
Autonomous Robots

https://doi.org/10.1007/s10514-023-10148-y

Multi-robot geometric task-and-motion planning for collaborative
manipulation tasks

Hejia Zhang1 · Shao-Hung Chan1 · Jie Zhong1 · Jiaoyang Li2 · Peter Kolapo3 · Sven Koenig1 · Zach Agioutantis3 ·

Steven Schafrik3 · Stefanos Nikolaidis1

Received: 4 March 2023 / Accepted: 26 September 2023

© The Author(s) 2023

Abstract

We address multi-robot geometric task-and-motion planning (MR-GTAMP) problems in synchronous, monotone setups. The

goal of the MR-GTAMP problem is to move objects with multiple robots to goal regions in the presence of other movable

objects. We focus on collaborative manipulation tasks where the robots have to adopt intelligent collaboration strategies to be

successful and effective, i.e., decide which robot should move which objects to which positions, and perform collaborative

actions, such as handovers. To endow robots with these collaboration capabilities, we propose to first collect occlusion and

reachability information for each robot by calling motion-planning algorithms. We then propose a method that uses the

collected information to build a graph structure which captures the precedence of the manipulations of different objects and

supports the implementation of a mixed-integer program to guide the search for highly effective collaborative task-and-motion

plans. The search process for collaborative task-and-motion plans is based on a Monte-Carlo Tree Search (MCTS) exploration

strategy to achieve exploration-exploitation balance. We evaluate our framework in two challenging MR-GTAMP domains

and show that it outperforms two state-of-the-art baselines with respect to the planning time, the resulting plan length and

the number of objects moved. We also show that our framework can be applied to underground mining operations where a

robotic arm needs to coordinate with an autonomous roof bolter. We demonstrate plan execution in two roof-bolting scenarios

both in simulation and on robots.

Keywords Task-and-motion planning · Multi-robot collaboration · Collaborative manipulation · Mining robotics

B Hejia Zhang

hejiazha@usc.edu

Shao-Hung Chan

shaohung@usc.edu

Jie Zhong

jzhong54@usc.edu

Jiaoyang Li

jiaoyangli@cmu.edu

Peter Kolapo

peter.kolapo@uky.edu

Sven Koenig

skoenig@usc.edu

Zach Agioutantis

zach.agioutantis@uky.edu

Steven Schafrik

steven.schafrik@uky.edu

Stefanos Nikolaidis

nikolaid@usc.edu

1 Introduction

Task-and-motion planning (TAMP) is the problem of com-

bining task and motion planning to divide an objective, such

as assembling a table, into a series of robot-executable motion

trajectories (Garrett et al. 2021). Task planning is used to

generate a sequence of discrete actions, such as picking up

a screwdriver and driving a screw, while motion planning

is used to compute the actual trajectories the robot should

execute.

Geometric task-and-motion planning (GTAMP) is an

important subclass of TAMP where the robot has to move

1 Thomas Lord Department of Computer Science, University of

Southern California, Los Angeles, USA

2 The Robotics Institute, Carnegie Mellon University,

Pittsburgh, USA

3 Department of Mining Engineering, University of Kentucky,

Lexington, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-023-10148-y&domain=pdf


Autonomous Robots

several objects to regions in the presence of other movable

objects (Kim et al. 2019). GTAMP has been addressed effi-

ciently in single-robot domains (Kim et al. 2019; Kim and

Shimanuki 2020; Kim et al. 2022). We focus on multi-robot

geometric task-and-motion planning (MR-GTAMP), where

several robots have to collaboratively move several objects

to regions in the presence of other movable obstacles.

MR-GTAMP naturally arises in many multi-robot manip-

ulation domains, such as multi-robot construction, multi-

robot assembly and autonomous warehousing (Chen et al.

2022; Hartmann et al. 2021). MR-GTAMP is interesting as

multi-robot systems can perform manipulation tasks more

effectively than single-robot systems and can also perform

manipulation tasks that are beyond the capabilities of single-

robot systems (Shome et al. 2021). For example, in a

product-packaging task, a single robot may have to move

a lot of objects to clear a path to grasp an object, while a

two-robot system can easily perform a handover action to

increase the effectiveness of task execution.

Examples of MR-GTAMP problem instances are shown

in Fig. 1. The example task shown in Fig. 1 (left) requires

multiple robotic arms to sort colored objects into boxes of

corresponding colors in a confined workspace. The example

task shown in Fig. 1 (right) requires multiple mobile manipu-

lators to move green objects to the green region. In both tasks,

white objects are movable obstacles and are only allowed

to be relocated within their current regions. These exam-

ple tasks embody the key challenges that MR-GTAMP aims

to address. First, they are in a hybrid discrete-continuous

planning space which is extremely large when multiple

robots are involved (Pan et al. 2021; Kim et al. 2022). This

involves high-level task planning, which decides which robot

should move which objects and in what sequence, and low-

level motion planning, which decides the positions to which

objects should be relocated and the motion trajectories robots

should follow. Second, in both scenarios, robots work in a

confined workspace and have to consider geometric con-

straints imposed by the environments and the tasks carefully.

Finally, robots must collaborate intelligently to perform tasks

effectively. For example, robots can achieve their targets

more quickly by concurrently manipulating multiple objects,

and they can avoid relocating too many objects by performing

handover actions.

We address the following research question: How can we

enable multiple robots to perform GTAMP tasks effectively

and efficiently?

Determining effective collaborative action sequences for

multiple robots is difficult as manipulation planning in the

presence of movable obstacles has been shown to be NP-

hard for single-robots (Stilman et al. 2007; Hun Cheong et al.

2020). MR-GTAMP is even harder since one needs to decide

which robot should move which objects to which positions.

Our key insight to solving MR-GTAMP efficiently is

that we can compute information about the manipulation

capabilities of individual robots and their potential collab-

orative relationships by calling motion-planning algorithms

and then use it to prune the search space and guide the search

process. For example, based on the information that a robot

cannot reach an object, we can eliminate all task plans that

involve the action where the robot has to reach the object.

Moreover, the computed information can be used to generate

collaborative plans where each robot performs the tasks that

it excels at.

We propose a two-phase framework. In the first phase, we

compute the collaborative manipulation information, i.e., the

occlusion and reachability information for individual robots

and the potential collaborative relationships between them

(Sec. 4.1). In the second phase, we search for collabora-

tive task-and-motion plans using a Monte-Carlo Tree Search

(MCTS) exploration strategy due to its good exploration-

exploitation balance (Sec. 4.2). Our search algorithm is based

on two key components: (i) The first key component uses

the collected information from the first phase to generate

promising task skeletons for moving a specified set of objects

by formulating a series of mixed-integer linear programs

(MIPs), that can be solved efficiently by leveraging recent

developments in MIP solvers (Cplex 2009) (Sec. 4.2.1). The

term task skeleton represents a sequence of actions that are

missing continuous parameters required for execution. The

missing continuous parameters include the intended posi-

tions for objects that need to be relocated, and the motion

trajectories that the robots should follow to relocate these

objects. The formal definition of task skeleton can be found

in Sec. 3. (ii) The second key component efficiently finds fea-

sible continuous parameters for the generated task skeletons,

such as the locations to which to relocate objects (Sec. 4.2.2).

Fig. 1 Left: Sorting colored

objects into boxes of

corresponding colors. Right:

Moving the colored boxes to the

green region. In both scenarios,

white objects are only allowed

to be relocated within their

current regions (red). We use

PyBullet (Coumans and Bai

2016) as our simulator (Color

figure online)

123



Autonomous Robots

Fig. 2 Overview of the proposed framework. Fig. 3 provides a more detailed visualization and description of Phase 2.

We denote the process of finding continuous parameters to

make a task skeleton executable as grounding. Fig. 2 presents

an overview of our framework.

We compare our framework with two state-of-the-art base-

lines, namely, a general MR-TAMP framework (Pan et al.

2021) and a multi-robot extension of the ResolveSpatialCon-

straints (RSC) algorithm (Stilman et al. 2007). We evaluate

our framework in two challenging MR-GTAMP domains and

show that it outperforms two state-of-the-art baselines with

respect to the planning time, the resulting plan length and the

number of objects moved (Sec. 5).

We also conducted an application study and show that our

framework can be used to coordinate a robotic arm with an

autonomous roof bolter for underground mining operations.

We demonstrate the execution of the computed plans in two

example roof-bolting scenarios both in simulation and on

robots.

Our work makes the following assumptions, which are

common in MR-TAMP (Shome et al. 2021; Pan et al. 2021):

(i) It considers only monotone instances of the MR-GTAMP

problem, where each object is moved only once. The mono-

tone problems are common in less constrained environments

such as home environments and relate to a range of ware-

house applications such as packing and stowing (Shome et

al. 2021). (ii) It assumes the robots synchronously start and

stop the executions of actions. We plan to relax these assump-

tions in future work.

This work is an extended version of our prior paper (Zhang

et al. 2022). We make the following additional contributions.

• We conduct an application study on the roof-bolting task,

which is an essential operation within the underground

mining cycle. We show that the roof-bolting task can

be formulated as MR-GTAMP problems and addressed

efficiently with the proposed planning framework. We

demonstrate plan execution in two roof-bolting scenarios

both in simulation and on real robots.

• We conduct additional scalability evaluation experiments

to study the performance change of our framework when

more robots are involved.

• We substantially expand the description of the task-

skeleton grounding component and the tree search algo-

rithm.

2 Related work

There has been much work on solving general TAMP prob-

lems efficiently. TAMP problems are challenging because

they require search in a large hybrid space that con-

sists of task-level search and motion-level search. Different

approaches for TAMP problems focus on different strate-

gies to combine task-level search and motion-level search.

In Lagriffoul et al. (2014); Bidot et al. (2017), efficient

geometric backtracking algorithms are proposed to system-

atically consider all the combinations of geometric instances

of a given symbolic task plan such that the symbolic task

plan can be efficiently rejected if there is no way to instanti-

ate it geometrically. In Dantam et al. (2018), task-level search

is modeled as a constraint satisfaction problem and failures

on motion-level search are efficiently encoded as new con-

123



Autonomous Robots

straints to inform task-level search. In Srivastava et al. (2014),

an extensible planner-independent interface layer is proposed

to combine task and motion planning. In Garrett et al. (2020),

motion-level facts are encoded in task-level planning and

modern task planners (Hoffmann 2001) are leveraged to effi-

ciently search for task-and-motion plans. Recently, more and

more work has been focused on utilizing learning to guide

TAMP by ranking task plans (Khodeir et al. 2023), predicting

feasibility of task plans (Yang et al. 2022), and ranking object

importance in problem instances (Silver et al. 2020). More

comprehensive surveys on TAMP can be found in Garrett et

al. (2021); Mansouri et al. (2021).

In this work, we focus on GTAMP which is an important

subclass of TAMP. The goal of the GTAMP is to move several

objects to regions in the presence of other movable objects.

There has been much work on solving single-robot

GTAMP (SR-GTAMP) problems efficiently (Kim et al.

2022, 2019; Kim and Shimanuki 2020) by utilizing learn-

ing to guide planning. However, these approaches cannot

be directly applied to multi-robot domains. Several prob-

lem types in the literature can also be seen as versions of the

GTAMP problem. In Stilman et al. (2007), the “manipulation

among movable obstacles" (MAMO) problem is addressed,

in which a robot has to move objects out of the way to move a

specified object to its goal location. Although this approach

can be extended to multi-robot settings straightforwardly, it

would require searching through a large space of all possible

combinations of multi-agent actions. Moreover, the focus of

this approach is on feasibility of the task-and-motion plans,

rather than on the plan length and number of objects moved.

