
PathFinder: Attention-Driven Dynamic Non-Line-of-Sight Tracking
with a Mobile Robot

Shenbagaraj Kannapiran†1, Sreenithy Chandran†2, Suren Jayasuriya2, and Spring Berman1

Abstract— The study of non-line-of-sight (NLOS) imaging
is growing due to its many potential applications, including
rescue operations and pedestrian detection by self-driving cars.
However, implementing NLOS imaging on a moving camera
remains an open area of research. Existing NLOS imaging
methods rely on time-resolved detectors and laser configura-
tions that require precise optical alignment, making it difficult
to deploy them in dynamic environments. This work proposes a
data-driven approach to NLOS imaging, PathFinder, that can
be used with a standard RGB camera mounted on a small,
power-constrained mobile robot, such as an aerial drone. Our
experimental pipeline is designed to accurately estimate the
2D trajectory of a person who moves in a Manhattan-world
environment while remaining hidden from the camera’s field-
of-view. We introduce a novel approach to process a sequence of
dynamic successive frames in a line-of-sight (LOS) video using
an attention-based neural network that performs inference in
real-time. The method also includes a preprocessing selection
metric that analyzes images from a moving camera which
contain multiple vertical planar surfaces, such as walls and
building facades, and extracts planes that return maximum
NLOS information. We validate the approach on in-the-wild
scenes using a drone for video capture, thus demonstrating
low-cost NLOS imaging in dynamic capture environments.

I. INTRODUCTION

Non-line-of-sight (NLOS) imaging is a technique that
reconstructs an object (the “NLOS object”) that is not in the
direct line-of-sight (LOS) of a camera, using light scattered
from one or more surfaces near the occluded object. This
light undergoes multiple reflections and scatterings before
it reaches a detector or camera, resulting in a low signal-
to-noise ratio. To overcome this, a combination of optical
setups, powerful detectors, imaging algorithms, or deep
learning techniques can be used to estimate the underlying
NLOS signal [1], [2]. This method has a variety of potential
applications, such as in autonomous driving (e.g., detecting
pedestrians and other vehicles around corners), localization
of disaster victims, and search-and-rescue operations in haz-
ardous environments [1]–[3].

Most NLOS imaging demonstrations tend to be restricted
to laboratory-scale setups, with minimal or no movement of
the detector/acquisition system. However, for NLOS imaging

† Equal contribution
This work was funded by NSF Award IIS-1909192. The authors acknowl-

edge Research Computing at Arizona State University for providing GPU
resources for this research.

1Shenbagaraj Kannapiran and Spring Berman are with the School
for Engineering of Matter, Transport and Energy, Arizona State
University, Tempe, AZ 85287, USA shenbagaraj@asu.edu,
spring.berman@asu.edu

2Sreenithy Chandran and Suren Jayasuriya are with the School of Elec-
trical, Computer and Energy Engineering, Arizona State University, Tempe,
AZ 85281, USA schand56@asu.edu, sjayasur@asu.edu

Fig. 1: NLOS imaging task addressed by our method, which
estimates a person’s 2D trajectory by leveraging the light
scatter information in a drone’s capture of several relay walls.

to be deployed robustly in practice, it needs to accommodate
dynamic movements of the detector, e.g., when it is mounted
on a mobile robot, and work in large-scale environments.
Thus far, few works have addressed this problem, and
existing approaches often utilize a portable radar sensor as
the moving detector, e.g., [4], [5]. In an effort to fill this gap,
we develop a low-cost, practical solution to NLOS imaging,
PathFinder, that can be deployed in dynamic capture envi-
ronments using conventional consumer cameras, without the
need for specialized detectors.

NLOS imaging methods can be categorized as active,
which make use of active illumination, or passive, which
do not. Active imaging techniques usually direct a high-
temporal-resolution light source (e.g., pulsed laser) into the
NLOS region and use a time-resolved detector, such as
a streak camera [6] or Single Photon Avalanche Diodes
(SPADs) [7], [8], to calculate the time of arrival of the
reflected light pulse [9]–[11]. Since these methods acquire
very precise time data, they are suitable for high-resolution
3D object reconstruction. However, they can only be im-
plemented using elaborate optical setups and require long
acquisition times. In state-of-the-art Time-of-Flight systems,
the scanning frequency can take up to several minutes, which
is insufficient for real-time NLOS applications [12], [13].
In contrast to time-of-flight, researchers have also explored
NLOS imaging using conventional cameras and lasers [14],
[15] and/or spotlight illumination [16], [17]. However, this
method still requires the use of a controlled illumination
source, adding size, weight, and power when deployed on
a robotic platform.

We adopt a passive NLOS imaging approach, which is



more suitable for our goal. Passive NLOS imaging methods,
e.g., [18]–[25], capture the visible light reflected from the
hidden object to perform the imaging task. Due to the
ill-posed nature of the problem, additional constraints and
priors are often applied, including partial occlusion [26],
[27], polarization [24], and coherence [28]. Recently, the
use of data-driven scene priors for passive NLOS imaging
has shown great promise [29], [30]. Tancik et al. [29] used
a convolutional neural network (CNN) to perform activity
recognition and tracking of humans and a variational au-
toencoder to perform reconstructions. Sharma et al. [21] pre-
sented a deep learning technique that can detect the number
of individuals and the activity performed by observing the
LOS wall [21]. Wang et al. [20] introduced PAC-Net, which
utilizes both static and dynamic information about an NLOS
scene. The method alternates between processing difference
images and raw images to perform tracking. However, all of
these methods are restricted to scenarios with a static camera.

