs (Satorras et al.,

2021; Müller, 2023; Liu et al., 2023; Helwig et al., 2023),

which enforces symmetries in a Lagrangian represented by

NNs and guarantees that the discovered physical laws do

not depend on the coordinate system used to describe them.

As pointed out by Sarlet & Cantrijn (1981); Noether (1971),

such symmetries induce the conservation of linear and angu-

lar momentum in the learned physical system. Towards the

conservation law of other quantities, the authors in Keller

& Evans (2019); Sturm & Wexler (2022) consider the tem-

poral concentration changes of multiple species. They find

that conserving mass via a balancing operation improves

the accuracy and physical consistency of NNs. In Richter-

Powell et al. (2022), a divergence-free perspective has been

considered to impose more general conservation laws in the

framework of physics-informed neural networks (PINNs)

(Raissi et al., 2019; Cai et al., 2021) with the aid of au-

tomatic differentiation to evaluate the derivatives directly.

The same problem is also tackled by Négiar et al. (2022);

Hansen et al. (2023), where the conservation law is enforced

by projecting the solution to the constrained space (Négiar

et al., 2022) or encoded by taking the predictive update

following an integral form of the full governing equation

(Hansen et al., 2023). However, in all these conservation

law-informed neural networks the full governing PDEs are

employed to formulate the loss function or the predictive

updates/projections, and hence they are not applicable to

hidden physics discovery.

3. ClawNO: Conservation Law Encoded

Neural Operator

We consider the learning of complex physical systems based

on a number of observations of the input function values

fi(x) ∈ F(Ω;Rpf) and the corresponding output function

values ui(x) ∈ U(Ω;Rpu). Here, i denotes the sample

index, Ω ∈ R
p is the bounded domain of interest, and F and

U describe the Banach spaces of functions taking values

in R
pf and R

pu , respectively. To model the physical laws

of such a system, we aim to learn the intrinsic operator

G : F → U, that maps the input function f(x) to the output

function u(x). In other words, given the measurements

of fi and ui on a collection of points Ç = {xj}Mj=1 ¢ Ω,

we seek to learn the physical response by constructing a

parameterized surrogate operator of G: G̃[f ; ¹](x) ≈ u(x),
where the trainable parameter set ¹ is obtained by solving

the optimization problem:

min
¹∈Θ

L(¹) :=min
¹∈Θ

N
∑

i=1

1

N
[C(G̃[fi; ¹],ui)] (1)

≈min
¹∈Θ

1

N

N
∑

i=1

∑M
j=1

∣

∣

∣

∣

∣

∣G̃[fi; ¹](xj)− ui(xj)
∣

∣

∣

∣

∣

∣

2

∑M
j=1 ||ui(xj)||2

.

Here, C denotes the cost functional that is often taken as

the relative mean squared error.

Although our approach is agnostic to any NO architecture,

for the purpose of demonstration we consider the generic

integral neural operators (Li et al., 2020b;c; You et al.,

2022a;b) as the base models. In this context, an L-layer

NO has the following form:

G̃[f ; ¹](x) := Q ◦ JL ◦ · · · ◦ J1 ◦ P[f](x) , (2)

where P , Q are shallow-layer NNs that map a low-
dimensional vector into a high-dimensional vector and vice
versa. Each intermediate layer, Jl, consists of a local linear
transformation operator Wl, an integral (nonlocal) kernel
operator Kl, and an activation function Ã. The architectures
of NOs mainly differ in the design of their intermediate layer
update rules. As two popular examples, when considering
the problem with structured domain Ω and uniform grid set
Ç, a Fourier neural operator (FNO) is widely used, where
the integral kernel operators Kl are linear transformations
in frequency space. As such, the (l+1)th-layer feature func-
tion h(x, l + 1) is calculated based on the lth-layer feature
function h(x, l) via:

h(x, l + 1) = J FNO
l [h(x, l)] (3)

:=σ(Wlh(x, l) + F−1[Al · F [h(·, l)]](x) + cl) ,

3

Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

where Wl, cl and Al are matrices to be optimized, F and
F−1 denote the Fourier transform and its inverse, respec-
tively. On the other hand, the graph neural operator (GNO)
is often employed on general irregular domains and grids,
where the intermediate layer is invariant with respect to l,
i.e., J1 = · · · ,JL := JGNO, with the update of each layer
given by

h(x, l + 1) = JGNO[h(x, l)] (4)

:= σ(Wh(x, l) +

∫

Ω

κ(x,y, f(x), f(y);ω)h(y, l)dy + c) .

Here, »(x,y, f(x), f(y);É) is a tensor kernel function that

takes the form of a (usually shallow) NN with parameter É.

In (4), the integral operator is often evaluated via a Riemann

sum approximation
∫

Ω
»(x,y, f(x), f(y);É)h(y, l)dy ≈

1
M

∑M
j=1 »(x,xj , f(x), f(xj);É)h(xj , l), realized through

a message passing GNN architecture on a fully connected

graph.

3.1. Built-In Divergence-Free Prediction

Intuitively, a conservation law states that a quantity of a

physical system does not change as the system evolves over

time. The most well-known examples of conserved quan-

tities include mass, energy, linear momentum, angular mo-

mentum, etc. Mathematically, a conservation law can be

expressed as a continuity equation defining the relation be-

tween the amount of the quantity and the “transport” of that

quantity:

∂Ä

∂t
(x, t)+∇x·µ(x, t) = 0 , for (x, t) ∈ Ω×[0, T] , (5)

where Ä : Rp+1 → R
+ is the volume density of the quantity

to be conserved, µ : Rp+1 → R
p is the flux describing how

this quantity flows, and ∇x denotes the gradient operator

with respect to the spatial dimensions. Equation 5 states

that the amount of the conserved quantity within a volume

can only change by the amount of the quantity that flows in

and out of the volume. Taking the mass conservation law as

an instance, Ä is the fluid’s density, and u is the velocity at

each point, and then the mass flux becomes µ = Äu. When

considering the (quasi-)static problem, i.e., Ä is independent

of time, we have ∇x · u = 0, where the divergence is taken

only over spatial variables. Such a divergence-free equation

is also referred to as the condition of incompressibility in

fluid dynamics. Moreover, we note that (5) can always be

expressed as a divergence-free equation when considering

both spatial and temporal dimensions. As a matter of fact,

by taking X = (x, t) and U = (µ, Ä), (5) can be re-written

as ∇X ·U = 0, there the gradient operator ∇X is taken with

respect to both x and t. Then, the conservation law becomes

equivalent to the static case, if we consider the augmented

variable X on the augmented domain Ω̃ := Ω × [0, T].
Hence, in the following derivation we focus on the static

case, with the goal of designing an NO architecture with the

continuity equation div(u) := ∇x(u) = 0 automatically

guaranteed for its output function u.

To construct divergence-free NOs, we start from differential

forms in R
p, following the derivations in e.g., Barbarosie

(2011); Kelliher (2021). More details are provided in Ap-

pendix A. Generally, an object that may be integrated over a

k−dimensional manifold is called a k−form, which can

be expressed as µ =
∑

1fi1,i2,··· ,ikfp µ(i1,··· ,ik)dxi1 '
· · · ' dxik :=

∑

I µIdxI . For instance, any scalar func-

tion g(x) ∈ C∞ is a 0−form, and v =
∑p

i=1 vi(x)dxi,
vi(x) ∈ C∞, is a 1−form. Denote d as the exterior deriva-

tive, which is an operation acting on a k−form and pro-

duces a (k + 1)−form (e.g., dg(x) =
∑p

i=1
∂g
∂xi

dxi), and

the Hodge operator as ⋆, which matches to each k−form

an (p − k)−form via ⋆dxI := (−1)Ã(I,I
c)dxIc . Here,

Ic := {1, · · · , n}\I is the complement set of I , and

Ã(I, Ic) is the sign of the permutation (I, Ic). A simple

calculation yields that ⋆ ⋆ µ = (−1)k(p−k)µ and ddµ = 0
for any k−form µ.

To see the connection of these definitions to our goal, we

note that our output function, u : Rp → R
p, can be equiva-

lently expressed as a 1−form u =
∑p

i=1 ui(x)dxi. Then,

the divergence of u can be expressed as d⋆u, and the above

fundamental properties of the exterior derivative yields

div(⋆dµ) = d ⋆ ⋆dµ = ddµ = 0 for any (p − 2)−form

µ. That means, any vector field u satisfying u = ⋆dµ is

divergence-free. Our goal is therefore to parameterize the

output function of NOs in the form of ⋆dµ, or equivalently,

as ⋆d(
∑

1fi1,··· ,ip−2fp µ(i1,··· ,ip−2)dxi1 '· · ·'dxip−2
)) =

∑p
i=1

∑p
j=1

∂µij

∂xj
dxi. Here, µij(x) is a function defined on

Ω with µij(x) = µ(i,j)c for i < j and µij(x) = −µ(j,i)c

otherwise, as real-valued alternating functions. That means,

taking any µ := [µij(x)] satisfies µij = −µji (a p
by p skew-symmetric matrix-valued function), we have

div(⋆dµ) = 0, where ⋆dµ = [div(µ1), · · · , div(µp)]
T and

µi stands for the i−th row of µ.

Remark: The idea of representing the conservation-law

informed solution into the divergence of a skew-symmetric

matrix-valued function is theoretically studied in Barbarosie

(2011); Kelliher (2021), and recently employed in Richter-

Powell et al. (2022) with the PINNs architecture. However,

we point out that our scope of work is substantially different

from Richter-Powell et al. (2022) where the governing equa-

tion is given. In PINN architecture the NN is constructed

to approximate the solutions of a particular governing equa-

tion, i.e., mapping from x to the solution u(x). As such,

the differential forms are approximated with automatic dif-

ferentiation in NNs. In our work, we focus on the hidden

physics learning problem where the governing equation re-

mains unknown and employ the neural operator model to

learn the governing law as a function-to-function mapping

4

Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

directly from data. Besides the fact that we do not rely on an

equation-based loss function, in neural operators the differ-

ential forms can no longer be approximated via automatic

differentiation, and therefore we propose a pre-calculated

numerical differentiation layer as will be elaborated below.

3.2. ClawNO Architecture and Implementation

With the above analysis, we now construct an NO architec-

ture with divergence-free output. Concretely, we propose to

modify the architecture in (2) as:

G̃[f ; ¹](x) := D ◦ Q ◦ JL ◦ · · · ◦ J1 ◦ P[f](x) , (6)

where the projection layer, Q, maps the last layer feature

vector h(x, L) to a dimension p(p− 1)/2 vector, such that

each dimension in this vector stands for one degree of free-

dom in the skew symmetric matrix-valued function µ(x).
Then, the last layer D takes µ as the input and aims to cal-

culate its row-wise divergence [div(µ1), · · · , div(µp)]
T as

the output function u(x).

