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ABSTRACT

Conflict, manifesting as riots and protests, is a common occurrence in urban environments worldwide. Understanding their 

likely locations is crucial to policymakers, who may (for example) seek to provide overseas travelers with guidance on safe areas, 

or local policymakers with the ability to pre- position medical aid or police presences to mediate negative impacts associated with 

riot events. Past efforts to forecast these events have focused on the use of news and social media, restricting applicability to areas 

with available data. This study utilizes a ResNet convolutional neural network and high- resolution satellite imagery to estimate 

the spatial distribution of riots or protests within urban environments. At a global scale (N = 18,631 conflict events), by training 

our model to understand relationships between urban form and riot events, we are able to predict the likelihood that a given 

urban area will experience a riot or protest with accuracy as high as 97%. This research has the potential to improve our ability 

to forecast and understand the relationship between urban form and conflict events, even in data- sparse regions.

1   |   Introduction

Instances of social unrest, often manifesting as riots or protests, 

wield significant influence on the communities, regions, and 

nations where they unfold (Bencsik 2018). The repercussions of 

such events are wide- ranging, ranging from geopolitical trans-

formations (i.e., riots in Egypt in 2011 (Joya  2011), and Hong 

Kong in 2019 (Purbrick  2019)) to substantial economic losses 

(exemplified by the hundreds of millions of dollars incurred 

during the 2011 riots in the UK (Bencsik 2018)). These events 

may result in human casualties, as evidenced by food riots 

in Africa in 2007–2008 (Berazneva and Lee  2013) and riots 

caused by garbage collection issues in Beirut in 2015 (El Warea 

et al. 2019). These events impact cities across the entire globe, 

with recent examples in Latin America (Eckstein  2001), Asia 

(Purbrick  2019), Africa (Joya  2011; Berazneva and Lee  2013), 

and Europe (Andronikidou and Kovras  2012). Because of the 

importance of these events, scholars across multiple disciplines 

have sought to both predict and understand them, using a wide 

range of data sources and techniques (Pond and Lewis  2019; 

Snow, Vliegenthart, and Corrigall- Brown  2007; Davies 

et al. 2013). However, most of these approaches have relied on 

sources that may not be available or reliable in geographies of 

interest, such as news articles. Here, we explore the capability 

of satellite imagery to aid in the prediction of protest and riot 

events, explicitly seeking to understand the degree to which this 

globally available source of information may be able to augment 

existing predictive methodologies. This approach exploits cor-

relations between the human- built environment—that is, urban 

form (Fox and Bell 2016)—and the likelihood of a protest or con-

flict event at a given geographic location.

One of the core innovations that enable us to estimate social 

events (such as conflict) from satellite imagery is convolutional 

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original 

work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2024 The Author(s). Transactions in GIS published by John Wiley & Sons Ltd.

1

2

3



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

2 of 19 Transactions in GIS, 2024

modeling (Goodman, BenYishay, and Runfola  2021). Deep 

learning, including the use of Convolutional Neural Networks 

(CNNs), is being used in a wide range of applications from de-

tecting changes in urban environments (Daudt et  al.  2018) to 

tracking typhoons (Rüttgers et  al.  2019). This includes inno-

vations from the field of computer vision, which have shown 

the capability of CNNs to detect objects (Shin et al. 2016) and 

classify images (Krizhevsky, Sutskever, and Hinton  2017; 

Chauhan, Ghanshala, and Joshi  2018). Deep learning can be 

used in conjunction with satellite imagery to perform many 

different classification and detection tasks, such as detecting 

infrastructure destruction in conflict environments (Nabiee 

et al. 2022), identifying ships (Leclerc et al. 2018; Patel, Bhatt, 

and Mazzeo  2022), land cover and land use analysis (Helber 

et al. 2019; Kussul et al. 2017; Carranza- Garca, Garca- Gutiérrez, 

and Riquelme  2019; Lv et  al.  2024), urban expansion (Zhang 

et  al.  2018, 2019; He et  al.  2019), and road quality analysis 

(Brewer et  al.  2021). Building on this work, in this piece we 

combine global- scope high- resolution satellite imagery sourced 

from Planet with information on the spatial distribution of pro-

test and riot events from ACLED, seeking to establish the degree 

to which satellite information can be used to directly predict the 

geospatial locations of protest events.

This paper is structured as follows. In Section 2, we introduce 

background literature pertaining to modeling civil unrest, deep 

learning, and satellite imagery. In Section 3, we discuss our data 

collection and methodology. In Section 4, we present our results. 

In Section 5, we provide some conclusions and discussion.

2   |   Background

2.1   |   Measurement and Modeling  
of Riots and Protests

Riots and protests constitute integral components of democratic 

societies (U.S. Constitution 1791; Anderson and Mendes 2006), yet 

it is imperative for government authorities to effectively mitigate 

the economic and human costs that may be associated with these 

events to maintain stable governance (Klein and Regan 2018). This 

is accentuated by the heightened prevalence of protests and riots 

on a global scale in recent years (Ciorciari and Weiss 2016). One 

viable strategy for authorities to temper the negative impacts of 

these events is through preemptive allocation of resources, such 

as medical units (Gong and Batta 2007) or increased international 

presence (i.e., UN peacekeepers) in anticipation of unrest (Greer 

and McLaughlin 2010). On the international scale, in an attempt 

to protect citizens who are traveling abroad, responsible govern-

mental foreign offices (the US Department of State as an exam-

ple) may also issue travel warnings for particular areas to avoid 

(Löwenheim  2007). However, proactive approaches necessitate 

the capacity to predict both the time and location of potential con-

flict events (Wu and Gerber 2017).