In Hun Cheong et al. (2020) and Nam et al. (2020); Daniel-

czuk et al. (2019), the object retrieval problem is addressed,

in which a robot has to retrieve a target object from clutter by

relocating the surrounding objects. In King et al. (2016); Kro-

ntiris and Bekris (2016), the rearrangement planning problem

is addressed, in which a robot has to move objects into given

goal configurations. However, these methods do not plan col-

laboration strategies in multi-robot domains.

There has been work on solving general TAMP with sev-

eral robots efficiently (Pan et al. 2021; Toussaint and Lopes

2017; Mansouri et al. 2021). We focus on a subclass of these

problems, where a robot has to move objects in the pres-

ence of movable obstacles. In Pan et al. (2021), a novel

task scheduling layer, positioned between task planning and

motion planning, is proposed to prune task planning search

space. However, since this approach does not focus on geo-

metric aspects of the TAMP problem, it does not include

guidance for finding continuous parameters such as feasi-

ble positions for object relocation. In Rodríguez and Suárez

(2016); Ahn et al. (2021), efficient approaches are proposed

for the multi-robot object retrieval problem, assuming per-

manent object removal and considering one target object at

a time, while our planner relocates the obstacles within the

workspace and considers several target objects at the same

time. Multi-robot rearrangement planning problems (Shome

et al. 2021; Hartmann et al. 2021; Chen et al. 2022) are also

closely related to MR-GTAMP. However, the rearrangement

planning problems assume that the goal configurations of all

the movable objects are given, while MR-GTAMP requires

the planners to decide which objects to move and to which

positions. There is also work that focuses on task allocation

and scheduling for multiple robots, assuming that a sequence

of discrete actions to be executed is given (Behrens et al.

2020). However, MR-GTAMP requires the planners to decide

which discrete actions to execute, e.g., which objects to move.

There has been work on optimization-based TAMP, where

TAMP problems are modeled as mixed-integer non-linear

programs (Toussaint, 2015; Toussaint & Lopes, 2017),

mixed-integer linear programs (Kogo et al., 2021) and con-

tinuous nonlinear programs (Takano et al., 2021). However,

these frameworks do not focus on scenarios where obstacle

avoidance is the major challenge and objects can be moved

to enable the manipulation of other objects.

3 Problem formulation

In an MR-GTAMP problem, we have a set of nR robots R =
{Ri }nR

i=1, a set of fixed rigid objects F, a set of nM movable

rigid objects M = {Mi }nM

i=1 and a set of nRe regions Re =
{Rei }nRe

i=1. We assume that all objects and regions have known

and fixed shapes. The focus of our work is not on grasp

planning (Quispe et al. 2016). So, for simplicity, we assume

a fixed set of grasps GrM,R for each object M ∈ M and robot

R ∈ R pair. Gr is the union of the sets of grasps for all object

and robot pairs.

Each object has a configuration, which includes its posi-

tion and orientation. Each robot has a configuration defined

in its base pose space and joint space. We are given the

initial configurations of all robots, objects and a goal spec-

ification G in form of a conjunction of statements of the

form InRegion(M, Re), which is true iff object M ∈ M is

contained entirely in region Re ∈ Re. An example goal spec-

ification is (InRegion(M1, Re1) ∧ InRegion(M2, Re1))

which indicates the target that we want to move objects M1

and M2 to region Re1.

We define a grounded joint action as a set of nR actions

and motions performed by all the robots at one time step,

i.e., the grounded joint action at time step j is an nR-tuple

s j = 〈(a j

R1
, ξ

j

R1
), (a

j

R2
, ξ

j

R2
), . . . , (a

j

RnR
, ξ

j

RnR
)〉, where each

action a is a pick-and-place action or a wait1 action that the

corresponding robot executes and motion ξ is a trajectory that

the corresponding robot executes, specified as a sequence of

1 As in Pan et al. (2021), a robot with a wait action does not have to do

anything but can move to avoid other robots.

123



Autonomous Robots

robot configurations. In this work, we focus on pick-and-

place actions because of their importance in robotic manipu-

lation in cluttered space. Each pick-and-place action is a tuple

of the form 〈M, Re, R pick, R place, g pick, g place, P
place

M 〉,
where M represents the object to move; Re represents the

target region for M ; R pick and R place represent the robots

that pick and place M , respectively; g pick and g place rep-

resent the grasps used by R pick and R place, respectively,

and P
place

M represents the configuration at which to place

M . Moreover, we call a pick-and-place action whose R pick

is different from R place a handover action. Each grounded

joint action maps the configurations of the movable objects

to new configurations and the unaffected objects remain at

their old configurations.

We define a partially grounded joint action as an nR-

tuple of the form 〈āR1 , . . . , āRnR
〉, where ā is a wait action

or a pick-and-place action without the placement informa-

tion P
place

M . We refer to a pick-and-place action without

the placement information as a partially grounded pick-and-

place action since it has only the information about the grasps

that will be used.

We define a task skeleton S̄ as a sequence of partially

grounded joint actions. We want to find a task-and-motion

plan, i.e., a sequence of grounded joint actions S that changes

the configurations of the objects to satisfy G.

We denote the process of finding feasible object place-

ments and motion trajectories for a task skeleton as ground-

ing.

A task-and-motion plan is valid iff, at each time step j :

(i) the corresponding multi-robot trajectory � j = 〈ξ j

R1
, ξ

j

R2
,

. . . , ξ
j

RnR
〉 is collision-free; (ii) the robots can use the cor-

responding motion trajectories and grasp poses to grasp

the target objects and place them at their target configura-

tions without collisions; and (iii) all handover actions can be

performed without inducing collisions. The considered col-

lisions include collisions between robots, collisions between

an object and a robot and collisions between objects.

4 Our approach

We present our two-phase MR-GTAMP framework (Fig. 2)

in this section. In the first phase, we compute the collaborative

manipulation information, i.e., the occlusion and reachability

information for individual robots and whether two robots

can perform a handover action for an object (Sec. 4.1). In the

second phase, we use a Monte-Carlo Tree Search exploration

strategy to search for task-and-motion plans (Sec. 4.2). The

search process depends on a key component that generates

promising task skeletons (Sec. 4.2.1) and a key component

that finds collision-free object placements and trajectories for

the task skeletons to construct valid task-and-motion plans

(Sec. 4.2.2).

4.1 Computing collaborativemanipulation
information

Given an MR-GTAMP problem instance and the initial con-

figurations of all objects and robots, our framework first

computes the occlusion and reachability information for indi-

vidual robots, e.g., whether an object blocks a robot from

manipulating another object and whether a robot can reach a

region to place an object there. We also compute whether two

robots can perform a handover action for an object by com-

puting whether they can both reach a predefined handover

point to transfer the object. In this work, we consider only

handover actions for objects that are named in goal specifica-

tion G for computational simplicity. We assume that all robots

return to their initial configurations after each time step.

Inspired by Kim et al. (2022), we use the conjunction of all

true instances of a set of predicates to represent the computed

information. To define these predicates, we define two vol-

umes of the workspace similar to Stilman et al. (2007); Kim et

al. (2022). The first volume Vpick(M, g, R, ξ) is the volume

swept by robot R to grasp object M with grasp g following

trajectory ξ . The second volume Vplace(M, g, R, P
place

M , ξ)

is the volume swept by robot R and object M to transfer the

object to configuration P
place

M following trajectory ξ . Our

predicates are as follows:

• OccludesPick(M1, M2, g, R) is true iff object M1

overlaps with the swept volume Vpick(M2, g, R, ξ),

where ξ is chosen to be collision-free with all the objects

except M2, if possible;

• OccludesGoalPlace(M1, M2, Re, g, R) is true iff M1

is an object that overlaps with the swept volume Vplace(

M2, g, R, P
place

M2
, ξ), where P

place

M2
and ξ are chosen to

be collision-free with all the objects except M2, if possi-

ble, and the pair 〈M2, Re〉 is named in goal specification

G;

• ReachablePick(M, g, R) is true iff there exists a tra-

jectory for robot R to pick object M with grasp g;

• ReachablePlace(M, Re, g, R) is true iff there exists

a trajectory for robot R to place object M into region Re

with grasp g; and

• EnableGoalHandover(M, g1, g2, R1, R2) is true iff

robots R1 and R2 can both reach a predefined handover

point for object M with grasps g1 and g2, respectively,

and the object M is named in goal specification G.

For a predicate instance to be true, the corresponding tra-

jectories are required to be collision-free with respect to all

fixed objects. For a predicate instance of EnableGoalHan-

dover to be true, the two robots are required to not collide

with each other.

123



Autonomous Robots

The values of all predicate instances can be computed

with existing inverse-kinematics solvers (Diankov 2010) and

motion planners (LaValle 2006). Ideally, we wish to find

trajectories for the robots that have the minimum number

of collisions with all objects, i.e., the minimum constraint

removal (Hauser 2013) trajectories. However, this is known

to be very time consuming. Thus, we follow previous

work (Kim et al. 2022) and first attempt to find a collision-

free trajectory with respect to all movable and fixed objects.

If we fail, we attempt to find a collision-free trajectory with

respect to only the fixed objects.

In our implementation, we efficiently compute the pred-

icates – with the exception of EnableGoalHandover –

in parallel for all robots by creating an identical simulation

environment for each robot.

4.2 Searching for task-and-motion plans

We now describe our search process (Fig. 3) for efficiently

finding effective collaborative task-and-motion plans. Our

search process is initialized with a set of task skeletons,

that is generated for moving the set of objects named in

the goal specification, utilizing the computed collaborative

manipulation information (Sec. 4.1). We will describe our

key component for generating task skeletons in detail in

Sec. 4.2.1. We then generate a search tree with a root node,

denoted as D0 as shown in Fig. 3 (left). We associate an empty

sequence of grounded joint actions with node D0, denoted as

D0.S = ∅. We use the “." operator to denote the association

relationship. This implies that at node D0, we do not have

any grounded joint actions. We then create edges originating

from node D0, with each edge storing a distinct initial task

skeleton.

Throughout our search process, at each search iteration,

we select an edge that has not been evaluated yet, and we

evaluate it by trying to ground the task skeleton associated

with it. As previously defined, the term grounding refers to

the process of finding feasible object placements and motion

trajectories for a task skeleton to be executable. After each

evaluation, we compute a reward based on the evaluation

result. The reward will then be propagated back up the search

tree, with each edge in the path from the root node to the

selected edge having its value updated based on the reward.

We use a Monte-Carlo Tree Search (MCTS) exploration

strategy to balance exploration (exploring different unevalu-

ated edges) and exploitation (biasing the search towards the

branches that have received high rewards).

We use a reverse search algorithm inspired by Stilman et

al. (2007) to ground task skeletons. We will describe our key

component for task-skeleton grounding in detail in Sec. 4.2.2.

The insight behind the reverse search algorithm is to use

the grounded future joint actions as the artificial constraints

to guide the grounding for the current actions. Therefore,

throughout our search process, we save the grounding results

and use them as artificial constraints for subsequent ground-

Fig. 3 Visualization of the search process in the second phase of our

framework. We show the initialization stage of the search process (left)

and two example search iterations (middle, right) that lead to differ-

ent evaluation outcomes. Left: Blue arrows represent the workflow for

initializing the search tree. Middle: Yellow arrows represent a search

iteration that results in an updated set of objects to be moved and thus

a new set of task skeletons to be grounded. Right: Red arrows repre-

sent a search iteration that results in an executable task-and-motion plan

(Color figure online)

123



Autonomous Robots

ing tasks. We use two examples, as shown in Fig. 3 (middle,

right), to illustrate the idea.

