
Journal of Computational Physics 496 (2024) 112588

Available online 24 October 2023
0021-9991/© 2023 Elsevier Inc. All rights reserved.

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

Neural Galerkin schemes with active learning for 
high-dimensional evolution equations

Joan Bruna, Benjamin Peherstorfer ∗, Eric Vanden-Eijnden
Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, 10012, NY, USA

A R T I C L E I N F O A B S T R A C T

Keywords:
Scientific computing
Machine learning
Deep neural networks
Partial differential equations
Active learning
Monte Carlo

Deep neural networks have been shown to provide accurate function approximations in high 
dimensions. However, fitting network parameters requires informative training data that are often 
challenging to collect in science and engineering applications. This work proposes Neural Galerkin 
schemes based on deep learning that generate training data with active learning for numerically 
solving high-dimensional partial differential equations. Neural Galerkin schemes build on the 
Dirac-Frenkel variational principle to train networks by minimizing the residual sequentially over 
time, which enables adaptively collecting new training data in a self-informed manner that is 
guided by the dynamics described by the partial differential equations. This is in contrast to other 
machine learning methods that aim to fit network parameters globally in time without taking into 
account training data acquisition. Our finding is that the active form of gathering training data 
of the proposed Neural Galerkin schemes is key for numerically realizing the expressive power of 
networks in high dimensions. Numerical experiments demonstrate that Neural Galerkin schemes 
have the potential to enable simulating phenomena and processes with many variables for which 
traditional and other deep-learning-based solvers fail, especially when features of the solutions 
evolve locally such as in high-dimensional wave propagation problems and interacting particle 
systems described by Fokker-Planck and kinetic equations.

1. Introduction

Partial differential equations (PDEs) are used to describe the dynamics of systems in a wide variety of science and engineering 
applications. Many of these equations, however, are challenging to solve, analytically and even numerically. Classical techniques from 
scientific computing such as the finite element method and other grid-based methods can work well if the solution domain is low 
dimensional; however, in higher dimensions, grid-based methods fail because their computational costs increase at an exponential 
rate with the dimension of the domain. This curse of dimensionality leaves simulating many systems of interest out of scope of 
classical PDE solvers. For example, interacting particles described by Schrödinger’s and other kinetic equations such as Fokker-
Planck and Boltzmann equations lead to high-dimensional systems when the number of particles is more than a few. Even multiscale 
techniques as sophisticated as multigrid, fast multipole, and adaptive-mesh refinement methods fail in such instances. Thus, high-
dimensional approximation problems require a fundamentally different notion of discretization than via grids to circumvent the curse 
of dimensionality. In supervised machine learning applications, such adaptivity is achieved with deep neural networks (DNNs) via 
feature or representation learning.

* Corresponding author.
E-mail address: pehersto@cims.nyu.edu (B. Peherstorfer).

https://doi.org/10.1016/j.jcp.2023.112588
Received 6 February 2023; Received in revised form 17 October 2023; Accepted 18 October 2023



Journal of Computational Physics 496 (2024) 112588

2

J. Bruna, B. Peherstorfer and E. Vanden-Eijnden

The last few years have seen many developments in the direction of using DNNs for numerically solving PDEs, with the introduc-
tion of techniques such as physics-informed neural networks and the Deep Ritz method [1–4]. In these schemes, the solution of a 
time-dependent PDE is represented with a DNN and the parameters of the network are optimized by minimizing the residual of the 
PDE on collocation points from the temporal and spatial domains. These collocation points can lie on a grid, or be sampled randomly 
in time-space. Either way, their positions are usually not tailored to the (unknown) solution of the PDE. In high dimensions, the lack 
of adaptivity in the training procedure means that it ultimately suffers from the curse of dimensionality because all features of the 
solution have to be discovered without guidance. For example, consider the problem of fitting a DNN to a high-dimensional function 
with just one peak. If we use training data that are generated uniformly in the domain of the function then the number of samples 
has to exponentially increase with the dimension to fully resolve the fine-scale feature represented by the peak and therefore training 
without adapting the data to the function suffers from the curse of dimensionality. In addition, the training of collocation methods 
usually treats space and time equivalently, which is inefficient for initial value problems if the goal is predicting the PDE solution 
over long time ranges, and it can lead to a loss of causality in the solution.

In this work we take a different approach. We develop time-integrators for PDEs that use DNNs to represent the solution but 
update the parameters sequentially from one time slice to the next rather than globally over the whole time-space domain. To 
achieve this, we follow the well-established Dirac-Frenkel variational principle [5,6] that is widely used in computational chemistry 
[7] and scientific computing [8–10] and that has been considered in the context of PDEs and DNNs in the works [11,12]. It updates 
the network parameters so that the PDE residual is minimized as the numerical solution is evolved in time. The key novelty of our 
Neural Galerkin schemes with active learning is that we combine the sequential updating of the network parameters given via the 
Dirac-Frenkel variational principle with adaptive sampling (“data collection”) over time to determine at which sampling points to 
evaluate the residual to guide the parameter updates. This means that the measure—from which samples are drawn for estimating 
the expected residual—is adapted over time so that the samples follow where the important features of the solutions are, which is 
critical in high-dimensional spatial domains and when the solution has local features that evolve in the spatial domain. Importantly, 
our scheme uses the PDEs that govern the solution to inform the adaptive sampling as well, rather than relying on a black-box global 
optimization strategy. No a priori data about the PDE solutions is used, however. Overall, we summarize that our approach leverages 
adaptivity in both function approximation and sampling.

Summary of main contributions Our main results can be summarized as follows: 1. Given a nonlinear parametric representation 
(e.g. via a DNN) of the solution of an initial value problem for a time-dependent PDE, we leverage the Dirac-Frenkel variational prin-
ciple as in [5–12] to derive systems of nonlinear evolution equations for the parameters of the nonlinear parametric representation. 
The system of equations that govern the parameters can then be integrated using standard solvers with different level of sophisti-
cation, for example by dynamically choosing the time-step size based on properties of the numerical solution. In particular, with 
suitable time-integration schemes, the proposed approach takes larger time steps when possible and corrects to smaller time-step 
sizes if the dynamics of the solution require it. This is in contrast to typical collocation methods such as the Deep Ritz method that 
samples over the whole time-space domain without having the opportunity to exploit the smoothness of solutions over time and thus 
has to draw samples even when the solution hardly varies.

2. The evolution equations that we derive for the DNN parameters involve operators that require estimation via sampling in 
space. We show how to perform this sampling adaptatively, by using the property of the current solution itself, which is again in 
contrast to collocation methods. We propose a dynamical estimation of the loss, which is shown to be essential in two aspects: 
First, it achieves accuracy in situations where static, non-adaptive sampling methods fail to capture the details of the solution that 
determine its evolution. Second, it is key to the interpretation of the PDE solution itself, since the solution can be quite complicated, 
and sampling the solution field to compute statistics typically is the only way to exploit and interpret it.

3. We illustrate the viability and usefulness of our approach on a series of test cases. First we consider two equations in low 
dimensions, the Korteweg-de Vries (KdV) and the Allen-Cahn (AC) equations to show that our method can be used to efficiently 
capture solutions with localized features that move in the spatial domain. The features are solitons in the context of the KdV equation 
and domain walls in the context of the AC equation, which can both be modeled with few degrees of freedom using neural networks 
with specific nonlinear units. Second, we show that our method can be used to simulate PDEs in unbounded, high-dimensional 
domains, that are out of reach of standard methods. Specifically, we study advection equations of hyperbolic type with wave speeds 
that vary in space and time, and Fokker-Planck equations of parabolic type for the evolution of several interacting particles. In 
both cases, our results show that our method is able to efficiently capture the evolution of the solution and overcome the sampling 
limitations of static collocation-based methods.

Related works The need for adaptive data acquisition in the context of machine learning for problems in science and engineering 
has been emphasized in previous works [13]. There also is a large body of work [1–4] on numerically solving PDEs with DNN 
parametrizations based on collocation over the spatiotemporal domain (space-time discretizations) as well as on learning hyper-
networks that output networks that solve parametrized PDEs [14]. However, the global space-time training makes adaptive sampling 
challenging. Methods that do not rely on collocation typically exploit specific formulations of elliptic and semilinear parabolic 
PDEs [15,16], and focus on specific approximation tasks such as learning committor functions [17,18,13], coarse-graining [19–
21], or de-noising [22]. Thus, these approaches are limited in their scope and, in particular, are not applicable to pure transport 
dynamics given by kinetic and hyperbolic equations. There also is a range of surrogate-modeling methods [23,24] based on nonlinear 
parametrizations such as [25–35,10,36]; however, these methods require access to training sets of ground truth PDE solutions, which 
is precisely what is unavailable in our setting because classical PDE solvers are cursed by dimension. The surrogate-modeling method 



Journal of Computational Physics 496 (2024) 112588

3

J. Bruna, B. Peherstorfer and E. Vanden-Eijnden

introduced in [29,37] embeds large state vectors stemming from traditional discretizations of PDEs in low-dimensional manifolds and 
then propagates forward in time the embedding based on the dynamics given by the traditional discretizations; however, this means 
that in each time step a lifting from low to high dimensions has to be performed, which is inherently computationally expensive. In 
contrast, the proposed Neural Galerkin schemes directly integrate the parameters of the PDE solutions, rather than embeddings of 
high-dimensional states. This approach circumvents the requirement of needing traditional discretizations of the underlying PDEs, 
which avoids the expensive lifting to higher dimensions that is intractable for problems formulated over high-dimensional spatial 
domains.

There is a wide range of methods that builds on the Dirac-Frenkel variational principle to update the parameters of nonlinear 
parametrizations, see, e.g., the works on dynamic low-rank approximations and related methods [8,38,10,39,40,9,41–43]. Closest 
to our approach are the works [11,12], which derive the same dynamics for parameters of nonlinear parametrizations based on 
the Dirac-Frenkel variational principle, where the work [12] additionally derives schemes that conserve quantities. However, both 
works [11,12] focus exclusively either on specific nonlinear parametrizations and PDEs where the objective value can be computed 
analytically or on low-dimensional problems where data acquisition with static, uniform sampling is tractable. In contrast, our Neural 
Galerkin schemes with adaptive sampling apply to high-dimensional problems with more generic nonlinear parametrizations where 
adaptive data collection becomes crucial, as will be illustrated by our case studies.

2. Setup and problem formulation

In this section, we formulate the problem of numerically solving time-dependent PDEs, which are sometimes referred to as 
evolution equations. We are particularly interested in PDEs formulated over potentially high-dimensional spatial domains and with 
solutions that exhibit local features that are transported over time.