A number of approaches exist which aid in the measurement and 

prediction of protests or riots (Wu and Gerber 2017). Past litera-

ture, for instance, has demonstrated the utility of news reports in 

providing valuable insights into civil conflict, such as riots and pro-

tests in response to rising food prices (Heslin 2021). Using this ap-

proach, studying riots in France, researchers were able to replicate 

the spread of riots using an epidemic- like model with as few as six 

parameters that included population demographics, police reports, 

and spatial information (Bonnasse- Gahot et al. 2018). Social media 

platforms represent another venue for authorities to detect and 

analyze real- world events, including social unrest like riots and 

protests (Becker, Naaman, and Gravano 2011; Korolov et al. 2016; 

Petrović, Osborne, and Lavrenko 2010). X (formerly Twitter) is a 

common focus of these studies, and can be used as a near real- 

time reporting source, distinguishing between real- world events 

and random tweets with 83% accuracy (Becker, Naaman, and 

Gravano 2011). Analysis of Twitter data demonstrates the correla-

tive relationship between daily hashtag use and protests, enabling 

predictions 24–48 h prior to protests in Baltimore and New York 

City during 2015 (Korolov et al. 2016). Prior work in this field has 

show the ability to predict the probability of fatalities associated 

with conflict events using satellite imagery, within conflict areas 

in Nigeria, with accuracy rates of 80% when combining Landsat 

imagery and CNNs (Goodman, BenYishay, and Runfola 2021).

Much of the current research in forecasting social unrest is fo-

cused on the likelihood of a future event (Renaud et  al.  2019; 

Phillips et al. 2017; Cadena et al. 2015; Filchenkov, Azarov, and 

Abramov 2014; Compton et al. 2013). There are other efforts to 

better understand and model the characteristics of smaller sub- 

events within broader riots, such as shooting or fires (Alsaedi, 

Burnap, and Rana  2017). Mathematical modeling of riots 

demonstrates an ability to accurately simulate many of the spa-

tial characteristics of riots, including the distance participants 

will travel within contiguous riot areas (Davies et al. 2013). X 

(formerly Twitter) text analysis demonstrates the ability to detect 

and discriminate between disruptive events and normal infor-

mation dissemination (Alsaedi, Burnap, and Rana 2015). Social 

media has been studied to demonstrate not only how informa-

tion is distributed about future and concurrent protests, but 

also how individuals are recruited into protesting through the 

spread of information in their social network (González- Bailón 

et al. 2011).

The accuracy and spatial specificity of alternative riot and pro-

test forecasting techniques vary. Previous research has shown 

that leveraging information from social media (i.e., Tweets) 

can result in the accurate prediction of riots in some cities (i.e., 

Baltimore and New York City), but these models require location- 

specific information or hashtags which inhibit their use in other 

settings (i.e., San Francisco) (Korolov et al. 2016). Related tweet- 

based analyses have shown that accurate temporal estimates 

across broad geographies are possible but without spatial spec-

ificity in where riots or protests are likely to occur (González- 

Bailón et al. 2011). Other researchers have used a broader range 

of sources to achieve higher spatiotemporal accuracy, such as 

police reports, but these techniques are inherently limited to 

a small number of areas in which such information is avail-

able (Bonnasse- Gahot et al. 2018; Korolov et al. 2016; Alsaedi, 

Burnap, and Rana 2017, 2015; González- Bailón et al. 2011).

2.2   |   Convolutional Modeling and  
Satellite Imagery

In this study, we rely on convolutional neural networks, a type 

of deep learning designed for analyzing image data. These 
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techniques are effective at detecting, labeling, and differentiat-

ing objects (Krizhevsky, Sutskever, and Hinton 2017; Simonyan 

and Zisserman 2014; Zhang, Zhang, and Du 2016; He et al. 2016; 

Voulodimos et  al.  2018; Gorban, Mirkes, and Tyukin  2020). 

CNNs represent a family of deep learning techniques imple-

menting convolutional layers to extract features from an image 

(Zhang, Zhang, and Du  2016). Many types of CNN architec-

tures perform well across a wide range of computer vision tasks 

(Simonyan and Zisserman 2014; Voulodimos et al. 2018; Szegedy 

et al. 2015; Bressem et al. 2020).

There is a long history of utilizing satellite imagery in research 

that is based on visually observable characteristics, such as 

habitat and land cover change (Alo and Pontius Jr 2008; Stow 

et al. 2008; Rogan and Chen 2004), soil evaluation (Foody and 

Mathur  2004), and urban land cover (Zhou and Troy  2008). 

When satellite imagery is used in conjunction with deep learn-

ing techniques, including CNNs, researchers are able to learn 

about topics not normally associated with traditional satellite 

imagery uses, such as predicting crime (Najjar, Kaneko, and 

Miyanaga 2018) or the prevalence of cancer (Bibault et al. 2020). 

Other examples include estimating human migratory flows 

(Runfola et al. 2022), estimating educational outcomes (Runfola, 

Stefanidis, and Baier 2022), tracking economic growth in China 

(Brewer, Lv, and Runfola 2023), predicting road quality (Brewer 

et  al.  2021), and estimating socioeconomic census variables 

from satellite imagery (Runfola et al. 2024).

In scenarios where data is challenging or impossible (i.e., historic 

time periods) to collect, there is increasing evidence that satel-

lite imagery can aid in filling data gaps (Goodman, BenYishay, 

and Runfola 2021; Jean et al. 2016; Bharti and Tatem 2018; Hu 

et  al.  2019; Aung et  al.  2021). The capability of satellite infor-

mation becomes particularly important in the context of study-

ing riots and protests, given that the majority of literature we 

identify focuses on news or social media sources (Purbrick 2019; 

Ciorciari and Weiss 2016; Greer and McLaughlin 2010; Wu and 

Gerber  2017; Becker, Naaman, and Gravano  2011; Korolov 

et  al.  2016; Renaud et  al.  2019; Phillips et  al.  2017; Cadena 

et  al.  2015; Filchenkov, Azarov, and Abramov  2014; Compton 

et al. 2013; Alsaedi, Burnap, and Rana 2017). Our approach aims 

to leverage the availability of satellite imagery as a data source, 

increasing the application to predicting events when other tra-

ditional data sources are restricted. There are many countries 

of research interest that do not allow free access to social media 

or control the news narrative, such as Russia (Gehlbach 2010), 

China (Tai 2014), Iran (Rahimi 2015), and Venezuela (Pain and 

Korin 2021). Satellite imagery provides a unique capability to ac-

cess data in a country that might restrict access to social media 

or control news sources, motivating us to use satellite imagery 

to predict conflict.

