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Abstract

We present an empirical study of the relationship between
map connectivity and the empirical hardness of the multi-
agent pathfinding (MAPF) problem. By analyzing the second
smallest eigenvalue (commonly known as A2) of the normal-
ized Laplacian matrix of different maps, our initial study indi-
cates that maps with smaller A2 tend to create more challeng-
ing instances when agents are generated uniformly randomly.
Additionally, we introduce a map generator based on Qual-
ity Diversity (QD) that is capable of producing maps with
specified A2 ranges, offering a possible way for generating
challenging MAPF instances. Despite the absence of a strict
monotonic correlation with A2 and the empirical hardness of
MAPEF, this study serves as a valuable initial investigation for
gaining a deeper understanding of what makes a MAPF in-
stance hard to solve.

Introduction

Multi-agent pathfinding (MAPF) is the problem of finding
collision-free paths for a team of agents on a map from a
set of start positions to a set of goal positions (Stern et al.
2019a). Given an undirected map, an optimal MAPF algo-
rithm computes the minimum path cost for all the agents
such that no two agents occupy the same location or traverse
the same edge at an identical time step. Although solving
MAPF optimally is proven to be NP-Hard (Yu and LaValle
2013), many real-world MAPF instances can be solved op-
timally within a reasonable time. While optimal MAPF al-
gorithms can solve some instances with hundreds of agents,
they can also struggle on instances with only a small number
of agents (Ren et al. 2021; Ewing et al. 2022).

We are interested in understanding what features of
MAPF instances make them hard to be solved optimally. We
are also interested in finding an effective way to compare
the hardness of different maps when randomly generating
MAPF instances on them. For example, when using uniform
random sampling to generate agents and goals on two given
maps, we seek to predict which map will have harder in-
stances on average. This area of research is known as empir-
ical hardness, which focuses on identifying features that de-
termine how hard individual instances will be for particular
algorithms to solve (Leyton-Brown, Nudelman, and Shoham

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ol - k-
AT R Rl
'l- s e r|+t|-' i%'
LA - _rr'i'l'r'
random-32-32-10 room-32-32-4 frac-32-32-4 maze-32-32-5
A2 214.1 x 10° 89.7 x 10° 46.9 x 10° 6.5 x 10°
Easy Hard

MAPF Empirical Hardness

Figure 1: Example maps and their A,

2009). Here, we present an empirical study that aims to elu-
cidate the correlation between map connectivity and the em-
pirical hardness of the multi-agent pathfinding problem.

There are two major components of a MAPF instance: the
map topology and distribution of the agents. In this study,
we focus on 2D grid-based MAPF problems, where a map
can be viewed as a 4-connected graph G(V, E). In spec-
tral graph theory, the second smallest eigenvalue of the nor-
malized Laplacian matrix (henceforth referred to as \2) of
G(V, E) serves as an algebraic measurement of graph con-
nectivity. Figure 1 shows the value of A, for several maps
with different connectivity. The difference in Ay between a
well-connected map, random-32-32-10 on the far left
and a less connected maze—-32-32-5 on the far right is
significant.

In this paper, we present empirical results that show the
A2 of G(V, E) is correlated with the empirical hardness of
MAPEF instances generated using uniform random sampling
for agents and goals. While a smaller Ay value does not con-
sistently yield challenging instances, instances characterized
as difficult tend to occur more frequently when Ao is small.
The most straightforward small Ay example is a map with
many narrow corridors. Previous research has shown that
various optimal MAPF algorithms have difficulty with such
maps even with a small number of agents (Li et al. 2020; Ren
et al. 2021), which could be caused by the over-congestion
and conflicts that narrow corridors bring.

We also propose a map generator based on Quality Diver-
sity (QD) (Mouret and Clune 2015) which provides the flex-
ibility to generate maps within a desired range of A,. This
provides an effective way to find maps that might be chal-
lenging for MAPF algorithms or generate benchmark dataset
that covers a greater spectrum of connectivity.



Although A5 does not exhibit a strict monotonic correla-
tion with empirical hardness, this study serves as a valuable
initial study for understanding MAPF empirical hardness.