2.1. Evolution equations

Given a spatial domain  ⊆ ℝ
� , we will consider the evolution of a time-dependent field � ∶ [0, ∞) ×  → ℝ which at all times 

belongs to some function space  and whose dynamics is governed by the PDE

���(�,�) =� (�,�, �) for (�,�) ∈ [0,∞) × ,
�(0,�) =�0(�) for � ∈ (1)

where �0 ∈  is the initial condition. By appropriately choosing � ∶ [0, ∞) ×  ×  → ℝ, Eq. (1) can represent different PDEs of 
interest. For example, we get an advection-diffusion-reaction equation by taking

� (�,�, �) = �(�,�) ⋅∇�+ 	(�,�) ∶ ∇∇�+
(�,�, �)

for coefficient functions � ∶ [0, ∞) × →ℝ
� and 	 ∶ [0, ∞) × →ℝ

� ×ℝ
� and a source term 
 ∶ [0, ∞) × ×ℝ →ℝ. In the following, 

we only consider problems with appropriate boundary conditions for Eq. (1) that make Eq. (1) well-posed for all � ∈ [0, ∞), which 
means that its solution exists, is unique, and depends continuously on �0 ∈ .

2.2. Problem formulation

Widely used approaches for numerically solving PDEs of the form (1) with deep neural networks rely on globally optimizing 
network parameters over the time-space domain. Let �̃ ∶ [0, ∞) ×  × Θ → ℝ be a neural-network parametric approximation of �
so that �̃(�, �; �) approximates �(�, �) for a parameter � ∈ Θ. Notice that time � is an input of the network function �̃. Widely used 
collocation-based methods train the network parameters � of �̃ to globally minimize the expected residual


(�,�;�) = ���̃(�,�;�) − � (�,�, �̃) (2)

of the PDE,

min
�∈Θ

�(�,�)∼�

[|
(�,�;�)|2] . (3)

The objective of the optimization problem (3) depends on the expected value of the squared residual over the time-space domain 
with respect to the distribution �. To estimate the expected value in (3), the typical approach is to draw � = 1, … , � samples (��, ��)
from the distribution �, to form a Monte Carlo estimator based on the drawn samples, and to minimize the Monte Carlo estimate of 
the expected value as in

min
�∈Θ

1

�

�∑
�=1

|
(��,��;�)|2 , (��,��) ∼ �. (4)

However, it can be challenging to ensure that the Monte Carlo estimator in (4) is a good estimate of the expected value in (3). 
In particular, in high-dimensional spatial domains  and if the solutions of the PDEs (1) develop spatially localized structures, 
then uniform (or other uninformed, unguided, solution-independent) sampling schemes quickly fail to provide accurate Monte Carlo 
estimators; see also [13]. In fact, even though the deep neural network parametrization might be expressive enough and exploit 



Journal of Computational Physics 496 (2024) 112588

4

J. Bruna, B. Peherstorfer and E. Vanden-Eijnden

properties of the solution to circumvent the curse of dimensionality from an approximation-theoretic point of view, minimizing the 
objective in (4) can be well affected by the curse of dimensionality through the variance of the estimator, especially with local 
solution features advecting in high-dimensional spatial domains.

3. Neural Galerkin schemes via the Dirac-Frenkel variational principle

In this section, we break with the traditional time-space approach of training DNNs in the context of PDEs and instead formulate 
the training of deep neural network parametrizations via the Dirac-Frenkel variational principle [5–7,11], which prescribes a system 
of ordinary differential equations (ODEs) for the network parameters. This means that the network parameters are ultimately trained 
by solving a system of ODEs over time, rather than solving a global optimization problem over the time-space domain as in traditional 
collocation-based methods. Carrying over the dynamics described by the PDEs of interest to the network parameters is of critical 
importance to our Neural Galerkin approach because it will allow us to use information from previous time steps to inform finding 
the solution at the current time step, including the measure against which to estimate the residual.

We emphasize that using the Dirac-Frenkel variational principle to train nonlinear parametrizations has a long history in molec-
ular dynamics and computational chemistry; see [7,10] for the history and early works. More recent works [11,12] in the context of 
deep neural networks derive the same systems of ODEs that we obtain in the following.

3.1. Nonlinear parametrizations that depend on time

We parametrically represent the solution �(�) at time � as � (�(�)) ∈ with parameters �(�) ∈Θ and � ∶ Θ × →ℝ, i.e. we use the 
ansatz

�(�,�) =� (�(�),�) for (�,�) ∈ [0,∞) × . (5)

Two remarks are in order. First, time � enters the parametrization (5) via the parameter �(�), instead of being an input to the network 
function as in the global, time-space approaches discussed in Section 2.2. This is of critical importance to our approach because 
it will allow us to use information from previous times to inform approximations of the PDE solution at future times. Second, the 
parametrization � may depend nonlinearly on �(�), which is in stark contrast to the majority of classical approximations in scientific 
computing that have a linear dependence on the parameter [44]. And it is in stark contrast to traditional, linear model reduction 
methods that seek linear approximations in subspaces; see [45].

For the representation in Eq. (5) to be complete, i.e. such that for any �(�) ∈  there exists at least one �(�) ∈ Θ such that 
� (�(�)) ≡ �(�), Θ should itself be an infinite-dimensional function space in general—for more discussion on this point, see Appendix A. 
In practice, however, we will be interested in situations where the parametric representation � depends on a finite-dimensional 
parameter �(�) such as in a DNN, where �(�) denotes the vector of adjustable parameters/weights in this network whose number can 
be large but is finite—specific DNN representations are discussed below. In this case, using Eq. (5) as ansatz for the solution of Eq. (1)
introduces approximation errors, the magnitude of which we aim to keep low at all times.

3.2. Training nonlinear parametrization via the Dirac-Frenkel variational principle

We emphasize that we consider the situation where we do not have access to training data to learn the parameter �(�) so that 
� (�(�)) ∶  → ℝ is a function over the spatial domain  that approximates well the PDE solution. Instead, we use the structure of 
the governing equation (1) to find �(�) so that the error is low. To this end, note that inserting the ansatz solution � (�(�)) in Eq. (1), 
assuming differentiability of �(�) and using ��� (�(�)) =∇�� (�) ⋅ �̇(�), leads to the residual function 
� ∶ Θ × Θ̇ × →ℝ defined as


�(�, �,�) ≡∇�� (�,�) ⋅ � − � (�,�,� (�)) , (6)

where Θ̇ is the set of time derivatives of �(�). Notice that the residual 
� defined in (6) depends on time �, whereas time enters as an 
input to the residual function 
 defined in (2), which is then globally optimized in the time-space domain.

The goal is now to keep the error made by the parametrization described in Eq. (5) low by minimizing the magnitude of the 
residual 
� with respect to �, given an appropriate metric. We distinguish between two approaches. First, there is a global approach 
that aims to keep the residual low globally over some time interval � ∈ [0, � ] with � > 0; this option, which is discussed in Appendix C, 
has the disadvantage that it leads to a complicated boundary value problem that requires the storage of the entire path �(�) for 
� ∈ [0, � ]. The second approach is sequential in time, which leads to an initial value problem that is related to the Dirac-Frenkel 
variational principle [5–7], see also [11] for the principle applied in the context of deep neural network. This sequential-in-time 
approach is what we build on. Specifically, we seek �(�) such that for all � > 0 it holds

�̇(�) ∈ argmin
�∈Θ̇

��(�(�), �) (7)

where we define the objective function �� ∶ Θ × Θ̇→ℝ as

��(�, �) =
1

2 ∫


|
�(�, �,�)|2��(�). (8)



Journal of Computational Physics 496 (2024) 112588

5

J. Bruna, B. Peherstorfer and E. Vanden-Eijnden

In Eq. (8), � is a positive measure with full support on  , which we will discuss in detail later in Section 4.
The initial condition �0 can be obtained via e.g. minimization of the least-squares loss between �0 and � (�0):

�0 ∈ argmin
�∈Θ ∫


|�0(�) −� (�,�)|2��(�). (9)

Similarly, boundary conditions can be enforced either naturally by choosing � (�(�)) such that these conditions are satisfied for all 
�(�) ∈Θ, or by adding appropriate penalty terms to the residual (6) and the objective (8). For example, to enforce Dirichlet boundary 
conditions via a penalty approach, one adds the equation ��� (�(�), �) = 0, � ∈ � , where � is the boundary of the domain  where 
the boundary conditions should be enforced. The equation forces � to remain constant at the boundary points in � over time � and 
thus enforces Dirichlet boundary conditions with the same values as the initial condition at the boundary � .
3.3. System of ODEs for network parameters

The minimizers of ��(�(�), �) solve the Euler-Lagrange equation

∇���(�(�), �) = 0 . (10)

Written explicitly, Eq. (10) is a system of ODEs for �(�):

�(�)�̇ = � (�, �) , �(0) = �0 , (11)

where we defined

�(�) =∫


∇�� (�,�)⊗∇�� (�,�)��(�) ,

� (�, �) =∫


∇�� (�,�)� (�,�,� (�))��(�) ,

(12)

in which ⊗ denotes the outer product. Following the same principle, analogous equations as given by (12) have been derived in other 
settings of nonlinear parametrizations as well; see, e.g., the works on dynamic low-rank approximations and related methods [8,9]
and the works [46,11,12]. For more justification of Eq. (11) note that this equation also arises as a consequence of the proposition 
introduced in Appendix B.

The system of ODEs defined in (11) for �(�) is the basis for the Neural Galerkin schemes we introduce below. We refer to � (�(�)) as 
Neural Galerkin solution because Eq. (11) can be derived via testing the residual 
�(�, �̇, �) in Eq. (6) using ∇�� (�, �) as test function 
and Galerkin projection with respect to the inner product of �2( ; �). The objective function (8) also arises if we take the inner 
product between 
�(�, �̇, �) and a test function �(�) and maximize it over all �(�) with norm one in �2( ; ��).

3.4. Discretization in time

Eq. (11) is a system of ODEs that can be numerically integrated using standard methods; thus training the network parameters 
becomes solving a system of ODEs in time. Let us denote by �� the numerical approximation to �(��) where the times �� with 
� = 0, 1, 2, … are defined recursively via �0 = 0, ��+1 = �� + ��� using the time steps ��� > 0, possibly nonuniform and chosen adaptively. 
To update ��, we can either use explicit or implicit integrators.