3   |   Data and Methods

The primary objective of this work is to predict if a riot or pro-

test will occur in a specific urban area, based solely on data 

from satellite imagery. In order to accomplish this objective, we 

leverage convolutional neural networks in combination with 

two data sources, ACLED (Raleigh, Kishi, and Linke 2023) and 

Planet (Planet Team 2023a). We use these data to generate two 

different sets of information: the first set is satellite imagery of 

locations where riots occurred, and the second is a set of images 

of proximate areas (within the same city) that did not experience 

a riot event. Our deep learning model then seeks to disambigu-

ate between these two cases, based on satellite imagery alone. 

This section provides details of our data processing and analytic 

approach.

3.1   |   Data

3.1.1   |   Selecting Riot Locations

Determining the locations where riots and protests have oc-

curred is the first step in developing a data set for this work. 

To identify these locations, we leverage The Armed Conflict 

Location Event Data Project (ACLED), an open- source database, 

which contains information on a wide range of conflict types 

from across the globe (Raleigh, Kishi, and Linke 2023). ACLED 

contains more than 1.5 million events from 1997 to 2023, which 

we aggregate, categorize, and curate to create a data source that 

can specify time and location for conflict. We filter this database 

according to a number of criteria:

1. Type of event. We focus our analysis on protests and riots, 

which primarily represent urban unrest.

2. Date. We only leverage protest or riot events with a known 

date of occurrence.

3. Geography. Only events with a neighborhood- level geo-

graphic footprint are selected.1

After filtering events, we are left with a resultant database of 

53,307 events. In order to prevent overrepresentation of any sin-

gle unique location in the database, a maximum of 500 events 

are randomly selected from each neighborhood (i.e., “Seoul—

Jongno”). After this stage, a total of 37,728 events across 1089 

unique locations are leveraged to construct our dataset of the 

location of conflict events.

3.1.2   |   Satellite Data

Once we identify the location of riot events, we retrieve rele-

vant PlanetScope satellite imagery both (a) 24–48 h prior to each 

event, and (b) in similar, nearby geographic locations that did 

not experience unrest. PlanetScope—an integrated collection 

of images from the Dove, Dove- R, and SuperDove satellites—

provides four- band (RGB and NIR), approximately 3–4 m spa-

tial resolution satellite imagery with a daily temporal resolution 

(Planet Team  2023b; see Table  1). For both cases of imagery 

(with and without riot), we consider images that contain < 50% 

cloud cover. An example of the imagery available can be seen in 

Figure 1.

For each of the 37,728 instances of riots in our filtered ACLED 

dataset, we first retrieve a full scene of imagery from 24 to 48 h 

prior to the event (Table 2). These scenes are guaranteed to en-

compass the latitude and longitude representing the centroid of 

the neighborhood at which a conflict occurred; in cases where 

multiple images were available for a given event, we chose the 

4
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one closest in time to the event (with a minimum of 24 h prior 

to the event). Ultimately, this process resulted in 19,902 satel-

lite scenes being downloaded, with an average spatial dimen-

sion that can vary depending on the generation of satellite 2 and 

geographic latitude of collection. Because riots may occur at the 

same location, but at multiple points in time, some locations 

(i.e., a seat of government and culturally significant locations) 

may appear in the database multiple times; the most common of 

these occurrences are summarized in Table 3.

From the satellite scene retrieved for each conflict event, we ex-

tract two types of data. First, we extract a 1 km by 1 km box cen-

tered on the conflict event neighborhood. This box is saved and 

identified as the location of the unrest in our database.

Second, we extract a number of cases to serve as null events—

that is, locations from the same urban area, but where no unrest 

occurred. To generate these null cases, we follow a multiple step 

process in which we:

1. Identify urban areas. We only consider areas in the scene 

that have a population density over 300 inhabitants per 

kilometer.

2. Exclude areas that are within 10 km of the conflict event. We 

isolate the conflict event by removing the urban areas that 

are within 10 km of the centroid of the neighborhood in 

which conflict occurred.

3. Sample. With the remaining urban areas in the satellite 

scene, we generate a list of random centroids which are con-

strained to be a minimum of 2 km apart, and select a maxi-

mum of 10 of these to generate 1 km box “null” locations at 

which no protest or conflict occurred. The 2 km separation 

ensures that none of our null boxes overlap.

In step 1, we overlay information about the degree of urban-

ization (Schiavina, Melchiorri, and Pesaresi  2023; European 

Commission and Statistical Office of the European Union 2021) 

onto each satellite scene to determine what portions are urban, 

and which parts are not. This is accomplished by using the 

DEGURB dataset (Schiavina, Melchiorri, and Pesaresi  2023), 

which was developed by the European Commission's Joint 

Research Centre. This data categorizes geographical areas into 

Urban Centre, Urban Clusters (including towns and suburbs), 

and Rural Grid Cells (including villages and dispersed rural) 

zones based on population density and contiguity of dense areas 

(European Commission and Statistical Office of the European 

Union  2021). The DEGURB dataset used in this work is rep-

resentative of 2020 (see Figure  2; Schiavina, Melchiorri, and 

Pesaresi 2023). This binary representation of urban areas is then 

applied to each satellite scene as a mask, allowing us to select 

null cases from proximate urban areas.

In step two, in order to ensure the areas selected for null cases 

are distinct from the areas of unrest, we exclude all urban areas 

up to 10 km away from the centroid of the riot neighborhood 

from consideration, as illustrated in Figure 3.

Third, after excluding the 10 km region around each unrest 

event, from the remaining urban regions in the satellite scene 

we select random locations for null- riots. We accomplish this 

by generating a list of random latitudes and longitudes that are 

within the available regions. We ensure that each of these ran-

dom locations is at least 2 km away from any other locations on 

our random list. We then take a maximum of ten of these loca-

tions and construct a 1 km box around each one. We construct 

up to 10 null cases (that do not overlap) from the eligible urban 

regions from each scene (noting that less dense urban areas 

are occasionally represented by < 10 null cases due to a lack of 

TABLE 1    |    Technical wavelength specifications for RGB bands of 

PlanetScope sensors (Planet Team 2023b).

Band

Dove classic Dove- R SuperDove

Wavelength 

(nm)

Wavelength 

(nm)

Wavelength 

(nm)

Red 590–670 650–682 650–680

Green 500–590 547–585 547–583

Blue 455–515 464–517 465–515

FIGURE 1    |    Satellite image of Athens Greece, taken 31 January 2018. Imagery © Planet Labs PBC 2023. All rights reserved. Background map from 

OpenStreetMap (OpenStreetMap Contributors 2024).
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proximate urban areas). A visualization of the results from this 

process can be seen in Figure 3.