In the first example (Fig. 3 (middle)), we select edge E2

for evaluation. We create a new node, denoted as D2, to serve

as the head node of edge E2. The tail node of edge E2 is the

root node D0 whose associated sequence of grounded joint

actions is empty. This means that we can attempt to ground

the task skeleton associated with E2, denoted as E2.S̄, with-

out any artificial constraints. Ideally, if we manage to ground

task skeleton E2.S̄ successfully, we would get an executable

task-and-motion plan to perform the task. However, in many

situations, we can only ground the task skeleton partially.

This implies that there are conflicts that emerge during task-

skeleton grounding. For example, there would not be enough

space to place objects unless we relocate some objects that

were not planned to be moved initially. Such situations can

arise as we cannot account for all geometric specifics dur-

ing task-skeleton generation. In such situations, we generate

new task-skeletons to address the emerged conflicts, and we

expand the tree by creating new edges, with each edge storing

a distinct new task skeleton. In our first example, we create

new edges originating from node D2. Moreover, we store

the sequence of joint actions that have been grounded to this

point in node D2, denoted as D2.S. It should be noted that

D2.S contains D0.S and the grounded part of E2.S̄.

In the second example (Fig. 3 (right)), we select edge E2.1

for evaluation. The grounding of the task skeleton associated

with edge E2.1, denoted as E2.1.S̄, should consider D2.S as

artificial constraints which is the sequence of joint actions

that have been grounded to this point. If we successfully

ground E2.1.S̄, we can get an executable task-and-motion

plan by concatenating the grounded task-skeleton with D2.S.

At each search iteration, we have four phases: selection,

expansion, evaluation and backpropagation.

Notation. We use |S| and |S̄| to denote the number of objects

intended to be moved in sequences of grounded joint actions

S and task skeletons S̄, respectively.

Selection phase. In the selection phase, we start at the

root node and recursively select the edge with the highest

Upper Confidence Bound (UCB) value until we reach an

edge Ei with a task skeleton that has not been grounded

yet. We denote the tail node of edge Ei as D j . We fol-

low the UCB value formula used in Silver et al. (2017).

The UCB value of the pair of node D j and edge Ei is:

Q(D j , Ei ) = Ei .value
Ei .visi ts+1

+c×Ei .prior ×
√

D j .visi ts

Ei .visi ts+1
, where

Ei .value is the cumulative reward edge Ei has received so

far, D j .visi ts and Ei .visi ts are the number of times D j and

Ei have been selected, c is a constant to balance exploration

and exploitation, and Ei .prior is used to bias the search with

domain knowledge (Silver et al. 2017). In our implementa-

tion, we set Ei .prior to 1

|Ei .S̄| to prioritize grounding task

skeletons with fewer objects to move. The value Ei .value of

an edge is initialized to 0.

Assume that we select edge Ei from node D j in the selec-

tion phase.

Expansion phase. In the expansion phase, we create a new

node Di as the head node of edge Ei .

Evaluation phase. In the evaluation phase, we use the task-

skeleton grounding component (Sec. 4.2.2) to ground task

skeleton Ei .S̄ associated with Ei to compute reward r for

selecting edge Ei . Note that node D j is the tail node of edge

Ei and the grounded sequence of joint actions stored in node

D j is denoted as D j .S. There are three possible outcomes:

(i) If we fail at grounding, we set r to 0. (ii) If we obtain a

sequence of grounded joint actions S∗, then we found a valid

task-and-motion plan. In this case, we set r to 1+α 1
|S∗| , where

α is a constant hyperparameter used to balance the two terms

of the reward that is set to 1 in our experiments (Sec. 5). The

first term of the reward incentivizes the search algorithm to

select edges where more actions have been grounded, and

the second term incentivizes the search algorithm to select

edges that move fewer objects. (iii) In the third case, task

skeleton Ei .S̄ cannot be fully grounded without relocating

some objects that are not planned to be moved in Ei .S̄. In

this case, we obtain a sequence of grounded joint actions S′

and a set of objects M∗ from the grounding process. Here, S′

consists of D j .S and the grounded part of task skeleton Ei .S̄.

We use M∗ to represent the set of objects for which we need

to find a sequence of grounded joint actions, denoted as SM∗ ,

to relocate so that we can construct a final task-and-motion

plan for the problem by concatenating SM∗ with S′. We then

call the task-skeleton generating component (Sec. 4.2.1) to

move M∗. If we cannot find any task skeleton to move M∗,

then we set r to 0. However, if we find a set of task skeletons

{S̄}, then we set r to
S′.length

S′.length+S̄∗.length
+α 1

|S′|+|S̄∗| , where S̄∗

is the task skeleton with the minimum number of time steps

among all task skeletons {S̄} and S′.length and S̄∗.length

represent the number of time steps of S′ and S̄∗, respectively.

We would like to point out that the reward in the second

possible outcome represents a special case of the reward in

the third possible outcome. Both rewards use their first terms

to incentivize the search algorithm to select edges where more

actions have been grounded, and their second terms to incen-

tivize the search algorithm to select edges that move fewer

objects.

We use node Di to store the returned grounded joint

actions S′ as Di .S. In the third scenario, if we find new task

skeletons, then we create new edges to store them for node

Di . If no new edge is created, then we mark node Di as a

terminal node.

Backpropagation phase. In the backpropagation phase, we

update the cumulative reward of the selected edges {E sel}
with the computed reward r according to E sel .value =

123



Autonomous Robots

E sel .value + r . We also increment the number of visits of

the selected edges and nodes by 1.

In our implementation, we track the grounding failures for

different task skeletons similarly to Ren et al. (2021), so that

we can skip over those branches where grounding their task

skeletons is known to be infeasible.

4.2.1 Key component 1: generating promising task

skeletons

One key component in the second phase of our framework

is to generate promising task skeletons {S̄} for moving a set

of objects M∗ given a sequence of already grounded joint

actions S′. As previously defined, the term task-skeleton

refers to a sequence of actions without the placement and

trajectory information. This key component will be used in

two situations. It is firstly called at the initialization stage

of the search process (Fig. 3 (left)). In this situation, we set

S′ as empty and set M∗ as the set of objects named in the

goal specification of the problem instance. We will use the

generated task skeletons to initialize the search tree as shown

in Fig. 3 (left). The second scenario where this component

is called is when we can only ground part of a task skeleton

in the evaluation phase during the search process. Figure 3

(middle) depicts one example search iteration where this sit-

uation happens. In this example search iteration, we set S′

as S2 and set M∗ as M∗
2. We use this key component to

generate task skeletons to relocate M∗
2. We take S′ as input

because we should exclude objects from our task-skeleton

generation that are already planned to be moved in S′. The

task-skeleton generation algorithm is designed to utilize the

computed collaborative manipulation information from the

first phase (Sec. 4.1) to eliminate task skeletons that include

infeasible actions and to prioritize motion planning for effec-

tive task plans that have fewer time steps and fewer objects

to be moved.

Notation. Assume that we want to generate task skeletons to

move objects M∗ given a sequence of grounded joint actions

S′. The set of objects included in S′ cannot be moved again

because of the monotone assumption. For simplicity of pre-

sentation, we slightly abuse M to denote the movable objects

not included in S′.
Building the collaborative manipulation task graph.

To reason about the collaborative manipulation capa-

bilities of the individual robots, we encode the computed

information as a graph. We build a collaborative manipula-

tion task graph (CMTG) to capture the precedence of the

manipulations of different objects, i.e., we can only move an

object after we move the obstacles that block the pick-and-

place action we are going to execute, based on the computed

information from the first phase (Sec. 4.1). Since we only

compute occlusion information for placing objects named in

the goal specification, the precedence encoded in the CMTG

lack occlusion information for relocating objects that are not

named in the goal specification. Instead, we assume that

we will always find the feasible places to relocate these

objects. We determine the exact object placements during

task-skeleton grounding (Sec. 4.2.2).

A CMTG (Fig. 4) has two types of nodes: An object node

represents an object M ∈ M; and an action node represents

a partially grounded pick-and-place action ā, i.e. a pick-and-

place action without placement information. A CMTG has

three types of edges: An action edge is an edge from an

object node to an action node. It represents moving the object

represented by the object node with the action represented

by the action node. A block-pick edge is an edge from an

action node to an object node. It represents that the object

represented by the object node obstructs the pick action of

the action represented by the action node. A block-place edge

is an edge from an action node to an object node. It represents

that the object represented by the object node obstructs the

place action of the action represented by the action node.

All block-place edges are connected to the action nodes that

move the objects named in the goal specification. A CMTG

has a set of object nodes that represents the input objects M∗

that must be moved.

Given the computed collaborative manipulation informa-

tion and a set of objects M∗ to move, we incrementally

construct a CMTG by iteratively adding object M ∈ M∗

to the CMTG with Alg. 1. Given the CMTG C built so far

and an object M to add, we first add an object node repre-

senting M to C (Alg. 1, line 4). Then, for each pair of a robot

R ∈ R and its grasp gM,R ∈ GrM,R , we find all partially

grounded pick-and-place actionsNa that move object M to its

target region ReM with R as the pick robot (Alg. 1, line 5-

20). For each partially grounded pick-and-place action ā, we

find all movable objects that block the pick action of ā and

add the corresponding block-pick edges (Alg. 1, line 28-31).

If M is named in goal specification G, then we also find all

movable objects that block the place action of ā and add the

corresponding block-place edges (Alg. 1, line 32-36). We

recursively add the blocking objects in a similar way (Alg. 1,

lines 30 and 35).

Mixed-integer linear program formulation and solving.

Given a CMTG C, we find a set of task skeletons that spec-

ify which robot will move which object at each time step.

We assume that each object will be moved at most once, i.e.,

we assume that the problem instances are monotone. Given a

time step limit T , we cast the problem of finding a task skele-

ton that has a minimum number of objects to be moved as a

mixed-integer linear program (MIP). We encode the prece-

dence of manipulating different objects as formal constraints

in the MIP such that we can generate task skeletons that are

promising to be successfully grounded. We incrementally

increase the time step limit T . In our implementation, the

maximum time step limit is a hyperparameter.

123



Autonomous Robots

Fig. 4 (Left) An example scenario where we want to generate task

skeletons to move object M1 given an empty sequence of grounded

joint actions. (Right) The corresponding collaborative manipulation

task graph for moving object M1. The rounded rectangular nodes are

action nodes. The circular nodes are object nodes. The red circular nodes

represent objects that are specified to be moved. The yellow arrows rep-

resent action edges. The purple arrows represent block-place edges, and

the blue arrow represents a block-pick edge (Color figure online)

Algorithm 1 AddObject(M, C)

1: input: an object M ; the collaborative manipulation task graph built so far, denoted as C.