3.4.1. Explicit integrators
The forward Euler scheme is an explicit scheme that leads to

�(��)��+1 =�(��)�� + ���� (��, �
�) . (13)

This is an explicit equation for ��+1 which is solved at every time step—to this end it may be useful to add a regularizing term � Id
to � , where Id is the identity. Other integrators can be used as well, such as the adaptive Runge–Kutta–Fehlberg (RK45) method 
[47], which leads to linear systems similar to (13) at every stage—RK45 will be used in the examples below. If (13) does not have 
a unique solution, then a regularizer can be added to establish uniqueness. In the following, we take the minimal Euclidean norm 
solution in this case. Investigating other regularization schemes is an important research direction, which we leave to future work.

3.4.2. Implicit integrators
We consider the backward Euler scheme as an example for implicit integrators, which leads to the system of equations

�(��+1)��+1 =�(��+1)�� + ���� (��+1, �
�+1) . (14)

Implicit integrators are more costly per time step since they lead to nonlinear equations such as (14) for ��+1 that have to be solved 
at each time step. We note that implicit time integration also leads to systems of nonlinear equations in classical scientific computing 
with linear approximations when the system dynamics are nonlinear, i.e., the function � in (1) depends nonlinearly on �. Given that 



Journal of Computational Physics 496 (2024) 112588

6

J. Bruna, B. Peherstorfer and E. Vanden-Eijnden

such systems of nonlinear equations arise in many other settings in scientific computing, there is a range of numerical methods for 
solving them. We will use ADAM [48], which is a method inspired by stochastic gradient descent (SGD), in the numerical experiments 
in Section 5; however, Newton methods such as Newton-Raphson and Gauss-Newton methods can be used as well.

We stress that the adaptive nature of our Neural Galerkin approach is different from time-space collocation methods based on 
neural networks [1–3] and other DNN-based PDE solution methods that are formulated over equidistant time steps [16].

Instead of deriving the variational formulation (7) in continuous time and then discretizing the Euler-Lagrange equations (10), 
one could also first discretize in time and then derive the Euler-Lagrange equation of the discrete-in-time optimization problem; 
this is similar to the distinction between discretize-then-optimize versus optimize-then-discretize approaches used e.g. in inverse 
problems and PDE-constrained optimization: see e.g. Ref. [49].

3.5. Computational costs

We summarize the computational costs of Neural Galerkin schemes. First, the initial condition needs to be represented in the 
parametrization that is to be used by the Neural Galerkin scheme. This typically leads to a regression problem such as (9) for fitting the 
parameters to the initial condition. Standard methods for training nonlinear parametrizations can be used for this step. It is important 
to note that errors in the fitted initial condition can be propagated forward in time because Neural Galerkin schemes train network 
parameters sequentially in time. This is analogous to classical numerical integration of ODEs where also perturbations in initial 
conditions can be propagated forward in time. Thus, initial conditions need to be fitted well, which can incur high computational 
costs. Second, let us consider the costs per time step. As we discuss in Section 3.4, an explicit time integration schemes leads to a 
system of linear equations that needs to be solved at each time step. In contrast, an implicit scheme can lead to a system of nonlinear 
equations in each time step. Note that the costs per time step of an implicit scheme are typically higher than the costs per time step 
of an explicit scheme also in many classical numerical methods. The number of unknowns in each time step scales with the number 
of parameters, which ultimately determines the costs of each solve. For both—explicit and implicit schemes—classical numerical 
tools for solving linear and nonlinear systems can be used, including pre-conditioners and high-performance solvers. In particular, 
matrix-free solvers can be used to solve the system to avoid assembling the matrix �(��) in (13) and �(��+1) in (14). Note that 
the elements of the matrix � include the gradient of the parametrization � , which has to be computed when either assembling 
� or computing a matrix-vector product with � . The gradient computation with automatic differentiation can be computational 
expensive; see also the discussion on computational bottlenecks in Section 6.

4. Active learning with Neural Galerkin schemes

We now introduce active learning for Neural Galerkin schemes to efficiently estimate �(�) and � (�, �). To achieve this, we make 
the measure in the objective (8) and the definition of � and � depend on the parameter �(�) so that we can adapt the measure 
��(�) over time; see Section 4.1. We then formulate adaptive Monte Carlo estimators of � and � with the aim of achieving lower 
mean-squared errors than regular Monte Carlo estimations that are based on uninformed, e.g., uniform, sampling. In Section 4.2, we 
propose to directly use a time-adaptive measure and in Section 4.3 we show that Neural Galerkin schemes can be combined with 
importance sampling. Section 4.4 specifically considers shallow networks with Gaussian units that give rise to an adaptive sampling 
scheme that leverages the network architecture.

4.1. Active learning via time-dependent measures

For generic choices of parametrization � (�), the integrals in Eq. (12) do not admit a closed-form solution and so will need to be 
numerically estimated. In low dimensions, this calculation can be performed by quadrature on a grid. When  is high dimensional, 
however, quadrature becomes computationally intractable quickly and we must proceed differently. If the measure � against which 
is integrated in Eq. (12) is a probability measure, we can consider using a vanilla Monte Carlo estimator for each term, by drawing 
� samples {��}��=1 from � and replacing the expectations by empirical averages over these samples. This estimator is efficient to 
approximate certain kernels uniformly over high-dimensional spaces [50], but not necessarily if the solution to the PDE (1) develops 
spatially localized structures, as is the case in many physical systems of interest.

Instead, we consider the objective �� defined in (8) and reformulate it with a parameter-dependent measure �� as

��(�, �) =
1

2 ∫


|
�(�, �,�)|2d��(�) . (15)

The key difference to �� used in Section 3.2, is that now the objective defined in (15) integrates the squared residual against a 
measure �� that depends on the parameter �(�) and thus it depends on time �. Following an analogous derivation as in Section 3.3, 
we obtain the operators

�(�) =∫


∇�� (�,�)⊗∇�� (�,�)���(�)

� (�, �) =∫


∇�� (�,�)� (�,�,� (�))���(�) ,

(16)



Journal of Computational Physics 496 (2024) 112588

7

J. Bruna, B. Peherstorfer and E. Vanden-Eijnden

with measure �� depending on �. This new formulation with measure �� allows us to adapt the measure so that Monte Carlo estimators 
of � and � have a low mean-squared error.

4.2. Monte Carlo estimators with adaptive samples

Let {��(�)}��=1 be � samples of ��(�) and notice that the samples �1(�), … , ��(�) depend on time �. Monte Carlo estimators �̃ and �̃
of � and � , respectively, are then given by

�̃(�(�)) =
1

�

�∑
�=1

∇�� (�(�),��(�))⊗∇�� (�(�),��(�)),

�̃ (�, �(�)) =
1

�

�∑
�=1

∇�� (�(�),��(�))� (�,��(�),� (�(�))) .

(17)

For these estimators to be effective, their variances must be small, which requires choosing the measure ��(�) in a way that is 
informed by the solution � (�(�)). This choice must be made on a case-by-case basis. For example, below we consider Fokker-Planck 
equations whose solutions are normalized probability density functions: in this case, it is reasonable to take �� = � (�)—this choice 
leads to low variance estimators if the density has mass localized in a few relatively small regions that move in  . If in addition the 
parametrization � (�) involves Gaussian units, as in the Fokker-Planck examples below, sampling from it is straightforward—with 
this specific choice we can in fact evaluate analytically the integrals of the components of �(�) and sampling is only required to 
estimate � (�, �). Other choices for �� are possible too, e.g. by taking ��(�) proportional to |∇�� (�(�), �)| in situations where the solution 
has localized fronts that propagate in  .
4.3. Importance sampling with respect to a nominal measure

Consider a nominal measure �. Then, an adaptive measure �� can be realized via importance sampling by defining positive weights 
� ∶  ×Θ → (0, ∞) such that  � = ∫ �(�, �)d�(�) <∞ for all � ∈ Θ. Notice that the weights given by � depend on the parameter �(�)
and thus on time �. One then draws a set of samples {��(�)}��=1 from ���(�)(�) = −1

�
�(�, �(�))��(�) and uses the reweighted estimators 

�̃ and �̃ given by

�̃(�) =
1

�

�∑
�=1

∇�� (�,��)⊗∇�� (�,��)

�(��, �)
,

�̃ (�, �) =
1

�

�∑
�=1

∇�� (�,��)� (�,��,� (�))

�(��, �)
.

(18)

The estimators (18) are efficient in terms of number of samples � if the weight function � is chosen such that it leads to a small 
variance of the integrand ∇�� (�, ⋅) ⊗ ∇�� (�, ⋅) of � and ∇�� (�, ⋅)� (�, ⋅, � (�)) of � . Constructing weight functions for importance 
sampling is typically guided by the ideal weight function that leads to Monte Carlo estimators with zero variance, in which case 
a single sample is sufficient to obtain an estimate with zero mean-squared error. In the case of � and � , a zero-variance weight 
function would require a different weight for each matrix element of � and � , which quickly becomes computationally intractable. 
A more practical approach is to rely on similar argument as in Section 4.2 and use a weight function that helps reducing the variance 
for all matrix elements such as a weight that is proportional to, e.g., the magnitude of the gradient of � .

4.4. Neural architectures and sampling

Our method offers the possibility to use DNNs of arbitrary complexity and sophistication for the parametrization � (�, �), in a way 
that can be tailored to known properties or symmetries of the solution of Eq. (1), as well as its boundary conditions. However, the 
network architecture can also be chosen such that it aligns well with the sampling from the adaptive measure ��(�). In later numerical 
experiments, we will consider shallow (one-hidden-layer) network with ! nodes given by

� (�,�) =
∑!

�=1
"�#(�,$�,��) , (19)

where � is defined as � = ("�, $�, ��)!�=1 and "�, $� ∈ℝ and �� ∈ℝ
� are the parameters of the DNN, and # ∶ ×ℝ

�+1
→ℝ is the following 

nonlinear unit (activation function) given by the Gaussian kernel

#G(�,$,�) = exp
(
−$2|�− �|2) . (20)

Here and below the exponential function acts componentwise, and we refer to the "� as the coefficients of the network and to the 
$�, �� as its features. In the numerical experiments below, we will also consider the unit

#�G(�,$,�) = exp
(
−$2| sin (%(�− �)∕�) |2) , (21)

which we will use when we need to enforce periodicity because, e.g., the domain is  =�� � with unit torus � and length � > 0. The 
sine function acts componentwise on its argument.