After this process is completed, for each conflict event we are 

left with a set of one (1 km2) kilometer box representative of 

where unrest occurred, and up to 10 (1 km2) km boxes repre-

sentative of urban areas proximate to the unrest event, but with 

no known activity. Across our full dataset of 19,902 unrest loca-

tions, 18,634 (93.6%) had 10 null cases available; the distribution 

of null cases across images can be seen in Figure 13. Our final 

TABLE 2    |    PlanetScope constellation (Planet Team 2023b).

Instrument Image area Availability

Dove classic 25 × 11.5 sq km July 2014 to 

April 2022

Dove- R 25 × 23 sq km March 2019 to 

April 2022

SuperDove 32.5 × 19.6 sq km March 2020 

to present

TABLE 3    |    Neighborhood locations that occur most frequently.

Country Neighborhood Count Earliest date Latest date

Pakistan Karachi—Saddar 278 7 October 2017 30 September 2022

Iran Tehran—District 6 270 9 October 2017 26 September 2022

Iran Tehran—District 12 268 9 October 2017 28 September 2022

Lebanon Beirut—Port 252 7 October 2017 26 September 2022

Greece Athens—Central Athens 247 18 January 2018 28 September 2022

South Korea Seoul—Jongno 240 18 January 2018 21 September 2022

South Korea Seoul—Jung 226 18 January 2018 26 September 2022

Italy Rome—City Center 222 7 January 2018 23 September 2022

India Delhi—New Delhi 220 2 October 2017 4 September 2022

South Korea Seoul—Seocho 220 8 January 2018 28 September 2022

Note: “Earliest” and “Latest” date refer to the earliest and latest date of a protest event for each neighborhood. For example, in the neighborhood of Seocho in Seoul, 220 
independent protest or riot events occurred from 8 January 2018 to 28 September 2022. In our analysis, this would be represented by 220 individual satellite tiles, each 
taken between 24 and 48 h before the actual event.

FIGURE 2    |    A portion of the DEGURB data, highlighting areas of the world that are considered urban in our data set. DEGURB defines urban 

regions as those with a density more than 300 inhabitants per km (European Commission and Statistical Office of the European Union 2021) Red 

lines represent country- level boundaries (Runfola et al. 2020).
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dataset includes only locations that have the full complement 

of null clips, for a total of 18,631 cases of unrest and 186,310 

null cases. We then normalize all of these image clips based on 

a sample of the full satellite scenes (Goodman, BenYishay, and 

Runfola 2021; Lv et al. 2024; Runfola et al. 2022; Brewer, Lv, and 

Runfola  2023). Tests of different permutations of this dataset 

(i.e., models with a 1:1 ratio of null and riot cases) can be found 

in Section 6.1 of the appendix.

3.2   |   Methods

Our overall modeling architecture is summarized in Figure 4. 

To estimate the likelihood of an unrest event occurring or not 

at each location, we leverage a ResNet18 (He et al. 2016) as our 

base model, but replace the fully connected layer with a series 

of dense layers that include 128, 64, and 32 hidden nodes. In 

order to improve the efficiency of our training, following other 

FIGURE 3    |    Satellite Image of Athens Greece, taken 31 January 2018. The red box in the center of the image is a 1 km box around the riot 

location. The green box is a 10 km exclusionary area around the riot location, from which we do not draw “null” case contrasts. Areas which fall 

outside the green box, that are also urban, are eligible for selection (displayed in purple). From the potential null region, we sample random, non- 

overlapping 1 km boxes to generate null location clips. Imagery © Planet Labs PBC 2023. All rights reserved. Background map from OpenStreetMap 

(OpenStreetMap Contributors 2024).

FIGURE 4    |    A synopsis of our overall modeling architecture. Stages include the collection of data, pre- processing, network training, categorization, 

and explainability analysis. Imagery © Planet Labs PBC 2023. All rights reserved. 12
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literature in the satellite imagery analysis space (Goodman, 

BenYishay, and Runfola 2021; Lv et al. 2024; Brewer et al. 2021; 

Runfola et al. 2022; Brewer, Lv, and Runfola 2023), we use pre- 

trained weights from ImageNet as our initial baseline.

3.2.1   |   Hyperparameter Search

Prior to training on all 18,631 events, we first randomly select 

a subset of 1000 conflict events (1000 unrest cases and 10,000 

null cases) to implement a grid search across hyper- parameters.2 

To account for class imbalance, we implement a weighted cross 

entropy loss (Ho and Wookey 2019) with an ADAM optimizer 

(Kingma and Ba 2014) for our training procedure.

Our hyperparameter search includes trials of different learning 

rates, L2 regularization, dropout, freezing layers (results and 

parameters from a sample of the trials can be seen in the appen-

dix in Section 6.2). Results from a selection of three of the best 

performing cases in the hyperparameter testing are shown in 

Table 4. On the basis of these results, we select one model (de-

noted as Model C in Table 4) to test on the full dataset, which is 

described in Table 5.

We assess our model by interpreting the overall accuracy, pre-

cision, and recall. The precision is the ratio of true positives to 

the number of positive predictions our model made (Davis and 

Goadrich 2006), which will measure our model's ability to cor-

rectly predict riots when it does makes a prediction. The recall is 

the ratio of true positives to the number of riots in the data set, 

which measures our model's ability to identify how frequently 

riots are occurring (Davis and Goadrich 2006).

3.2.2   |   Additional Analyses

In addition to identifying the best convolutional model perfor-

mance, we implement two additional analysis to better under-

stand the strengths and weaknesses of this approach. These 

include (a) generating information on the country- level perfor-

mance of the model and (b) and explanatory model that seeks 

to identify the features within a given image that are correlated 

with conflict events (or the lack thereof).

To explore the spatial distribution of accuracy of the approach, 

we first filter our data to only consider countries that had 500 

or more observations (a minimum of 250 riot clips and 250 null 

clips). This creates a validation set consisting of 32,548 clipped 

images, distributed across 24 countries (see Table 6). From this, 

we withhold 20% of each country's observations for validation 

after training. This ensures that each country has at least 100 

observations (50 riot clips and 50 null clips) for validation. We 

then select the hyperparameters from our best performing 

model (model C, see Table 4), and train a ResNet18 using 80% of 

the validation data (26,058 images, half riot or protest and half 

null) for 50 epochs. We then use the withheld 20% of images 

(6490 images, half riot or protest and half null) to test for accu-

racy within each country.