2: if M ∈ C.object_nodes then

3: return

4: C.object_nodes.add(M)

5: if M is named in goal specification G then

6: ReM = GetGoalRegion(M)

7: else

8: ReM = GetCurrentRegion(M)

9: for R pick ∈ R do

10: for gM,R pick ∈ GrM,R pick do

11: ā = {}
12: if ReachablePick(M, gM,R pick , R pick) then

13: if ReachablePlace(M, ReM , gM,R pick , R pick) then

14: ā.add((M, ReM , R pick , R pick , gM,R pick , gM,R pick ))

15: if M is named in goal specification G then

16: for R place ∈ R \ {R pick} do

17: for gM,R place ∈ GrM,R place do

18: if EnableGoalHandover(M, gM,R pick , gM,R place , R pick , R place) and

19: ReachablePlace(M, ReM , gM,R place , R place) then

20: ā.add((M, ReM , R pick , R place, gM,R pick , gM,R place ))

21: for ā ∈ ā do

22: R
pick
ā is the robot to pick M in ā

23: g
pick
ā is the grasp used by R

pick
ā in ā

24: R
place
ā is the robot to place M in ā

25: g
place
ā is the grasp used by R

place
ā in ā

26: C.action_nodes.add(ā)

27: C.action_edges.add(M, ā)

28: for M j ∈ M do

29: if OccludesPick(M j , M, g
pick
ā , R

pick
ā ) then

30: AddObject(M j , C)

31: C.block_pick_edges.add(ā, M j )

32: if M is named in goal specification G then

33: for M j ∈ M do

34: if OccludesGoalPlace(M j , M, ReM , g
place
ā , R

place
ā ) then

35: AddObject(M j , C)

36: C.block_place_edges.add(ā, M j )

For simplicity of presentation, we slightly abuse M again

to denote the objects in C. We use M∗ ⊆ M to denote the

objects that are intended to be moved. We slightly abuse ā to

denote the set of partially grounded pick-and-place actions in

123



Autonomous Robots

C. We use Eā = {(M, ā)} to denote the set of action edges in

C. We use E
pick

B = {(ā, M)} to denote the set of block-pick

edges and E
place

B = {(ā, M)} to denote the set of block-

place edges in C, EB = E
pick

B ∪ E
place

B , where M ∈ M and

ā ∈ ā. We define the binary variables X t
M,ā and X t

ā,M , where

t ∈ [1, . . . , T ], (M, ā) ∈ Eā and (ā, M) ∈ EB . X t
M,ā = 1

implies that action ā is executed at time step t ′ s.t. t ′ ≥ t .

X t
ā,M = 1 implies that object M can be considered for being

moved at time step t since it blocks action ā which is executed

at or after time step t .

Our MIP model is shown in the following. The implica-

tions in constraint (11) and constraint (12) are compiled to

linear constraints using the big-M method (Griva et al. 2009):

minimize
∑

(M,ā)∈Ea

X1
M,ā

X t
M,ā ≥ X t+1

M,ā,∀(M, ā) ∈ Ea, t ∈ [1, T − 1]
(1)

X t
M,ā = X t

ā,M ′ ,∀(M, ā) ∈ Eā, (ā, M ′) ∈ EB,

t ∈ [1, T ] (2)

X t
M,ā′ ≤

∑
(ā,M)∈EB

X t
ā,M ,∀M ∈ M \ M∗,

(M, ā′) ∈ Eā, t ∈ [1, T ] (3)
∑

(M,ā)∈Eā s.t. R in ā
X T

M,ā ≤ 1,∀R ∈ R (4)

∑
(M,ā)∈Eā

X T
M,ā ≥ 1 (5)

∑
(M,ā)∈Eā s.t. R in ā

X t
M,ā ≤ 1+

∑
(M,ā)∈Eā s.t. R in ā

X t+1
M,ā,

∀R ∈ R, t ∈ [1, T − 1] (6)
∑

(M,ā)∈Eā

X t
M,ā ≥ 1 +

∑
(M,ā)∈Eā

X t+1
M,ā,

t ∈ [1, T − 1] (7)
∑

(M,ā)∈Eā

X1
M,ā = 1,∀M ∈ M∗ (8)

∑
(M,ā′)∈Eā

X1
M,ā′ ≥ X1

ā,M ,∀(ā, M) ∈ EB (9)

∑
(M,ā)∈Eā

X1
M,ā ≤ 1,∀M ∈ M (10)

X1
ā,M = 1 �⇒

∑
t∈[1,...,T ]

X t
ā,M ≥

(
∑

(M,ā′)∈Eā

∑
t∈[1,...,T ]

X t
M,ā′) + 1,

∀(ā, M) ∈ E
pick

B (11)

X1
ā,M = 1 �⇒

∑
t∈[1,...,T ]

X t
ā,M ≥

(
∑

(M,ā′)∈Eā

∑
t∈[1,...,T ]

X t
M,ā′),

∀(ā, M) ∈ E
place

B (12)

Constraint (1) enforces that X t
M,ā indicates whether we

have selected ā at or after time step t . Constraint (2) enforces

that, if an action is selected, then the objects that obstruct

it are also moved. Constraint (3) enforces that, besides the

objects in M∗, we only move objects that obstruct the actions

we have selected. Constraints (4 − 7) enforce that, at each

time step, we select at least one action, while each robot

executes at most one action. Constraint (8) enforces that the

objects in M∗ are moved. Constraint (9) enforces that all

obstacles for the selected actions are moved, while constraint

(10) enforces that each object is moved only once. Constraint

(11) enforces that each object is moved after the obstacles

for its pick action have been moved. Constraint (12) enforces

that each object is moved after the obstacles for its place

action have been moved. The objective function represents

the number of moved objects.

From a MIP solution, we construct a task skeleton which

is grounded later. Moreover, we want to construct multiple

task skeletons since some task skeletons may be impossible

to ground. Every time we obtain a solution, we add a con-

straint to the MIP model to enforce that we find a different

solution from the existing ones until we collect enough task

skeletons (Danna et al. 2007). In our implementation, the

maximum number of task skeletons is a hyperparameter that

varies for different problem instances.

4.2.2 Key component 2: task-skeleton grounding

The second key component in the search phase (Sec. 4.2) is to

ground the task skeletons, i.e., to find the object placements

and motion trajectories for the partially grounded pick-and-

place actions. We use a reverse search algorithm inspired

by Stilman et al. (2007) since forward search for continuous

parameters of long-horizon task skeletons without any guid-

ance is very challenging (Kim et al. 2019). The insight behind

the reverse search strategy is to use the grounded future joint

actions as the artificial constraints to guide the grounding for

the present time step.

The input to this component is a task skeleton S̄ of T time

steps and a sequence S f ut of future grounded joint actions.

We use S f ut as artificial constraints to guide the grounding

for the current actions, so that we can efficiently find geo-

metrically feasible long-horizon plans (Stilman et al. 2007).

Ideally, if we manage to ground task skeleton S̄ success-

fully, we will get a fully executable task-and-motion plan.

However, in many situations, since we cannot account for

all geometric specifics during task-skeleton generation, we

can only ground the task skeleton partially. In such cases,

we will get a set of objects, denoted as M∗, for which we

have to generate new task skeletons to relocate. We will then

return the sequence of grounded joint actions together with

objects M∗. Furthermore, in certain situations, the grounding

may totally fail. In such cases, we will simply return a failure

flag.

We denote the volume of work space occupied by

grounded joint actions S f ut as V f ut . We denote the set of

123



Autonomous Robots

Algorithm 2 Task- Skeleton Grounding(S̄, S f ut , M f ut , V f ut , Mout )

1: input: a task skeleton S̄; a sequence of grounded joint actions S f ut ; the set of objects that are planned to be moved in S f ut , denoted as

M f ut ; the volume of work space that is occupied by S f ut , denoted as V f ut ; the set of movable objects that are not planned to be moved

in S f ut and S̄, denoted as Mout .

2: result: three possible returns: (i) a sequence of grounded joint actions S∗, indicating that we successfully find an executable task-and-

motion plan; (ii) a sequence of grounded joint actions S′ and a set of objects M∗, indicating that we can only partially ground task skeleton

S̄ and we have to relocate objects M∗; (iii) a failure flag.

3: notation: We denote the sequence concatenating operation as ⊕.

4: G = goal specification of the MR-GTAMP problem instance

5: M = the set of movable objects of the MR-GTAMP problem instance

6: for t ∈ [T , . . . , 1] do

7: S̄[t] = PartiallyGroundedJointActionAt(S̄, t)

8: Mt , Rt = ObjectsAndRobotsToMove(S̄[t])
9: P = FindPlacements(Mt , Mout ∪ M f ut ∪ F ∪ V f ut , S̄[t])
10: if P is None then

11: P = FindPlacements(Mt , M f ut ∪ F ∪ V f ut , S̄[t])
12: if P is None then

13: return failure flag

14: � = FindTrajectories(Mt , Rt , P, M f ut ∪ F, S̄[t])
15: if � is None then

16: return failure flag

17: S f ut = CreateGroundedJointAction(S̄[t], �, P) ⊕ S f ut

18: M∗ = HaveNotBeenMoved(G, S f ut ) ∪ MovablesOcclude(M, S f ut )

19: S′ = S f ut

20: return S′, M∗

21: � = FindTrajectories(Mt , Rt , P, Mout ∪ M f ut ∪ F, S̄[t])
22: if � is None then

23: � = FindTrajectories(Mt , Rt , P, M f ut ∪ F, S̄[t])
24: if � is None then

25: return failure flag

26: S f ut = CreateGroundedJointAction(S̄, t, �, P) ⊕ S f ut

27: M∗ = HaveNotBeenMoved(G, S f ut ) ∪ MovablesOcclude(M, S f ut )

28: S′ = S f ut

29: return S′, M∗

30: M f ut = M f ut ∪ Mt

31: S f ut = CreateGroundedJointAction(S̄, t, �, P) ⊕ S f ut

32: V f ut = V f ut .append(SweptVolume(�, Mt , Rt ))

33: S∗ = S f ut

34: return S∗

movable objects that will be moved by grounded joint actions

S f ut as M f ut . We denote the set of movable objects that will

not be moved by task skeleton S̄ and grounded joint actions

S f ut as Mout . For time step t ∈ [1, . . . , T ], we denote the set

of objects that are planned to be moved as Mt and the set of

robots that are planned to move them as Rt . Recall that we

denote the goal specification and the set of movable objects

as G and M, respectively.

The detailed grounding algorithm is as follows (Alg. 2).

The grounding starts at the last time step T . For time step t ,

we first sample placements for objects Mt that are collision-

free with respect to objects Mout ∪M f ut at their initial poses,

fixed objects F and volume V f ut (Alg. 2, line 9). The sampled

placements should not collide with volume V f ut , because,

otherwise, they will prevent the execution of future grounded

joint actions that occupy V f ut .

Given the placements, we plan pick trajectories, place

trajectories and handover trajectories for objects Mt and

robots Rt that are collision-free with respect to objects

F∪M f ut ∪Mout at their initial poses (Alg. 2, line 21). We note

that, in addition to the fixed objects F and the objects Mout ,

the planned trajectories should not collide with the objects

M f ut that are moved in future grounded joint actions.

Since we may move multiple robots and objects con-

currently, we do not allow collisions between the robots,

collisions between the moved objects and collisions between

a robot and a moved object that is not intended to be manip-

ulated by that robot.