Passive NLOS imaging methods are usually used for low-
quality 2D reconstructions and localization tasks and often
suffer from a low signal-to-noise ratio (SNR), a challenge
previously addressed by subtracting the temporal mean of
the video from each frame [19], [21], [31]. However, this
background subtraction technique is not feasible in dynamic
capture environments. To overcome this limitation, we pro-
pose a data preprocessing pipeline that enhances the SNR and
facilitates scene understanding. Moreover, unlike existing
passive methods that estimate an object’s position based on a
single stationary planar surface, our approach accommodates
scenarios where the camera, steered by a robot platform,
captures varying sections of multiple planar surfaces. Recog-
nizing that all visible surfaces could contain valuable NLOS
scatter information, we develop a transformer-based network
that leverages captures from all of these surfaces to estimate
the position of a hidden NLOS object. We train our pipeline
with a mixture of both synthetic and real data.

Our primary contributions are as follows:
• We introduce a novel approach to NLOS imaging with

a moving camera, employing a vision transformer-based
architecture that uses example packing to simultane-
ously process multiple flat relay walls with different
aspect ratios, thereby enhancing NLOS tracking perfor-
mance.

• We demonstrate state-of-the-art results on real data
to validate our method, using a quadcopter for video
capture.

• We collect the first dataset of dynamic camera footage
synchronized with high-resolution real NLOS object
trajectories and camera poses, which we plan to re-
lease [32].

II. PROBLEM STATEMENT

Figure 1 illustrates our imaging setup. A small mobile
robot (here, a quadcopter) equipped with a forward-facing
RGB camera moves in an occluded region while capturing
images of multiple relay walls (here, viewed through an open
door) that are within its field-of-view (FOV) region. The goal

of our method is to estimate the time-varying 2D position of
a person (NLOS object) outside the camera’s FOV as they
walk around an area that is not visible to the robot (NLOS
region). The yellow lines illustrate how light reflected from
the relay walls contains scattered information from the NLOS
object, which is captured by the camera on the robot.

The raw image of a visible planar surface captured by the
camera is denoted by I ∈ R2, which can be described as the
output of a reflection function F , I = F(X,V,N, ω), where
X ∈ R2 is the person’s ground-truth position in a plane
parallel to the floor; V ∈ R2 is their ground-truth velocity
in this plane; N ∈ R3 is the unit vector normal to the surface;
and ω is a set of environmental and material parameters that
affect the appearance of the image, including ambient noise
and surface reflectivity. The direction of N with respect to
the NLOS object determines the amount of NLOS scatter
information that reaches the surface. The function F models
the light transport of the setup; that is, it contains information
about how light interacts with the scene before reaching the
camera. Our approach learns the inverse function F−1 in
order to compute estimates of X(t) and V(t) for t ∈ [0, T ],
given some final time T . We denote these estimates by X′(t)
and V′(t), respectively. In this study, we assume that there
is only a single occluded person and that the scene has a
Manhattan-world configuration.

III. NLOS TRACKING PIPELINE

In this section, we delineate the various stages of our
proposed pipeline, depicted in Fig. 2. Given that the camera
is moving, the pipeline commences with a plane extraction
process, which is described in Section III-A. This process
operates on the raw data stream alongside additional inputs
from the capture system, yielding masked, separated planes
that are instrumental in NLOS object tracking. Subsequently,
the output of this pipeline feeds into the NLOS transformer
network, which estimates X and V in different planes. A
description of the network architecture is provided in Section
III-B. We also refine the estimates of X and V using data
from multiple planes, as detailed in Section III-C.

A. Plane Extraction Pipeline

We first use visual inertial odometry (VIO) to obtain pose
estimates of the moving camera and feature matching to
identify anchor points in the image. The pipeline utilizes
raw RGB camera images, stereo image pair data, and inertial
measurement unit (IMU) data as input. The ground-truth
trajectory of the person is obtained from motion capture
data. We use the stereo pair images and synchronized IMU
data to perform VIO using the multi-state constant Kalman
filter (MSCKF) [33], which provides reliable camera pose
estimates. When the camera is mounted on a drone, the VIO
output is used to localize the drone while in flight.

The VIO method is used to obtain the camera’s positions
pi and pi+1 and orientations Ri and Ri+1 in the global
coordinate system at time steps i and i + 1, respectively.
Consider the raw color images Ii and Ii+1 that are captured
at these times. The main function of the pipeline is to monitor



Fig. 2: Inference pipeline for NLOS object tracking. Raw images, stereo image pairs, and IMU data are input to VIO to
estimate the camera pose. PlaneRecNet generates plane masks from consecutive images. Homography from feature matching
is applied to plane masks, creating difference images and plane IDs k. The raw image at time step i+ 1 and the difference
image between time steps i and i + 1 are input to MPP-T and DPP-T networks, which compute the estimates Xm and
Vm for each example plane m (see Section III-B). These estimates, along with the camera pose, plane IDs, and unit vector
normal to each plane, are input to an optimization layer to compute the NLOS object’s trajectory. The figure on the right
shows details of the Plane-Patch Transformer architecture.

all planar surfaces that can serve as intermediary relay walls
to carry out effective NLOS object tracking by extracting
image patches from these surfaces to pass along to the
downstream NLOS-Patch network. To accomplish this, we
use the current state-of-the-art learning-based plane detection
algorithm PlaneRecNet [34], which gives us the necessary
plane detection masks. The network does not track planes
or assign plane IDs. Instead, we use SIFT feature matching
for plane tracking between consecutive images and their
difference images, estimating the homography for stitching.
Plane IDs are determined based on mask overlap in stitched
images; new IDs are assigned to non-overlapping planes, and
IDs of non-visible planes are discarded. The input to the
transformer-based NLOS-Patch network includes the plane
masks, plane IDs, raw color images, and difference images.