Journal of Computational Physics 496 (2024) 112588

8

J. Bruna, B. Peherstorfer and E. Vanden-Eijnden

Fig. 1. Korteweg-De Vries: Neural Galerkin schemes integrate in time a nonlinear parametrization of the solution and so obtain an accurate approximation with few 
degrees of freedom in this example. In contrast, linear (standard) Galerkin that derives approximations in fixed spaces with fixed bases without feature adaptation 
leads to poor approximations when there are local dynamics in the spatial domain. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

The network architecture (19) is especially useful for approximating solutions that are probability density functions, such as for 
the Fokker-Planck equation considered below. In such a case, as discussed in Section 4.2, it is appropriate to set ��(�) =� (�(�)). Then, 
the set of samples {(��(�)}��=1 at time � is obtained via sampling from � (�) directly, which can be done efficiently by exploiting that 
the units (20) are Gaussians.

5. Numerical experiments

We demonstrate Neural Galerkin schemes with active learning on several numerical examples. We consider numerical examples 
reaching from low-dimensional benchmark problems in Section 5.1 and Section 5.2 to PDEs whose solutions develop local features 
in moderately high-dimensional spatial domains in Section 5.3 and Section 5.4.

5.1. Korteweg-de Vries equation

Consider the KdV equation ��� + �3�� + 6���� = 0 on the one-dimensional spatial domain  = [−20, 40) ⊂ℝ with periodic boundary 
condition. We follow the setup described in Ref. [51], which for the initial condition described in their Section I-a-(ii) with their 
second parameter setting leads to a solution of the KdV equation that consists of two interacting solitons that approach each other, 
collide, and then separate—this solution, shown in Fig. 1(a), is available analytically, thereby providing us with a benchmark of 
the numerical results; see also Appendix D. Note that the authors of [51] use a periodic domain [−20, 20) that we have extended to 
[−20, 40) because we integrate longer in time.

For the parametric solution, we use the shallow neural network defined in Eq. (19) with the Gaussian units defined in Eq. (21), 
! = 10 nodes, and � = 60. Because the dimension of the spatial domain is one in this example, we simply take ���(�) = ��, and 
sample � = 1000 points uniformly in [0, 1] to estimate � and � . The initial parameter �0 is obtained via a least-squares fit of the 
initial condition. The batch size is 105 and number of iterations is 105. Samples are drawn uniformly in the spatial domain and the 
learning rate is 10−1. We take five replicates with randomized initialization of parameters and then use the fit with lowest error on 
test samples. As integrator, we use RK45 so that the time-step size is adaptively chosen based on the dynamics of the solution. We 
use JAX (https://github .com /google /jax) to implement the approach and in particular the JAX function grad to compute derivatives 
with reverse-mode automatic differentiation.



Journal of Computational Physics 496 (2024) 112588

9

J. Bruna, B. Peherstorfer and E. Vanden-Eijnden

Fig. 2. KdV: Basis functions used for linear Galerkin approximations.

The time-space plot of the Neural Galerkin approximation shown in Fig. 1(b) is in close agreement with the analytic solution 
shown in Fig. 1(a). The relative �2 error remains low over time, as shown in Fig. 1(d). The relative �2 error is computed as follows: 
Consider the $ = 2048 equidistant grid points �1, … , �$ in  and define

�(�) = [�(�, �1),… , �(�, �$)]
� ∈ℝ

$ ,

to be the vector of the analytic solution � at time � and at the grid points �1, … , �$. Similarly, define �̃(�) = [�̃(�, �1), … , ̃�(�, �$)]� as 
the solution vector corresponding to an approximation �̃. Then, the reported relative �2 error is

'�2
=

∑(

�=0
‖�(��) − �̃(��)‖22∑(

�=0
‖�(��)‖22

.

To emphasize the importance of the nonlinear feature adaptation, we also consider linear approximations with network Eq. (19)
with ! = 30 nodes but with fixed features $� and �� that are either located equidistantly in  or fitted to the initial condition and then 
kept fixed. For linear Galerkin with equidistant basis functions, the basis functions are Gaussians units #�



with a fixed bandwidth 

and equidistantly located in the domain  , see Fig. 2(a). For the comparison with linear Galerkin with basis functions fitted to the 
initial condition, we use the units fitted to the initial condition as described above and keep the features fixed, see Fig. 2(b). In both 
cases, the linear approximation has the same number of degrees of freedom as the nonlinear Neural Galerkin approximation.

The linear approximation leads to large errors that develop after only a few time steps, as apparent from the solution shown 
in Fig. 1(c). This is also in agreement with Fig. 1(d) which shows that the linear Galerkin approximations based on fixed features 
lead to errors that are orders of magnitude higher than the Neural Galerkin approximation with the same number of degrees of 
freedom.

5.2. Allen-Cahn (AC) equation

Consider the prototypical reaction diffusion equation known as the AC equation

��� = )�
2
�
�− 	(�, �)(�− �3)

in the one-dimensional domain  = [0, 2%) with periodic boundary conditions. We set ) = 5 × 10−2 in the diffusion term and let the 
coefficient in the reaction term vary in time and space using 	(�, �) = 1.05 + � sin(�). This coefficient means that � has three phases 
corresponding to the solution-field values −1, 0, +1. The phases evolve over time and eventually for � → ∞ converge to only two 
phases with a phase separation at the spatial coordinate � = %.

For this example, we use a feedforward neural network with � ∈ℕ hidden layers and ! nodes per layer:

� (�,�) = �(�)� tanh(� � tanh(� �−1(⋯#
�
tanh

(�,� 1,�1)⋯) + ��−1) + ��) , (22)

where � = (�, � 1, … , � � , �1, … , ��) with � ∈ ℝ
!, � 1 ∈ ℝ

!×� , � � ∈ ℝ
!×!, � > 1, and �� ∈ ℝ

� are the parameters, and #�
tanh

is the 
nonlinear unit

#�
tanh

(�,� ,�) = tanh (� sin (2% (�− �) ∕�)) . (23)

The tanh function acts componentwise on its argument. We set ! = 2 and consider � = 3 hidden layers.
The initial condition is

�(0, �) = #�G(�,
√
10,1∕2) −#�G(�,

√
10,4.4) ,



Journal of Computational Physics 496 (2024) 112588

10

J. Bruna, B. Peherstorfer and E. Vanden-Eijnden

Fig. 3. Allen-Cahn: The proposed Neural Galerkin approach with a three-hidden-layer network correctly predicts the dynamics of the sharp walls that eventually 
separate the solution into two flat pieces at 0 and +1 in this experiment. In contrast, linear Galerkin with the same number of degrees of freedom wrongly predicts a 
solution with three flat pieces at −1, 0, and +1 because of the lack of expressiveness of the linear approximation.

with #�G defined in Eq. (21) and � = 1∕2. Fig. 3(a) shows a benchmark solution computed with a grid-based method. The bench-
mark solution is computed with a finite-difference discretization on 2048 equidistant grid points in the spatial domain. Time is 
discretized with semi-implicit Euler where the linear operators are treated implicitly and the nonlinear operators are treated ex-
plicitly. The time-step size is 10−5. The solution consists of relatively flat pieces separated by sharp walls, which evolve in a way 
that is consistent with the evolving sign structure of the coefficient 	(�, �) described above. Fig. 3(b) shows the Neural Galerkin 
approximation obtained with the three-hidden-layer network defined in (22) (16 degrees of freedom) and fixed uniform measure 
���(�) = ��. The initial condition for the Neural Galerkin scheme is fitted analogously to fitting of the initial condition in the ex-
periment with the KdV equation. Neural Galerkin uses a backward Euler discretization in time; see Section 3.4.2. The time-step 
size is �� = 10−2. The nonlinear system (14) is solved by minimizing the squared norm of the corresponding residual function 


(�)

�
(�) = ‖�(�)� −�(�)�� − ���� (��+1, �)‖22 to obtain ��+1 with ADAM and 10,000 iterations. The gradient of the objective—the 

residual function 
(�)
�
corresponding to (14)—is computed with reverse-mode automatic differentiation implemented in JAX. We use 

� = 1000 samples to estimate � and � in the objective function 
(�)
�
. As can be seen, the Neural Galerkin solution agrees well with 

the benchmark solution. In contrast, the approximation obtained with linear Galerkin with 16 equidistantly located Gaussian basis 
functions defined in (21) and shown in Fig. 3(c) leads to a poorer approximation. This is further quantified in Fig. 3(d) which shows 
that the Neural Galerkin approximation with a three-hidden-layer network achieves an �2 error that is two orders of magnitude 
lower than that of the linear Galerkin approximation. Note that the backward Euler method is used also in case of linear Galerkin in 
this example.

Fig. 4 visualizes the adaptation of the coefficients and features of the Neural Galerkin approximation. Consider the network (22)
with �(�) = ("1(�), "2(�))� ∈ℝ

2, � = 3, and set

*�(�,�) = ��
�
tanh(� 3(�) tanh(� 2−1(�)(#

�
tanh

(�,� 1(�),�1(�))) + �2(�)) + �3(�)) , (24)

where �� ∈ℝ
2 with � = 1, 2 are the two canonical unit vectors. Thus the output components *1(�, �) and *2(�, �) are weighted by the 

coefficients "1(�) and "2(�) to obtain the Neural Galerkin approximation; these two components are shown in Fig. 4(a) and (b). The 
corresponding coefficients are visualized in panel (c) and the benchmark solution is plotted again in panel (d). Even though the 
Neural Galerkin approximation uses only two *�(�, �), because these functions depend nonlinearly on parameters that evolve in time, 
they adapt their shape to accurately approximate the solution.



Journal of Computational Physics 496 (2024) 112588

11

J. Bruna, B. Peherstorfer and E. Vanden-Eijnden

Fig. 4. Allen-Cahn: The plots visualize how the used Neural Galerkin scheme propagates forward in time the coefficients and features of a DNN parametrization by 
following the dynamics prescribed by the PDE. Notice that the output components, defined in Eq. (24) and shown in (a) and (b), reflect the transition of the sharp 
walls between the flat pieces of the solution and that the dynamics rapidly change from time � = 1.05 to about � = 2.5 when the potential changes sign in parts of the 
spatial domain.

5.3. Advection in unbounded, high-dimensional domains

Our next example is an advection equation in high dimension,

���+ �(�,�) ⋅∇�� = 0, �(0,�) = �0(�), (25)

where � ∈  ≡ ℝ
� , � ∶ [0, ∞) × ℝ

�
→ ℝ is some bounded velocity field that is assumed to be differentiable in both its arguments, 

and �0 ∶ ℝ
�
→ ℝ is some initial condition satisfying lim|�|→∞ �0(�) = 0. This equation can in principle be solved by the method of 

characteristics, i.e. by considering

	̇(�,�) = �(�,	(�,�)), 	(0,�) = �, (26)

and using

�(�,�) = �0(	(−�,�)). (27)

In practice, however, Eq. (27) is hard to use to obtain global information about the solution, except in situations where Eq. (26) can 
be solved explicitly (an instance of which we will also consider below as benchmark). Next we show how to numerically solve (25)
directly using a Neural Galerkin scheme.