To formulate the last layer D there remains one more techni-

cal challenge: in NOs the output functions are provided on

a set of discrete grid points, Ç, and therefore the derivatives

are not readily evaluated. With the key observation that in

classical numerical differentiation methods the derivatives

are evaluated as weighted linear combinations of neighbor-

ing or global points, we propose to encode these weights in

D. As such, D will have pre-calculated weights and act as

a numerical approximation of [div(µ1), · · · , div(µp)]
T . To

demonstrate the idea, in the following we start with uniform

grids Ç and Ω being a periodic piece of Rp, i.e., the torus

T
p, then discuss the scenarios with non-periodic domain

and non-uniform grids.

Considering T
p :=

∏p
i=1[0, L

(i)]/ ∼ and Ç :=
{

(k
(1)L(1)

N(1) , · · · , k(p)L(p)

N(p))|k(i) ∈ [0, N (i)] ∩ Z

}

, each com-

ponent of µ can then be approximated as a truncated Fourier

series:

µ
(N(1),··· ,N(p))
jk (x) :=

N(1)

2 −1
∑

À1=−N(1)

2

· · ·
N(p)

2 −1
∑

Àp=−N(p)

2

µ̂jk(À1, · · · , Àp)e
i2πξ1

L(1) · · · e
i2πξp

L(p) ,

where µ̂jk(À1, · · · , Àp) is the Fourier coefficient of µjk, cal-

culated via F [µjk]. Taking derivatives of µ
(N(1),··· ,N(p))
jk

and using them to approximate the derivative of µjk, we

have the following result:

Theorem 3.1. D is a p(p − 1)/2 × M × M × p tensor

with its parameters given by: D[µ] = ⋆dµ(N(1),··· ,N(p)) =

[(D[µ])1, · · · , (D[µ])p]
T , where

(D[µ])j =
∑

k

∂µ
(N(1),··· ,N(p))
jk

∂xk

=
∑

k

F−1

[

i
2πξk
L(k)

F [µjk](ξ)

]

,

(7)

then the following error estimate holds true:

||⋆dµ−D[µ]||L∞ = O(∆xm−1) ,

if µ has m− 1 continuous derivatives for some m g 2 and

a m−th derivative of bounded variation. In the special case

when µ is smooth, a spectral convergence is obtained. Here,

M :=
∏p

i=1N
(i) denotes the total number of grids, and

∆x := maxpi=1 L
(i)/N (i) is the spatial grid size.

Proof. Derivation of (7) is provided in Appendix E.1. The

theorem is an immediate proposition of the Fourier spectral

differentiation error estimate (see, e.g., Trefethen (2000,

Page 34)).

We now consider non-periodic domain and/or non-uniform

grids. When the domain is non-periodic but the grids are

uniform, we employ the Fourier continuation (FC) technique

(Amlani & Bruno, 2016; Maust et al., 2022) which extends

the non-periodic model output into a periodic function. In

particular, the layer parameter for D in (7) is modified as:

D̃ := R ◦ D ◦ FC, where FC and R are the FC extension

and restriction operators, respectively.

When the grids are non-uniform, the spectral method no
longer applies and we seek to generate derivatives follow-
ing the spirit of high-order meshfree methods (Bessa et al.,
2014; Trask et al., 2019; Fan et al., 2023). In particular, con-

sidering the collection of measurement points Ç = {xi}Mi=1,
we seek to generate consistent quadrature rules of the form
∂ϕ
∂xk

(xi) ≈ ∑

xj∈Ç∩Bδ(xi)
(ϕ(xj) − ϕ(xi))É

(k)
i,j for each

xi ∈ Ç and k = 1, · · · , p. Here, B¶(xi) denotes the neigh-

borhood of radius ¶ of point xi, and É
(k)
i,j is a collection of

to-be-determined quadrature weights pre-calculated from
the following optimization problem:

min
ω
(k)
i,j

∑

xj∈χ∩Bδ(xi)

|ω
(k)
i,j |, s.t.

∂φ

∂xk

(xi)

=
∑

xj∈χ∩Bδ(xi)

(φ(xj)− φ(xi))ω
(k)
i,j , ∀φ ∈ Pm(Rp) , (8)

where Pm(Rp) is the space of m−th order polynomials

(m g 1). Assume that Ç is quasi-uniform, the size of Ç ∩
B¶(x) is bounded, the domain Ω satisfies a cone condition,

and ¶ is sufficiently large, the above optimization problem

has a solution (Wendland, 2004), and we further have:

Theorem 3.2. Consider a fixed ratio of ¶/∆x where ∆x :=
sup

xi∈Ç minxj∈Ç\xi
||xi − xj ||L2 , the layer parameters of

D can be formulated as: D[µ] = [(D[µ])1, · · · , (D[µ])p]
T ,

where

(D[µ])j(xi) =
∑

k

∑

xl∈χ∩Bδ(xi)

(µjk(xl)− µjk(xi))ω
(k)
i,l . (9)

5

Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

Input
function

Lifting
layer

Equivariant layers

Projection
layer

Divergence-free
output functionloop for L layers

Skew-
symmetric

matrix

Numerical
differentiation

layer

In 2D: In 3D:

Figure 2. Proposed clawNO architecture. We start from the input function g(x). After lifting, the high-dimensional latent representation

goes through a series of iterative equivariant layers, then gets projected to a function space in the form of an antisymmetric matrix. Lastly,

we employ numerical differentiation (layer D with pre-calculated weights) to obtain the target divergence-free output.

The following error estimate holds true:

||⋆dµ−D[µ]||L∞ = O(∆xm+1) ,

if µ has m+ 1 continuous derivatives.

Proof. The proof follows a similar argument as in Levin

(1998, Theorem 5), see Appendix E.2.

The proposed architecture can be readily combined with the

FNOs in (3) and GNOs in (4). Generally, when measure-

ments are provided on regular domain and uniform grids,

we consider FNOs together with the differentiation layer

D approximated in (7) (or its FC-based extension). When

the measurements are on non-uniform grids, GNOs can be

employed with the differentiation layer D approximated

via meshfree methods (see (9)). Besides vanilla FNOs and

GNOs, to further encode laws of physics we also consider

their group-equivariant versions as the base models, namely

the invariant neural operator (INO) (Liu et al., 2023) for

non-uniform grids and the group-equivariant FNO (G-FNO)

(Helwig et al., 2023) for uniform grids. As such, the learnt

laws of physics do not depend on the coordinate system used

to describe them, together with the encoded conservation

laws guaranteed.

Remark: Although clawNOs are designed to make

divergence-free predictions, they are also applicable to

problems involving a mixture of divergence-free and non-

divergence-free fields. Assume the number of divergence-

free and non-divergence-free variable dimensions are n1
and n2, respectively. In this situation, one can set the output

dimension of the projection layer to be n = n1 + n2, and

only pass the first n1 dimensions of the output to the numer-

ical differentiation layer for prediction of divergence-free

output, and the remaining n2 dimensions can be directly

trained to predict the non-divergence-free variables in the

spirit of a vanilla NO.

4. Experiments

We showcase the prediction accuracy and expressivity of

clawNOs across a wide range of scientific problems, includ-

ing elasticity, shallow water equations and incompressible

Navier-Stokes equations. We compare the performance

of clawNOs against a number of relevant machine learn-

ing techniques. In particular, we select INO (Liu et al.,

2023), GNO (Li et al., 2020a), MP-PDE (Brandstetter et al.,

2022), and MeshGraphNets (Pfaff et al., 2020) as baselines

in graph-based settings, whereas we choose FNO (Li et al.,

2020c), G-FNO (Helwig et al., 2023), UNet (Ronneberger

et al., 2015), LSM (Wu et al., 2023b), KNO (Xiong et al.,

2023a;b), UNO (Rahman et al., 2022), and BOON (Saad

et al., 2022) as baselines in datasets with uniform discretiza-

tions. We also compare with an additional non-NO baseline,

Lagrangian neural networks (LNN) (Cranmer et al., 2020;

Müller, 2023), in the first experiment. The relative L2 er-

ror is reported as comparison metrics. We perform three

replicates of all the experiments with randomly selected

seeds, and the mean and standard deviation of the errors

are reported. To guarantee a fair comparison, we make sure

that the total numbers of trainable parameters in all models

are on the same level, and report these numbers for each

case. Additional details on the data generation and training

strategies are provided in Appendix C.

6

Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

4.1. Incompressible Navier-Stokes Equation

We start from the incompressible Navier–Stokes equations

in vorticity form, which is widely applied to the simulation

of sub-sonic flows, especially in hydromechanical and tur-

bulent dynamics modeling. The (known) mass conservation

law and (hidden) governing equation are given by:

∇ · u = 0 , ∂tw + u · ∇w = ¿∆w + f , (10)

where w and ¿ denote the vorticity and fluid viscosity, re-

spectively, f = 0.1(sin(2Ã(x + y)) + cos(2Ã(x + y)))
represents the external forcing term, and u is the velocity

field that we aim to learn. The system is modeled on a

square domain of [0, 1]2 and initialized with a random vor-

ticity field w0 sampled from a random Gaussian distribution.

We consider two case studies. The first study predicts a

rollout of T = 20 subsequent timesteps conditioned on the

first Tin = 10 timesteps, which is consistent with the setting

in G-FNOs (Helwig et al., 2023). In the second study, we

predict a rollout of T = 25 timesteps conditioned on the

first Tin = 5 timesteps. Compared with the first setting, this

study aims to provide a longer-term extrapolation with less

information from inputs. It is designed to further challenge

the proposed model and baselines. Both studies are carried

out in three datasets representing small, medium, and large

data regimes.

Ablation study We first perform an ablation study in case

1 (i.e., T = 20 and Tin = 10) by adding the proposed

divergence-free architecture to FNO and comparing its per-

formance with the vanilla FNO and clawGFNO. The cor-

responding results are listed in Table 1, where we observe

a consistent performance improvement with the proposed

divergence-free architecture in all data regimes. In partic-

ular, by comparing clawGFNO to GFNO, we observe a

boost in accuracy by 59.1%, 37.2% and 61.2% in small,

medium and large data regimes, respectively. Our findings

are consistent when we compare clawFNO to the vanilla

FNO, where an enhancement by 43.8%, 9.0% and 0.7%

is obtained, respectively. Therefore, in small training data

regimes, imposing the conservation law has enhanced the

data efficiency. This argument is further verified when com-

paring the distribution of test errors for clawGFNO and

GFNO as demonstrated in Figure 3, from which one can

see that clawGFNO has smaller errors on out-of-distribution

test samples. Note that it is expected that the performance

improvement of clawNOs becomes less pronounced as we

march from the small data regime to the large data regime,

as the baseline NOs are anticipated to learn the conservation

laws from data as more data becomes available. The per-

formance of clawNOs and the baseline NOs will eventually

converge in the limit of infinite data. However, this is typi-

cally prohibitive as data generation is expensive in general,

especially in the scientific computing community where one

simulation can take hours to days to complete. On the other

hand, clawGFNO further outperforms clawFNO in all data

regimes, benefiting from the equivariant architecture of the

model.