B. NLOS-Patch Network

The NLOS-Patch network is designed to process the raw
images and compute a 2D position estimate Xm and 2D
velocity estimate Vm of the NLOS object in each plane m
in a sequence of M example planes (see Section III-B.3),
represented in the camera coordinate system. These estimates
are for time step i + 1, with Xm updated based on the
assumption that Vm at time step i is constant over the small
time interval between time steps. As shown in Fig. 2, this
parallel transformer network consists of a Multi-resolution
Plane-Patch Transformer (MPP-T), which computes Xm,
and a Difference Plane-Patch Transformer (DPP-T), which
computes Vm, m = 1, ...,M . The MPP-T and DPP-T are
vision transformers (ViTs) [35], which have been shown to
have advantages over convolutional networks for a variety
of computer vision tasks [36], [37]. In a ViT, an image is
divided into patches, and each patch is linearly transformed

into a token. These tokens are then passed into attention
modules for learning. Generally, the input is reshaped into
a square matrix and then divided into a fixed number of
grids. However, this input reshaping and subdivision is
highly inefficient for our purpose, since the visual feed of
a mobile robot will vary with each successive observation as
it navigates the environment, given its restricted FOV. Thus,
our NLOS-Patch network should determine Xm and Vm

using incomplete images of planes and patches of various
sizes and locations.

Additionally, since our passive NLOS tracking approach
already suffers from low SNR due to the presence of ambient
lighting, our goal is to leverage all available spatial intensity
information captured from the LOS surfaces in our learning
problem. Toward this end, we design our transformers based
on the NaViT network proposed by Dehgani et al. [38],
which packs multiple patches from different images with
varying resolutions into a single sequence. They demonstrate
that example packing, wherein multiple examples are packed
into a single sequence, results in improved performance
and faster training. This is a popular technique in natural
language processing. The main components of the network
are described below.

1) Patchify: Given a raw image Ii at time step i, a
detected plane in Ii with ID k, and a corresponding plane
mask image denoted by Mi,k, a masked plane Imi,k is
obtained as the product of Ii and Mi,k. The masked planes
Imi,k and Imi+1,k at time steps i and i+1 and the difference
image ∆Imi+1,k between them are passed into the NLOS-
Patch network. The difference image ∆Imi+1,k can be used
to estimate the NLOS object’s velocity V between time steps
i and i+1, as demonstrated by Wang et al. [20]. The masked
planes at each time step are then packed into a single batch,



and each image in this batch is split into patches. Then, we
apply token dropout to the patches and obtain the resulting
sequences of masked planes. This procedure is also applied
to the difference images and plane IDs.

2) Factorized Positional Embedding: To process images
of arbitrary resolutions, we use factorized absolute position
embeddings ϕw and ϕh for the width and height of the
patches, respectively, as proposed in [38]. These embeddings
are each summed with the learned patch embedding, ϕp.

3) Masked Self-Attention: We employ self-attention
masks to learn attention relationships between planes with
identical IDs. Masked pooling at the end of the attention
layers ensures that token representations are pooled within
each example. The output of this pooling is a single vector
for each of the M example planes in the sequence, which is
finally passed into a simple Multi-Layer Perceptron (MLP)
head consisting of two fully-connected layers. The MLP
network outputs the estimates Xm and Vm, m = 1, ...,M .

4) Loss Functions: For end-to-end training of our NLOS-
Patch network, our objective is to minimize the error in
estimating the position and velocity of the NLOS object.
To achieve this, we define a loss function L that takes into
account the estimates from all M example planes, so that
the network learns from the diverse information provided by
multiple reflective planes:

L =

M∑
m=1

(MSE(X,Xm) + α MSE(V,Vm)) ,

where MSE is the mean squared error and α is a constant
weighting parameter that balances the relative importance of
the position and velocity losses.

C. Optimization Pipeline

The estimates Xm and Vm in each example plane m at
time step i + 1 are passed from the NLOS-Patch network
into the optimization pipeline to produce the final estimates
X′ and V′. For each example plane m, the estimates Xm

and Vm are transformed from the camera coordinate system
to the global coordinate system using the transformation
matrix Tm ∈ R3×4 corresponding to the plane. We denote
the estimates in global coordinates as Xg

m and Vg
m. Since

we model the person as moving in the (x, y) plane of the
global coordinate system (see Fig. 4(b)), we set both the
z coordinate of Xg

m and the ż coordinate of Vg
m to 0.