5.3.1. Advection with a time-dependent coefficient
In the first experiment with the advection equation, we make the transport coefficient depend only on time using

��(�) = �+ ⊙
(
sin(�/%�) + 5∕4

)
(28)

with �+ = [1, 2, … , �]� , �/ = 2 + 2

�
[0, 1, … , � − 1]� and the element-wise vector multiplication ⊙. We set � = 5 and take as initial 

condition �0 a mixture of two non-isotropic Gaussian packets with means



Journal of Computational Physics 496 (2024) 112588

12

J. Bruna, B. Peherstorfer and E. Vanden-Eijnden

Fig. 5. High-dimensional advection with time-only varying advection speed: (a) marginal in dimension 5 of the analytic solution; (b) approximation obtained with 
static sampling; (c) result of the Neural Galerkin method that adaptively samples data over time to estimate the operators � and � depending on the dynamics of the 
problem at hand. This is in stark contrast to classical time-space collocation approaches that uniformly sample over space and time when optimizing for a solution. In 
this example, the adaptive sampling is key for Neural Galerkin to accurately predict the local-in-space dynamics of the solution. In contrast, an approximate solution 
obtained with uniform sampling that is static over time fails to lead to meaningful predictions, as shown by plot (b) and the error shown in plot (d).


1 =
11

10

⎡
⎢⎢⎢⎢⎣

1

1

⋮

1

⎤
⎥⎥⎥⎥⎦
, 
2 =

3

4

⎡
⎢⎢⎢⎢⎣

1.5 − (−1)11∕(� + 1)

1.5 − (−1)22∕(� + 1)

⋮

1.5 − (−1)��∕(� + 1)

⎤
⎥⎥⎥⎥⎦

and covariance matrices

�1 =
1

200

⎡⎢⎢⎢⎢⎣

2

4

⋱

2�

⎤⎥⎥⎥⎥⎦
, �2 =

1

200

⎡⎢⎢⎢⎢⎣

�

� − 1

⋱

1

⎤⎥⎥⎥⎥⎦
. (29)

In this case, the solution (27) can be derived explicitly,

�(�,�) = �0

(
�− ∫ �

0
��(+)�+

)
, (30)

which we will use as benchmark. Marginals of the solutions are computed as follows: Let  = 1 ×⋯ ×� be the domain of interest. 
We then plot for each dimension � = 1, … , � the function

(�, ��)↦ ∫
1

⋯ ∫
�−1

∫
�+1

⋯∫
�
�(�, �1,… , ��−1, ��+1,… , �� ) ,

where � is the function of which marginals are to be plotted and the integrals are numerically approximated via Monte Carlo and 
8192 samples. The samples are drawn from the analytic solution, which is available in this experiment. The marginal in dimension 
five is shown in Fig. 5(a); see also Fig. E.11 in the Appendix.

For Neural Galerkin, see Fig. 5(c), we use a shallow network as in Eq. (19) with the exponential unit (20)—notice that since these 
units are isotropic, several of them are required to accurately approximate both the initial condition and the solution of Eq. (25) at 
time � > 0. We take ! = 50 nodes. The initial condition can be exactly represented with the network and the network weights can 
be derived analytically so that numerically fitting the network to the initial condition can be avoided. We use the adaptive RK45 
method as time-integrator and use a measure �� adapted to the solution to sample � = 1000 data points {��}��=1 at each integration 
step to estimate � and � via Eq. (17). Specifically, we take �� to be the Gaussian mixture with 50 nodes obtained from the current 



Journal of Computational Physics 496 (2024) 112588

13

J. Bruna, B. Peherstorfer and E. Vanden-Eijnden

Fig. 6. High-dimensional advection with time-space varying advection speed: The equation is integrated forward in time until � = 1 and then integrated backwards 
until time � = 0, where the initial condition is reached again. Plot (a) shows the prediction of the Neural Galerkin method. Plot (b) shows that the Neural Galerkin 
solution at final time closely matches the initial condition, which means that little error is accumulated by integrating forward and then backward in time. Adaptive 
sampling is key in this example because the solution is local in the high-dimensional spatial domain. Neural Galerkin with adaptive sampling tracks the local dynamics 
well, whereas approximations based on static sampling fail after only a few time steps as shown by a large residual in (c).

neural approximation of the solution by equating the weights "�, dividing $� by a factor 0 > 0, and keeping the same ��, i.e. if the 
current Neural Galerkin approximation of the solution is

� (�,�) =
∑50

�=1
"�(�) exp

(
−$2

�
(�)|�− ��(�)|2

)
, (31)

we sample the data points from

���(�)(�) = 1
−1

∑50

�=1
exp

(
−

1

02
$2
�
(�)|�− ��(�)|2

)
�� , (32)

where 1 is a normalization constant and 0 = 1 in this experiment; see Section 4.4. Using this adapted measure is key for accuracy, 
and leads to the small �2 error plotted in Fig. 5(d). If instead we estimate � and � by drawing the data points uniformly in [0, 15]�

(to cover the domain over which the solution propagates for � ∈ [0, 2]), the relative error is 100% after only a few time steps even 
if we use as many as � = 105 data points, see Fig. 5(b) and Fig. 5(d). This emphasizes the importance of using adaptivity in both 
the function approximation via neural networks, and the data acquisition to estimate � and � . This double-adaptivity is a key 
distinguishing feature of the proposed Neural Galerkin schemes compared to existing DNN approaches.

5.3.2. Advection with time- and space-dependent coefficients
Next we consider Eq. (25) with the time-space varying advection speed,

�+�(�,�) = �+ ⊙
(
sin(�/%�) + 3

)
⊙ (�+ 1)∕10 , (33)

where �+, �/ are the vectors defined in Eq. (28). For the initial condition we take a sum of two Gaussian packets, �0(�) = 21(�)∕10 +
22(�)∕10. The two Gaussian probability density functions 21, 22 are scaled by a factor 1∕10 to avoid scaling issues. The means are


1 = 2 −
1

12

[
−1 2 −3 4 −5

]�
, 
2 = 1.8 −

1

12

[
1 −2 3 −4 5

]�

and the covariances are



Journal of Computational Physics 496 (2024) 112588

14

J. Bruna, B. Peherstorfer and E. Vanden-Eijnden

Fig. 7. Particles in harmonic trap: As the particles become attracted by the trap, the particle density becomes increasingly concentrated in the high-dimensional 
domain. The Neural Galerkin scheme adaptively samples from the neural approximation of the density over time and thereby accurately tracks the particles mean 
position (orange) in contrast to methods with static sampling done uniformly in the spatial domain (blue).

�1 =

⎡⎢⎢⎢⎣

3

50

⋱
3

50

⎤⎥⎥⎥⎦
, �2 =

⎡⎢⎢⎢⎣

3

100

⋱
3

100

⎤⎥⎥⎥⎦
.

The marginals for all five dimensions of the Neural Galerkin solutions are shown in the appendix in Fig. E.12.
Since the analytic solution for this problem is not available in closed form, to assess the performance of our Neural Galerkin 

approach, we numerically integrate the problem forward in time until time � = 1, then invert the advection coefficient in time, 
and integrate backwards until time 0: we can then estimate the error by comparing the final numerical solution with the initial 
condition. The numerical setup is the same as in the previous experiment with the advection speed (28), except that we draw 
� = 5000 samples from the adapted measure in (32) at each integration step to estimate � and � . Fig. 6(a) shows the time-space 
marginal of the Neural Galerkin solution: as can be seen the spatially varying coefficient leads to a significantly changing solution 
over time. Fig. 6(b) compares the initial condition with the final solution obtained by integrating forward and then backward in 
time, which are in good agreement. In Fig. 6(c) we show an estimate of the PDE residual defined in Eq. (8) using the adapted 
measure in (32) and estimated using 105 samples drawn independently from this measure. The mean residual is computed as follows: 
We draw � = 105 samples from the equally-weighted mixture of Gaussians given by the ! = 50 nodes of the network at time �. The 
standard deviation of the Gaussians is double the standard deviation of the nodes of the network. With these samples, we compute a 
Monte Carlo estimate of the objective �� at time �. The residuals indicate that the proposed Neural Galerkin approach with adaptive 
sampling approximates well the local dynamics in this high-dimensional transport problem, whereas static sampling with a uniform 
distribution fails again to provide meaningful predictions.

5.4. Interacting particle systems

Let  =ℝ
� and consider the evolution of � interacting particles with positions 31(�), … , 3� (�) ∈ℝ governed by

d3� = �(�,3�)d�+
∑�

4=1
((3�,34 )d�+

√
25 d6� , (34)

with � = 1, … , � and where � ∶ [0, ∞) ×ℝ →ℝ is a time-dependent one-body force, ( ∶ℝ ×ℝ →ℝ a pairwise interaction term, 5 > 0

the diffusion coefficient, and 6� are independent Wiener processes. The evolution of the joint probability density of these particles, 
�(�, �) with � = [�1, … , �� ]� , is governed by the Fokker-Planck equation

��� =
∑�

�=1

(
−���

(
�ℎ�(�, �1,… , �� )

)
+5�2

��
�

)
, (35)

where ℎ�(�, �1, … , �� ) = �(�, ��) +
∑�

4=1
((��, �4 ). In high dimension, one typically resorts to Monte Carlo methods based on integrating 

Eq. (34) to obtain samples from the density �. In contrast, we solve the Fokker-Planck equation (35) directly with our Neural Galerkin 
approach to derive an approximation of �(�, �) via � (�(�), �) everywhere in the domain  . Having the density at hand allows us to 
efficiently compute quantities of interest that are not expressible as expectation over �, such as the entropy, and therefore not directly 
accessible to Monte Carlo methods. Note that Neural Galerkin schemes also involve sampling to estimate � and � , but it is done 
adaptively based on the current approximation to keep low the number of samples required to obtain accurate estimates.



Journal of Computational Physics 496 (2024) 112588

15

J. Bruna, B. Peherstorfer and E. Vanden-Eijnden

Fig. 8. Particles in harmonic trap: Our Neural Galerkin schemes with adaptive sampling achieve orders of magnitude lower errors in predicting the mean (orange, 
panel a) and the covariance (orange, panel b) of the particle density than methods that rely on static sampling uniform over time and space (blue, panels a and b). 
Additionally, the Neural Galerkin scheme provides an approximation of the particle density that allows efficiently computing quantities of interest such as the entropy 
(Fig. 9a), in contrast to Monte Carlo that only draws samples of the particle distribution.