Comparison against additional baselines We choose to

work with clawGFNO in the 2nd case study owing to its out-

standing performance compared to clawFNO. Herein, we

compare the performance of clawGFNO against additional

baselines in Table 1. Among all baselines in case 1, KNO

has achieved the best performance in small data regime,

while clawFNO and clawGFNO still outperform it by 37.4%

and 40.3%, respectively. By investigating in the direction

from small data regime to large data regime, clawGFNO

achieves the best performance in all cases and beats the best

baselines by 40.3%, 16.2% and 17.6% in case 1 and 39.9%,

26.8% and 9.1% in case 2. ClawGFNO also manifests its

robustness as the learning task becomes more challenging

across the two case studies, as compared to other baselines

whose performance deteriorates notably. Additionally, in

order to maintain a similar total number of trainable param-

eters, we reduce the latent width of GFNO from 20 to 11,

leading to possible expressivity degradation in GFNO. In

fact, when increasing the latent dimension of GFNO to 20

to match the dimension of FNO, on the large data regime of

case 1 the test error is decreased to 1.19%± 0.16%, achiev-

ing a comparable performance to FNO. Note also that LNN

in case 1 seemingly cannot learn the correct solution as the

test error remains above 20% across all three data regimes.

This is due to the fact that LNN predicts the acceleration

from current position and velocity, and then updates the

velocity. Since this dataset is relatively sparse in time, it

leads to large errors from temporal integration in LNNs.

4.2. Radial Dam Break

In this example, we explore the shallow water equations that

are derived from the compressible Navier–Stokes equations,

which find broad applications in tsunami and general flood-

ing simulation. Specifically, we simulate a circular dam

removal process where the water is initially confined in the

circular dam and suddenly released due to the removal of

the dam. The (known) mass conservation law and (hidden)

governing PDE describing the system are as follows:

∂th+∇ · (hu) = 0 ,

∂t (hu) +∇ ·
(

huuT
)

+
1

2
g∇h2 + gh∇b = 0 , (11)

where g is the gravitational acceleration, h describes the

water height, u denotes the velocity field, (h, hu) is the

3D divergence-free field we aim to learn, and b denotes a

spatially varying bathymetry. The simulation is performed

on a square domain of [−2.5, 2.5]2, and the initial height h0
is specified as h0 = 2.0 when r <

√

x2 + y2 and h0 = 1.0
otherwise, with r being the radial distance to the dam center,

which is uniformly sampled from (0.3, 0.7).

7

Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

Table 1. Test errors and the number of trainable parameters for the incompressible Navier–Stokes problem, where bold numbers highlight

the best method. Rollouts are of length T conditioned on the first Tin time steps.

Case 2D models #param # of training samples
10 100 1000

Tin = 10, T = 20

clawGFNO 853,231 12.10%±1.08% 4.76%±0.24% 1.21%±0.09%
clawFNO 928,861 12.68%±0.85% 5.17%±0.27% 1.46%±0.11%
GFNO-p4 853,272 29.56%±3.32% 7.59%±0.34% 3.11%±0.93%
FNO 928,942 22.57%±1.87% 5.68%±0.41% 1.47%±0.18%
UNet 920,845 56.81%±9.91% 16.62%±2.47% 6.07%±0.36%
LSM 1,211,234 31.79%±2.11% 13.30%±0.15% 5.52%±0.08%
UNO 1,074,522 21.48%±1.49% 11.41%±0.38% 5.29%±0.09%
KNO 890,055 20.26%±1.50% 11.40%±3.12% 9.09%±1.70%
LNN 1,056,768 25.73%±0.96% 24.27%±3.16% 21.36%±2.46%
BOON 928,942 23.02%±2.00% 6.21%±0.48% 2.25%±0.13%

Tin = 5, T = 25

clawGFNO 853,131 16.02%±0.57% 4.84%±0.49% 1.57%±0.18%
GFNO-p4 853,172 36.35%±4.47% 10.67%±3.00% 2.68%±0.60%
FNO 928,742 26.65%±5.31% 6.61%±0.83% 1.73%±0.23%
UNet 919,855 76.12%±14.04% 34.45%±10.59% 7.39%±0.83%

Table 2. Test errors and the number of trainable parameters for the radial dam break problem, where bold numbers highlight the best

method. Rollouts are of length 24 conditioned on the first time step, following the setting of Helwig et al. (2023).

3D models #param # of training samples
2 10 100

clawFNO 4,922,303 21.24%±1.17% 2.69%±0.04% 1.84%±0.01%
clawGFNO 4,799,732 23.29%±3.10% 2.87%±0.03% 1.83%±0.01%

FNO 4,922,303 29.88%±0.17% 4.04%±0.10% 1.88%±0.05%
GFNO-p4 4,799,732 27.31%±2.80% 3.80%±0.28% 1.90%±0.07%
UNet 5,080,113 338.08%±553.62% 5.62%±0.19% 2.98%±0.20%

We report in Table 2 our experimental observations us-

ing clawGFNO and clawFNO, along with the compari-

son against FNO, GFNO, and UNet. ClawNOs continue

to achieve the lowest test errors across all three selected

datasets, where clawFNO shows the best performance in the

small and medium data regimes and clawGFNO becomes

slightly more superior in the large data regime. As the radial

dam break problem is fairly simple and the solution exhibits

strong symmetries, the performances of non-claw baselines

quickly converge to clawNOs with only 100 training sam-

ples. Nevertheless, clawNOs consistently outstand the best

non-claw baseline in performance by 22.2% in small data

regime and 29.2% in medium data regime.

4.3. Atmospheric Modeling

In this example, we use the general circulation model
SpeedyWeather.jl to simulate gravity waves in the Earth’s
atmosphere. The shallow water equations for relative vortic-
ity · = ∇×u, divergence D = ∇·u, and the displacement
¸ from the atmosphere’s rest height H = 8500 m are de-

scribed as the given mass conservation law ∂¸
∂t +∇· (uh) =

0 together with other (hidden) governing laws:

∂ζ

∂t
+∇ · (u(ζ + f)) =0 ,

∂D

∂t
−∇× (u(ζ + f)) =−∇2(1

2
|u|2 + gη) . (12)

The equations are solved in spherical coordinates with

latitude ¹ ∈ [−Ã, Ã], longitude ¼ ∈ [0, 2Ã] on a sphere of ra-

dius R = 6371 km. The layer thickness is h = ¸+H −Ho

with the Earth’s orography Ho = Ho(¼, ϕ) and gravity

g = 9.81 ms−2. The Coriolis force uses the parameter

f = 2Ω sin(¹) with Ω = 7.29 · 10−5 s−1 the angular fre-

quency of Earth’s rotation. The simulations start from rest,

u = 0, but with random waves in ¸ with wave lengths

of about 2000 to 4000 km and maximum amplitudes of

2000 m. These random initial waves propagate at a phase

speed of cph =
√
gh (about 300 ms−1) around the globe,

interacting non-linearly with each other and the underlying

Earth’s orography. For details on the model setup and the

simulation see Appendix C.3.

We list in Table 3 our experimental results along with com-

parisons against selected baselines. For this problem, since

the spherical coordinate system in latitudes and longitudes

stay the same and thus the equivariance property plays lit-

tle role, we directly employ clawFNO as our representa-

tive clawNO model, as the latent dimension of clawFNO

is much higher than that of clawGFNO for similar total

numbers of model parameters. In other words, clawFNO

possesses more expressivity power. This is rather impor-

tant in atmospheric modeling at the entire globe scale, as

the wave propagation patterns are more localized compared

8

Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

Table 3. Test errors for the weather modeling problem and the number of trainable parameters (in millions), where bold numbers highlight

the best method. Rollouts are of length 10 conditioned on the first time step.

Model clawFNO FNO GFNO UNet

#param (M) 49.57 49.57 53.70 51.58

Test error 6.64%±0.23% 12.54%±0.26% 14.34%±0.55% 20.89%±0.87%

Table 4. Test errors and the number of trainable parameters for the material deformation problem. Bold numbers highlight the best method.

2D models #param # of training samples
2 20 100

clawINO 4,747,521 14.12%±0.23% 5.41%±0.67% 1.00%±0.02%

INO 4,747,521 16.75%±1.24% 7.69%±0.51% 2.40%±0.53%
GNO 18,930,498 19.73%±3.60% 12.59%±0.24% 8.51%±5.29%

MP-PDE 18,368,610 23.07%±20.39% 12.38%±0.41% 1.30%±0.55%
MeshGraphNets 18,694,914 38.57%±17.84% 7.35%±0.54% 1.79%±0.81%

to other examples. In this context, clawFNO outperforms

the best non-claw baseline by 47% in accuracy. Addition-

ally, it is worth mentioning that the majority of the errors

accumulate in the vicinity of mountains, as evidenced in

the rollout demonstration in Figures 13-15 (compare to Fig.

6a). This is expected as the interaction with the orography

causes wave reflection and dispersion through changes in

the wave speed, which generally limits predictability more

than in other regions. Furthermore, the training strategy

(Appendix C.5) disregards wave numbers higher than 22

which, however, are more pronounced around rough orogra-

phy. Our simulations resolve orography up to wave number

63 (Appendix C.3).

4.4. Constitutive Modeling of Material Deformation

In this example we test the efficacy of the proposed clawNO

in graph-based settings. Specifically, we consider the in-

compressible material deformation of the Mooney–Rivlin

type, where the (hidden) constitutive law reads:

−∇ · Ã = f , where Ã = −pI+ 2C1B− 2C2B
−1 , (13)

u|∂Ω = uD ,

with Dirichlet boundary conditions, and the (known) mass

conservation law ∇ · u = 0 imposed. Here Ã is the stress

tensor, u denotes the displacement, f denotes the body load,

¼ and µ are the Lame constants. B is the left Cauchy–Green

deformation tensor, B := FFT ≈ I + 2sym(∇u) for in-

finitesimal strains. Under this setting, the Dirichlet bound-

ary condition and the body load are treated as inputs. To

investigate the efficacy on irregular grids, we consider a

circular domain of radius 0.4. We set the material constants

C1 = C2 = 0.075, and the body load f is randomly gener-

ated following:

f(x, y) =

2
∑

k1,k2=1

Ak1,k2
sin(k1Ãx) sin(k2Ãy),

Ak1,k2
= exp(−0.1k1k2)À , À ∼ U [−2.5, 2.5] .