Let m1, m2, and m3 be the indices of the largest, second-
largest, and third-largest example planes, respectively. We
denote the reflections of the position estimates Xg

m2
and

Xg
m3

across planes m2 and m3, respectively, by Xg,r
m2

and
Xg,r

m3
. These reflected position estimates (in global coordi-

nates) are computed as the output of a reflection function
Fg(X

g
m,Vg

m,Nm,Tm), m ∈ {m2,m3}, where Nm is
the unit normal vector of example plane m. The reflection
function is the composition of a series of operations that
model how light interacts with the NLOS object and a
reflective plane before reaching the camera. Our optimization
problem computes the position estimate X′ and velocity

Fig. 3: (a) Overhead view of a sample synthetic NLOS scene
simulated using Blender, showing the camera (lower left),
human character (NLOS object), and sources of ambient
lighting in the room. (b) Samples of the eight characters
from the Mixamo library that were used for synthetic data
generation. (c) Samples of three sets of relay walls with dif-
ferent materials that were used for synthetic data generation.

estimate V′ that minimize the following cost function:

J(X′,V′) =
∑

m∈{m2,m3}

∥∥Xg
m1

−Fg(X
g
m,Vg

m,Nm,Tm)
∥∥2
2
.

IV. DATASETS FOR NLOS-PATCH NETWORK TRAINING

A. Synthetic Dataset

We generated synthetic data to train the NLOS-Patch net-
work using Cycles, Blender’s physics-based ray tracing ren-
derer. We simulated diverse indoor NLOS imaging scenarios
in an effort to create to a rich training dataset that enhances
the network’s robustness in complex real-world scenarios. In
each simulation, the camera moved along a random trajectory
in 3D space, and the NLOS object was an animated human
character, created in Mixamo, who walked with different
gaits and postures in a random path along the ground plane.
Trajectories for the 6D camera pose and the 2D position
of the human character were each defined by selecting 10
random points in a specific region and connecting them with
a Bézier curve. To increase the variance in the dataset, we
simulated 20 different configurations of objects in the scene
with eight different human characters, and different numbers,
orientations, and materials of relay walls in the FOV region
(see Fig. 3). To enhance the realism of the synthetic data,
we also simulated real-world noise at the pixel level in the
synthetic data creation process.

The Robot Operating System (ROS) was integrated with
Blender scripts through the use of Blender addons, enabling
easy collection of the trajectories of the human character and
camera from their respective ROS topics. The rendering for
frames of size 256 × 256 pixels took around 3 s per frame.

B. Real-World Dataset and Hardware Configuration

sWe also trained the NLOS-Patch network using real-
world data, which we collected from trials with 5 human
subjects across 10 large-scale indoor scenes. We plan to
publicly release this dataset [32] for researchers in the
community.

The data collection setup is shown in Figs. 4(a)-(b), with
images of sample FOV regions shown in Fig. 4(d). We built
a versatile aerial drone (Fig. 5) using standard off-the-shelf
components to serve as the mobile camera platform. The



Fig. 4: (a) Real-world data collection setup: A drone captures
images of a relay wall while a person (NLOS object) is
hidden from view. The person’s ground-truth position is
obtained using motion capture cameras. (b) Side view of the
setup. (c) Helmet mounted with IR markers for ground-truth
data collection. (d) Samples of FOV regions in the dataset,
with different surface textures and types of objects present.

drone is equipped with an Intel RealSense depth camera
D435i, which has a 2-MP RGB camera with a resolution
of 1920 × 1080 pixels and a FOV of 69° × 42°. The camera
operates with a rolling shutter mechanism and can capture
images at a rate of 30 FPS. The drone is also equipped with
a stereo pair of cameras with a resolution of 1280 × 720
pixels and a combined FOV of 87° × 58°, which can capture
images at 90 FPS. The onboard synchronized IMU is also
integrated into our data collection methodology, providing
visual inertial odometry.

The indoor testing space was equipped with 68 OptiTrack
Prime 17W motion capture cameras with a 70°-degree hor-
izontal FOV and a 1.7-MP (1664 × 1088 pixel resolution)
image sensor, which captured position data at a rate of 120
FPS with < 0.5 mm precision. We used this motion capture
system to track infrared (IR) reflective markers that were
attached to the drone and to a helmet worn by the participants
(Fig. 4(c)). In this way, we obtained precise ground-truth data
for the occluded person’s positions and the drone’s poses.

To collect the images captured by the cameras onboard
the drone, the Intel RealSense camera was connected to an
NVIDIA Jetson Nano computer on the drone, which recorded
the raw data onto the NVMe SSD storage. The data were
then synchronized with ROS and extracted after the trials as
ROSbag files for further processing. The data collection was
done offline because of significant latency in transmitting
the raw camera and stereo pair image data in real-time over
WiFi, due to the bandwidth requirements (250 Mb/s).

V. EXPERIMENTS

In this section, we describe the NLOS-Patch network
training process, the metrics used to evaluate the tracking
performance of our method, and other ablations. We quantify
and discuss our method’s performance on our collected syn-
thetic and real-world datasets. The supplemental video shows
tracking results for our method in real-world experiments.

A. Training Procedure

The NLOS-Patch network was trained with both synthetic
and real data, and inference was done on both types of data.

Fig. 5: Customized drone equipped with Intel RealSense
cameras (highlighted in red) for visual inertial odometry
(VIO) during indoor flight. Raw data, including color camera
images, stereo images, and IMU data, are extracted for
VIO and camera pose estimation. The onboard Jetson Nano
(highlighted in yellow) facilitates real-time processing.