5.4.1. Particles in harmonic trap
In the following experiment, we set

�(�, �) = 	(�) − �, ((�, 8) =
9

�
(8− �) (36)

with 	 ∶ [0, ∞) → ℝ and 9 > 0. This corresponds to following the evolution of � particles put in a harmonic trap centered around 
the moving position [	(�), … , 	(�)]� ∈  and also attracting each other harmonically. This choice has the advantage that we can 
derive closed ODEs for the mean and covariance of the particle positions that can be solved numerically and used as benchmark, 
see Appendix F. If the initial condition �(0, �) is a Gaussian probability density, the density �(�, �) remains Gaussian for all times 
�, with the mean and covariance given by the ODEs. Accordingly, we take �(0, �) to be an isotropic Gaussian density with mean 
9∕10 + 21∕(10(� − 1))[0, 1, … , � − 1]� and variance :2 = 0.1. We take � = 8 particles and set 	(�) = 5∕4(sin(%�) + 3∕2), 9 = 1∕4 and 
5 = 10−2.

We apply our Neural Galerkin approach to solve the Fokker-Planck equation (35) using the neural network defined in (19) with 
! = 30 nodes and non-negative weights to guarantee that the Neural Galerkin approximation is non-negative, i.e.,

� (�,�) =
∑!

�=1
"2
�
#(�,$�,��) . (37)

The normalized Neural Galerkin approximation is given by

�̄ (�,�) =
1∑
� "

2
�

∑!

�=1
"2
�
#(�,$�,��) . (38)

The scaling factor 0 in the adaptive sampling is set to 0 = 2 in this experiment.
We use implicit Euler with time-step size �� = 10−3. The number of ADAM iterations to solve Eq. (14) in ��+1 is 5 ×103. To estimate 

� and � , we draw � = 1000 samples at every time step, using the adaptive sampling procedure used in the previous experiments with 
the advection equation. Fig. 7 shows the mean position of particles 1, 4, and 8 in the spatial domain over time. The approximation 
obtained with Neural Galerkin with adaptive sampling closely follows the benchmark solution. In contrast, estimation of � and �
via uniform sampling in [0, 5]� leads again to a poor approximation. The relative error of the predicted mean with adaptive Neural 
Galerkin is roughly 10−4 as shown in Fig. 8(a) and the entries of the covariance matrix are approximated with relative error of about 
10−1 to 10−2 as shown in Fig. 8(b). Because Neural Galerkin schemes provide an approximation of the density of the particles, rather 
than just samples of their positions as Monte Carlo methods, we can compute the entropy of the particle distribution over time; see 
Fig. 9(a). The entropy of the distribution described by the Neural Galerkin approximation is computed by drawing � = 5000 samples 
�1, … , �� from the mixture given by (37) and then estimating the entropy via Monte Carlo

=� = −
1

�

�∑
�=1

log �̄ (�(�),��) .

The adaptive Neural Galerkin approximation of the entropy is in close agreement with the benchmark, whereas static sampling and 
Monte Carlo combined with density estimation from 5, 000 samples leads to poor approximations.

5.4.2. Particles in aharmonic trap
Next we consider an aharmonic trap with one-body force �(�, 3�) = (	(�) −�)3 and the same pairwise interaction term ( as defined 

in Eq. (36) except that 9 is set to 9 = −0.5, so that the particles now repel each other within the attracting trap. Because of the 



Journal of Computational Physics 496 (2024) 112588

16

J. Bruna, B. Peherstorfer and E. Vanden-Eijnden

Fig. 9. Particles in trap: The proposed Neural Galerkin schemes provide an approximation of the particle density that allows efficiently computing quantities of 
interest such as the entropy. In contrast, Monte Carlo estimation only draws samples of the particle distribution and requires subsequent density estimation with e.g., 
kernel density estimation (KDE) to compute quantities such as the entropy.

Fig. 10. Particles in aharmonic trap: We use the same plotting convention as in Fig. 8.

nonlinear force, the density � is not necessarily Gaussian anymore. A Monte Carlo estimate of the particle positions from 100, 000
samples serves as benchmark in the following.

To apply a Neural Galerkin scheme in this experiment, we take the neural network defined in Eq. (19) with ! = 40 nodes and 
non-negative weights. Time is discretized with implicit Euler and �� = 10−3. We take � = 5000 sample and 1000 ADAM iterations in 
each time step. The rest of the setup is the same as in the example with the harmonic trap. Fig. 10(a) and (b) show the relative 
error of the mean and the relative error of the covariance diagonal, respectively. With adaptive sampling, the used Neural Galerkin 
scheme achieves an error between 10−3 and 10−2. In contrast, static sampling is insufficient and leads to large relative errors. Note 
that the off-diagonal elements of the covariance of the particle density converge to zero over time in this experiment and thus the 
relative error is not informative and not plotted here. Because Neural Galerkin schemes provide an approximation of the density of 
the particles, we can efficiently compute the entropy: As shown in Fig. 9(b), it is in agreement with the prediction obtained with 
Monte Carlo and density estimation from 100, 000 samples.

6. Concluding remarks

As machine-learning techniques via deep learning play an ever more important role in enabling realistic simulations of phenomena 
and processes in science and engineering, there is an increasing need for training on data that are informative about the underlying 
physics. This problem of data generation becomes especially important in dynamical systems that evolve over time where a priori
data is sparse or non-existent, and static data collection in a pre-processing step is insufficient. The proposed Neural Galerkin schemes 
intertwine data acquisition via sampling and numerical simulations in an adaptive way. The schemes learn PDE solutions by evolving 
a non-linear function representation, which is adjusted from data points obtained via importance sampling that is informed by the 
solution itself. Our numerical experiments demonstrate that the adaptivity in function approximation as well as data collection is key 
to enable accurate prediction of local features in high-dimensional domains.

These results suggest that the proposed Neural Galerkin schemes can be applied to simulate many other high-dimensional equa-
tions relevant in science and engineering, such as kinetic equations, non-linear Fokker-Planck equations, Boltzmann equations, etc. 



Journal of Computational Physics 496 (2024) 112588

17

J. Bruna, B. Peherstorfer and E. Vanden-Eijnden

This would be especially useful in situations where Monte-Carlo methods are not directly applicable because the solution does not 
admit a representation via the Feynman-Kac formula. However, several limitations remain that open the door to interesting questions 
that we leave as future research avenues: First, we should understand better which structural properties of the neural architectures 
will guarantee that the function approximation from (5) �(�, �) ≈� (�(�), �) will hold uniformly in time. For some initial efforts in the 
context of shallow ReLU architectures we refer the reader to [52]. Second, a naive implementation as used in this work means that 
the costs per time step scale with the number of parameters of the network. There can be additional costs of computing gradients 
of the network that can lead to higher costs per time step with nonlinear parametrizations than with linear parametrizations for 
the same number of parameters. An important research direction therefore is developing efficient numerical solvers that exploit the 
network architecture and potentially other properties of the very specific least-squares problem that is solved in each time step of 
Neural Galerkin schemes. Third, Neural Galerkin schemes update the network parameters sequentially in time and thus perturbations 
in the initial condition are propagated forward, which is analogous to classical numerical methods where perturbations in the initial 
condition also can pollute numerical solutions at later times. It thus is important to accurately fit the parametrization to the initial 
condition at time � = 0, which can lead to a computational expensive training problem. Fourth, there is a need for developing a sys-
tematic way of formulating the importance sampling strategies for the adaptive training data sampling. Additionally, the importance 
sampling strategies could adapt the network structure to the evolving solution field with an adaptive neuron budget. Such strategies 
could for example use birth-death processes [53], which would allow us to vary the width of the neural network in time, or methods 
that couple the PDE to some evolution equation for the input data points used to sample the residual.

CRediT authorship contribution statement

Joan Bruna: Conceptualization, Methodology, Writing – original draft, Writing – review & editing. Benjamin Peherstorfer:
Conceptualization, Methodology, Writing – original draft, Writing – review & editing. Eric Vanden-Eijnden: Conceptualization, 
Methodology, Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing 
interests:

Benjamin Peherstorfer reports financial support was provided by National Science Foundation. Joan Bruna reports financial 
support was provided by Schmidt Futures. Benjamin Peherstorfer reports financial support was provided by Air Force Office of 
Scientific Research.

Data availability

Data will be made available on request.

Acknowledgements

B.P. was partially supported by NSF under award DMS-2046521 and IIS-1901091 and the Air Force Center of Excellence on Multi-
Fidelity Modeling of Rocket Combustor Dynamics under Award Number FA9550-17-1-0195. Funding for the Multiscale Machine 
Learning In coupled Earth System Modeling (M2LInES) project was provided to J.B. by the generosity of Eric and Wendy Schmidt by 
recommendation of the Schmidt Futures program.

Appendix A. Learning in the Banach space �

Let us consider the Neural Galerkin representation �(�, �) = � (�(�), �) in a situation where � is infinite dimensional, namely when

�(�,�) = ∫

?(�, @)�A�(@) (A.1)

where ? ∶  × →ℝ is some nonlinear unit (like e.g. the ReLU), and A� is a Radon measure with finite total variation defined on : 
we will denote the space of such Radon measures by (). Functions of the type defined in Eq. (A.1) form a Banach space in which 
the norm of �(�) is the minimum total variation of A� among all Radon measures consistent with Eq. (A.1); these functions can also 
be approximated by shallow (two-layer) neural networks, which converge to functions as defined in Eq. (A.1) in the limit of infinite 
width. In this context, one can specify the evolution of A� by requiring that

Ȧ� ∈ argmin
Ȧ∈()∫

|||||||
∫

?(�, @)�Ȧ(@) − �

(
�,�, ∫?(⋅, @)�A�(@)

)|||||||

2

��(�) (A.2)

where � is some positive measure on  . Expanding the quadratic objective of (A.2) leads to



Journal of Computational Physics 496 (2024) 112588

18

J. Bruna, B. Peherstorfer and E. Vanden-Eijnden

∫


|||||||
∫

?(�, @)�Ȧ(@) − �

(
�,�, ∫?(⋅, @)�A�(@)

)|||||||

2

��(�) = ∫
×

�(@, @′)�Ȧ(@)�Ȧ(@′) − 2∫

� (�, @, A)�Ȧ(@) + B , (A.3)

where B is a constant independent of �Ȧ(@) and we defined

⎧
⎪⎪⎨⎪⎪⎩

�(@, @′) = ∫

?(�, @)?(�, @′)��(�),

� (�, @, A) = ∫

?(�, @)�

(
�,�, ∫?(⋅, @′)�A(@′)

)
��(�) .