If we succeed in grounding the joint action at time step

t , then we expand volume V f ut with the volume occupied

by the newly planned robot and object trajectories, expand

the set M f ut with the moved objects Mt and expand the

grounded joint actions S f ut with the newly grounded joint

action (Alg. 2, line 30-32). We then start to ground the joint

action at time step t −1. If we succeed in grounding the joint

actions at every time step, we return an executable task-and-

123



Autonomous Robots

motion plan S∗ = S f ut . However, if we fail at grounding the

joint action at time step t , we relax the collision constraints by

allowing the sampled placements and trajectories to collide

with the objects Mout since we can generate new skeletons

to move them later (Alg. 2, line 10-20 and line 22-29). If

we succeed after relaxing the constraints, then we terminate

the grounding and return the sequence of the grounded joint

actions S′ = S f ut and a set of objects M∗. The set of objects

M∗ consists of the objects that are named in the goal spec-

ification G but have not yet been moved and the movable

objects in the environment that occlude the grounded joint

actions S′ (Alg. 2, line 18 and line 27). During the search pro-

cess (Sec. 4.2), the returned S′ and M∗ are then used as input

to the first key component (Sec. 4.2.1) to generate new task

skeletons. If, after relaxing the collision constraints, we still

cannot find feasible placements and paths, then we simply

return failure.

5 Experiments

We empirically evaluate our framework in two challenging

domains and show that it can generate effective collaborative

task-and-motion plans more efficiently than two baselines.

5.1 Baselines

We compare our framework with two state-of-the-art TAMP

frameworks. We provide both baseline planners with infor-

mation about the reachable regions of each robot.

Ap1 is a multi-robot extension of the RSC algorithm (Stil-

man et al. 2007) by assuming that the robots form a single

composite robot. The action space includes all possible

combinations of the single-robot actions and collaboration

actions. Unlike our framework, which eliminates infeasible

task plans using computed information about the manipu-

lation capabilities of individual robots (Sec. 4.1), thereby

pruning the search space, Ap1 would require searching

through a large space of all possible combinations of multi-

agent actions. Moreover, the focus of Ap1 is on feasibility of

the task-and-motion plans, rather than on the plan length and

number of objects moved. In contrast, our framework uses the

intermediate grounding results (Sec. 4.2) to guide the search

towards more effective task-and-motion plans, considering

the resulting plan length and the number of objects moved.

Ap2 is a general MR-TAMP framework (Pan et al. 2021)

that is efficient in searching for promising task plans based on

the constraints incurred during motion planning. We imple-

ment the planner in a way such that geometric constraints

can be utilized efficiently, e.g., the planner can identify

that it needs to move the blocking objects away before it

can manipulate the blocked objects. Unlike our framework,

which guides the search for feasible positions for object relo-

cation using sampled future actions (Sec. 4.2.2), Ap2 does

not include guidance for finding feasible positions for object

relocation, which can facilitate finding feasible plans in con-

fined settings.

5.2 Benchmark domains

We evaluate the efficiency and effectiveness of our method

and the two baselines in the packaging domain shown in

Fig. 1 (left) and the box-moving domain shown in Fig. 1

(right).

Packaging (PA): In this domain, each problem instance

includes 2 to 6 robots, 3 to 5 goal objects, 2 to 13 mov-

able objects besides the goal objects, 1 start region and 3 goal

regions. As in Kim et al. (2022), we omit motion planning and

simply check for collisions at the picking and placing con-

figurations computed by inverse kinematics solvers in this

domain, because collisions in this domain mainly constrain

the space of feasible picking and placing configurations. We

use Kinova Gen2 lightweight robotic arms. For each bench-

mark problem instance, we conduct 20 trials with a timeout

of 1, 200 seconds. For all methods, we also count a trial as

failed, if all possible task plans have been tried.

Box-moving (BO): In this domain, we evaluate our frame-

work for mobile manipulating tasks where the robots have to

move target objects from one room to the other room (Fig. 1

(right)). We use simulated PR2 robots. In this domain, each

problem instance includes 2 robots, 2 goal objects, 6 mov-

able objects besides the goal objects, 1 start region and 1

goal region. For simplification, we do not consider handover

actions. For each benchmark problem instance, we conduct

20 trials with a timeout of 1, 200 seconds. For both methods,

we also count a trial as failed, if all possible task plans have

been tried.

We use bidirectional rapidly-exploring random trees

(LaValle 2006) for motion planning and IKFast (Diankov

2010) for inverse kinematics solving. All methods share the

same grasp sets, the same sets of single-robot actions and the

same sets of collaboration actions. All experiments were run

on an AMD Ryzen Threadripper PRO 3995WX Processor

with a memory of 64GB.

5.3 Results

We refer to the number of time steps as makespan and the

number of moved objects as motion cost.

Planning time and success rate. Table 1 shows that our

method outperforms both baseline methods on all problem

instances with different numbers of goal objects and movable

objects with respect to both the planning times and success

rates. Ap1 and our method achieved higher success rates on

all problem instances than Ap2 because the reverse search

strategy (Sec. 4.2.2) utilized in Ap1 and our method can find

123



Autonomous Robots

T
a
b
le
1

C
o
m

p
ar

is
o
n

o
f

th
e

p
ro

p
o
se

d
m

et
h
o
d

w
it

h
tw

o
b
as

el
in

e
m

et
h
o
d
s

in
th

e
tw

o
b
en

ch
m

ar
k

d
o
m

ai
n
s

re
g
ar

d
in

g
th

e
su

cc
es

s
ra

te
,
p
la

n
n
in

g
ti

m
e,

m
ak

es
p
an

an
d

m
o
ti

o
n

co
st

P
ro

b
le

m
in

st
an

ce
S

u
cc

es
s

ra
te

%
P

la
n

n
in

g
ti

m
e

(s
)

M
ak

es
p

an
M

o
ti

o
n

co
st

A
p
1

A
p
2

O
u
rs

A
p
1

A
p
2

O
u
rs

A
p
1

A
p
2

O
u
rs

A
p
1

A
p
2

O
u
rs

PA
5

1
0
0
.0

8
0
.0

1
0
0
.0

5
.6

(±
1
.3

)
6
.1

(±
2
.1

)
2
.4

(±
0
.2

)
3
.0

(±
0
.2

)
2
.9

(±
0
.2

)
2
.8

(±
0
.2

)
3
.8

(±
0
.2

)
3
.6

(±
0
.2

)
3
.6

(±
0
.2

)

PA
7

8
0
.0

7
0
.0

1
0
0
.0

3
9
.8

(±
1
2
.8

)
1
0
.5

(±
2
.9

)
4
.0

(±
0
.9

)
3
.7

(±
0
.3

)
3
.0

(±
0
.3

)
3
.1

(±
0
.2

)
4
.8

(±
0
.3

)
4
.3

(±
0
.2

)
4
.1

(±
0
.2

)

PA
1
0

5
5
.0

4
0
.0

9
0
.0

1
2
9
.2

(±
5
8
.2

)
N

/A
1
9
.6

(±
6
.1

)
4
.6

(±
0
.6

)
N

/A
4
.2

(±
0
.3

)
5
.6

(±
0
.6

)
N

/A
5
.2

(±
0
.4

)

B
O

8
8
5
.0

3
5
.0

1
0
0
.0

2
4
6
.5

(±
5
4
.2

)
N

/A
1
8
2
.2

(±
4
8
.3

)
4
.8

(±
0
.2

)
N

/A
3
.4

(±
0
.3

)
7
.6

(±
0
.1

)
N

/A
5
.0

(±
0
.6

)

T
h
e

n
u
m

b
er

s
in

th
e

n
am

es
o
f

th
e

p
ro

b
le

m
in

st
an

ce
s

in
d
ic

at
e

th
e

n
u
m

b
er

s
o
f

th
e

g
o
al

o
b
je

ct
s

an
d

th
e

m
o
v
ab

le
o
b
je

ct
s

b
es

id
es

th
e

g
o
al

o
b
je

ct
s.

In
PA

5
,
PA

7
an

d
PA

1
0
,
ea

ch
p
ro

b
le

m
in

st
an

ce
h
as

3

g
o

al
o

b
je

ct
s

an
d

2
ro

b
o

ts
.

W
e

o
m

it
th

e
p
la

n
n

in
g

ti
m

e
an

d
so

lu
ti

o
n

q
u

al
it

y
re

su
lt

s
fo

r
A

p
2

o
n

PA
1

0
an

d
B

O
8

b
ec

au
se

it
s

su
cc

es
s

ra
te

is
si

g
n

ifi
ca

n
tl

y
lo

w
er

th
an

th
o
se

o
f

th
e

o
th

er
tw

o
m

et
h
o
d
s

feasible object placements much more efficiently than the

forward search strategy used in Ap2. Moreover, Ap2 can gen-

erate task plans that include irrelevant objects while Ap1 and

our method focus on manipulating the important objects, like

blocking objects for necessary manipulation or goal objects.

Our method achieved higher success rates with shorter plan-

ning times than Ap1 on the difficult problem instances PA7,

PA10 and BO8 because our method first generates promis-

ing task skeletons (Sec. 4.2.1) that use the information about

the collaborative manipulation capabilities of the individ-

ual robots to prune the task plan search space, which can

be extremely large when there are many objects and mul-

tiple robots (Pan et al. 2021). The main cause of failure of

our method is running out of task skeletons which can be

addressed by incrementally adding more task skeletons dur-

ing the search process.

Solution quality. Table 1 shows that our method can gener-

ate effective task-and-motion plans with respect to the motion

cost and the makespan. Our method first generates task skele-

tons with short makespans by incrementally increasing time

step limit and with low motion costs by incorporating the

motion cost into the objective function of the MIP formula-

tion (Sec. 4.2.1). On the other hand, our MCTS exploration

strategy motivates the planner to search for effective plans

with small numbers of moved objects. It should be noted

that, although Ap2 generated plans with shorter makespans

for PA7, it has lower success rates and longer planning times

than our method. Also, Ap1 generated plans that move sig-

nificantly more objects for PA7, PA10 and BO8 than our

method because it uses a depth-first search strategy for find-

ing feasible plans (Stilman et al. 2007).

Scalability evaluation. We evaluated the scalability of our

method in the PA domain with 18 movable objects, includ-

ing 5 goal objects and 2 to 6 robots. Table 2 shows that our

method can solve these large problem instances. For problem

instances with 3 and more robots, it achieved higher success

rates compared to the problem instances with 2 robots. More-

over, our method can achieve shorter makespans and lower

motion costs when more robots are involved. These results

show that our method can effectively utilize multiple robots

to address challenging planning problem instances and gen-

erate intelligent collaboration strategies for multiple robots.

However, in our experiment, the success rates for problem

instances with 5 and 6 robots are lower than the success rates

for problem instances with 3 and 4 robots. The required plan-

ning time also increases when more robots are added, starting

from the problem instances with 3 robots. This is because

adding more robots into the system will lead to more cluttered

environments and more difficult collision avoidance between

robots. In future work we will explore potentially mitigating

this issue by carefully designing the layout of robots (Tay

and Ngoi 1996).

123



Autonomous Robots

Table 2 The results of the

proposed method in domain PA

regarding the success rate,

planning time, makespan and

motion cost

Problem instance Success rate % Planning time (s) Makespan Motion cost

2 robots 60.0 148.4 (±36.8) 6.1 (±0.4) 8.9 (±0.4)

3 robots 80.0 99.0 (±48.6) 4.9 (±0.3) 8.2 (±0.5)

4 robots 85.0 109.1 (±33.6) 4.7 (±0.3) 8.2 (±0.4)

5 robots 75.0 207.0 (±48.7) 4.1 (± 0.2) 8.0 (± 0.3)

6 robots 70.0 362.7 (± 64.6) 3.4 (± 0.2) 7.7 (± 0.4)

The numbers in the names of the problem instances indicate the numbers of the robots

Fig. 5 A human operator is installing a bolt into the roof bolter (https://

bit.ly/3tfYOMY)

6 Application study: roof bolting

Roof bolting is an essential operation within the underground

mining cycle, as it aims to provide support to the exposed roof

and ribs of the new excavation (Peng and Tang 1984; Mark

2002) (Fig. 5). 2 The roof bolting operation follows imme-

diately after the extraction task and reinforces the roof to

provide a safe working environment. Roof bolting is utilized

in almost all coal mining operations around the world.