The entire dataset was split into non-overlapping training
and validation datasets. Although the Intel RealSense camera
streams at 30 FPS, the person (NLOS object) does not move
to 30 different positions within a 1-second time interval,
so we chose every 15th frame for our datasets. During the
training step, we passed the three largest planes generated by
the plane extraction pipeline (Section III-A) into the network.
All values of the NLOS object’s position were normalized
by the size of the room. We employed a transformer network
with a patch size of 64, an attention dimension size of 1024,
a depth of 4, and a dimension head of 128. Additionally, we
set the dropout rate for the tokenized input to 0.4 and the
embedded dropout to 0.2.

Inference Speed: The PlaneRecNet algorithm and our VIO
method both have an inference speed of 8-9 FPS. For an
instance of processing three planes in a single sequence, the
NLOS-Patch network has an inference time of 3000 FPS on
an NVIDIA RTX A6000 graphics card. Hence, our NLOS
tracking method is capable of real-time inference.

B. Quantitative Tracking Results

To assess the tracking performance of our method, we
measured the Root Mean Square Error (RMSE) between the
NLOS object’s ground-truth position X(t) and its estimate
X′(t), denoted by RMSEx, and the RMSE between the
NLOS object’s ground-truth velocity V(t) and its estimate
V′(t), denoted by RMSEv . We compared the performance
of our method on both synthetic and real-world data to that
of the following other passive, deep learning-based NLOS
imaging methods as baselines. Table I reports the resulting
RMSE values (average ± standard deviation) over 50 trials
of duration 128 s each. We note that our method is the first
passive NLOS tracking method that uses a dynamic camera
and multiple relay walls, whereas the selected baseline
methods use a stationary camera and a single relay wall.

PAC-Net (Wang et al. [20]): Comparing our method to
PAC-Net helps to assess the advantages of our transformer-
based architecture and attention mechanism in handling
dynamic camera scenarios. Similar to our method, PAC-
Net alternately processes raw images and difference images
using two recurrent neural networks. However, this method
is trained on single static planar walls. We trained the PAC-



Net network to run inference using the full captures of raw
images in our input dataset. As shown in Table I, PAC-Net
yielded an average RMSEx ≈ 55 mm and average RMSEv ≈
1.2 mm/s.

He et al. [31]: This method uses a deep learning-based
approach to image and track moving NLOS objects using
RGB images captured under ambient illumination. It em-
ploys a CNN architecture followed by fully-connected layers.
We re-implemented their proposed network architecture and
trained it on our input dataset. This method produced an
average RMSEx ≈ 73 mm.

Tancik et al. [29]: This method uses a CNN regression
network that is designed to learn from the scattered light
information in the environment to achieve NLOS object
tracking and activity recognition. This method produced an
average RMSEx ≈ 93 mm.

Compared to these baseline methods, our method without
any modifications (the “All patches” rows in Table I) pro-
duced the lowest average RMSEx for both real-world data
(∼16 mm) and synthetic data (∼18 mm). RMSEv values
could not be computed for the He et al. and Tancik et al.
methods because their network architectures only process
raw images, not difference images.

We also tested the performance of our method with the
following modifications:

w/o velocity: In this version of our method, we trained
the transformer network without including the velocity
loss MSE(V,V′) in the loss function. Thus, there is a
single transformer architecture that processes the masked
planes, and it is trained by minimizing the position loss
MSE(X,X′). The average RMSEx for this method was ∼22
mm for real-world data and ∼27 mm for synthetic data.

w/o optimization: This version of our method does not
perform the optimization step that is critical to ensure
accurate position estimates. Instead, the estimated position
X′ is computed as the average of the position estimates
for the three largest planes output by the plane extraction
pipeline across the patches in each example sequence in the
NLOS-Patch network. The average RMSEx for this version
is significantly higher than that for the unmodified version,
for both the synthetic and real-world data.

One Patch: In this version of our method, only the
largest plane output by the plane extraction pipeline is passed
into the transformer network. This version yields slightly
worse performance in terms of average RMSEx than the
unmodified version for both the synthetic and real-world
data, demonstrating the advantage of processing multiple
planes simultaneously in our method.

C. Qualitative Visualization of Tracking Performance

Figure 6 plots several trajectories X′(t) estimated by our
method against the corresponding ground-truth trajectories
X(t), with the RMSEx indicated along the estimated trajec-
tories. These plots illustrate how closely the estimated path
from our method follows the actual path of the NLOS object.

In the top plot of Fig. 7, we compare one estimated
trajectory from our method to the ground-truth trajectory and

RMSEx (mm) RMSEv (mm/s)

Baselines
PAC-Net 54.73 ±24.78 1.22 ±0.42
He et al. 72.65 ±53.32 -

Tancik et al. 92.97 ±64.87 -

Ours -
PathFinder
(Real Data)

w/o velocity 21.53 ±2.64 -
w/o optimization 29.14 ±2.79 1.34 ±0.53

One patch 16.72 ±3.09 1.13 ±0.46
All patches 15.94 ±2.38 1.38 ±0.34

Ours -
PathFinder
(Synthetic

Data)

w/o velocity 26.75 ±2.93 -
w/o optimization 27.93 ±1.92 1.39 ±0.33

One patch 19.98 ±2.24 1.43 ±0.38
All patches 18.05 ±2.03 1.26 ±0.39

TABLE I: Tracking performance of our method (PathFinder),
with and without modifications, and baseline methods.

trajectories estimated by the PAC-Net, He et al., and Tancik
et al. methods. The estimate from our method closely aligns
with the ground-truth trajectory, whereas the other estimates
exhibit greater deviations from ground-truth. Moreover, our
method produces consistently accurate position estimates
over time, even when the camera movements are aggressive,
whereas the other methods (which use a stationary camera)
exhibit large variations in accuracy over time. This is evident
from the bottom plots of Fig. 7, which show the absolute
trajectory error (ATE) over time and a box plot of the ATE
for each method. Our method exhibits a consistently low
ATE, while the ATEs of the other methods are higher and
display large fluctuations.