We report in Table 4 the numerical results of clawINO,

along with the comparison against GNO, INO, MP-PDE

and MeshGraphNets in various data regimes. Consistent

with the findings on regular grids, clawINO outperforms

other graph-based models in all data regimes, beating the

best non-claw baseline by 15.7%, 26.4%, and 23.1% in

the considered three data regimes, respectively. Note that

the total number of parameters in GNO is roughly four

times the number of parameters in INO-based models, as

the parameters in INO-based models are layer-independent,

which also results in an advantage in memory saving.

5. Conclusion

We introduce a series of clawNOs that explicitly bake funda-

mental conservation laws into the neural operator architec-

ture. In particular, we build divergence-free output functions

in light of the concept of differential forms and design an ad-

ditional layer to recover the divergence-free target functions

based on numerical differentiation. We perform extensive

experiments covering a wide variety of challenging scientific

machine learning problems, and show that it is essential to

encode conservation laws for correct physical realizability,

especially in small-data regimes.

For future work, we plan to explore more fundamental laws

in other application domains. In some applications such as

the shock capturing problem (Hansen et al., 2023), the solu-

tion regularity deteriorates and error estimates in this work

do not apply. It would be interesting to modify the differen-

tiation layer in clawNOs based on discontinuity capturing

methods such as the Essentially Non-Oscillatory method

(Shu, 1999) and the discontinuous Galerkin method (Huerta

et al., 2012). We also point out that the idea of incorporating

numerical PDE techniques into NOs can also be extended.

For instance, the quadrature weights can provide a more

accurate numerical integration in evaluating the cost func-

tional, as compared to the current mean squared error widely

employed in NOs.

9

Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

Acknowledgements

Y. Fan, L. Zhang, and Y. Yu would like to acknowledge

support by the National Science Foundation under award

DMS-1753031 and the AFOSR grant FA9550-22-1-0197.

Portions of this research were conducted on Lehigh Univer-

sity’s Research Computing infrastructure partially supported

by NSF Award 2019035. The authors would also like to

thank the reviewers for the careful reading and valuable

suggestions that helped improve the quality of the paper.

Impact Statement

Broader Impact: Conservation laws are fundamentally

properties of nature, describing that a particular measur-

able property of a physical system does not change as the

system evolves. In physics-based machine learning appli-

cations such as material modeling and climate science, the

underlying governing equations are often unknown, while

the system should satisfy some fundamental physical laws

such as the conservation of mass, momentum and energy.

Our work focuses on developing a novel neural network

architecture to impose these fundamental physical laws, and

therefore contributes mostly to the field of scientific machine

learning, especially in the enduring problem of data-driven

model discovery from physics-based measurements.

Ethics Statement: The data utilized in our study is solely

sourced from publicly available datasets or softwares. No

user information was involved. We are committed to up-

holding the principles of responsible and transparent data

usage throughout our work.

References

Amlani, F. and Bruno, O. P. An fc-based spectral solver

for elastodynamic problems in general three-dimensional

domains. Journal of Computational Physics, 307:333–

354, 2016.

Anandkumar, A., Azizzadenesheli, K., Bhattacharya, K.,

Kovachki, N., Li, Z., Liu, B., and Stuart, A. Neural

operator: Graph kernel network for partial differential

equations. In ICLR 2020 Workshop on Integration of

Deep Neural Models and Differential Equations, 2020.

Barbarosie, C. Representation of divergence-free vector

fields. Quarterly of applied mathematics, 69(2):309–316,

2011.

Besnard, G., Hild, F., and Roux, S. “finite-element” dis-

placement fields analysis from digital images: application

to portevin–le châtelier bands. Experimental mechanics,

46(6):789–803, 2006.

Bessa, M., Foster, J., Belytschko, T., and Liu, W. K. A

meshfree unification: reproducing kernel peridynamics.

Computational Mechanics, 53(6):1251–1264, 2014.

Brandstetter, J., Worrall, D., and Welling, M. Message pass-

ing neural pde solvers. arXiv preprint arXiv:2202.03376,

2022.

Cai, S., Mao, Z., Wang, Z., Yin, M., and Karniadakis, G. E.

Physics-informed neural networks (pinns) for fluid me-

chanics: A review. Acta Mechanica Sinica, 37(12):1727–

1738, 2021.

Cai, S., Mao, Z., Wang, Z., Yin, M., and Karniadakis, G. E.

Physics-informed neural networks (PINNs) for fluid me-

chanics: A review. Acta Mechanica Sinica, pp. 1–12,

2022.

Cao, S. Choose a transformer: Fourier or galerkin. Ad-

vances in neural information processing systems, 34:

24924–24940, 2021.

Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M.,

Tishby, N., Vogt-Maranto, L., and Zdeborová, L. Machine

learning and the physical sciences. Reviews of Modern

Physics, 91(4):045002, 2019.

Çolak, A. B. An experimental study on the comparative

analysis of the effect of the number of data on the error

rates of artificial neural networks. International Journal

of Energy Research, 45(1):478–500, 2021.

Cranmer, M., Greydanus, S., Hoyer, S., Battaglia, P.,

Spergel, D., and Ho, S. Lagrangian neural networks.

arXiv preprint arXiv:2003.04630, 2020.

Do Carmo, M. P. Differential forms and applications.

Springer Science & Business Media, 1998.

Fan, Y., You, H., and Yu, Y. Obmeshfree: An optimization-

based meshfree solver for nonlocal diffusion and peridy-

namics models. Journal of Peridynamics and Nonlocal

Modeling, pp. 1–29, 2023.

Ghaboussi, J., Garrett Jr, J., and Wu, X. Knowledge-based

modeling of material behavior with neural networks. Jour-

nal of engineering mechanics, 117(1):132–153, 1991.

Ghaboussi, J., Pecknold, D. A., Zhang, M., and Haj-Ali,

R. M. Autoprogressive training of neural network con-

stitutive models. International Journal for Numerical

Methods in Engineering, 42(1):105–126, 1998.

Goswami, S., Bora, A., Yu, Y., and Karniadakis, G. E.

Physics-informed neural operators. 2022 arXiv preprint

arXiv:2207.05748, 2022a.

Goswami, S., Bora, A., Yu, Y., and Karniadakis, G. E.

Physics-informed neural operators. arXiv preprint

arXiv:2207.05748, 2022b.

10

Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

Guo, X., Li, W., and Iorio, F. Convolutional neural networks

for steady flow approximation. In Proceedings of the 22nd

ACM SIGKDD international conference on knowledge

discovery and data mining, pp. 481–490, 2016.

Gupta, G., Xiao, X., and Bogdan, P. Multiwavelet-based

operator learning for differential equations. Advances in

neural information processing systems, 34:24048–24062,

2021.

Gupta, J. K. and Brandstetter, J. Towards multi-

spatiotemporal-scale generalized pde modeling. arXiv

preprint arXiv:2209.15616, 2022.

Hansen, D., Maddix, D. C., Alizadeh, S., Gupta, G., and

Mahoney, M. W. Learning physical models that can

respect conservation laws. In ICLR 2023 Workshop on

Physics for Machine Learning, 2023.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition,

pp. 770–778, 2016.

He, Q., Laurence, D. W., Lee, C.-H., and Chen, J.-S. Man-

ifold learning based data-driven modeling for soft bio-

logical tissues. Journal of Biomechanics, 117:110124,

2021.

Helwig, J., Zhang, X., Fu, C., Kurtin, J., Wojtowytsch,

S., and Ji, S. Group equivariant fourier neural oper-

ators for partial differential equations. arXiv preprint

arXiv:2306.05697, 2023.

Hoskins, B. J. and Simmons, A. J. A multi-layer spectral

model and the semi-implicit method. Quarterly Journal

of the Royal Meteorological Society, 101(429):637–655,

1975. ISSN 1477-870X. doi: 10.1002/qj.49710142918.

Hotta, D. and Ujiie, M. A nestable, multigrid-friendly

grid on a sphere for global spectral models based on

Clenshaw–Curtis quadrature. Quarterly Journal of

the Royal Meteorological Society, 144(714):1382–1397,

2018. ISSN 1477-870X. doi: 10.1002/qj.3282.

Huerta, A., Casoni, E., and Peraire, J. A simple shock-

capturing technique for high-order discontinuous galerkin

methods. International journal for numerical methods in

fluids, 69(10):1614–1632, 2012.

Jin, H., Zhang, E., and Espinosa, H. D. Recent advances and

applications of machine learning in experimental solid

mechanics: A review. arXiv preprint arXiv:2303.07647,

2023.

Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris,

P., Wang, S., and Yang, L. Physics-informed machine

learning. Nature Reviews Physics, 3(6):422–440, 2021.

Keller, C. A. and Evans, M. J. Application of random

forest regression to the calculation of gas-phase chemistry

within the geos-chem chemistry model v10. Geoscientific

Model Development, 12(3):1209–1225, 2019.

Kelliher, J. P. Stream functions for divergence-free vector

fields. Quarterly of Applied Mathematics, 79(1):163–174,

2021.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet

classification with deep convolutional neural networks.

Advances in neural information processing systems, 25,

2012.

Levin, D. The approximation power of moving least-squares.

Mathematics of computation, 67(224):1517–1531, 1998.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-

tacharya, K., Stuart, A., and Anandkumar, A. Neural

operator: Graph kernel network for partial differential

equations. arXiv preprint arXiv:2003.03485, 2020a.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Stuart,

A., Bhattacharya, K., and Anandkumar, A. Multipole

graph neural operator for parametric partial differential

equations. Advances in Neural Information Processing

Systems, 33:NeurIPS 2020, 2020b.

Li, Z., Kovachki, N. B., Azizzadenesheli, K., Bhattacharya,

K., Stuart, A., and Anandkumar, A. Fourier neural op-

erator for parametric partial differential equations. In

International Conference on Learning Representations,

2020c.

Li, Z., Zheng, H., Kovachki, N., Jin, D., Chen, H., Liu,

B., Azizzadenesheli, K., and Anandkumar, A. Physics-

informed neural operator for learning partial differential

equations. 2021 arXiv preprint arXiv:2111.03794, 2021.

Liu, N., Yu, Y., You, H., and Tatikola, N. Ino: Invariant neu-

ral operators for learning complex physical systems with

momentum conservation. In International Conference

on Artificial Intelligence and Statistics, pp. 6822–6838.

PMLR, 2023.

Lu, L., Jin, P., and Karniadakis, G. E. Deeponet: Learning

nonlinear operators for identifying differential equations

based on the universal approximation theorem of opera-

tors. arXiv preprint arXiv:1910.03193, 2019.

Lu, L., Jin, P., Pang, G., Zhang, Z., and Karniadakis, G. E.

Learning nonlinear operators via DeepONet based on the

universal approximation theorem of operators. Nature

Machine Intelligence, 3(3):218–229, 2021.

