
Published as a Tiny Paper at ICLR 2024

SMALL TRANSFORMERS, BIG RESULTS:

EFFICIENT DIFFUSION WITH PARAMETER SHARING

Mohamed Osman
Department of Computer Science
Virginia Commonwealth University
Richmond, VA 23284, USA
osmanmw@vcu.edu

Daniel Z. Kaplan
realiz.ai
Edison, NJ, 08817
daniel.z.kaplan@gmail.com

ABSTRACT

The interplay between model depth, computational complexity, and parameter
count remains an intricate aspect of neural network design. We propose a novel
block sharing mechanism for denoising diffusion generative models, enabling us
to maintain or even improve model quality while reducing parameter count. Our
approach leverages the architectural homogeneity of Vision Transformers and
demonstrates enhanced performance with less computational overhead on vari-
ous datasets. We provide our code and pre-trained models to facilitate further
research.

1 INTRODUCTION

Scaling up neural networks is a standard approach to improve performance across various tasks
(Alabdulmohsin et al., 2023). However, this scalability often comes at the cost of increased com-
putational resources, limiting the deployment on resource-constrained devices. Furthermore, the
communication overhead in distributed training environments can significantly offset the benefits of
scaling (Rajbhandari et al., 2020).

Denoising diffusion probabilistic models (DDPMs) (Ho et al., 2020) and score-based generative
models (Song et al., 2020) have become prominent for generating high-fidelity images, detailed
further in Appendix A. Leveraging these concepts, we enhance Vision Transformers with block
sharing, an approach that exploits the repetitive nature of transformer blocks to simulate increased
depth without a corresponding rise in parameter count. This technique strikes a balance between
model size, computational efficiency, and performance. In line with this, parameter-efficient strate-
gies like ALBERT (Lan et al., 2020), (Pires et al., 2023; Lin et al., 2022), have similarly aimed to
boost performance without substantially increasing model dimensions or computational demands.

2 METHODS

2.1 MODEL ARCHITECTURE

Our models are based on Vision Transformers (Dosovitskiy et al., 2020; Vaswani et al., 2017), with
a specific focus on image generation, utilizing the k-diffusion repository (Crowson et al., 2023).
They utilize a patch-based approach to deconstruct images into sequences processed by transformer
blocks, each consisting of a multi-head self-attention mechanism and a position-wise feed-forward
network, and finally an unpatching operation to produce the image.

The model also supports conditional generation through an external mapping network, which pro-
duces vectors to describe several conditioning factors including class, diffusion timestep, as well as
data augmentations. The models are conditioned using AdaRMSNorm (Zhang & Sennrich, 2019).

2.2 PARAMETER SHARING SCHEME

The parameter sharing scheme involves the cyclic repetition of a subset of transformer blocks. The
initial conditioning is extended with information of how many times we have already seen the current
block. We experiment with both interleaved (e.g., 1212...) and non-interleaved (e.g., 111...222...)
configurations. This approach permits additional computational expenditure during training without

1





Published as a Tiny Paper at ICLR 2024

URM STATEMENT

The authors acknowledge that at least one key author of this work meets the URM criteria of ICLR
2024 Tiny Papers Track.

5 ACKNOWLEDGEMENTS

High Performance Computing resources provided by the High Performance Research Computing
(HPRC) core facility at Virginia Commonwealth University (https://hprc.vcu.edu) were used for
conducting the research reported in this work. Special thanks to Professor Alberto Cano for provid-
ing these resources on short notice.

REFERENCES

Ibrahim Alabdulmohsin, Xiaohua Zhai, Alexander Kolesnikov, and Lucas Beyer. Getting vit in
shape: Scaling laws for compute-optimal model design. arXiv preprint arXiv:2305.13035, 2023.

Eyal Betzalel, Coby Penso, Aviv Navon, and Ethan Fetaya. A study on the evaluation of generative
models. arXiv preprint arXiv:2206.10935, 2022.