(A.4)

The Euler-Lagrange equation associated with this minimization problem gives the following evolution equation for A� :

∫

�(@, @′)�Ȧ�(@

′) = � (�, @, A�) (A.5)

where we canceled the constant 2.

Appendix B. Another derivation of the Neural Galerkin equation �(�)�̇= � (�, �)

Let �(�) be the solution of the PDE at time � and � (�(�)) be its parametric representation. In general we do not have access to �(�)
(except at initial time through the prescribed initial condition), but if we had an oracle giving us this solution one option to determine 
the parameters �(�) would be to minimize an objective like

=(�(�)) =C (�(�),� (�(�))) (B.1)

where C ∶ × →ℝ is such that (i) C(�, /) ≥ 0 for all �, / ∈ ; (ii) C(�, �) = 0 for all � ∈ and (iii) C(�, /) is strictly convex in / for 
all � ∈ . Assuming that C(�, /) is twice differentiable in both its arguments, this requires that

∀� ∈ ∶ C(�, �) = 0, 5/C(�, /)|/=� = 0 and 52
/,/
C(�, /)|/=� is positive-definite (B.2)

where 5 denotes derivative in  . Together with C(�, �) = 0, note that this also implies that 5�C(�, /)|/=� = 0 for all � ∈ .
Suppose that the current solution �(�) is representable exactly, i.e. there exists �(�) ∈ Θ such that � (�(�)) = �(�). This implies that 

=(�(�)) = 0, and it is natural to require that this objective remains zero, or as close to zero as possible, as time evolves. With this in 
mind, we can use the following result:

Proposition B.1. Assume that (i) � (�(�)) = �(�) and (ii) the objective C(�, /) satisfies the conditions (B.2), so that =(�(�)) = 0. Then

lim
ℎ→0

ℎ−2=(�(�+ ℎ)) =
1

2
�̇��(�(�))�̇ + �̇ ⋅ � (�, �(�)) +

1

2
�(�, �(�)) =∶�(�̇), (B.3)

where

�(�) = ⟨∇�� (�),52
/,/
C(� (�),� (�))∇�� (�)⟩

� (�, �) = ⟨� (�,� (�)),52
�,/
C(� (�),� (�))∇�� (�)⟩

�(�, �) = ⟨� (�,� (�)),52
�,�
C(� (�),� (�))� (�,� (�))⟩

(B.4)

Proof. A straightforward calculation using the conditions in (B.2) as well as ���(�) = � (�, �(�)) = � (�, � (�(�)) indicates that

=(�(�+ ℎ)) =C (�(�+ ℎ),� (�(�+ ℎ)))

=
1

2
ℎ2⟨� (�,� (�(�)),52

�,�
C(� (�(�)),� (�(�)))� (�,� (�(�))⟩

+
1

2
ℎ2⟨∇�� (�(�)) ⋅ �̇,52

/,/
C(� (�(�)),� (�(�)))∇�� (�(�)) ⋅ �̇⟩

+ ℎ2⟨� (�,� (�(�)),52
�,/
C(� (�(�)),� (�(�)))∇�� (�(�)) ⋅ �̇⟩+ D(ℎ2)

(B.5)

Dividing by ℎ2 and taking the limit as ℎ → 0 establishes (B.3). □

Minimizing the objective defined in Eq. (B.3) over �̇ given �(�) leads us back to an evolution equation for �(�) that is structurally 
similar the Neural Galerkin equation derived in the main text, that is

�(�(�))�̇(�) = � (�, �(�)), (B.6)

and is to be solved with the initial condition

�(0) ∈ argmin
�

C(�0,� (�)). (B.7)



Journal of Computational Physics 496 (2024) 112588

19

J. Bruna, B. Peherstorfer and E. Vanden-Eijnden

In particular it is easy to see that if we take

C(�, /) = ∫


|�(�,�) − /(�,�)|2��(�), (B.8)

then the system of ODEs defined in Eq. (B.6) is exactly the same system as the system of ODEs given in the main text with � and 
� given in Eq. (12) with �� = �. The formulation above is however more general, and offers a principled way to specify the measure 
�� . For example, for equations like the Fokker-Planck equation that evolve a probability density �(�) > 0 such that ∫ �(�, �)�� = 1, it 
common objective is the Kullback-Leibler divergence

C(�, /) = ∫


log

(
�(�)

/(�)

)
�(�)�� . (B.9)

With this choice we arrive at Eq. (B.6) with

�(�) = ∫


∇�� (�,�)⊗∇�� (�,�)

� (�,�)
�� ,

� (�, �) = ∫


∇�� (�,�)� (�,�,� (�))

� (�,�)
�� .

(B.10)

These correspond to using ���(�) = |� (�, �)|−1��.

Appendix C. Comparison with global methods

Let us compare the Neural Galerkin equation we use with the equations one obtains by treating the problem globally in time, i.e. 
by putting the spatial and the temporal variables on the same footing as in the Deep Ritz method [1–4]. An optimal trajectory (in 
the �2([0, � ] × , �0) sense) in parameter space satisfies

min
{�(�)∈Θ;�∈[0,� ]}

�

∫
0

��(�, �̇(�))��, (C.1)

subject to �(0) = �0. The Euler-Lagrange equations associated with this minimization problem are

�

��
����(�, �̇) = ����(�, �̇), �(0) = �0, ���� (�(� ), �̇(� )) = 0. (C.2)

Explicitly, these read

�

��

(
�(�, �)�̇ − � (�, �)

)
=E(�, �, �̇), �(0) = �0, �(� , �(� ))�̇(� ) = � (� , �(� )), (C.3)

where we defined

E(�, �, �) = ∫


(
∇�∇�� (�,�)� −∇�� (�,�)5�� (�,�,� (�))

) (
∇�� (�,�) ⋅ � − � (�,�,� (�))

)
���,�(�) (C.4)

Eqs. (C.3) are a boundary value problem which is harder to solve than the Neural Galerkin Eq. (11).

Appendix D. Korteweg-de Vries equation

We re-state the exact solution of the setup of the KdV equation that we consider; see [51, Section I-a-(ii)]. The exact solution is 
�(�, �) = 2(log(�))��, where (⋅)�� denotes the second derivative in the argument �. The function � is

�(�, �) = 1 + exp(�1(�, �)) + exp(�2(�, �)) + exp(�1(�, �) + �2(�, �))

(
�1 − �2

�1 + �2

)2

,

where ��(�, �) = ��� − �3� � + �
(0)
�
and

�1 = 1 , �2 =
√
5 , �

(0)

1
= 0 , �

(0)

2
= 10.73 .

Appendix E. Advection in unbounded, high-dimensional domains

All five marginals for the time-varying and the time-and-space varying case are shown in Fig. E.11 and Fig. E.12, respectively.



Journal of Computational Physics 496 (2024) 112588

20

J. Bruna, B. Peherstorfer and E. Vanden-Eijnden

Fig. E.11. High-dimensional transport with time-varying coefficient: The plots labeled with “truth” show the marginals of the analytic solution. The plots labeled with 
“uniform” are the Neural Galerkin approximations with a static uniform sampling in [0, 15]� . The plots labeled with “adapt” show the Neural Galerkin solution with 
adaptive sampling, which is in close agreement with the analytic solution.

Fig. E.12. High-dimensional transport with time and spatially varying coefficients: The first row shows the marginals of the approximation obtained with Neural 
Galerkin with adaptive sampling and adaptive time integration. Because of the spatially varying coefficient, the coherent structure that is propagated over time 
changes shape, which is different from the time-only varying case shown in Fig. E.11. The transport equation is integrated forward and backward in time to compare 
the approximation at initial and end time, which is shown in the second row. The approximations at initial and end time match well, which indicates that the proposed 
adaptive approach approximates well the local, high-dimensional dynamics in this problem.

Appendix F. Fokker-Planck equation in high-dimensions

In case of the harmonic trap, the following system of ODEs describes the mean 3̄�(�) and covariance 1�4 (�) of particles 3� and 34
at time � for �, 4 = 1, … , �

̇̄3�(�) = − (1 + 9)3̄�(�) + 	(�) +
9

�

�∑
4=1

3̄4 (�) , � = 1,… , � , (F.1)

1̇�4 =− 2(1 + 9)1�4 +
9

�

�∑
�=1

(1�4 +1��) + 2F−1��4 , �, 4 = 1,… , � , (F.2)

where ��4 is the Dirac delta. The benchmark solution is obtained by integrating these ODEs with Runge-Kutta 45. Fig. F.13 compares 
the particle positions predicted by Neural Galerkin to the benchmark solution for various dimensions.

In case of the aharmonic trap, a Monte Carlo estimate serves as benchmark. To that end, we discretize the stochastic differential 
equation of the particle positions via the Euler–Maruyama method with time-step size �� = 10−4 and draw 100, 000 paths. From these 
100, 000 paths we estimate the mean and covariance, which serve as the benchmark for the Neural Galerkin approximation. The 
particle positions predicted by Neural Galerkin versus the Monte Carlo benchmark are shown in Fig. F.14.



Journal of Computational Physics 496 (2024) 112588

21

J. Bruna, B. Peherstorfer and E. Vanden-Eijnden

Fig. F.13. Particles in harmonic trap: Visualization of particle positions over time.

Fig. F.14. Particles in aharmonic trap: Visualization of particle positions over time. Note that a Monte Carlo estimate of the mean serves as benchmark here.

References

[1] M.W.M.G. Dissanayake, N. Phan-Thien, Neural-network-based approximations for solving partial differential equations, Commun. Numer. Methods Eng. 10 (3) 
(1994) 195–201.