Maust, H., Li, Z., Wang, Y., Leibovici, D., Bruno, O., Hou,

T., and Anandkumar, A. Fourier continuation for exact

derivative computation in physics-informed neural opera-

tors. arXiv preprint arXiv:2211.15960, 2022.

11

Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

Müller, E. H. Exact conservation laws for neural network

integrators of dynamical systems. Journal of Computa-

tional Physics, 488:112234, 2023.

Négiar, G., Mahoney, M. W., and Krishnapriyan, A. S.

Learning differentiable solvers for systems with hard con-

straints. arXiv preprint arXiv:2207.08675, 2022.

Noether, E. Invariant variation problems. Transport theory

and statistical physics, 1(3):186–207, 1971.

Ong, Y. Z., Shen, Z., and Yang, H. IAE-NET: Integral

autoencoders for discretization-invariant learning. 03

2022. doi: 10.13140/RG.2.2.25120.87047/2.

Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., and

Battaglia, P. W. Learning mesh-based simulation with

graph networks. arXiv preprint arXiv:2010.03409, 2020.

Pfau, D., Spencer, J. S., Matthews, A. G., and Foulkes, W.

M. C. Ab initio solution of the many-electron schrödinger

equation with deep neural networks. Physical Review

Research, 2(3):033429, 2020.

Rahman, M. A., Ross, Z. E., and Azizzadenesheli, K.

U-no: U-shaped neural operators. arXiv preprint

arXiv:2204.11127, 2022.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-

informed neural networks: A deep learning framework for

solving forward and inverse problems involving nonlinear

partial differential equations. Journal of Computational

Physics, 378:686–707, 2019.

Ranade, R., Gitushi, K., and Echekki, T. Generalized joint

probability density function formulation inturbulent com-

bustion using deeponet. arXiv preprint arXiv:2104.01996,

2021.

Ren, S., He, K., Girshick, R., and Sun, J. Faster r-cnn:

Towards real-time object detection with region proposal

networks. Advances in neural information processing

systems, 28, 2015.

Richter-Powell, J., Lipman, Y., and Chen, R. T. Neural

conservation laws: A divergence-free perspective. Ad-

vances in Neural Information Processing Systems, 35:

38075–38088, 2022.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Convolu-

tional networks for biomedical image segmentation. In In-

ternational Conference on Medical image computing and

computer-assisted intervention, pp. 234–241. Springer,

2015.

Saad, N., Gupta, G., Alizadeh, S., and Maddix, D. C. Guid-

ing continuous operator learning through physics-based

boundary constraints. arXiv preprint arXiv:2212.07477,

2022.

Sarlet, W. and Cantrijn, F. Generalizations of noether’s

theorem in classical mechanics. Siam Review, 23(4):

467–494, 1981.

Satorras, V. G., Hoogeboom, E., and Welling, M. E (n)

equivariant graph neural networks. In International con-

ference on machine learning, volume 139, pp. 9323–9332.

PMLR, 2021.

Schmidt, M. and Lipson, H. Distilling free-form natural

laws from experimental data. science, 324(5923):81–85,

2009.

Shu, C.-W. High order eno and weno schemes for com-

putational fluid dynamics. In High-order methods for

computational physics, pp. 439–582. Springer, 1999.

Sturm, P. O. and Wexler, A. S. Conservation laws in a neural

network architecture: enforcing the atom balance of a

julia-based photochemical model (v0. 2.0). Geoscientific

Model Development, 15(8):3417–3431, 2022.

Tac, V., Costabal, F. S., and Tepole, A. B. Data-driven tissue

mechanics with polyconvex neural ordinary differential

equations. Computer Methods in Applied Mechanics and

Engineering, 398:115248, 2022.

Takamoto, M., Praditia, T., Leiteritz, R., MacKinlay, D.,

Alesiani, F., Pflüger, D., and Niepert, M. Pdebench:

An extensive benchmark for scientific machine learning.

Advances in Neural Information Processing Systems, 35:

1596–1611, 2022.

Tran, A., Mathews, A., Xie, L., and Ong, C. S. Factorized

fourier neural operators. In The Eleventh International

Conference on Learning Representations, 2022.

Trask, N., You, H., Yu, Y., and Parks, M. L. An asymptoti-

cally compatible meshfree quadrature rule for nonlocal

problems with applications to peridynamics. Computer

Methods in Applied Mechanics and Engineering, 343:

151–165, 2019.

Trefethen, L. N. Spectral methods in MATLAB. SIAM,

2000.

Vinuesa, R., Brunton, S. L., and McKeon, B. J. The trans-

formative potential of machine learning for experiments

in fluid mechanics. Nature Reviews Physics, pp. 1–10,

2023.

Wang, S., Wang, H., and Perdikaris, P. Learning the solution

operator of parametric partial differential equations with

physics-informed deeponets. Science advances, 7(40):

eabi8605, 2021.

Weintraub, S. H. Differential forms: theory and practice.

Elsevier, 2014.

12

Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

Wendland, H. Scattered data approximation, volume 17.

Cambridge university press, 2004.

Wieder, O., Kohlbacher, S., Kuenemann, M., Garon, A.,

Ducrot, P., Seidel, T., and Langer, T. A compact review of

molecular property prediction with graph neural networks.

Drug Discovery Today: Technologies, 37:1–12, 2020.

Williams, P. D. The RAW Filter: An Improvement

to the Robert–Asselin Filter in Semi-Implicit Integra-

tions. Monthly Weather Review, 139(6):1996–2007, June

2011. ISSN 0027-0644, 1520-0493. doi: 10.1175/

2010MWR3601.1.

Wu, F., Radev, D., and Li, S. Z. Molformer: Motif-based

transformer on 3d heterogeneous molecular graphs. In

Proceedings of the AAAI Conference on Artificial Intelli-

gence, volume 37, pp. 5312–5320, 2023a.

Wu, H., Hu, T., Luo, H., Wang, J., and Long, M. Solving

high-dimensional pdes with latent spectral models. arXiv

preprint arXiv:2301.12664, 2023b.

Xiong, W., Huang, X., Zhang, Z., Deng, R., Sun, P., and

Tian, Y. Koopman neural operator as a mesh-free solver

of non-linear partial differential equations. arXiv preprint

arXiv:2301.10022, 2023a.

Xiong, W., Ma, M., Sun, P., and Tian, Y. Koopmanlab:

A pytorch module of koopman neural operator family

for solving partial differential equations. arXiv preprint

arXiv:2301.01104, 2023b.

You, H., Yu, Y., D’Elia, M., Gao, T., and Silling, S. Non-

local kernel network (NKN): A stable and resolution-

independent deep neural network. Journal of Compu-

tational Physics, pp. arXiv preprint arXiv:2201.02217,

2022a.

You, H., Zhang, Q., Ross, C. J., Lee, C.-H., and Yu, Y.

Learning deep implicit fourier neural operators (IFNOs)

with applications to heterogeneous material modeling.

Computer Methods in Applied Mechanics and Engineer-

ing, 398:115296, 2022b. doi: https://doi.org/10.1016/j.

cma.2022.115296.

Zhang, L., Han, J., Wang, H., Car, R., and Weinan, E. Deep

potential molecular dynamics: a scalable model with the

accuracy of quantum mechanics. Physical Review Letters,

120(14):143001, 2018.

13

Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

A. Related concepts of differential forms

Differential forms aim to provide a unified approach to define integrands. In this section, we briefly review a few related

mathematical concepts in the paper, which can be found in Richter-Powell et al. (2022); Do Carmo (1998); Weintraub

(2014).

Definition A.1. Let k be a non-negative integer and µ(x) = f(x1, · · · , xp) be a smooth function on R
p, a monomial

k−form on R
p is an expression µdxi1 ' · · · ' dxik = µdxI , where I := {i1, · · · , ik. A k−form is a sum of monomial

k−forms, which will be denoted as

µ =
∑

1fi1,i2,··· ,ikfp

µ(i1,··· ,ik)dxi1 ' · · · ' dxik :=
∑

I

µIdxI .

Definition A.2. The wedge product, ', is an associative operation on differential forms. When É is a k−form and ¸ is a

l−form, É ' ¸ is a (k + l)−form. Moreover, ' satisfies the following properties:

• (Distribution Law) (É1 + É2) ' ¸ = É1 ' ¸ + É1 ' ¸, É ' (¸1 + ¸2) = É ' ¸1 + É ' ¸2.

• (Associative Law) (fÉ) ' ¸ = f(É ' ¸).

• (Skew Symmetry) ¸ ' É = −É ' ¸.

Here É, É1, É2 are k−forms, ¸, ¸1, ¸2 are l−forms, and f is a function.

Definition A.3. The exterior derivative (or differential) operator d maps a k−form to a (k + 1)−form. In particular, given a

k−form µ =
∑

1fi1<i2<···<ikfp µ(i1,··· ,ik)dxi1 ' · · · ' dxik , one has

dµ =
∑

1fi1,i2,··· ,ikfp

dµ(i1,··· ,ik)dxi1 ' · · · ' dxik

=
∑

1fi1,i2,··· ,ikfp

∑

1flfp

∂µ(i1,··· ,ik)

∂dxl
dxl ' dxi1 ' · · · ' dxik .

Moreover, the following properties hold for the exterior derivative operator:

• For each function f , ddf = 0, and df ' df = 0.

• For each k−form É, ddÉ = 0.

• For each function f and k−form É, d(fÉ) = df ' É + fdÉ.

Definition A.4. The Hodge ⋆-operator on R
p is a function that takes a k−form to a (p− k)−form defined as follows:

• Let I = {i1, · · · , ik} be an ordered subset of {1, · · · , p} and Ic = {j1, · · · , jp−k} be its complement, ordered so that

dxi1 ' · · · dxik ' dxj1 ' · · · dxjp−k
= dx1 ' · · · ' dxp, then

⋆dxI = ⋆(dxi1 ' · · · dxik) := dxj1 ' · · · dxjp−k
= dxIc .

• Given any k−form µ =
∑

1fi1,i2,··· ,ikfp µ(i1,··· ,ik)dxi1 ' · · · ' dxik , then

⋆µ :=
∑

1fi1,i2,··· ,ikfp

µ(i1,··· ,ik) ⋆ (dxi1 ' · · · ' dxik).

Then, the following property holds for any k−form µ:

⋆ ⋆ µ = (−1)k(p−k)µ.

14

Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

Given a vector-valued function on R
p u(x) = [u1(x), · · · , up(x)], its divergence div(u) =

∑p
i=1

∂ui

∂xi
can be defined via

exterior derivative:

d ⋆

p
∑

i=1

uidxi =d

p
∑

i=1

ui ⋆ dxi = d

p
∑

i=1

(−1)i−1uidx{1,··· ,n}\i

=

p
∑

i=1

(−1)i−1dui ' dx{1,··· ,n}\i =
p
∑

i=1

∂ui
∂xi

dx{1,··· ,n}.