Preliminary
Normalized Laplacian and Cheeger’s Inequality

In spectral graph theory, the normalized Laplacian matrix L
of a graph is defined by:

L=D-A

L=p2LpY2—1_p-ap-zr D

where the D is the diagonal degree matrix and A is the ad-
jacency matrix. The second smallest eigenvalue of the nor-
malized Laplacian L defines the algebraic connectivity of
the graph, describing how well the graph is connected.

To get a better understanding of why A is related to the
connectivity of graphs, we first introduce the boundary for a
set of vertices S C V of undirected graph G(V, E):
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The conductance of S is defined as:
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where |0.5] is the number of edges on the boundary and d(.5)
denotes the number of edges with both endpoints (nodes)
within S. ¢(.S) represents the ratio of the number of edges
on the boundary of set S to the minimum of its internal and
external edges.

The conductance of a graph G(V, E) is subsequently de-
fined as the smallest conductance over all cuts, where cuts
refer to partitions of vertices:

¢(G) wgngS) ©)
The conductance represents how well-connected a graph is.

Theorem 1. (Cheeger’s Inequality). Let Ao be the second
smallest eigenvalue of the normalized Laplacian L of undi-
rected graph G(V, E), then:

% < 6(G) < V2. )

Cheeger’s inequality brings the graph connectivity and Ao
together. This implies that Ay can be used as a quantitative
method for characterizing the impacts of a map’s features,
such as narrow corridors, on the overall map connectivity.
Generally, a relatively small A\, indicates the graph is poorly
connected, whereas a large Ao implies strong connectivity
(for more detail please refer to (Vidick 2018)).

Conductance and MAPF Conflicts

Here we present an intuitive proof of how the maps with
smaller conductance are more likely to generate more con-
flicts for MAPF instances. Consider a simple dumbbell
graph G4 shown in Figure 2(a), where two partitions are
only connected with a single edge. G is derived from a 4-
connected map, thus the number of edges is roughly pro-
portional to the number of vertices in its subgraphs. The

[0S7| |8S|

(a) (b)

Figure 2: A dumbbell graph with two different partitions.

size of the circle indicates different number of edges within
the partition. Let’s also assume this partition S* has the
smallest conductance of G4, thus we have ¢(Gy) = ¢(S*).
Next, consider another partition S of G4 shown in Fig. 2(b),
where the two partitions are connected by more edges; thus,
|0(S)| > 1 and ¢(S*) < ¢(S). Another observation is that
S* is a more balanced partition than .S in terms of the num-
ber of edges within the partition, and we further have:

d(S*)d(V\S™) > d(S)d(V\S). (6)

When uniformly and randomly sampling the start and
goal locations on (G4, the shortest path will traverse a bound-
ary edge only if the start and goal locations are on different
sides of the boundary. The probability of the shortest path
visiting a boundary edge of partition S is:

1 2d(S)d(V\S)

P(9S) = (551 47y )

Given Eq. 6, we have:

2d(S*)d(V\S*)  2d(S)d(V\S) 1 2d(S)d(V\S)
dvyE T AWy eS| d(v)e

The left-hand side is P(0.S*) since |0.S*| = 1 and the right-
hand side is P(0.S). This indicates P(95*) > P(95). This
inequality implies a higher likelihood of agents visiting the
boundary edges of poorly connected cuts within the same
graph, leading to increased potential conflicts, particularly
in scenarios with more agents. Intuitively, one can think of
these boundary edges as choke points that need to be tra-
versed to get from one partition to the other. Relating this
to the definition of ¢(G) and Cheeger’s inequality, we can
loosely demonstrate that P(95*) ﬁ This suggests that

maps with smaller ¢(G) or Ay may tend to exhibit more con-
flicts; thus MAPF instances on those maps are more likely
to be challenging.

Quality Diversity Instance Generator

To investigate the relationship between Ay and the empiri-
cal hardness of maps, we developed a map generator that
can produce maps with a given A, value. The maps gener-
ated should provide as much diversity as possible in mea-
sures other than A, to try and isolate the relationship be-
tween Ao and hardness. We used a Quality Diversity (QD)
method based on the algorithm MAP-Elites (Mouret and
Clune 2015). MAP-Elites is a search space illumination al-
gorithm that seeks to find high quality solutions that are di-
verse along certain prescribed features. It maintains a con-
tainer, which contains a set of potential solutions. New po-
tential solutions are inserted into the container if they are the
best solution found so far in a specific bin of feature space
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Figure 3: Simulation results for the logarithm of average runtime and A5 for various maps, with distinct color coding denoting

different ranges of A,.

with respect to some objective function. MAP-Elites typi-
cally utilizes evolutionary algorithms to alter existing solu-
tions in the container and produce new potential solutions.