Katherine Crowson, Romain Beaumont, Tanishq Abraham, Jonathan Whitaker, and storyicon.
crowsonkb/k-diffusion: v0.1.1.post1, December 2023. URL https://doi.org/10.5281/

zenodo.10284390. https://github.com/crowsonkb/k-diffusion.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in Neural Information Processing Systems, 35:26565–26577,
2022.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. Albert: A lite bert for self-supervised learning of language representations, 2020.

Chien-Yu Lin, Anish Prabhu, Thomas Merth, Sachin Mehta, Anurag Ranjan, Maxwell Horton, and
Mohammad Rastegari. Spin: An empirical evaluation on sharing parameters of isotropic net-
works, 2022.

Telmo Pessoa Pires, António V. Lopes, Yannick Assogba, and Hendra Setiawan. One wide feedfor-
ward is all you need, 2023.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 1–16. IEEE, 2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

3



Published as a Tiny Paper at ICLR 2024

A BACKGROUND ON DDPM AND SCORE SDE/ODES

Denoising Diffusion Probabilistic Models (DDPMs): DDPMs are generative models that trans-
form a noise distribution into complex data representations following a Markov chain. This process

can be mathematically expressed as xt+1 =
√

1− βt+1xt +
√

βt+1ϵt+1, where βt+1 is the noise
level at step t+ 1, and ϵt+1 is Gaussian noise.

Score-Based Stochastic Differential Equations (SDEs): These models generalize DDPMs using
SDEs, which describe the continuous-time evolution of a data sample xt as dxt = f(xt, t)dt +
g(t)dBt. Here, f(xt, t) is the deterministic component, g(t)dBt represents stochastic diffusion, and
Bt is Brownian motion.

Neural Network Implementation: Neural networks are trained to estimate the reverse of the
diffusion process in these models. They approximate the score function ∇x log pt(x), guiding the
sample from noise to data distribution.

B INTERLEAVED VS NOT INTERLEAVED CODE

We present below Python pseudo-code showing how interleaved and non-interleaved executions are
performed. They become identical when the value of ’substeps’ is one.

1 if interleaved:

2 for i in range(substeps):

3 for block in self.blocks:

4 x = block(x, pos, attn_mask, cond*(i+1))

5 else:

6 for block in self.blocks:

7 for i in range(substeps):

8 x = block(x, pos, attn_mask, cond*(i+1))

Listing 1: Algorithm for Interleaved and Non-Interleaved Execution

4



Published as a Tiny Paper at ICLR 2024

C TRAINING CONFIGURATION DETAILS

Parameter Value

Model Type Image Transformer v1
Input Channels 3
Input Size 32× 32
Patch Size 4× 4
Width 1024
Depth 2
Loss Configuration Karras
Loss Weighting Soft-min-SNR
Noise Schedule Length 50
Dropout Rate 0.05
Augmentation Probability 0.12
σdata 0.5

σmin 1× 10−2

σmax 80
Sigma Sample Density Type Cosine-interpolated
Dataset Type CIFAR-10
Dataset Location Data directory
Number of Classes 10
Conditional Dropout Rate 0.1
Optimizer Type AdamW

Learning Rate (LR) 5× 10−4

LR Betas [0.9, 0.95]

LR Epsilon 1× 10−8

Weight Decay 1× 10−4

LR Schedule Type Constant
LR Schedule Warmup 0.0
EMA Schedule Type Inverse
EMA Schedule Power 0.6667
EMA Schedule Max Value 0.9999

Table 2: Detailed configuration parameters for model training.

5


	Introduction
	Methods
	Model Architecture
	Parameter Sharing Scheme

	Experiments and Results
	Training Configuration
	Quantitative Results

	Discussion and Conclusions
	Acknowledgements
	Background on DDPM and Score SDE/ODEs
	Interleaved vs Not Interleaved Code
	Training Configuration Details