D. Effect of Number of Planes on Performance

When the drone moves through the environment in our
real-world trials, its camera captures numerous planes, but
most of them tend to be small (trivial) and do not help
improve tracking performance. Intuitively, we know that
packing more planes per sequence in our NLOS-Patch net-
work scales up the cost of attention if we keep the hidden
dimension of the transformer constant. Using our real-world
data, we studied the effect on RMSEx of packing different
numbers of masked planes into a sequence, without changing
the hidden dimensions. The results of this ablation study
are plotted in Fig. 8a, which shows that using three planes
results in the lowest RMSEx value. Therefore, we chose to
use the largest three planes as a suitable trade-off between
performance and cost of attention.

E. Effect of Camera Motion on Performance

We assessed our method’s performance under abrupt cam-
era movements through tests in which a camera assembly,
consisting of an Intel RealSense camera fixed between a
Jetson Nano board and a LiPo battery, was manually moved
in our real-world NLOS imaging setup. For motion capture
tracking, 18 IR markers were attached to the camera assem-
bly. Given the coordinate system in Fig. 4(b), in one trial,
the camera was rapidly rotated about the y-axis at a rate of
one full revolution per second for 10 s, and in the other two
trials, the camera was translated back and forth 1 meter along
either the x or y axis at about 1 m/s for 10 s.

Sudden camera rotation disrupts the feature detector, caus-
ing inaccurate difference images. However, our dual-stream



Fig. 6: Ground-truth trajectories (dashed lines) and corresponding trajectories estimated by our method (multicolored lines),
with the color indicating the RMSE (m) between the ground-truth position X(t) and estimated position X′(t) at a time t.

Fig. 7: Top plot: Ground-truth trajectory and estimates from
our method and baseline methods. Bottom plots: The corre-
sponding Absolute Trajectory Error (ATE) vs. time and ATE
box plot for our method and baseline methods.

2 4 6 8 10

1.0

2.0

3.0

4.0

5.0

6.0

Number of Planes

R
M

SE
(m

m
)

RMSE

(a) Effect of number of
masked planes in a sin-
gle sequence on RMSEx.

RMSEx (mm) RMSEv (mm/s)

Rotation (y) 37.27 ±5.35 1.89 ±0.76

Translation (x) 22.12 ±2.46 1.48 ±0.51

Translation (y) 19.74 ±2.38 1.04 ±0.42

(b) Performance of our method with
camera rotation about the y axis and
translation along the x and y axes.

Fig. 8: Ablation study results.

network architecture mitigates the effect of noisy or sparse
difference image data on its position estimates. The table in
Fig. 8b shows relatively low values of RMSEx and RMSEv

for each test, indicating satisfactory performance.

F. Effect of Camera Sensor on Performance

To investigate the impact of camera sensor characteristics
on our method’s performance, we collected and analyzed

Sony
A6000

Intel
D435i

IDS
camera

IMX214
camera

RMSEx (mm) 13.46 ±2.24 13.92 ±2.73 14.63 ±2.82 15.41 ±2.56
RMSEv (mm/s) 1.84 ±0.45 1.47 ±0.39 1.21 ±0.35 1.38 ±0.44

TABLE II: Tracking performance of our method, tested on
different rolling shutter and global shutter cameras.

raw color images from four different cameras: Sony A6000
Mirrorless, Intel RealSense D435i, IDS UI-3250CP-M-GL,
and IMX214. These cameras vary in specifications such as
megapixels, image resolution, FPS, and shutter types (rolling
and global). The Intel RealSense and IMX214 cameras were
mounted on drones, while the Sony A6000 and IDS cam-
eras were operated manually. To enhance data integration,
we paired raw images with IMU readings, obtained either
directly from the cameras or through external IMUs. We cal-
ibrated the camera-IMU pairs using the Kalibr toolbox [39],
following established methodologies to accurately determine
the extrinsic relationships.

We tested our method in our real-world setup with a
1-minute image sequence captured using each of the four
cameras. As shown in Table II, the tracking performance
was similar across all four cameras. This consistency can be
attributed to our NLOS-Patch network’s ability to process
planes of varying sizes and aspect ratios through example
packing, as detailed in Section III-B.