The roof bolt binds the unstable roof together, prevent-

ing movement in a rock mass. There are several types of

bolt installation techniques, depending on the mechanics of

the bolt and the rock. This application study focuses on a

technique where installation of the bolts is done by drilling a

hole in the roof, inserting the resin and inserting the bolt. The

roof bolting operation is a labor-intensive task that requires

the operators of the machine to install and replace detach-

able drill steels and cutting bits, holding and positioning of

resin cartridges and 1.2 to 3 m (4 to 10 foot) long bolts in

a pattern that can be half a meter square. During the roof

bolts installation process, the operators are at risk from work-

ing in the proximity of potentially unsupported roof, loose

bolts, hydraulic-powered equipment, gas and heavy tools in

awkward conditions. Apart from these safety risks, the oper-

2 https://bit.ly/3tfYOMY

ators are also vulnerable to inhalation of dust and noise from

drilling and bolting processes which can be traced to the sev-

eral pumps from the roof bolter machinery (Jiang and Luo

2021). The operation of these machines requires attention to

the risks, which, combined with fatigue, leads to accidents,

injuries and severe injuries including fatalities. Therefore,

more and more research efforts have been put into developing

robot systems that are capable of carrying out the sequence

of roof-bolting operations to achieve a high-impact health

and safety intervention for roof-bolter operators (Van Duin

et al. 2013; Schafrik et al. 2022).

The bolting machines have been automated before, but

these modifications are not popular with the community

because autonomous machines are highly restricted in their

usage. They are setups for a single-purpose drilling and bolt-

ing operation, where in most mining and civil construction,

flexible installation is desired.

Figure 6 shows a robot-assisted roof-bolting system con-

structed in our lab (Schafrik et al. 2022). In a roof-bolting

task, the system does following actions step-by-step: (i) drill

a hole in the roof with a drill steel; (ii) remove the drill steel;

(iii) install resin; (iv) install a bolt. To perform these actions

successfully, the roof-bolter operator and the roof bolter need

to collaborate seamlessly. The role of the roof bolter is to drill

the roof and install the resin and the bolt into the roof. The role

of the operator is to pick up the drill steel, the resin and the bolt

and hand them over to the roof bolter. In our robot-assisted

roof-bolting system, we replace the human roof-bolter opera-

Fig. 6 The roof bolting system

123

https://bit.ly/3tfYOMY
https://bit.ly/3tfYOMY
https://bit.ly/3tfYOMY


Autonomous Robots

tor with an ABB IRB 1600 robot because of its high accuracy

and flexibility.

Industrial robots have been widely deployed in facto-

ries (Nikolaidis and Shah 2012) in isolation from people,

where their tasks can be pre-defined in the form of way-

points. However, underground mine is usually cluttered and

dynamic. For example, human workers who are focused on

other tasks may leave tools around unconsciously. The left

tools and other objects in the environment will become obsta-

cles blocking the roof-bolting operation. The robot arm then

has to clear its operation space, i.e., move movable obstacles

out of the way. Moreover, to perform roof-bolting tasks, it is

critical to coordinate the roof bolter and robot arm because

of their different capabilities. On one hand, we need the roof

bolter to drill holes in the roof and install the bolts into the

roof; on the other hand, we need the robot arm to hand bolts,

resins and drill steels over to the roof bolter and rearrange

movable obstacles. To automatically generate manipulation

plans to coordinate the roof bolter and the robot arm, the

planning framework should first compute the occlusion and

reachability information for the roof bolter and the robot

arm (Sec. 4.1) and then generate effective manipulation plans

accordingly.

We observe that in each step of the roof-bolting operation

we have a target object whose target configuration is spec-

ified and numerous objects that can be treated as movable

obstacles. By treating the roof bolter as the second robot,

we propose to formulate each step of the roof-bolting oper-

ation as a multi-robot geometric task-and-motion planning

(MR-GTAMP) problem.

6.1 Formulating roof-bolting operation as
MR-GTAMP problems

In the roof-bolting task, we need to move the drill steel, the

resin and the bolt to their target configurations in the roof.

In our application study, we only focus on bolt placement.

Other actions can be formulated as MR-GTAMP problems

similarly. We assume the target configuration of the bolt has

been pre-defined. We formulate an MR-GTAMP problem

where we have two robots, i.e., a roof bolter and an ABB IRB

1600 robot arm. These two robots have different reachability:

the roof bolter can place the bolt into its target configuration,

whereas the robot arm can pick up the bolt from its initial

configuration. Moreover, the robot arm can reach most of the

movable objects in the environment.

The reachability of the roof bolter and the robot arm can be

computed by calling motion planning algorithms (Sec. 4.1)

and can be easily encoded using collaborative manipulation

task graphs (CMTGs) (Sec. 4.2.1). We will then use our

proposed framework to compute executable task-and-motion

plans for the roof bolter and the robot arm that account for

their different manipulation capabilities.

6.2 Two example scenarios

In our application study, we run our proposed planner for

two example scenarios. We show the environment setups in

simulation and the built CMTGs (Figs. 7,8,9,10). We denote

the ABB robot arm and the roof bolter as R1 and R2. For

each action, we denote the object that is moved as Mi , the

grasp that is used by robot Rk as gMi ,Rk
and the region to

which the object is moved as Re j .

Example scenario 1. In the first example scenario, we have

the bolt as a target object (object M1) and three movable

obstacles (objects M2, M3, M4) (Fig. 7). The CMTG for mov-

ing object M1 is shown in Fig. 8 (left). The CMTG shows

that to move object M1, the ABB robot arm and the roof

bolter have to perform a handover action. Object M4 blocks

the ABB robot arm from picking up object M1 and object M3

blocks the ABB robot arm from picking up object M4. Given

the CMTG, we can generate a task skeleton. During ground-

ing (Sec. 4.2.2) the generated task skeleton, the planner finds

that object M2 blocks the handover action between the ABB

robot arm and the roof bolter. The planner then generates a

new CMTG to move object M2 (Fig. 8 (right)).

Example scenario 2. In the second example scenario, we

have a target object, bolt (object M1) and two movable obsta-

cles (objects M2, M3) (Fig. 9). The CMTG for moving object

M1 is shown in Fig. 10 (left). The CMTG shows that to move

Object

Object

Object

Object

M1

M2
M3

M4

Fig. 7 Example scenario 1 in the simulation

Fig. 8 Generated CMTGs for example scenario 1. R1 and R2 represent

the ABB robot arm and the roof bolter

123



Autonomous Robots

Fig. 9 Example scenario 2 in the simulation

Fig. 10 Generated CMTGs for example scenario 2. R1 and R2 represent

the ABB robot arm and the roof bolter

object M1, the ABB robot arm and the roof bolter have to

perform a handover action. Object M2 blocks the roof bolter

from placing object M1 to its target configuration. During

grounding (Sec. 4.2.2) the generated task skeleton based on

the CMTG, the planner finds that object M3 blocks the han-

dover action between the ABB robot arm and the roof bolter.

The planner then generates a new CMTG to move object M3

(Fig. 10 (right)).

6.3 Planning and execution details

Planning. We conduct 5 trials on an AMD Ryzen Thread-

ripper PRO 3995WX Processor with a memory of 64GB for

each scenario. The average planning time for example sce-

nario 1 and example scenario 2 are 144.1(±21.5) seconds and

100.8(±15.4) seconds. We observe that most of the plan-

ning time is spent on task skeleton grounding (Sec. 4.2.2)

where motion planning is extensively called. The average

planning time spent on motion planning for example sce-

nario 1 and example scenario 2 are 143.4(±21.5) seconds and

100.2(±15.4) seconds. This is because it is challenging to

plan collision-free motion trajectories to move large objects

such as the bolt and drill steel in a confined workspace. On the

other hand, it only takes 0.6(±0.0) seconds and 0.6(±0.0)

seconds on average to compute task skeletons (Sec. 4.2.1)

for example scenario 1 and example scenario 2.

Execution. In Figs. 11 and 12 we show the execution of

the generated plans in simulation and real-world. We include

videos of scenarios 1 and 2 in the supplemental material.

The execution time of the generated plans for example sce-

nario 1 and example scenario 2 are 250.0 seconds and 270.0

seconds. To execute the planned motion trajectories on the

ABB robot, we first manually smooth the motion trajectories

by downsampling the waypoints of the motion trajectories.

We then automatically generate ABB robot instructions in

RAPID (Robotics 2007) from the waypoints. Each waypoint

is a robot configuration defined in the ABB robot’s joint space

and is as an argument passed to MoveJ command in RAPID.

7 Discussion

In this paper, we presented a framework for MR-GTAMP

problems by proposing a novel MIP formulation to utilize

information about the collaborative manipulation capabilities

of the individual robots to generate promising task skeletons

for guiding the planning search. We proposed an efficient

task-skeleton grounding algorithm inspired by the previ-

ous work on MAMO (Stilman et al. 2007). The proposed

components are integrated via a Monte-Carlo Tree Search

exploration strategy that searches for effective task-and-

motion plans. We showed that our framework outperforms

two baselines on two challenging MR-GTAMP problems

with respect to the planning time and success rates, can gen-

erate effective plans with respect to the resulting plan length

and the number of objects moved, and can scale up to large

problem instances. We also showed that our framework can

be applied in the roof-bolting operation for underground min-

ing, where a robotic arm coordinates with an autonomous

roof bolter.

Limitations. Our work is limited in many ways. In our

work, we consider only monotone instances of the MR-

GTAMP problem, where each object is moved only once.

This assumption limits us from solving problem instances

that require moving one object multiple times (Kim and Shi-

manuki 2020) such as Tower of Hanoi, object swapping tasks.

We leave the extension to non-monotone problem instances

for future work. Our framework also pre-defines handover

regions for different robots to compute collaborative manip-

ulation information (Sec. 4.1). This approach may be limited

for dynamic environments such as human homes, thus we

plan to incorporate a handover region searching process in

the task-skeleton grounding component (Sec. 4.2.2) in the

future. We have also assumed full observability of the scene

and therefore cannot handle uncertainties, noise in robot per-

ception (Muguira-Iturralde et al. 2022). We plan to account

for sensing limitations in the future (Nikolaidis et al. 2009,

2016). Currently, our approach aims to generate plans with

short plan lengths and small numbers of moved objects.

However, we do not consider the length of the resulting

motion trajectories and the corresponding robot execution

123



Autonomous Robots

Fig. 11 Frames showing the

execution of the generated plan

for example scenario 1 in both

simulation (Left) and real-world

(Right)

time (Chen et al. 2022; N et al. 2023), thus we plan to account

for these evaluation metrics in the future.

Future work also includes using learning to improve the

planning efficiency (Kim et al. 2022) and extending the devel-

oped techniques to more general MR-TAMP problems (Pan

et al. 2021) and more diverse environments (Fontaine et al.