To begin to explore the underlying drivers of model perfor-

mance, we additionally take preliminary steps toward trying T
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to assess what features the model may be identifying and using 

in predictions. To implement this process, we leverage Score- 

CAM (Wang et  al.  2020). Score- CAM is a Class Activation 

Mapping (CAM) method that attempts to explain, with a 

human interpretable visual display, the features within an 

image that determine classification. Score- CAM differs from 

traditional CAM methods that utilize gradients and instead 

use the forward pass scores of activation maps to determine 

the significance for target classes (Wang et al. 2020). For the 

purposes of this work, Wang et al. found that it outperforms 

other techniques when there are multiple objects of relevance 

in the scene (Wang et al. 2020), a nearly universal characteris-

tic of satellite imagery.

4   |   Results

4.1   |   Full Data Set

In this section, we report our findings from our analysis of 

the full dataset (N = 204,941 clipped images), using the best- 

performing model from our hyper- parameter testing (model C, 

as described in Table 4). The results of this model are presented 

in Table 5.

As Table 5 shows, the approach outlined in this paper achieves 

an overall accuracy of 97.39%—that is, of the 40,989 images in 

the test dataset, 39,921 were correctly identified as the site of 

a riot or not.3 There are 3646 riot or protest images in the test-

ing set and the model correctly identifies 2741 of these, result-

ing in a recall score of 75.18%. This demonstrates the model's 

ability to distinguish riot/protest events from non- riot events. 

The model predicts there will be a riot in 2904 of the images 

and is only incorrect 163 times producing a precision score of 

94.30%. In the context of our scenario, when the model pre-

dicts there will be a riot or protest in an image, it is correct 

over 94% of the time.

4.2   |   Balanced Validation Data Set

We validate the performance of our model with a data set that 

withholds data from training and testing, and has a one- to- one 

riot- to- null ratio. The results of this validation training are dis-

played in Table  7. The accuracy of the validation testing was 

89.41%; 5803 of the 6490 images were correctly identified. This 

validation testing has very similar false positive and false nega-

tive rates, resulting in precision, recall, and F1 scores that are 

similar to the test accuracy. Of note, the re- trained model which 

withheld data for each individual country had a slightly lower 

global accuracy than our full results, of 89%. While this 89% ac-

curacy is lower than the accuracy from the full data set shown 

in Table 5, the testing circumstances of the validation are more 

challenging due to the even split between riot and null in the 

validation data set.

In addition to the global accuracy, we also subset our data by 

country and report accuracy within each based on a validation 

TABLE 5    |    Results from ResNet18 using the full data set.

Test accuracy 97.39%

True positives (predict riot) 2741

False positives 163

False negatives (missed riot) 905

True negatives 37,180

Precision 94.39%

Recall 75.18%

F1 score 83.69%

TABLE 6    |    There are 32,548 clipped images in the validation data set.

Country Images Country Images Country Images Country Images

South Korea 7494 South Africa 1480 Ukraine 924 Greece 634

Pakistan 2622 Chile 1302 Thailand 890 Yemen 604

Iran 2334 Japan 1256 Italy 728 United Kingdom 566

Lebanon 1656 India 1148 Indonesia 678 Taiwan 562

Palestine 1572 Brazil 1112 Russia 668 Peru 522

China 1550 Bangladesh 1092 Venezuela 648 Iraq 506

Note: Half of these are from riots/protests, and half are null clips. Only countries that have at least 500 images are included. Twenty percent of each county's images 
will be withheld from training and testing, and used in validation.

TABLE 7    |    Results from validation testing; 6490 images are withheld 

during training, half of which are from a riot and half from a non- riot.

Test accuracy 89.41%

True positives (predict riot) 2903

False positives 345

False negatives (missed riot) 342

True negatives 2900

Precision 89.38%

Recall 89.46%

F1 score 89.42%

Note: These results do not have the class imbalance present in the full data set, 
instead there is a single riot clipped image and a single non- riot clipped image 
for every full satellite image. The accuracy of the network approaches 90%, with 
similar capabilities to distinguish among false positives and false negatives.

5
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set (see Section 3.2.2 of our methods). The results of this country- 

specific validation testing are shown in Table  8. Lebanon 

(94.5%), Iran (94.4%), and Pakistan (92.6%) were the most accu-

rate in this analysis, while Yemen (78.3%), Russia (78.0%), and 

Peru (77.9%) were the least accurate countries. No clear regional 

patterns existed, though some evidence suggests that accuracy 

and total number of observations may be correlated (i.e., less ac-

curate news media reporting in Russia may be attributable to 

the lower accuracy in that context).

Of note, we observe a strong correlation between our softmax 

classification scores and accuracy within each country around 

the world, suggesting that softmax scores can be used as a proxy 

for prediction confidence (see Figure  5). While softmax may 

bias toward higher degrees of confidence (Pearce, Brintrup, and 

Zhu 2021; Subramanya, Srinivas, and Babu 2017), as a relative 

metric it may provide helpful guidance to policymakers seeking 

to use these types of methods.

4.3   |   Explainability of Results

For our best performing model (model C in the Table 5), we 

implement Score- CAM on a subset of randomly selected, 

paired locations, ultimately consisting of 1089 riot locations, 

and 1089 null locations.4 The Score- CAM results are then vi-

sually reviewed in an attempt to discern patterns in what the 

trained ResNet prioritized in classification. Understanding 

the results of utilizing Score- CAM on our data is inherently 

difficult to interpret or understand, making this a rich area for 

future work; we discuss this limitation further in Section 4.3 

of the discussion.

While this analysis is inherently qualitative, visual interpreta-

tion indicates a few clear patterns. An example of the first of 

these is displayed in Figure 6. We can observe a large sports 

stadium in the image in the southeast region of Figure 6. This 

large stadium is the location which Score- CAM identifies as 

TABLE 8    |    Results from country level accuracy after validation testing.