VI. CONCLUSION

We have proposed a novel data-driven approach for dy-
namic non-line-of-sight (NLOS) tracking using a mobile
robot equipped with a standard RGB camera. To the best of
our knowledge, this is the first NLOS tracking approach to
handle dynamic camera environments. Our method leverages
attention-based neural networks to accurately estimate the
2D trajectory of an occluded person in real-world Man-
hattan environments. Our NLOS tracking pipeline includes
a plane extraction procedure that analyzes images from a
moving camera to identify planes carrying maximum NLOS
information. We employ novel transformer-based networks to
process successive frames and estimate the person’s position.
The networks are capable of simultaneously processing mul-
tiple flat relay walls of different aspect ratios, which enhances
the tracking performance. We validated our approach on



both synthetic and real-world datasets, demonstrating state-
of-the-art results in dynamic NLOS tracking. Our method
achieved an average positional RMSE of 15.94 mm on real
data, outperforming existing passive NLOS methods and
highlighting its effectiveness in practical scenarios. We plan
to investigate the use of additional sensor data to further
improve the accuracy and robustness of NLOS tracking.

REFERENCES

[1] R. Geng, Y. Hu, Y. Chen, et al., “Recent advances on non-line-of-
sight imaging: Conventional physical models, deep learning, and new
scenes,” APSIPA Transactions on Signal and Information Processing,
vol. 11, no. 1, 2021.

[2] T. Maeda, G. Satat, T. Swedish, L. Sinha, and R. Raskar, “Recent ad-
vances in imaging around corners,” arXiv preprint arXiv:1910.05613,
2019.

[3] P. V. Borges, A. Tews, and D. Haddon, “Pedestrian detection in indus-
trial environments: Seeing around corners,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2012, pp. 4231–4232.

[4] O. Rabaste, J. Bosse, D. Poullin, I. Hinostroza, T. Letertre,
T. Chonavel, et al., “Around-the-corner radar: Detection and local-
ization of a target in non-line of sight,” in IEEE Radar Conference
(RadarConf), 2017, pp. 0842–0847.

[5] N. Scheiner, F. Kraus, F. Wei, B. Phan, F. Mannan, N. Appenrodt,
W. Ritter, J. Dickmann, K. Dietmayer, B. Sick, et al., “Seeing around
street corners: Non-line-of-sight detection and tracking in-the-wild
using doppler radar,” in IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2020, pp. 2068–2077.

[6] A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi,
and R. Raskar, “Recovering three-dimensional shape around a corner
using ultrafast time-of-flight imaging,” Nature Communications, vol. 3,
no. 1, p. 745, 2012.

[7] M. Buttafava, J. Zeman, A. Tosi, K. Eliceiri, and A. Velten, “Non-line-
of-sight imaging using a time-gated single photon avalanche diode,”
Optics Express, vol. 23, no. 16, pp. 20 997–21 011, 2015.

[8] C. Wu, J. Liu, X. Huang, Z.-P. Li, C. Yu, J.-T. Ye, J. Zhang, Q. Zhang,
X. Dou, V. K. Goyal, et al., “Non–line-of-sight imaging over 1.43 km,”
Proceedings of the National Academy of Sciences, vol. 118, no. 10, p.
e2024468118, 2021.

[9] A. Kirmani, T. Hutchison, J. Davis, and R. Raskar, “Looking around
the corner using ultrafast transient imaging,” International Journal of
Computer Vision, vol. 95, pp. 13–28, 2011.

[10] C.-Y. Tsai, K. N. Kutulakos, S. G. Narasimhan, and A. C. Sankara-
narayanan, “The geometry of first-returning photons for non-line-of-
sight imaging,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 7216–7224.

[11] S. Xin, S. Nousias, K. N. Kutulakos, A. C. Sankaranarayanan, S. G.
Narasimhan, and I. Gkioulekas, “A theory of Fermat paths for non-
line-of-sight shape reconstruction,” in IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2019, pp. 6800–6809.

[12] M. O’Toole, D. B. Lindell, and G. Wetzstein, “Confocal non-line-of-
sight imaging based on the light-cone transform,” Nature, vol. 555,
no. 7696, pp. 338–341, 2018.

[13] D. B. Lindell, G. Wetzstein, and M. O’Toole, “Wave-based non-
line-of-sight imaging using fast f-k migration,” ACM Transactions on
Graphics (ToG), vol. 38, no. 4, pp. 1–13, 2019.

[14] J. Klein, C. Peters, J. Martı́n, M. Laurenzis, and M. B. Hullin,
“Tracking objects outside the line of sight using 2D intensity images,”
Scientific Reports, vol. 6, no. 1, p. 32491, 2016.

[15] W. Chen, S. Daneau, F. Mannan, and F. Heide, “Steady-state non-line-
of-sight imaging,” in IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 6790–6799.

[16] S. Chandran and S. Jayasuriya, “Adaptive lighting for data-driven non-
line-of-sight 3d localization and object identification,” British Machine
Vision Conference (BMVC), 2019.

[17] S. Chandran, T. Yatagawa, H. Kubo, and S. Jayasuriya, “Learning-
based spotlight position optimization for non-line-of-sight human lo-
calization and posture classification,” in IEEE/CVF Winter Conference
on Applications of Computer Vision, 2024, pp. 4218–4227.

[18] M. Baradad, V. Ye, A. B. Yedidia, F. Durand, W. T. Freeman, G. W.
Wornell, and A. Torralba, “Inferring light fields from shadows,” in
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 6267–6275.

[19] K. L. Bouman, V. Ye, A. B. Yedidia, F. Durand, G. W. Wornell, A. Tor-
ralba, and W. T. Freeman, “Turning corners into cameras: Principles
and methods,” in IEEE International Conference on Computer Vision,
2017, pp. 2270–2278.