[2] J. Sirignano, K. Spiliopoulos, DGM: a deep learning algorithm for solving partial differential equations, J. Comput. Phys. 375 (2018) 1339–1364.
[3] M. Raissi, P. Perdikaris, G. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving 

nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.
[4] J. Berg, K. Nyström, A unified deep artificial neural network approach to partial differential equations in complex geometries, Neurocomputing 317 (2018) 

28–41.
[5] P.A.M. Dirac, Note on exchange phenomena in the Thomas atom, Math. Proc. Camb. Philos. Soc. 26 (3) (1930) 376–385.
[6] J. Frenkel, Wave Mechanics, Advanced General Theory, Clarendon Press, Oxford, 1934.
[7] C. Lubich, From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis, EMS Press, 2008.
[8] O. Koch, C. Lubich, Dynamical low-rank approximation, SIAM J. Matrix Anal. Appl. 29 (2) (2007) 434–454.
[9] T.P. Sapsis, P.F. Lermusiaux, Dynamically orthogonal field equations for continuous stochastic dynamical systems, Phys. D: Nonlinear Phenom. 238 (23) (2009) 

2347–2360.
[10] J.S. Hesthaven, C. Pagliantini, G. Rozza, Reduced basis methods for time-dependent problems, Acta Numer. 31 (2022) 265–345.
[11] Y. Du, T.A. Zaki, Evolutional deep neural network, Phys. Rev. E 104 (2021) 045303.
[12] W. Anderson, M. Farazmand, Evolution of nonlinear reduced-order solutions for PDEs with conserved quantities, SIAM J. Sci. Comput. 44 (1) (2022) A176–A197.
[13] G.M. Rotskoff, A.R. Mitchell, E. Vanden-Eijnden, Active importance sampling for variational objectives dominated by rare events: consequences for optimization 

and generalization, arXiv :2008 .06334, 2021.
[14] F. de Avila Belbute-Peres, Y. Chen, F. Sha, HyperPINN: learning parameterized differential equations with physics-informed hypernetworks, in: The Symbiosis 

of Deep Learning and Differential Equations, NeurIPS Workshop 2021, 2021, pp. 1–5.
[15] W. E, J. Han, A. Jentzen, Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differ-

ential equations, Commun. Math. Stat. 5 (4) (2017) 349–380.
[16] J. Han, A. Jentzen, W. E, Solving high-dimensional partial differential equations using deep learning, Proc. Natl. Acad. Sci. 115 (34) (2018) 8505–8510.
[17] Y. Khoo, J. Lu, L. Ying, Solving for high-dimensional committor functions using artificial neural networks, Res. Math. Sci. 6 (1) (2018) 1.
[18] Q. Li, B. Lin, W. Ren, Computing committor functions for the study of rare events using deep learning, J. Chem. Phys. 151 (5) (2019) 054112.
[19] Y. Bar-Sinai, S. Hoyer, J. Hickey, M.P. Brenner, Learning data-driven discretizations for partial differential equations, Proc. Natl. Acad. Sci. 116 (31) (2019) 

15344–15349.
[20] D. Kochkov, J.A. Smith, A. Alieva, Q. Wang, M.P. Brenner, S. Hoyer, Machine learning–accelerated computational fluid dynamics, Proc. Natl. Acad. Sci. 118 (21) 

(2021).
[21] Q. Wang, N. Ripamonti, J.S. Hesthaven, Recurrent neural network closure of parametric POD-Galerkin reduced-order models based on the Mori-Zwanzig 

formalism, J. Comput. Phys. 410 (2020) 109402.



Journal of Computational Physics 496 (2024) 112588

22

J. Bruna, B. Peherstorfer and E. Vanden-Eijnden

[22] S.H. Rudy, J. Nathan Kutz, S.L. Brunton, Deep learning of dynamics and signal-noise decomposition with time-stepping constraints, J. Comput. Phys. 396 (2019) 
483–506.

[23] G. Rozza, D. Huynh, A. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential 
equations, Arch. Comput. Methods Eng. 15 (3) (2007) 1–47.

[24] P. Benner, S. Gugercin, K. Willcox, A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev. 57 (4) (2015) 483–531.
[25] Q. Wang, J.S. Hesthaven, D. Ray, Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion 

problem, J. Comput. Phys. 384 (2019) 289–307.
[26] N.B. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya, A.M. Stuart, A. Anandkumar, Neural operator: learning maps between function spaces, 

arXiv :2108 .08481, 2021.
[27] K. Bhattacharya, B. Hosseini, N.B. Kovachki, A.M. Stuart, Model reduction and neural networks for parametric PDEs, SMAI J. Comput. Math. 7 (2021) 121–157.
[28] Y. Khoo, J. Lu, L. Ying, Solving parametric PDE problems with artificial neural networks, Eur. J. Appl. Math. 23 (2020) 421–435.
[29] K. Lee, K.T. Carlberg, Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders, J. Comput. Phys. 404 (2020) 

108973.
[30] T. Taddei, S. Perotto, A. Quarteroni, Reduced basis techniques for nonlinear conservation laws, ESAIM: Math. Model. Numer. Anal. 49 (3) (2015) 787–814.
[31] T. O’Leary-Roseberry, U. Villa, P. Chen, O. Ghattas, Derivative-informed projected neural networks for high-dimensional parametric maps governed by PDEs, 

Comput. Methods Appl. Mech. Eng. 388 (2022) 114199.
[32] V. Ehrlacher, D. Lombardi, O. Mula, F.-X. Vialard, Nonlinear model reduction on metric spaces. Application to one-dimensional conservative PDEs in Wasserstein 

spaces, ESAIM: Math. Model. Numer. Anal. 54 (6) (2020) 2159–2197.
[33] J. Reiss, P. Schulze, J. Sesterhenn, V. Mehrmann, The shifted proper orthogonal decomposition: a mode decomposition for multiple transport phenomena, SIAM 

J. Sci. Comput. 40 (3) (2018) A1322–A1344.
[34] F. Romor, G. Stabile, G. Rozza, Non-linear manifold ROM with convolutional autoencoders and reduced over-collocation method, arXiv :2203 .00360, 2022.
[35] E. Qian, B. Kramer, B. Peherstorfer, K. Willcox, Lift & Learn: physics-informed machine learning for large-scale nonlinear dynamical systems, Phys. D: Nonlinear 

Phenom. 406 (2020) 132401.
[36] S. Pan, S.L. Brunton, J.N. Kutz, Neural implicit flow: a mesh-agnostic dimensionality reduction paradigm of spatio-temporal data, J. Mach. Learn. Res. 24 (41) 

(2023) 1–60.
[37] Y. Kim, Y. Choi, D. Widemann, T. Zohdi, A fast and accurate physics-informed neural network reduced order model with shallow masked autoencoder, J. 

Comput. Phys. 451 (2022) 110841.
[38] M. Billaud-Friess, A. Nouy, Dynamical model reduction method for solving parameter-dependent dynamical systems, SIAM J. Sci. Comput. 39 (4) (2017) 

A1766–A1792.
[39] R. Zimmermann, B. Peherstorfer, K. Willcox, Geometric subspace updates with applications to online adaptive nonlinear model reduction, SIAM J. Matrix Anal. 

Appl. 39 (1) (2018) 234–261.
[40] J.S. Hesthaven, C. Pagliantini, N. Ripamonti, Rank-adaptive structure-preserving model order reduction of Hamiltonian systems, ESAIM: M2AN 56 (2) (2022) 

617–650.
[41] B. Peherstorfer, K. Willcox, Online adaptive model reduction for nonlinear systems via low-rank updates, SIAM J. Sci. Comput. 37 (4) (2015) A2123–A2150.
[42] B. Peherstorfer, Model reduction for transport-dominated problems via online adaptive bases and adaptive sampling, SIAM J. Sci. Comput. 42 (5) (2020) 

A2803–A2836.
[43] E. Musharbash, F. Nobile, T. Zhou, Error analysis of the dynamically orthogonal approximation of time dependent random PDEs, SIAM J. Sci. Comput. 37 (2) 

(2015) A776–A810.
[44] A. Ern, J.-L. Guermond, Theory and Practice of Finite Elements, Springer, 2004.
[45] B. Peherstorfer, Breaking the Kolmogorov barrier with nonlinear model reduction, Not. Am. Math. Soc. 69 (2022) 725–733.
[46] Felix Black, Philipp Schulze, Benjamin Unger, Projection-based model reduction with dynamically transformed modes, ESAIM: M2AN 54 (6) (2020) 2011–2043.
[47] J. Dormand, P. Prince, A family of embedded Runge-Kutta formulae, J. Comput. Appl. Math. 6 (1) (1980) 19–26.
[48] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, in: Y. Bengio, Y. LeCun (Eds.), 3rd International Conference on Learning Representations, 

Conference Track Proceedings, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, 2015.
[49] M.D. Gunzburger, Perspectives in Flow Control and Optimization, Society for Industrial and Applied Mathematics, 2002.
[50] A. Rahimi, B. Recht, Random features for large-scale kernel machines, in: J. Platt, D. Koller, Y. Singer, S. Roweis (Eds.), Advances in Neural Information 

Processing Systems, vol. 20, 2008.
[51] T.R. Taha, M.I. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations. III. Numerical, Korteweg-de Vries equation, J. Comput. 

Phys. 55 (2) (1984) 231–253.
[52] S. Wojtowytsch, W. E, Some observations on high-dimensional partial differential equations with Barron data, in: Mathematical and Scientific Machine Learning, 

2021.
[53] G. Rotskoff, S. Jelassi, J. Bruna, E. Vanden-Eijnden, Global convergence of neuron birth-death dynamics, arXiv :1902 .01843, 2019.


	Neural Galerkin schemes with active learning for high-dimensional evolution equations
	1 Introduction
	2 Setup and problem formulation
	2.1 Evolution equations
	2.2 Problem formulation

	3 Neural Galerkin schemes via the Dirac-Frenkel variational principle
	3.1 Nonlinear parametrizations that depend on time
	3.2 Training nonlinear parametrization via the Dirac-Frenkel variational principle
	3.3 System of ODEs for network parameters
	3.4 Discretization in time
	3.4.1 Explicit integrators
	3.4.2 Implicit integrators

	3.5 Computational costs

	4 Active learning with Neural Galerkin schemes
	4.1 Active learning via time-dependent measures
	4.2 Monte Carlo estimators with adaptive samples
	4.3 Importance sampling with respect to a nominal measure
	4.4 Neural architectures and sampling

	5 Numerical experiments
	5.1 Korteweg-de Vries equation
	5.2 Allen-Cahn (AC) equation
	5.3 Advection in unbounded, high-dimensional domains
	5.3.1 Advection with a time-dependent coefficient
	5.3.2 Advection with time- and space-dependent coefficients

	5.4 Interacting particle systems
	5.4.1 Particles in harmonic trap
	5.4.2 Particles in aharmonic trap


	6 Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Learning in the Banach space 1
	Appendix B Another derivation of the Neural Galerkin equation M(θ)휽̇=F(t,θ)
	Appendix C Comparison with global methods
	Appendix D Korteweg-de Vries equation
	Appendix E Advection in unbounded, high-dimensional domains
	Appendix F Fokker-Planck equation in high-dimensions
	References