For our purposes, we sought to produce maps with spe-
cific Ay values that had diverse obstacle properties. We set
the objective function to be the distance from a desired Ao
value. We used features on the percentage of obstacles and
the density of those obstacles (how many obstacles were
adjacent to other obstacles). For each iteration, we took an
existing map from the container and with equal probability
we either “mutated” the map or “crossed” the map with an-
other random map from the container. A mutation consisted
of adding or removing up to five obstacles on the map uni-
formly at random. Crossing two maps involved randomly
selecting regions of one map to add to the other map. We
then checked for connectedness and added back the mini-
mum number of vertices to reconnect any disconnected com-
ponents. The new maps, either with randomly added or re-
moved obstacles or the cross between existing maps, were
then evaluated on closeness to the desired Ao value. If they
were closer than any other map with similar features, they
were kept and the other map in the container with those fea-
ture values was removed.

Previous work has explored generating MAPF maps with
Quality Diversity algorithms to generate maps suitable for
high-throughput online MAPF (Zhang et al. 2023). Zhang
et al. trained a surrogate model DSAGE (Bhatt et al. 2022)
that could help repair instances to meet constraints (e.g.,
number of shelves and connectivity) and predict the through-
put of an instance. Our problem requires less sophisticated
repair, since we have no hard constraint on the number of
obstacles in an instance. Additionally, our objective function
is relatively easy to compute, requiring only A, for a gener-
ated map, and does not require any additional MAPF sim-
ulations. Our map generator is designed to create instances
with a wide range of connectivity to use in the evaluation
and benchmarking of MAPF algorithms.

Experiments

To thoroughly investigate the relationship between map con-
nectivity and empirical hardness of MAPF, we have se-

lected four different optimal MAPF algorithms which are
proven to be quite powerful according to various bench-
mark analysis (Ewing et al. 2022; Shen et al. 2023a): Lazy-
CBS (Gange, Harabor, and Stuckey 2019), BCP (Lam et al.
2022), CBSH2-RTC (Li et al. 2021) and CBSH2-RTC-
CHBP (Shen et al. 2023b).

Simulation Setup. To ensure the diversity of our test
dataset, we included maps from multiple data sources.
Firstly, we have included all 32 x 32 maps (5 in total) from
the MAPF benchmark dataset (Stern et al. 2019b). Addi-
tionally, apart from our QD map generator, we have also
included a fractal map generator based on diffusion-limited
aggregation method (Ewing et al. 2022). We slightly mod-
ified the generation rule of the fractal method such that
it could generate maps of different styles (e.g., cave-like
frac-32-32-4 and maze-like maze-32-32-5 in Fig-
ure 1). We generated 31 fully-connected maps of size 32 x 32
using QD and fractal generator. The detailed map informa-
tion and code are available at here!.

When generating MAPF instances, we ensured that all
the maps have the same agent-to-freespace ratio, where r =

% This value is chosen based on our test such that

the instances are neither excessively challenging nor overly
easy so that we can still effectively compare the performance
across different maps. For each map, we generated 100 in-
stances using uniform random sampling to determine the
start and goal locations of agents. The feasibility of the gen-
erated instances was validated by using a sub-optimal MAPF
algorithm ECBS with a relaxed bound (w = 1.6) (Barer
et al. 2014). Simulations were conducted on a PC with
Ryzen 3950x CPU and 64GB RAM, with the runtime limit
set to 300 seconds.

Experiment 1: Average Runtime and )\2. As an initial
proof of concept to show that the A\, value of a map has
some correlation with the empirical hardness, or runtime,
of MAPF instances on that map, we randomly generated
MAPF instances on 36 maps with varying A, values and
compared runtimes. The simulation results in Figure 3 il-

"https://github.com/USC-ACTLab/MAPF-Lambda2
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Figure 4: (a). The logarithm of average number of CT expansions and A, and for different maps. (b). Boxplot for A, and the
logarithm of average runtime for the maps created by QD generator. (c). Sorted logarithm of runtime for maze and its expanded
version maze—e by increasing the width of the narrow corridors in red boxes from 1-cell to 2-cell.

lustrate the relationship between the logarithm of average
runtime and A, of different maps. We have made several in-
teresting observations on the results.