[20] Y. Wang, Z. Wang, B. Zhao, D. Wang, M. Chen, and X. Li, “Prop-
agate and calibrate: Real-time passive non-line-of-sight tracking,” in
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2023, pp. 972–981.

[21] P. Sharma, M. Aittala, Y. Y. Schechner, A. Torralba, G. W. Wornell,
W. T. Freeman, and F. Durand, “What you can learn by staring at
a blank wall,” in IEEE/CVF International Conference on Computer
Vision, 2021, pp. 2330–2339.

[22] W. Krska, S. W. Seidel, C. Saunders, R. Czajkowski, C. Yu, J. Murray-
Bruce, and V. Goyal, “Double your corners, double your fun: The
doorway camera,” in IEEE International Conference on Computational
Photography (ICCP), 2022, pp. 1–12.

[23] Y. Cao, R. Liang, J. Yang, Y. Cao, Z. He, J. Chen, and X. Li,
“Computational framework for steady-state NLOS localization under
changing ambient illumination conditions,” Optics Express, vol. 30,
no. 2, pp. 2438–2452, 2022.

[24] A. B. Yedidia, M. Baradad, C. Thrampoulidis, W. T. Freeman, and
G. W. Wornell, “Using unknown occluders to recover hidden scenes,”
in IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2019, pp. 12 231–12 239.

[25] R. Geng, Y. Hu, Z. Lu, C. Yu, H. Li, H. Zhang, and Y. Chen, “Passive
non-line-of-sight imaging using optimal transport,” IEEE Transactions
on Image Processing, vol. 31, pp. 110–124, 2021.

[26] S. W. Seidel, J. Murray-Bruce, Y. Ma, C. Yu, W. T. Freeman, and V. K.
Goyal, “Two-dimensional non-line-of-sight scene estimation from a
single edge occluder,” IEEE Transactions on Computational Imaging,
vol. 7, pp. 58–72, 2020.

[27] A. Torralba and W. T. Freeman, “Accidental pinhole and pinspeck
cameras: Revealing the scene outside the picture,” International Jour-
nal of Computer Vision, vol. 110, pp. 92–112, 2014.

[28] A. Beckus, A. Tamasan, and G. K. Atia, “Multi-modal non-line-
of-sight passive imaging,” IEEE Transactions on Image Processing,
vol. 28, no. 7, pp. 3372–3382, 2019.

[29] M. Tancik, G. Satat, and R. Raskar, “Flash photography for data-driven
hidden scene recovery,” arXiv preprint arXiv:1810.11710, 2018.

[30] M. Aittala, P. Sharma, L. Murmann, A. Yedidia, G. Wornell, B. Free-
man, and F. Durand, “Computational mirrors: Blind inverse light trans-
port by deep matrix factorization,” Advances in Neural Information
Processing Systems, vol. 32, 2019.

[31] J. He, S. Wu, R. Wei, and Y. Zhang, “Non-line-of-sight imaging and
tracking of moving objects based on deep learning,” Optics Express,
vol. 30, no. 10, pp. 16 758–16 772, 2022.

[32] S. Kannapiran*, S. Chandran*, S. Jayasuriya, and S. Berman.
(2024, March) Dynamic non-line-of-sight tracking dataset. [Online].
Available: https://srchandr.github.io/DynamicNLOS/

[33] K. Sun, K. Mohta, B. Pfrommer, M. Watterson, S. Liu, Y. Mulgaonkar,
C. J. Taylor, and V. Kumar, “Robust stereo visual inertial odometry
for fast autonomous flight,” IEEE Robotics and Automation Letters,
vol. 3, no. 2, pp. 965–972, 2018.

[34] Y. Xie, F. Shu, J. Rambach, A. Pagani, and D. Stricker, “PlaneRecNet:
multi-task learning with cross-task consistency for piece-wise plane
detection and reconstruction from a single RGB image,” arXiv preprint
arXiv:2110.11219, 2021.

[35] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[36] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in
European Conference on Computer Vision, 2020, pp. 213–229.

[37] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson,
T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, et al., “Segment
anything,” arXiv preprint arXiv:2304.02643, 2023.

[38] M. Dehghani, B. Mustafa, J. Djolonga, J. Heek, M. Minderer,
M. Caron, A. Steiner, J. Puigcerver, R. Geirhos, I. Alabdulmohsin,
et al., “Patch n’Pack: NaViT, a vision transformer for any aspect ratio
and resolution,” arXiv preprint arXiv:2307.06304, 2023.

[39] J. Rehder, J. Nikolic, T. Schneider, T. Hinzmann, and R. Siegwart,
“Extending kalibr: Calibrating the extrinsics of multiple IMUs and of
individual axes,” in IEEE International Conference on Robotics and
Automation, 2016, pp. 4304–4311.

https://srchandr.github.io/DynamicNLOS/

	Introduction
	Problem Statement
	NLOS Tracking Pipeline
	Plane Extraction Pipeline
	NLOS-Patch Network
	Patchify
	Factorized Positional Embedding
	Masked Self-Attention
	Loss Functions

	Optimization Pipeline

	Datasets for NLOS-Patch Network Training
	Synthetic Dataset
	Real-World Dataset and Hardware Configuration

	Experiments
	Training Procedure
	Quantitative Tracking Results
	Qualitative Visualization of Tracking Performance
	Effect of Number of Planes on Performance
	Effect of Camera Motion on Performance
	Effect of Camera Sensor on Performance

	Conclusion
	References