Therefore, one can denote the divergence of u as d ⋆ u. On the other hand, combining the fundamental properties of ⋆
and d yields div(⋆dµ) = d ⋆ ⋆dµ = (−1)k(p−k)ddµ = 0 for any k−form µ. Therefore, when u = ⋆dµ, where µ is a

(p− 2)−form, it is guaranteed to be divergence free. Since any (p− 2)−form µ can be represented as

µ =
∑

1fi1,··· ,ip−2fp

µ(i1,··· ,ip−2)dxi1 ' · · · ' dxip−2 =
∑

1fi,jfp

µ(i,j) ⋆ (dxi ' dxj),

where µ(i,j) := (−1)Ã({i,j},{i1,··· ,ip−2})µ(i1,··· ,ip−2) when {i, j} ∪ {i1, · · · , ip−2} = {1, · · · , p}. And note that the skew

symmetry property of ' yields µ(i,j) := µij = −µji. We further expand the representation of ⋆dµ as:

⋆dµ = ⋆
∑

1fi,jfp

dµ(i,j) ⋆ (dxi ' dxj)

= ⋆





∑

1fi,jfp

∂µij

∂xi
dxi ' ⋆(dxi ' dxj)−

∂µji

∂xj
dxj ' ⋆(dxi ' dxj)





= ⋆





∑

1fi,jfp

∂µij

∂xi
dxi ' ⋆(dxi ' dxj) +

∂µij

∂xi
dxi ' ⋆(dxi ' dxj)





=2 ⋆
∑

1fi,jfp

∂µij

∂xi
dxi ' ⋆(dxi ' dxj) = 2 ⋆

∑

1fi,jfp

∂µij

∂xi
⋆ dxj

=2
∑

1fi,jfp

∂µij

∂xi
⋆ ⋆dxj = (−1)p−12

∑

j

(

∑

i

∂µij

∂xi

)

dxj .

That means, taking any µ := [µij(x)] satisfies µij = −µji (a p by p skew-symmetric matrix-valued function), we have

div(⋆dµ) = 0, where ⋆dµ = [div(µ1), · · · , div(µp)]
T and µi stands for the i−th row of µ.

B. Equivariance of the differentiation layer

The projection layer (µ to u) is realized as a numerical divergence operator. Therefore, under the translation of coordinates,

x̃ = x+ g, we have

∇x̃ · µj =
∑

k

∂

∂x̃k
µjk =

∑

k

∂

∂xk
µjk = ∇x · µj .

That means, the divergence operator is invariant under coordinate translation, and therefore D is also invariant. On the other

hand, under the rotation of coordinates, x̃ = Rx, we have the chain rule:
∂

∂xk
=
∑

lRlk
∂

∂x̃l
. Therefore,

∇x̃ · (Rµj) =
∑

k

∂

∂x̃k
(Rµj)k =

∑

k

∂

∂x̃k

∑

l

Rklµjl =
∑

l

∂

∂xl
µjl = ∇x · µj .

That means, the coefficients in D is also invariant under coordinate rotation.

When the previous layers are translational invariant and rotational equivariant, we have µ̃j(x̃) = µ̃j(Rx+ g) = Rµj(x) for

the j−th row of µ. Therefore, D[µ̃](x̃) = RD[µ](x), which results in the translational invariant and rotational equivariant

output.

15

Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

C. Data generation and training strategies

C.1. Example 1 – incompressible Navier-Stokes equation

For the two case study datasets in the incompressible Navier-Stokes example, we generate a total of 1,200 samples using the

pseudo-spectral Crank-Nicolson solver available in Li et al. (2020c). Here, the models are trained to predict the two velocity

components in the two directions. We then split the generated dataset into 1,000, 100 and 100 for training, validation

and testing, respectively. A histogram demonstration of the dataset distributions in small, medium and large data regimes

is illustrated in Figure 3, where the test set of the small dataset of ntrain=10 samples exhibits a wider data distribution

compared to its training dataset, which is aimed to test the data efficiency and out-of-distribution performances of the learned

models. The fluid viscosity employed in the physics solver is ¿ = 10−4, and the timestep size is ∆t = 10−4 s. The solutions

are obtained on a 256× 256 spatial grid and the total duration of the simulation is 24 s. The obtained solutions are then

downsampled to a 64× 64× 30 grid, with the 3rd dimension being the temporal dimension. Note that, in downsampling the

spatial dimensions, we employ a 2 × 2 mean pooling. This strategy is suggested in Helwig et al. (2023) to mitigate the

spurious numerical errors not existed in the original data.

To provide more details on the model performance, we plot the per-time-step prediction errors in terms of L2 relative

error on the test dataset in Figure 4 using the best models trained with ntrain=1000 samples. Perhaps unsurprisingly, the

prediction error increases as the prediction time step grows, due to the accumulation of error. All models have a similar

growth rate, while clawNOs, together with FNO, significantly outperform other baselines in accuracy. We also list a number

of performance metrics in Table 5, including the total number of model parameters, the per-epoch runtime, the inference

time, as well as the peak GPU usage. To quantitatively evaluate the divergence of the predicted solutions, we compute the

averaged L2-norm of the divergence on the test dataset for all the models trained with ntrain=1000 samples (cf. the last row

of Table 5). Because the additional layer in clawNOs are with pre-calculated weights, it barely adds any extra burden into

GPU memory compared with its NO base model. Similar observation also applies to the runtime in large data regime. The

inference time has a minor increase, due to the fact that the inferred solution will go through the an additional layer which

avoidably increases the computational cost. When comparing the divergence of predicted solutions, we can see that both

clawNOs predictions have much smaller divergence compared with all baselines. However, we point out that the solution

divergence from clawNOs is not exactly zero, due to the numerical errors as discussed in Theorem 3.1.

Remark: The complexity of our clawNOs is very simular to their NO counterparts. Taking clawFNOs for example, the

trainable part of the clawNO model consists of two fixed-size MLPs for the lifting layer and the projection layer, and L
numbers of Fourier layers between them. Denote du as the input function dimension, H as the latent dimension after lifting,

M as the total number of grids, m as the number of Fourier modes on each dimension after truncation (which is often taken

as half of the number of grids in each dimension, M1/p, in practice), and p as the problem dimension. During the lifting layer

a vector valued input function taking values in R
du is linearly and locally mapped to the first layer feature function h(·, 0)

taking values in R
H , and hence the number of trainable parameters is Hdu +H . Then, each iterative Fourier layers involves

the integral with a trainable kernel weight matrix in the Fourier domain, which is of size 2H2mp = 21−pH2M , and a local

linear transformation which involves H2+H numbers of trainable parameters. Then, the last iterative layer feature function,

h(·, L), is projected to the skew symmetric matrix-valued function µ with a two-layer MLP. Since the skew symmetric

matrix-valued function µ is of degree of freedom p(p − 1)/2 at each point x, the projection layer maps a size H input

vector to a size p(p− 1)/2 vector. Assume that the hidden layer of this MLP is of dQ neurons, the total number of trainable

parameters in projection layer will be HdQ+dQ+dQp(p−1)/2+p(p−1)/2. Finally, µ will go through the pre-calculated

differentiation layer, with p2(p− 1)M2/2 = p2(p− 1)m2p/2 numbers of non-trainable parameters in the FNO case. From

the above calculation, we can see that clawFNO involves (dQ+H(du+dQ+L+1)+LH2)+
(dQ + 1)

2
p(p−1)+2LH2mp

numbers of trainable parameters, while the vanilla FNO involves (dQ+H(du+dQ+L+1)+LH2)+(dQ+1)p+2LH2mp

numbers of trainable parameters. Therefore, the number of trainable parameters in clawFNO and FNO only differs in the

second part of their projection layer, where clawFNO has
(dQ + 1)

2
p(p− 1) numbers of parameters and FNO has (dQ+1)p.

When p > 3, clawFNO will have a larger number of trainable parameters. However, we want to point out that since the

number of parameter in the iterative layer (2LH2mp) grows exponentially with dimension p, it dominates the cost, and the

differences between clawFNO and FNO are negligible. This is consistent with what we observed in Table 5: the number of

trainable parameters and the GPU cost of clawNOs and their counterparts are almost the same. During the inference, the

non-trainable parameters in clawNO will play a role and we therefore observe an increase in the inference time.

16

Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

(a). ntrain = 10

(b). ntrain = 100

(c). ntrain = 1000

Figure 3. The data distribution of velocity in L2 norm, in the incompressible Navier-Stokes dataset. Left: the x component of velocity.

Right: the y component of the velocity. Cases (a)-(c) represent the histogram of sample distributions in the small, medium and large data

regimes, respectively, with blue representing the test samples and orange for the training samples. The per-sample relative L2 error on the

test set is also plotted in (a), comparing clawGFNO (in navy) with GFNL (in yellow). This result demonstrates the improved the accuracy

of clawNO, comparing to its counterpart, in small data regime.

17

Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

2 4 6 8 10 12 14 16 18 20

Timestep

10
-2

10
-1

10
0

T
es

t
er

ro
r

clawGFNO

clawFNO

GFNO

FNO

UNet

UNO

LSM

KNO

2 4 6 8 10 12 14 16 18 20

Timestep

10
-3

10
-2

10
-1

T
es

t
er

ro
r

clawGFNO

clawFNO

GFNO

FNO

UNet

UNO

LSM

KNO

Figure 4. The per-time-step prediction error on the test dataset of the incompressible Navier-Stokes case 1: ntrain=10 (left) and ntrain=1000

(right).

Table 5. Performance comparison of selected models in incompressible Navier-Stokes case 1, in terms of the total number of parameters,

the per-epoch runtime, inference time, peak GPU usage, and the L2-norm divergence of prediction. The runtime is evaluated on a single

NVIDIA V100 GPU. Note that the case of ntrain=10 requiring more time to run compared to ntrain=100 is due to the reduced batch size

of 2, as opposed to the batch size of 20 in ntrain=100.