2021; Zhang et al. 2020).

123



Autonomous Robots

Fig. 12 Frames showing the

execution of the generated plan

for example scenario 2 in both

simulation (Left) and real-world

(Right)

Supplementary Information The online version contains supplemen-

tary material available at https://doi.org/10.1007/s10514-023-10148-

y.

Acknowledgements This work was supported by the National Science

Foundation NRI # 2024936 and the Alpha Foundation for the Improve-

ment of Mine Safety and Health # AFC820-68.

Author Contributions HZ led the algorithm development, experiments,

and paper editing; SC and JL helped with the algorithm development

and paper editing; JZ and PK helped with the experiments; SK, ZA, SS

and SN supervised the project.

Funding Open access funding provided by SCELC, Statewide Califor-

nia Electronic Library Consortium

Declarations

Conflict of interest The authors have no competing interests to declare

that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing, adap-

tation, distribution and reproduction in any medium or format, as

123

https://doi.org/10.1007/s10514-023-10148-y
https://doi.org/10.1007/s10514-023-10148-y


Autonomous Robots

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indi-

cate if changes were made. The images or other third party material

in this article are included in the article’s Creative Commons licence,

unless indicated otherwise in a credit line to the material. If material

is not included in the article’s Creative Commons licence and your

intended use is not permitted by statutory regulation or exceeds the

permitted use, you will need to obtain permission directly from the copy-

right holder. To view a copy of this licence, visit http://creativecomm

ons.org/licenses/by/4.0/.

References

Ahn, J., Kim, C., & Nam, C. (2021). Coordination of two robotic

manipulators for object retrieval in clutter. arXiv preprint

arXiv:2109.15220

Behrens, J. K., Stepanova, K., & Babuska, R. (2020) Simultaneous

task allocation and motion scheduling for complex tasks exe-

cuted by multiple robots. In IEEE international conference on

robotics and automation (pp. 11443–11449). https://doi.org/10.

1109/ICRA40945.2020.9197103

Bidot, J., Karlsson, L., Lagriffoul, F., & Saffiotti, A. (2017). Geometric

backtracking for combined task and motion planning in robotic

systems. Artificial Intelligence, 247, 229–265.

Chen, J., Li, J., Huang, Y., Garrett, C., Sun, D., Fan, C., Hofmann, A.,

Mueller, C., Koenig, S., & Williams, B. C. (2022). Cooperative

task and motion planning for multi-arm assembly systems. arXiv

preprint arXiv:2203.02475 (2022)

Coumans, E., & Bai, Y. (2016–2019). PyBullet, a Python module

for physics simulation for games, robotics and machine learning.

http://pybullet.org

Cplex, I. I. (2009). V12. 1: User’s manual for cplex. International Busi-

ness Machines Corporation, 46(53), 157.

Danielczuk, M., Kurenkov, A., Balakrishna, A., Matl, M., Wang,

D., Martín-Martín, R., Garg, A., Savarese, S., & Goldberg, K.

Mechanical search: Multi-step retrieval of a target object occluded

by clutter. In IEEE international conference on robotics and

automation (pp. 1614–1621). https://doi.org/10.1109/ICRA.2019.

8794143

Danna, E., Fenelon, M., Gu, Z.,& Wunderling, R. (2007) Generating

multiple solutions for mixed integer programming problems. In

Integer programming and combinatorial optimization (pp. 280–

294)

Dantam, N. T., Kingston, Z. K., Chaudhuri, S., & Kavraki, L. E. (2018).

An incremental constraint-based framework for task and motion

planning. IJRR, 37(10), 1134–1151.

Diankov, R. (2010) Automated construction of robotic manipulation

programs. PhD thesis, Carnegie Mellon University

Fontaine, M., Hsu, Y.-C., Zhang, Y., Tjanaka, B., & Nikolaidis, S.

(2021). On the Importance of Environments in Human-Robot

Coordination. In Proceedings of robotics: Science and systems,

virtual. https://doi.org/10.15607/RSS.2021.XVII.038

Garrett, C. R., Lozano-Pérez, T., & Kaelbling, L. P. (2020). Pddlstream:

Integrating symbolic planners and blackbox samplers via opti-

mistic adaptive planning. In ICAPS (vol. 30, pp. 440–448)

Garrett, C. R., Chitnis, R., Holladay, R., Kim, B., Silver, T., Kael-

bling, L. P., & Lozano-Pérez, T. (2021). Integrated task and motion

planning. Annual Review of Control, Robotics, and Autonomous

Systems, 4(1), 265–293. https://doi.org/10.1146/annurev-control-

091420-084139

Griva, I., Nash, S. G., & Sofer, A. (2009). Linear and nonlinear opti-

mization (Vol. 108). Philadelphia, Pennsylvania, USA: Siam.

Hartmann, V. N., Orthey, A., Driess, D., Oguz, O. S., & Toussaint,

M. (2021). Long-horizon multi-robot rearrangement planning for

construction assembly. arXiv preprint arXiv:2106.02489 (2021)

Hauser, K. (2013). Minimum constraint displacement motion planning.

In Robotics: science and systems. https://doi.org/10.15607/RSS.

2013.IX.017

Hoffmann, J. (2001). Ff: The fast-forward planning system. AI Maga-

zine, 22, 57–62.

Hun Cheong, S., Cho, B. Y., Lee, J., Kim, C., & Nam, C. (2020). Where

to relocate?: Object rearrangement inside cluttered and confined

environments for robotic manipulation. In IEEE international con-

ference on robotics and automation (pp. 7791–7797). https://doi.

org/10.1109/ICRA40945.2020.9197485

Jiang, H., & Luo, Y. (2021). Development of a roof bolter drilling control

process to reduce the generation of respirable dust. International

Journal of Coal Science & Technology, 8(2), 199–204.

Khodeir, M., Agro, B., & Shkurti, F. (2023). Learning to search in task

and motion planning with streams. IEEE Robotics and Automa-

tion Letters, 8(4), 1983–1990. https://doi.org/10.1109/LRA.2023.

3242201

Kim, B., & Shimanuki, L. (2020). Learning value functions with rela-

tional state representations for guiding task-and-motion planning.

In Conference on robot learning (vol. 100, pp. 955–968)

Kim, B., Kaelbling, L. P., & Lozano-Pérez, T. (2019). Adversar-

ial actor-critic method for task and motion planning problems

using planning experience. In AAAI conference on artificial intel-

ligence (vol. 33, pp. 8017–8024). https://doi.org/10.1609/aaai.

v33i01.33018017

Kim, B., Shimanuki, L., Kaelbling, L. P., & Lozano-Pérez, T.

(2022). Representation, learning, and planning algorithms for

geometric task and motion planning. The International Journal

of Robotics Research, 41(2), 210–231. https://doi.org/10.1177/

02783649211038280

King, J. E., Cognetti, M., & Srinivasa, S. S. (2016). Rearrangement

planning using object-centric and robot-centric action spaces. In

IEEE international conference on robotics and automation (pp.

3940–3947). https://doi.org/10.1109/ICRA.2016.7487583

Kogo, T., Takaya, K., & Oyama, H. (2021) Fast milp-based task and

motion planning for pick-and-place with hard/soft constraints of

collision-free route. In 2021 IEEE SMC (pp. 1020–1027). IEEE

Krontiris, A., & Bekris, K. E. (2016). Efficiently solving general

rearrangement tasks: A fast extension primitive for an incre-

mental sampling-based planner. In ieee international conference

on robotics and automation (pp. 3924–3931). https://doi.org/10.

1109/ICRA.2016.7487581

Lagriffoul, F., Dimitrov, D., Bidot, J., Saffiotti, A., & Karlsson, L.

(2014). Efficiently combining task and motion planning using

geometric constraints. The International Journal of Robotics

Research, 33(14), 1726–1747.

LaValle, S. M. (2006). Planning algorithms. Cambridge, United King-

dom: Cambridge University Press.

Mansouri, M., Pecora, F., & Schüller, P. (2021). Combining task and

motion planning: Challenges and guidelines. Frontiers in Robotics

and AI. https://doi.org/10.3389/frobt.2021.637888

Mark, C. (2002). The introduction of roof bolting to US underground

coal mines (1948-1960): a cautionary tale. In Proceedgins of the

21st international conference on ground control in mining (pp.

150–160)

Muguira-Iturralde, J., Curtis, A., Du, Y., Kaelbling, L. P., & Lozano-

Pérez, T. (2022). Visibility-aware navigation among movable

obstacles. 2023 IEEE ICRA

N., H. V., & Marc, T. (2023). Towards computing low-makespan solu-

tions for multi-arm multi-task planning problems. arXiv preprint

arXiv:2305.17527

Nam, C., Lee, J., Hun Cheong, S., Cho, B. Y., & Kim, C. Fast and

resilient manipulation planning for target retrieval in clutter. In

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2109.15220
https://doi.org/10.1109/ICRA40945.2020.9197103
https://doi.org/10.1109/ICRA40945.2020.9197103
http://arxiv.org/abs/2203.02475
http://pybullet.org
https://doi.org/10.1109/ICRA.2019.8794143
https://doi.org/10.1109/ICRA.2019.8794143
https://doi.org/10.15607/RSS.2021.XVII.038
https://doi.org/10.1146/annurev-control-091420-084139
https://doi.org/10.1146/annurev-control-091420-084139
http://arxiv.org/abs/2106.02489
https://doi.org/10.15607/RSS.2013.IX.017
https://doi.org/10.15607/RSS.2013.IX.017
https://doi.org/10.1109/ICRA40945.2020.9197485
https://doi.org/10.1109/ICRA40945.2020.9197485
https://doi.org/10.1109/LRA.2023.3242201
https://doi.org/10.1109/LRA.2023.3242201
https://doi.org/10.1609/aaai.v33i01.33018017
https://doi.org/10.1609/aaai.v33i01.33018017
https://doi.org/10.1177/02783649211038280
https://doi.org/10.1177/02783649211038280
https://doi.org/10.1109/ICRA.2016.7487583
https://doi.org/10.1109/ICRA.2016.7487581
https://doi.org/10.1109/ICRA.2016.7487581
https://doi.org/10.3389/frobt.2021.637888
http://arxiv.org/abs/2305.17527


Autonomous Robots

IEEE international conference on robotics and automation (pp.

3777–3783). https://doi.org/10.1109/ICRA40945.2020.9196652

Nikolaidis, S., & Shah, J. (2012) Human-robot teaming using shared

mental models. In Proceedings of IEEE/ACM international confer-

ence on human-robot interaction, workshop on human-agent-robot

teamwork

Nikolaidis, S., Dragan, A., & Srinivasa, S. (2016). Viewpoint-based

legibility optimization. In ACM/IEEE international conference on

human-robot interaction (pp. 271–278). https://doi.org/10.1109/

HRI.2016.7451762

Nikolaidis, S., Ueda, R., Hayashi, A., & Arai, T. (2009). Optimal cam-

era placement considering mobile robot trajectory. In 2008 IEEE

international conference on robotics and biomimetics (pp. 1393–

1396). IEEE

Pan, T., Wells, A. M., Shome, R., & Kavraki, L. E. (2021). A general

task and motion planning framework for multiple manipulators. In

IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems (pp. 3168–3174). https://doi.org/10.1109/IROS51168.2021.

9636119

Peng, S. S., & Tang, D. (1984). Roof bolting in underground mining: A

state-of-the-art review. International Journal of Mining Engineer-

ing, 2(1), 1–42.