Country Count Accuracy (%) TP FP TN FN

Lebanon 330 94.54 159 12 153 6

Iran 466 94.42 225 18 215 8

Pakistan 524 92.56 247 24 238 15

South Korea 1498 92.12 700 69 680 49

Ukraine 184 91.85 84 7 85 8

Chile 260 91.15 120 13 117 10

Iraq 100 91.00 45 4 46 5

China 310 90.00 140 16 139 15

Palestine 314 89.49 141 17 140 16

Venezuela 128 89.06 58 8 56 6

Bangladesh 218 88.99 90 5 104 19

India 228 88.60 97 9 105 17

Italy 144 88.19 62 7 65 10

Greece 126 87.30 62 15 48 1

Thailand 178 87.08 75 9 80 14

Indonesia 134 86.57 62 13 54 5

Japan 250 85.60 105 16 109 20

Brazil 222 85.14 94 16 95 17

United Kingdom 112 83.93 50 12 44 6

South Africa 296 82.43 114 18 130 34

Taiwan 112 82.14 45 9 47 11

Yemen 120 78.33 41 7 53 19

Russia 132 78.03 50 13 53 16

Peru 104 77.88 37 8 44 15

Note: These results are listed from highest accuracy to lowest accuracy. We have also included the number of True Positives (TP), False Positives (FP), True Negatives 
(TN), and False Negatives (FN) for each country.



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

10 of 19 Transactions in GIS, 2024

the portion of the image which leads toward the classification 

(indicated through brighter values in the displayed heatmap). 

In this case, the sports stadium leads the ResNet to classify the 

scene as a non- riot. We can see another example in Figure 7, 

in which again, the ResNet identifies the sports stadium as 

the reason to classify the scene as a non- riot. We do not offer 

any explanation for why the sports stadiums are indicative of 

a non- riot scene, but these stadiums provide an example of the 

specific features which ResNet is learning to make classifica-

tion decisions.

Another example highlighted in the Score- CAM analysis is shown 

in Figure 8. We can see a densely populated area, with a large open 

park or green space in the center of the image. The trained network 

correctly predicts this image is from a riot or protest. When we ref-

erence the ACLED data, this image is from a protest in the Lalbagh 

neighborhood of Dhaka, Bangladesh. Lalbah is a fort built during 

the Mughal period in 1678, which was used subsequently by the 

British and Bangladesh governments as a location of governance 

and influence (Shakur, Islam, and Masood 2010). Today, it is a lo-

cation containing monument's and statues symbolizing rulers and 

regimes of the past, that is known as a common location for pro-

tests in the city of Dhaka (Begum 2018). While the deep learning 

model was not aware of these historic contexts, the unusual land 

use and associated image features were sufficient to classify this as 

a likely location of riots.

5   |   Discussion and Conclusions

The results presented in Table  5 provide evidence that satellite 

information alone can provide useful information for the pur-

poses of predicting where, within an urban environment, protests 

and riots are most likely to occur. While this finding is likely to 

be of interest to those operating in data- sparse environments, it 

is well supported by past social science literature highlighting 

the interconnected nature of urban form and social processes 

(Fox and Bell 2016; Begum 2018). By engaging in a global- scope 

study, here we are able to exploit this correlation by learning what 

these patterns are, and then leveraging them in estimation. This 

finding held true across multiple model and data permutations 

(see Tables 5 and 9), indicating that—even in some of the most 

FIGURE 5    |    The average softmax for each country when compared to the average accuracy of prediction of each country. Of note, the axis's do not 

begin at 0, but instead focus in on the domain and range of the values in the data.

FIGURE 6    |    Example clipped image on the left. The clipped image, a 1 km box around a riot location. The Score- CAM overlayed on top of the 

image is shown in the middle. The Score- CAM visual is displayed on the right. Imagery © Planet Labs PBC 2023. All rights reserved.
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challenging situations (i.e., relatively small training and valida-

tion sets), model accuracy can approach or exceed 90%.

Furthermore, this technique performs well across the globe. As 

highlighted in Table 7, there do not seem to be any regions that 

under perform. Many countries with a relative low accuracy 

score (i.e., Russia) are in close proximity to a country with a 

higher accuracy score (i.e., China). This pattern holds across 

the globe in South America, Asia, the Middle East, and Europe.

Of note, in our softmax analysis seeking to correlate scores to 

accuracy, a single outlier, Russia, is observed in Figure  5 and 

Table 7. Russia has a lower comparative accuracy to other coun-

tries with similar softmax results. This might be indicative of 

Russia's control of news sources (Gehlbach  2010), or inherit in 

ACLED's collection of data which relies on news sources and 

non- governmental observation organizations that might not be 

focused on Russia.

5.1   |   Limitations

5.1.1   |   Satellite Information

The satellite imagery we incorporate into this study has a num-

ber of notable limitations. First, while a satellite scene might 

contain 50% or less cloud cover (see Figure 9), the clipped im-

ages might be completely covered in clouds (see, e.g., Figure 10). 

Further, in some cases the conflict event selected may be at the 

edge of a scene, with no valid scene available to fill in null in-

formation, resulting in a partially clipped image (see Figure 11). 

Additionally, some of the clips contain interference or distor-

tion, such as the clip at the bottom of Figure 11.

Inter- related with these challenges, in many scenes, we were un-

able to identify enough geographic locations to support the cre-

ation of 10 null cases. For example, in Figure 12 we can see that 

the riot location in consideration does not have any null location 

possibilities due to the riot's proximity to the coast, and the con-

comitant lack of proximate urban areas eligible for building null 

(no- protest) cases. There are similar limitations that cause the 

distribution of clipped images in Figure 13.

Another limitation is in our definition of where conflict 

events occurred, as the definition of a “neighborhood” is in-

herently imprecise. We used OpenStreetMap (OpenStreetMap 

FIGURE 7    |    Example clipped image on the left. The clipped image, a 1 km box around a non- riot location. The Score- CAM overlayed on top of the 

image is shown in the middle. The Score- CAM visual is displayed on the right. Imagery © Planet Labs PBC 2023. All rights reserved.

FIGURE 8    |    The image on the left is centered on Lalbagh Fort in Dhaka Bangladesh, taken on 19 November 2021, < 48 h before a protest at that 

location. The Score- Cam visual is displayed on the right. Imagery © Planet Labs PBC 2023. All rights reserved.