Case ntrain clawGFNO clawFNO GFNO FNO UNet LSM UNO KNO

nparam (M) 0.85 0.93 0.85 0.93 0.92 1.21 1.07 0.89

runtime (s)
10 7.10 4.76 6.14 3.80 4.85 9.86 4.24 4.31

100 4.89 2.42 4.39 2.03 2.39 4.98 2.69 2.35
1000 41.75 19.56 40.06 17.38 20.80 37.86 18.78 18.20

inf. time (s) 0.077 0.072 0.062 0.058 0.075 0.183 0.066 0.045

GPU (GB) 1000 0.68 0.34 0.68 0.34 0.12 13.20 2.14 0.16

L2(div) 1000 1.2e-3 3.8e-4 6.6e-2 4.7e-2 3.5e-1 5.4e-1 5.8e-1 1.8e-1

C.2. Example 2 – radial dam break

In generating the radial dam break dataset, we closely follow the numerical procedure in Takamoto et al. (2022), where we

slightly modify the code to output the velocity fields in addition to the water height. The model then aims to learn three

channels of (h, hux, huy). A total of 1,000 samples are generated and are subsequently split into ntrain, 100, 100 and

training, validation, and testing, respectively, with ntrain the size of the training dataset depending on the adopted data

regime. We run the numerical simulation on a 128× 128× 100 grid and downsample the obtained solution to 32× 32× 25
for training, where the first two dimensions are the spatial dimensions and the last is the temporal dimension. Analogous

to the incompressible NS dataset, we perform 2 × 2 mean pooling in downsampling the spatial dimensions to maintain

symmetry in data. In addition, we demonstrate the zero-shot super-resolution predictability of clawNO in Figure 5, where

we use the clawFNO trained on 32× 32 spatial resolutions to directly make predictions on 128× 128 grids.

C.3. Example 3 – atmospheric modeling

As SpeedyWeather.jl uses spherical harmonics to solve the shallow water equations, we set the initial conditions ¸0 for

the aforementioned random waves through random coefficients of the spherical harmonics. The spherical harmonics

are denoted as Yℓ,m with degree ℓ g 0 and order m with −ℓ f m f ℓ. Using a standard complex normal distribution

CN (0, 1) = N (0, 12) + iN (0, 12), the random coefficients ¸ℓ,m are drawn for degrees 10 f ℓ < 20 from CN (0, 1), but

¸ℓ,0 ∼ N (0, 1) for the zonal modes m = 0, and ¸ℓ,m = 0 otherwise. The wave lengths are 2ÃRℓ−1, about 2000 to 4000 km.

18

Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

Figure: Super resolution demonstration of clawFNO trained

Ground Truth clawFNO prediction Abs. Error

v
y

v
x

 w
at

er
 d

ep
th

Figure 5. Demonstration of zero-shot super resolution of clawFNO using the radial dam break dataset, where clawFNO is trained on

32× 32 spatial resolutions and directly make predictions on 128× 128 grids.

The initial u0, v0, ¸0 on a grid can be obtained through the spherical harmonic transform as

u0 = v0 = 0,

¸0 = A

ℓmax
∑

ℓ=0

ℓ
∑

m=−ℓ

¸ℓ,mYℓ,m.
(14)

The amplitude A is chosen so that max(|¸0|) = 2000 m. The resolution of the simulation is determined by the largest

resolved degree ℓmax, we use ℓmax = 63. In numerical weather prediction this spectral truncation is widely denoted as

T63. We combine this spectral resolution with a regular longitude-latitude grid of 192x95 grid points (∆¼ = ∆¹ = 1.875◦,

about 200 km at the Equator, no grid points on the poles), also called a full Clenshaw-Curtis grid because of the underlying

quadrature rule in the Legendre transform (Hotta & Ujiie, 2018). Non-linear terms are calculated on the grid, while the

linear terms are calculated in spectral space of the spherical harmonics, and the model transforms between both spaces on

every time step. This is a widely adopted method in global numerical weather prediction models.

For numerical stability, an implicitly calculated horizontal diffusion term of the form −¿∇8·,−¿∇8D, is added to the

vorticity and the divergence equation, respectively. The power-4 Laplacian is chosen to be very scale-selective such that

energy is only removed at the highest wave numbers, keeping the simulated flow otherwise largely unaffected. In practice,

we use a non-dimensional Laplace operator ∇̃2 = R2∇2, such that the diffusion coefficient becomes an inverse time scale of

Ä = 2.4 hours. The shallow water equations, (12), do not have a forcing or drag term such that the horizontal diffusion is the

only term through which the system loses energy over time. The shallow water equations are otherwise energy conserving.

SpeedyWeather.jl employs a RAW-filtered (Williams, 2011) Leapfrog-based time integration with a time step of ∆t = 15 min

at T63 resolution. At this time step, the CFL number C = cph∆t(∆x)
−1 with equatorial ∆x = 2ÃR ∆¼

360◦ is typically

between C = 1 and C = 1.4, given wave speeds cph =
√
gh between 280 and 320 ms−1. Thanks to a centred semi-implicit

integration of the linear terms (Hoskins & Simmons, 1975), the simulation remains stable without aggressively dampening

the gravity waves with larger time steps or with a backwards implicit scheme. The continuity equation with the centred

semi-implicit leapfrog integration reads as (the RAW-filter is neglected)

¸i+1 − ¸i−1

2∆t
= − 1

2∇ · (ui+1hi+1)− 1
2∇ · (ui−1hi−1) (15)

with previous time step i− 1, and next time step i+ 1. The RAW-filter then acts as a weakly dampening Laplacian in time,

coupling the tendencies at i− 1, i and i+ 1 to prevent a computational mode from growing.

19

Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

Figure 6. Atmospheric gravity waves as simulated by SpeedyWeather.jl. a, Layer thickness h and b displacement η after t = 6 hours at a

resolution of T255 (about 50 km). The layer thickness h includes, in contrast to η, clearly the signal of the underlying orography of Earth.

c Time series of η over the USA (45◦N, 90◦W, marked with a black star in a,b). Black circle markers denote the time step ∆t = 15 min

used for model integration and training data. Both simulations, T63 and T255, started from the same initial conditions, illustrating the

limited predictability of the shallow water equations.

While the initial conditions contain only waves of wave lengths 2000 to 4000 km shorter waves are created during the

simulation due to non-linear wave-wave interactions and interactions with the Earth’s orography (Fig. 6). The time scale

of these gravity waves is on the order of hours (Fig. 6c), which is why we use a training data sampling time step of

∆t = 15 min. Much longer time steps as used by Gupta & Brandstetter (2022) would therefore fail to capture the wave

dynamics present in the shallow water simulations. It is possible to use initial conditions that are closer to geostrophy,

such that the presence of gravity waves from geostrophically-unbalanced initial conditions is reduced. In such a setup, the

predictability horizon is given by the chaotic vorticity advection and turbulence that evolves over longer time scales, which

would justify a longer data sampling time step. However, the Gupta & Brandstetter (2022) setup includes a strong gravity

wave in the initial conditions that propagates meridionally, while also including some slowly evolving vortices. Our setup

therefore represents a physically clearer defined problem, one that focuses on the non-linear gravity wave propagation in the

shallow water system. Following (14), our setup can be easily recreated in other models for further studies. In this context,

we generate a total of 1,200 samples and split them into 1,000/100/100 for training/validation/testing, respectively.

In this context, the mass conservation in spherical coordinates can be expressed as: ∂¸
∂t +∇ · (uh) = 0, where ¸ is the

displacement from the atmosphere’s rest height H = 8500 m, h = ¸ +H −Ho is the layer thickness, Ho = Ho(¼, ϕ)
is the Earth’s orography, and ¼, ϕ are the longitude and colatitude, respectively. We note that ∂¸

∂t = ∂h
∂t , and ∇ · (uh) in

the spherical coordinate can be rewritten as: ∇ · (uh) = 1
R sin ¹

∂(uxh)
∂¼ + 1

R sin ¹
∂(uyh sin ¹)

∂¹ (here definitions using latitudes

replace the sin with a cos). Based on this formulation, we first rescale the equation by R, then set the clawNO model to

learn (uxh, uyh sin ¹,Rh sin ¹) and require the output to be divergence-free:

(∂¼, ∂¹, ∂t)·(uxh, uyh sin ¹,Rh sin ¹) =
∂(uxh)

∂¼
+
∂(uyh sin ¹)

∂¹
+
∂(Rh sin ¹)

∂t
=
∂(uxh)

∂¼
+
∂(uyh sin ¹)

∂¹
+R sin ¹

∂¸

∂t
= 0.

20

Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

As such, the mass conservation equation is guaranteed. Once the output field u = (uxh, uyh sin ¹,Rh sin ¹) is obtained, we

post-process the prediction to obtain (ux, uy, h) (e.g., by dividing the second component uyh sin ¹ by the third component

Rh sin ¹ and multiplying the result by R, to obtain uy). In this way, we can leave our skew symmetric matrix and numerical

differentiation layer unchanged while being able to handle spherical data.

C.4. Example 4 – constitutive modeling of material deformation

We generate the material deformation dataset using an incompressible Mooney–Rivlin material model. We run the numerical

simulation on a 80×80 uniform mesh and downsample the solution to a grid of 246 spatial points through interpolation

on a circular domain of radius 0.4 that centers at the origin (cf. Figure 7). A total of 300 samples are generated and are

subsequently split into ntrain, 100, 100 for training, validation, and testing, respectively, with ntrain the size of the training

dataset depending on the adopted data regime.

In this example, we impose the kinematic condition of incompressibility with infinitesimal deformation, div(u) = 0. This

is equivalent to the mass conservation law only under the assumption that the density remains a constant, i.e., Ä = const,
and then div(u) = 0 guarantees that the total mass of a volume does not change under any applied deformation, i.e., its

total mass is conserved. In solid mechanics, the deformation gradient writes F = I+∇u, and the total mass of a volume

does not change when det(F) ≡ 1. Under an infinitesimal deformation assumption, one has
∂ui
∂xj

∂uk
∂xl

≈ 0, and therefore

det(F) ≈ 1 + div(u). That means, the incompressibility condition is equivalent to divu = 0.

-0.4 -0.2 0 0.2 0.4

x

-0.4

-0.2

0

0.2

0.4

y

Figure 7. An illustration of the grid points and circular domain uused in example 4.

C.5. Training strategies

We run three replicates for all the experiments and report the mean and standard deviation of the L2 relative error for

comparison metrics. For all Fourier-domain models, we closely follow the model setup in Helwig et al. (2023), employing

four Fourier layers and keeping only the 12 lowest Fourier modes in all the 2D models and 8 spatial and 6 temporal lowest

modes in all the 3D models. An exception is in the atmospheric modeling problem, where we truncate the spatial Fourier

modes to 22 for correct physical realizability. For fair comparison, we adopt Cartesian encoding in all the models.

Similar to the model size in Helwig et al. (2023), we set the latent dimension in FNO and clawFNO to 20, whereas we

counterbalance the additional dimensions introduced due to equivariance in GFNO and clawGFNO by reducing the latent

dimension to 10 in all the 2D models and 11 in all the 3D models. For UNet, in order to arrive at a similar number of model

parameters, we increase the first-layer dimension to 11 in the incompressible NS problem, to 15 in the radial dam break

problem, and to 96 in weather modeling.