First, hard instances often appear on maps with smaller
A2 (top left corner), whereas maps with larger A5 can be con-
siderably easy (bottom right corner). This pattern remains
consistent across different algorithms and r settings. Addi-
tionally, it is noteworthy that CBSH2-based algorithms gen-
erally exhibit faster runtime than LazyCBS and BCP (no-
tice the different scales on y-axis). Despite differences in
absolute runtime, our results indicate within each algorithm,
challenging instances happen more frequently on maps with
smaller \,.

Second, maps with smaller A, could still have relatively
easy instances. Given that A\, is not the only factor influ-
encing empirical hardness, we are not surprised to see that
the average runtime and Ay do not exhibit a strict mono-
tonic correlation. One possible reason might be the effect of
narrow corridors on a 2D grid-map, for instance increasing
the width of a narrow corridor from 1-cell to 2-cell width
will only change A5 slightly, but the wider corridors are less
likely to create enough contested regions, thus the empirical
hardness could drastically shift from hard to easy. We further
explore this in Experiment 4.

Experiment 2: Average Number of Constraint Tree (CT)
Expansions and )\». Next, we illustrate the relationship
of the average number of CT expansions and Ao for all
instances on a map. For the CBSH2-based algorithms, the
number of CT expansions is related to how many conflicts
have been resolved during the searching process and reflects
the hardness of instances (Gordon, Filmus, and Salzman
2021). From Figure 4(a), the trend for number of CT ex-
pansions is similar to the runtime trend. This correlation is
believed to be caused by the poorly connected regions where
conflicts are more likely to happen.

Experiment 3: More Tests Using QD Map Generator.
Here we present additional tests on the runtime using
CBSH2-RTC for maps generated by our QD map generator.
We have generated 851 maps with a step size of 10~ for
A2 and the number of maps for each pivot is shown in Fig-
ure 4(b) (r = 2.25 x 10~2 and number of agents in [19, 23]).
Different from fractal map generator, which lacks control

over map connectivity, the QD map generator is able to gen-
erate maps with a well-distributed range of A,. This nice fea-
ture makes it a great choice to create benchmark dataset that
requires a wider spectrum of map connectivity. Despite the
fact that there are still many outliers in Figure 4(b), the rela-
tionship between Ay and empirical hardness still holds. This
indicates that hard instances tend to happen around small Ao,
while large Ao generally result in easier instances.

Experiment 4: Expand the Width of Narrow Corridors.
In Experiment 1, we mentioned that there are still many
easy instances on maps with low Ao. To investigate this phe-
nomenon, we manually changed the connectivity of maps
without affecting the number of obstacles. More specifically,
we expand some of the narrow corridors (red boxes in Fig-
ure 4(c)) in a maze map from 1-cell to 2-cell width and
observed that Ay changed from 10.1 x 107° to 15.4 x 10~°.
Although the change in Ao is small, there is a significant
change in empirical hardness, where instances on expanded
version maze—e (shown with dashed lines) are much easier.
This demonstrates that even maps with small A, can have
easy instances. It also suggests that a 1-cell-width corridor
is more likely to create contested regions and cause con-
flicts between agents, thus slowing down the algorithms (es-
pecially for conflict-based algorithms). These contested re-
gions are significantly mitigated when increasing the corri-
dor width, making the instances easier; in the meantime Ao
exhibits minor change. We intend to develop a hybrid rea-
soning on both A9 and corridor width in future research.

Conclusion

In summary, even though \s does not exhibit a strict mono-
tonic correlation with empirical hardness, it still shows no-
table effectiveness, especially for very challenging instances
associated with small \5. Considering the simplicity and
ease of comparing Ao across different maps, we believe it
is a reasonably effective metric and great starting point for
future research on MAPF empirical hardness. Another con-
tribution of this work is the QD map generator which can
generate maps with the desired range of \,. Future work
includes developing MAPF instance generators for tunable
empirical hardness and providing a more precise theoretical
bound on the correlation of Ay and MAPF hardness.
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