TABLE 9    |    Results from ResNet18 using only a single riot clip and 

single null riot clip per location.

Test accuracy 65.37%

True positives (predict riot) 154

False positives 105

False negatives (missed riot) 46

True negatives 131

Precision 59.46%

Recall 77.0%

F1 score 67.1%
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Contributors 2024) to visually compare the size of our ten most 

repeated locations 3. We were able to confirm that the sizes of 

neighborhoods were inconsistent, but rarely of a size greater 

than our 10 km2 exclusionary zone (see Figure 3).

5.1.2   |   Explainability

Currently, the majority of explainability techniques in the lit-

erature focus on datasets consisting of object- centric images. 

For example, two common data sets CIFAR- 10 and CIFAR- 100 

(Krizhevsky and Hinton 2009) are used in many computer vision 

tasks and competitions, but those data sets only have objects cen-

tered in the middle of the picture, taking up most of the image 

space. This differs significantly from our satellite imagery. Our 

images contain all of the spatial information within a square 

kilometer of a city. As opposed to an image of a cat or dog, our im-

ages have multiple buildings, cars, streets, parks, etc. So while cur-

rent explainability techniques can highlight portions of our image 

that lead to classification which are easily human interpretable, it 

is challenging for us to determine what in the image is being high-

lighted. The example we discuss in Section 4.3, highlights sports 

stadiums in Score- CAM outputs as easily identified visually in the 

satellite image. There are other patterns that emerge in our Score- 

CAM analysis; however it is very difficult to describe many of the 

features Score- CAM identifies with easily identifiable semantic 

definitions. While we were able to identify a few other patterns, 

such as transitions from one zone to another zone (residential to 

commercial as an example), we are not confident in interpreting 

what these different types of zones are at this time. The field of 

explainability, as it relates to satellite images, has very little pub-

lished in literature and remains a strong avenue for future inquiry.

FIGURE 9    |    Satellite image of Brazil collected on 1 November 2018. This image contains < 50% cloud cover for the full satellite scene. The riot 

location indicated in the red square has minimal cloud cover, but other locations in the scene will be impacted by the cloud cover as seen in Figure 10. 

Imagery © Planet Labs PBC 2023. All rights reserved. Background map from OpenStreetMap (OpenStreetMap Contributors 2024).

FIGURE 10    |    Clips from a satellite image of Brazil collected on 1 November 2018. While the full image contains < 50% cloud cover, many of the 

clips are partially or completely obscured. Imagery © Planet Labs PBC 2023. All rights reserved.
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5.1.3   |   Additional Limitations

There are a number of additional limitations of the presented 

work. First, our data is focuses on spatial information, not tem-

poral, and thus we do not generate predictions of when a riot 

will occur, only the likely urban locations. Leveraging changes 

in images over time could help us overcome this challenge, but 

will necessitate new modeling strategies beyond those presented 

in this piece. Second, we have selected a ResNet18 as our base 

model, which could limit our model performance if alternative 

architectures are better performing. Another limitation of the 

presented work is in the limited scope of network architectures 

FIGURE 11    |    Nine of the null riot clipped images from Athens, Greece. Imagery © Planet Labs PBC 2023. All rights reserved.

FIGURE 12    |    Satellite image from Yemen collected on 14 September 2020. The urban areas are shown in red. Most of this image is not usable 

because of the lack of urban areas. Imagery © Planet Labs PBC 2023. All rights reserved. Background map from OpenStreetMap (OpenStreetMap 

Contributors 2024).
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tested. Here, we focus explicitly on ResNet18, with anecdotal 

testing of ResNet50 as a part of initial model exploration. Future 

research in this area could benefit from testing a range of dif-

ferent CNN architectures (i.e., VGG, Xception, or ResNeXt) to 

determine their relative efficacy in feature detection.

Third, the ACLED database used to construct our imagery data 

set is drawn primarily from news sources (ACLED 2023). These 

come with some inherent challenges and limitations. If riots and 

protests are occurring in regions that traditional news sources 

are not reporting about, the events are not likely to populate the 

ACLED database. Further, the nature of civil unrest is some-

times difficult to delineate with clear definitions, and different 

news organizations may cover a protest in conflicting ways—for 

example, a protest that is met with armed government resistance 

(ACLED 2023). These challenges are not likely to be overcome 

in the near term, but are notable as they may impact the results 

presented in this study.

5.2   |   Conclusions

In this work, we construct a data set consisting of 204,941 satellite 

images of riots and protests across the world. After subseting the 

images into two classes of riots and non- riots, we train a ResNet18 

to identify which images are from locations associated with a riot. 

When fine- tuned, our model achieves an accuracy of over 97%, 

suggesting that satellite imagery has information of relevance 

and value to estimating the location of riot events. This was true 

across a wide range of different tests and permutations of the data. 

We further provide some initial exploration into the explainabil-

ity of this model, leveraging ScoreCAM to identify features the 

model is leveraging in the classification task. This research has 

suggested a number of future directions, which may be valuable 

to the research community. First, given the promise of spatially 

predicting where conflict is likely to occur, research into the tem-

poral domain using satellite data may be of value. Second, we 

note the relative lack of explainablity techniques applied to sat-

ellite imagery, and the importance of additional future research 

into that domain. Third, we anticipate future efforts can explore 

implementing this technique on full satellite images to localize 

protest and riot predictions. Finally, we note that future work that 

explores new model architectures, or integrating multiple data 

sources for conflict information, could provide high value.

6   |   Appendix

6.1   |   Deduplication Tests

In this section, we present a test that controls for both class imbal-

ance and geographic bias in our data. Our methodology leverages 

a large set of training data, specifically relying on an arbitrary 10:1 

FIGURE 13    |    Distribution of null clips from the full 19,902 images 

downloaded. Instances where < 10 clips were taken are primarily due 

to the amount of urban area available in the satellite image. There were 

three additional locations that were eventually able to provide 10 null 

clips, but not included before the dataset was finalized with 18,631 

locations at training time.

TABLE 10    |    All of the models in this table were tested with 100 random locations (100 riot clips and 1000 null clips).