As suggested in Tran et al. (2022) and Helwig et al. (2023), we turn to the teacher forcing strategy to facilitate the learning

process. We set the batch size to 20 for all 2D models and 10 for all 3D models, with the exception in small and medium

data regimes, where we set batch size to 2 and 1 when the training datasets are of size 10 and 2, respectively. We employ

21

Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

cosine annealing learning rate scheduler that decays the initial learning rate to 0. All the 2D models are trained for a total of

100 epochs whereas all the 3D models are trained for 500 epochs with an early stop if the validation loss stops improving for

consecutive 100 epochs. 2D models are trained with less number of epochs as one training sample in 3D corresponds to

(T − Tin) training samples in 2D. We directly take the baseline models in GFNO (Helwig et al., 2023), and further tune

the hyperparameters (i.e., the learning rate and weight decay in the Adam optimizer) in clawNOs. All the experiments are

carried out on a single NVIDIA A6000 40GB GPU.

For both of the two graph-based models (i.e., INO and GNO), we closely follow the model setup in Liu et al. (2023) and Li

et al. (2020c). In order to be consistent across clawINO, INO and GNO, the latent width is set to 64 and the kernel width

is set to 1,024 in all models. We employ a total of 4 integral layers in all models, whereas the shallow-to-deep technique

is equipped for initialization in INO-based models. The batch size is set to 2 for all the irregular-mesh models, with the

exception in the first case in the constitutive modeling example where a batch size equal to 1 is employed. We adopt the

cosine annealing learning rate scheduler that decays the initial learning rate to 0. All the models are trained for 500 epochs

with an early stop if the validation loss stops improving for consecutive 200 epochs.

D. Rollout visualizations

We illustrate the rollout of randomly selected trajectories in the test dataset using clawNO predictions, along with the

comparisons against ground truth data and the corresponding absolute errors. The rollouts of incompressible NS, radial dam

break, and atmospheric modeling are showcased in Figure 8, Figures 10 and 11, Figures 13 and 2, respectively. We also

showcase the material deformation prediction in 6 different test samples in Figure 17. To provide a visual comparison across

models, we plot the final-step prediction of all the models in the incompressible NS example in Figure 9, the radial dam

break example in Figure 12, and the atmospheric modeling example in Figure 16.

E. Detailed error estimates for the differentiation layer

E.1. Proof of theorem 3.1

Since the Fourier spectral differentiation error estimate is a direct result of Trefethen (2000, Page 34), we provide the

detailed derivation of (7) in this section. According to the basic properties of Fourier transform, if f is a differential and

periodic function on [0, L] with its Fourier representation:

f(x) =

N/2−1
∑

À=−N/2

f̂(À)ei2ÃÀ/L,

its derivative can be given as

f ′(x) =

N/2−1
∑

À=−N/2

i2ÃÀ

L
f̂(À)ei2ÃÀ/L ≈ F−1

[

i2ÃÀ

L
F [f](À)

]

.

As such, (7) can be obtained by applying the above property to approximate every derivative term
∂µ

(N(1),··· ,N(p))
jk

∂xk
.

E.2. Proof of theorem 3.2

It suffices to show that

∣

∣

∣

∣

∂È

∂xk
(xi)−

∑

xl∈Ç∩Bδ(xi)
(È(xl)− È(xi))É

(k)
i,l

∣

∣

∣

∣

f C∆xm+1 for any È ∈ Cm+1(Ω). Denote

I[È](xi) :=
∂È

∂xk
(xi), I∆x[È](xi) :=

∑

xl∈Ç∩Bδ(xi)
(È(xl) − È(xi))É

(k)
i,l and let ϕm denote the m−th order truncated

Taylor series of È about xi with associated remainder rm, such that

È(y) = ϕm(y) + rm(y) =
∑

|³|fm

D³È(xi)

³!
(y − xi)

³ +
∑

|´|=m+1

R´(y)(y − xi)
´ ,

22

Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

where R´(y) :=
|´|
´!

∫ 1

0
(1 − Ä)|´|−1D´u(y + Ä(y − xi))dÄ and therefore |R´(y)| f

1

´!
max|³|=m+1 maxy∈Bδ(xi) |D³È(y)| f C||È||Cm+1 . We then have

|È − ϕm|(y) =|rm|(y) =

∣

∣

∣

∣

∣

∣

∑

|´|=m+1

R´(y)(y − xi)
´

∣

∣

∣

∣

∣

∣

f|y − xi|m+1
∑

|´|=m+1

|R´(y)| f C||È||Cm+1 |y − xi|m+1.

To bound the approximation error, we apply the triangle inequality and the reproducing condition of polynomial ϕm:

|I[È](xi)− I∆x[È](xi)| f|I[È](xi)− I[ϕm](xi)|+ |I[ϕm](xi)− I∆x[È](xi)|
=|I[È](xi)− I[ϕm](xi)|+ |I∆x[ϕm](xi)− I∆x[È](xi)|.

Here, the first term vanishes since ϕm is the truncated Taylor series of È and m g 1, and for the second term we have

|I∆x[ϕm](xi)− I∆x[È](xi)| f
∑

xl∈Ç∩Bδ(xi)

|È(xl)− È(xi)− ϕm(xl) + ϕm(xi)||É(k)
i,l |

=
∑

xl∈Ç∩Bδ(xi)

|È(xl)− ϕm(xl)||É(k)
i,l |

fC||È||Cm+1

∑

xl∈Ç∩Bδ(xi)

|xl − xi|m+1|É(k)
i,l |

fC||È||Cm+1∆x
m+1

∑

xl∈Ç∩Bδ(xi)

|É(k)
i,l | f C∆xm+1.

Here, the last inequality can be proved following the argument in Levin (1998, Theorem 5): for each fixed k and i, the

coefficient É
(k)
i,l is a continuous function of xl. Moreover, the size of Ç ∩B¶(x) is bounded. Thus, for a fixed ∆x it follows

∑

xl∈Ç∩Bδ(xi)
|É(k)

i,l | f C where C is independent of ∆x, k, and xi. And therefore we obtain |I[È](xi)− I∆x[È](xi)| f
C∆xm+1 and finish the proof.

E.3. Performance comparison of different numerical differentiation schemes

To evaluate the empirical performance of the differentiation layer, we compare the performance of the FFT and

meshfree methods discussed in Theorems 3.1 and 3.2. In particular, we take an analytical divergence-free function,

f = [sinx sin y, cosx cos y], and use the numerical differentiation layer to evaluate its divergence and report the L2 error.

This result can be found in Figure 18. Here, the L2 divergence errors using FFT remain near machine precision irregardless

of the variation of grid sizes, because the spectrum generation is exact on the provided analytical function. On the other

hand, for the meshfree method we have generated quadrature rules for 5−th order polynomials, i.e., m = 5. A 6−th order

convergence is observed, which is consistent with the analysis in Theorem 3.2.

23

Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

Ground Truth ClawNO Prediction Abs. Error Ground Truth ClawNO Prediction Abs. Error

T
 =

 3
0

 T
 =

 2
8

 T

 =
 2

6

 T

 =
 2

4

 T

 =
 2

2

 T

 =
 2

0

T

 =
 1

8

T

 =
 1

6

T

 =
 1

4

 T

 =
 1

2

x-component velocity y-component velocity

Figure 8. Rollout of incompressible Navier-Stokes case 1.

24

Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

Ground Truth Prediction Abs. Error Ground Truth Prediction Abs. Error

K
N

O

 U

N
O

L

S
M

 U

N
et

F

N
O

G
F

N
O

-p
4

 c

la
w

F
N

O

cl

aw
G

F
N

O

x-component velocity y-component velocity

0.000 0.023 0.047 0.000 0.030 0.059

Figure 9. Last-step prediction comparison across models in incompressible Navier-Stokes case 1.

25

Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

Ground Truth ClawNO Prediction Abs. Error

T
 =

 1
2

 T

 =
 1

0

 T

 =
 8

T

 =
 6

 T

 =
 4

 T

 =
 2

T
 =

 2
4

 T

 =
 2

2

 T

 =
 2

0

T

 =
 1

8

 T

 =
 1

6

 T

 =
 1

4

Ground Truth ClawNO Prediction Abs. Error

Figure 10. Rollout of water depth in radial dam break modeling.

26

Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

Ground Truth ClawNO Prediction Abs. Error Ground Truth ClawNO Prediction Abs. Error

T
 =

 2
4

 T

 =
 2

2

 T

 =
 2

0

 T

 =
 1

8

T

 =
 1

6

 T

 =
 1

4

 T

 =
 1

2

T

 =
 1

0

 T

 =
 8

 T

 =
 6

T
 =

 4

 T

 =
 2

x-component velocity y-component velocity

Figure 11. Rollout of velocity in radial dam break modeling.

27

Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

Ground Truth Prediction Abs. Error

Ground Truth Prediction Abs. Error

x-component velocity y-component velocity

0.000 0.100 0.200

0.000 0.032 0.064

Ground Truth Prediction Abs. Error

0.000 0.034 0.068

U
N

et

F

N
O

G
F

N
O

-p
4

 c

la
w

F
N

O

cl
aw

G
F

N
O

U
N

et

F

N
O

G
F

N
O

-p
4

 c

la
w

F
N

O

cl
aw

G
F

N
O

water depth

Figure 12. Last-step prediction comparison across models trained with ntrain=10 samples in radial dam break dataset.

28

Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

Ground Truth ClawNO Prediction Abs. Error

T
 =

 1
1

 T

 =
 1

0

 T
 =

 9

 T
 =

 8

T
 =

 7

 T

 =
 6

 T

 =
 5

 T

 =
 4

T

 =
 3

 T

 =
 2

2004.4 6167.7 10331.0 2004.4 6167.7 10331.0 0 716.3 1432.6

Figure 13. Rollout of layer thickness in atmospheric modeling.

29

Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

Ground Truth ClawNO Prediction Abs. Error

T
 =

 1
1

 T

 =
 1

0

 T
 =

 9

 T
 =

 8

T
 =

 7

 T

 =
 6

 T

 =
 5

 T

 =
 4

T

 =
 3

 T

 =
 2

Figure 14. Rollout of zonal wind velocity in atmospheric modeling.

30

Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

Ground Truth ClawNO Prediction Abs. Error

T
 =

 1
1

 T

 =
 1

0

 T
 =

 9

 T
 =

 8

T
 =

 7

 T

 =
 6

T
 =

 5

 T

 =
 4

T

 =
 3

 T

 =
 2

Figure 15. Rollout of meridional wind velocity in atmospheric modeling.

31

Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

2004.4 6167.7 10331.0 0 716.3 1432.6

U
N

e
t

 G
F

N
O

 F
N

O

 c
la

w
F

N
O

Ground Truth Prediction Abs. Error

Figure 16. Last-step prediction comparison across models in atmospheric modeling dataset.

32

Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

Figure 17. Demonstration of the constitutive modeling of material deformation.

Figure 18. Numerical error of the differentiation layer, with refinement on grids.

33