Quispe, A. H., Amor, H. B., & Christensen, H. I. (2016). Combining

arm and hand metrics for sensible grasp selection. In IEEE inter-

national conference on automation science and engineering (pp.

1170–1176). https://doi.org/10.1109/COASE.2016.7743537

Ren, T., Chalvatzaki, G., & Peters, J. (2021). Extended tree search for

robot task and motion planning. arXiv preprint arXiv:2103.05456

Robotics, A. (2007). Operating manual robotstudio. Sweden: Västerås.

Rodríguez, C., & Suárez, R. (2016). Combining motion planning and

task assignment for a dual-arm system. In IEEE/RSJ international

conference on intelligent robots and systems (pp. 4238–4243).

https://doi.org/10.1109/IROS.2016.7759624

Schafrik, S., Kolapo, P., & Agioutantis, Z. (2022) Development of an

automated roof bolting machine for underground coal mines. In

Proceedings of annual SOMP conference, Namibia

Shome, R., Solovey, K., Yu, J., Bekris, K., & Halperin, D. (2021).

Fast, high-quality two-arm rearrangement in synchronous, mono-

tone tabletop setups. IEEE Transactions on Automation Science

and Engineering, 18(3), 888–901. https://doi.org/10.1109/TASE.

2021.3055144

Silver, T., Chitnis, R., Curtis, A., Tenenbaum, J., Lozano-Perez, T., &

Kaelbling, L. P. (2020) Planning with learned object importance

in large problem instances using graph neural networks. arXiv

preprint arXiv:2009.05613

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A.,

Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y.,

Lillicrap, T., Hui, F., Sifre, L., van den Driessche, G., Graepel, T.,

& Hassabis, D. (2017). Mastering the game of go without human

knowledge. Nature, 550, 354.

Srivastava, S., Fang, E., Riano, L., Chitnis, R., Russell, S., & Abbeel, P.

(2014). Combined task and motion planning through an extensible

planner-independent interface layer. In 2014 IEEE ICRA (pp. 639–

646). IEEE

Stilman, M., Schamburek, J.-U., Kuffner, J., & Asfour, T. (2007).

Manipulation planning among movable obstacles. In IEEE inter-

national conference on robotics and automation (pp. 3327–3332).

https://doi.org/10.1109/ROBOT.2007.363986

Takano, R., Oyama, H., & Yamakita, M. (2021). Continuous

optimization-based task and motion planning with signal tempo-

ral logic specifications for sequential manipulation. In 2021 IEEE

international conference on robotics and automation (ICRA) (pp.

8409–8415). https://doi.org/10.1109/ICRA48506.2021.9561209

Tay, M., & Ngoi, B. (1996). Optimising robot workcell layout. The

International Journal of Advanced Manufacturing Technology, 12,

377–385.

Toussaint, M. (2015). Logic-geometric programming: An optimization-

based approach to combined task and motion planning. In Proceed-

ings of the 24th international conference on artificial intelligence.

IJCAI’15 (pp. 1930–1936). AAAI Press.

Toussaint, M., & Lopes, M. (2017). Multi-bound tree search for logic-

geometric programming in cooperative manipulation domains. In

2017 IEEE ICRA (pp. 4044–4051). IEEE

Toussaint, M., & Lopes, M. (2017). Multi-bound tree search for logic-

geometric programming in cooperative manipulation domains. In

IEEE international conference on robotics and automation (pp.

4044–4051). https://doi.org/10.1109/ICRA.2017.7989464

Van Duin, S., Meers, L., Donnelly, P., & Oxley, I. (2013). Automated

bolting and meshing on a continuous miner for roadway devel-

opment. International Journal of Mining Science and Technology,

23(1), 55–61.

Yang, Z., Garrett, C. R., & Fox, D. (2022). Sequence-based plan fea-

sibility prediction for efficient task and motion planning. arXiv

preprint arXiv:2211.01576

Zhang, H., Chan, S.-H., Zhong, J., Li, J., Koenig, S., & Nikolaidis,

S. (2022). A mip-based approach for multi-robot geometric task-

and-motion planning. In 2022 IEEE 18th international conference

on automation science and engineering (CASE) (pp. 2102–2109).

IEEE

Zhang, H., Fontaine, M., Hoover, A., Togelius, J., Dilkina, B., & Niko-

laidis, S. (2020). Video game level repair via mixed integer linear

programming. Proceedings of the AAAI Conference on Artificial

Intelligence and Interactive Digital Entertainment, 16(1), 151–

158.

Publisher’s Note Springer Nature remains neutral with regard to juris-

dictional claims in published maps and institutional affiliations.

Hejia Zhang received a B.E.

in Bioengineering from Zhejiang

University in 2017 and a M.S.

in Computer Science from Uni-

versity of Southern California in

2019. He is interested in Robotics,

Artificial Intelligence, and

Human-Robot Interaction.

Shao-Hung Chan received a B.S.

in Electrical Engineering from

National Cheng Kung University

in 2017 and an M.S. in Elec-

trical Engineering from National

Taiwan University in 2019. He

is interested in Artificial Intelli-

gence, Heuristic Search, and

Robotics. He received a USC

Annenberg Graduate Fellowship

in 2019 and a Ph.D. Sandwich

Program Fellowship at Ben-Gurion

University of the Negev in 2021.

123

https://doi.org/10.1109/ICRA40945.2020.9196652
https://doi.org/10.1109/HRI.2016.7451762
https://doi.org/10.1109/HRI.2016.7451762
https://doi.org/10.1109/IROS51168.2021.9636119
https://doi.org/10.1109/IROS51168.2021.9636119
https://doi.org/10.1109/COASE.2016.7743537
http://arxiv.org/abs/2103.05456
https://doi.org/10.1109/IROS.2016.7759624
https://doi.org/10.1109/TASE.2021.3055144
https://doi.org/10.1109/TASE.2021.3055144
http://arxiv.org/abs/2009.05613
https://doi.org/10.1109/ROBOT.2007.363986
https://doi.org/10.1109/ICRA48506.2021.9561209
https://doi.org/10.1109/ICRA.2017.7989464
http://arxiv.org/abs/2211.01576


Autonomous Robots

Jie Zhong received a B.S. in

Mechanical Engineering from

Xi’an Jiaotong University in 2020

and an M.S. in Mechanical Engi-

neering from University of South-

ern California in 2023. He is inter-

ested in artificial intelligence,

mechatronics, and robotics.

Jiaoyang Li is an assistant pro-

fessor in the Robotics Institute at

Carnegie Mellon University. Her

research focuses on multi-robot

planning and coordination. She

obtained a B.Eng. degree in

Automation from Tsinghua Uni-

versity, China in 2017 and a Ph.D.

degree in Computer Science from

the University of Southern Cali-

fornia, USA in 2022.

Peter Kolapo is a passionate and

well-trained mining engineer with

extensive expertise and enthusi-

asm for mining automation, rock

engineering and geomechanics.

Peter Kolapo is a PhD candidate

in the Department of Engineer-

ing at the University of Kentucky,

USA. Peter holds a Bachelor of

Mining Engineering from the Fed-

eral University of Technology

Akure, Nigeria and completed his

master’s degree in mining engi-

neering at the University of Wit-

watersrand, where he specialized

in rock mechanics and engineering. Peter’s current research entails

developing an automated roof bolting machine for underground min-

ing and tunneling operations. Peter has experience in testing the

accuracy of terrestrial laser scanning technologies, monitoring under-

ground rock mass movement, measuring in-situ stress at a deep-level

underground gold mine, shaft pillar stability analysis, coring of rock

and laboratory testing of rock samples all in South Africa. Peter has

a broad engineering background, covering the automation of mining

equipment, ground control technologies, underground stability analy-

sis, numerical modeling, rock drilling efficiency, laboratory testing of

rock samples, in-situ stress measurement, closure rate in underground

excavation, support design and pillar design.

Sven Koenig is Dean’s Profes-

sor of Computer Science at the

University of Southern Califor-

nia. Most of his research cen-

ters around techniques for deci-

sion making (planning and learn-

ing) that enable single situated

agents (such as robots or decision-

support systems) and teams of

agents to act intelligently in their

environments and exhibit

goal-directed behavior in real-time,

even if they have only incomplete

knowledge of their environment,

imperfect abilities to manipulate

it, limited or noisy perception or insufficient reasoning speed. Sven is

a fellow of the Association for the Advancement of Artificial Intel-

ligence (AAAI), the Association for Computing Machinery (ACM),

the Institute of Electrical and Electronics Engineers (IEEE), and

the American Association for the Advancement of Science (AAAS).

Additional information about Sven can be found on his webpages:

http://idm-lab.org.

Zach Agioutantis is the Min-

ing Engineering Foundation Pro-

fessor and Chair of the Depart-

ment of Mining Engineering at

the University of Kentucky. Prior

to that, he was a Professor and

the Director of the Rock Mechan-

ics Laboratory at the Technical

University of Crete in Greece for

over 25 years. Over the years, he

has taught several mining engi-

neering courses at the undergrad-

uate and graduate levels. He has

authored and co-authored more

than 80 peer-reviewed journal

papers and more than 300 conference papers on subjects related to

subsidence, applied and theoretical rock mechanics, soil mechanics,

slope stability, computer applications in mining and geotechnical engi-

neering, mining systems and mining systems simulation, as well as

sustainability in mining operations.

Steven Schafrik is an Associate

Professor in the Department of

Mining Engineering at the Uni-

versity of Kentucky. He has exten-

sive research experience in the

application of computer systems

in mining engineering, mine ven-

tilation, communication and nav-

igation in underground environ-

ments, virtual reality systems to

train miners, and numerous oth-

ers. He has led multiple teams on

research projects on mine equip-

ment automation, underground

mine communications, and dust

control and scrubbing systems. Several government agencies have

funded his research in addition to private sector entities. He is active

in professional societies, including the Society for Mining, Metallurgy,

and Exploration (SME) where he holds several administrative posi-

tions. He is the advisor to the University of Kentucky mine rescue

team.

123

http://idm-lab.org


Autonomous Robots

Stefanos Nikolaidis is an Assistant

Professor of Computer Science at

the University of Southern Cali-

fornia. His research draws upon

expertise on artificial intelligence,

procedural content generation and

quality diversity optimization and

leads to end-to-end solutions that

enable deployed robotic systems

to act robustly when interacting

with people in practical, real-world

applications. Stefanos completed

his PhD at CMU’s Robotics Insti-

tute and received an MS from

MIT, a MEng from the University

of Tokyo and a BS from the National Technical University of Athens.

Stefanos’ research has been recognized with an NSF CAREER award,

an oral presentation at NeurIPS and best paper awards and nomina-

tions from HRI, IROS, and ISR.

123


	Multi-robot geometric task-and-motion planning for collaborative manipulation tasks
	Abstract
	1 Introduction
	2 Related work
	3 Problem formulation
	4 Our approach
	4.1 Computing collaborative manipulation information
	4.2 Searching for task-and-motion plans
	4.2.1 Key component 1: generating promising task skeletons
	4.2.2 Key component 2: task-skeleton grounding


	5 Experiments
	5.1 Baselines
	5.2 Benchmark domains
	5.3 Results

	6 Application study: roof bolting
	6.1 Formulating roof-bolting operation as MR-GTAMP problems
	6.2 Two example scenarios
	6.3 Planning and execution details

	7 Discussion
	Acknowledgements
	References