Metric A1 A2 B1 B2 C1 C2

Test accuracy (%) 91.59 91.12 90.65 93.93 93.46 86.45

True positives 0 0 0 0 0 0

False positives 0 0 4 0 0 0

False negatives 18 19 16 13 14 29

True negatives 196 195 194 201 200 185

Precision (%) 0.00 0.00 0.00 0.00 0.00 0.00

Recall (%) 0.00 0.00 0.00 0.00 0.00 0.00

F1 score (%) 0.00 0.00 0.00 0.00 0.00 0.00

Learning rate 1e−06 1e−06 1e−06 1e−06 1e−06 1e−06

Freeze layers 0 0 5 5 10 10

Drop out pair (0, 0) (0.1, 0.05) (0, 0) (0.1, 0.05) (0, 0) (0.1, 0.05)

L2 weight decay 0 0 0 0 0 0

Note: In this table, all models used a learning rate of 1e−06. Models froze either none of the ResNet layers (A1, A2), the first 5 layers (B1, B2), or the first 10 layers (C1, 
C2). Between the first two and the second two layers, none of the connections were dropped (A1, B1, C1), or 10% and 5% were dropped (A2, B2, C2).
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ratio of 10 null cases (no conflict event) to 1 positive case (a loca-

tion where a conflict occurred). Furthermore, some geographic 

locations are in the database multiple times—that is, there may 

have been multiple protests at the same geographic location, even 

if they are on different dates (see Table 3). This results in both class 

imbalance (10 null cases for every 1 positive case), and geographic 

biases from where we draw our events. The class imbalance will 

potentially inflate accuracy scores, given a 10 to 1 ratio of null clips 

to riot clips—that is, an untrained model could simply predict null 

for all images, and achieve an accuracy of 90.9%. Additionally, 

with repeated locations, the model will see the riot clip locations 

multiple times (i.e., even when each satellite scene has unique spa-

tial information as it is drawn from a different date, the 1- km box 

centered on the latitude and longitude of the neighborhood will be 

the same). This might allow our network to learn the specifics of 

a location, and over- fit to particular locations, instead of learning 

what features in urban areas predict riots and protests. Therefore 

we construct a limited data set to control for these issues.

To test if these attributes of our data result in bias, we construct a 

new dataset that limits the data to a single riot image (1089 1- km 

boxes) and a single non- riot image (1089 1- km boxes) per location. 

This means that our model is only able to analyze a riot location 

a single time during training, regardless of how frequently riots 

might happen at that location. This should be a much harder train-

ing task for the model, with far less data available (2178 images in 

total; these 2178 images represent roughly 1% of the data available 

for training in the full data set of 204,941 images). Under these 

TABLE 11    |    All of the models in this table were tested with 100 random locations (100 riot clips and 1000 null clips).

Metric D1 D2 E1 E2 F1 F2

Test accuracy (%) 88.78 86.92 91.12 91.59 88.32 88.78

True positives 5 1 7 5 0 0

False positives 7 13 4 6 0 0

False negatives 17 15 15 12 25 24

True negatives 185 185 188 191 189 190

Precision (%) 41.67 7.14 63.64 45.45 0.00 0.00

Recall (%) 22.73 6.25 31.82 29.41 0.00 0.00

F1 score (%) 29.41 6.67 42.42 35.71 0.00 0.00

Learning rate 1e−05 1e−05 1e−05 1e−05 1e−05 1e−05

Freeze layers 0 0 5 5 10 10

Drop out pair (0, 0) (0.1, 0.05) (0, 0) (0.1, 0.05) (0, 0) (0.1, 0.05)

L2 weight decay 0 0 0 0 0 0

Note: In this table, all models used a learning rate of 1e−05. Models froze either none of the ResNet layers (D1, D2), the first 5 layers (E1, E2), or the first 10 layers 
(F1, F2). Between the first two and the second two layers, none of the connections were dropped (D1, E1, F1), or 10% and 5% were dropped (D2, E2, F2).

TABLE 12    |    Model performance metrics for configurations 1 to 6 with learning rate of 1e−05, with variations in L2 weight decay, freeze layer, 

and dropout pair settings.

Metric Config 1 Config 2 Config 3 Config 4 Config 5 Config 6

Test accuracy (%) 91.80 91.80 91.27 90.69 92.52 91.85

True positives 62 39 43 77 25 78

False positives 54 11 41 65 7 62

False negatives 116 159 140 128 148 107

True negatives 1841 1864 1849 1803 1893 1826

Precision 0.5345 0.7800 0.5119 0.5423 0.7812 0.5571

Recall 0.3483 0.1970 0.2350 0.3756 0.1445 0.4216

F1 score 0.4218 0.3145 0.3221 0.4438 0.2439 0.4800

Learning rate 1e−05

L2 weight decay 0.1 0.01

Freeze layer 0 0 0 5 5 5

Dropout pair (0, 0) (0.1, 0.05) (0.5, 0.1) (0, 0) (0.1, 0.05) (0.5, 0.1)
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constraints, the maximum classification accuracy we observed 

was 67.37% 9. Of note, the recall scores for our full data set and 

limited data set were very similar (75.18% and 77.0%, respectively), 

despite the different size and scope of the training data.

These results suggest that—even under extremely challenging, 

small- N circumstances—deep learning models can still identify 

meaningful features that are correlated with protest and riot 

events from satellite imagery.

6.2   |   All Results

While we focus on our best performing models throughout 

this piece, there were a number of additional permutations and 

tests we perform while identifying the best modeling strategies, 

which we present here. We begin a grid search across select hy-

perparameters, using a small test set of 100 random samples 

from our full data set. Initially we are concerned with narrowing 

down the selection of the best performing learning rates, freez-

ing layers of the ResNet, and dropping out connections between 

our fully connected layers. The results of a sample of these are 

shown in Tables 10 and 11.

After the initial grid search, we increase the size of data set to 

1000 locations (1000 riot clips, and 10,000 null clips) (Table 12). 

We also refine the hyperparameter grid search space. Our best 

performing model referred to as Model C in Table 4, is Config 10 

in Table 13. Config 10 has the highest F1 score across these grid 

search results, reflecting the best balance between Precision and 

Recall. Due to this strong performance, these parameters are 

used to train with the full dataset.
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Endnotes

 1 For example, some riots are known to have occurred in Beriut, while 
others occurred within neighborhoods in Beriut. There are 12 neigh-
borhoods listed within some of the ALCED entries for Beriut (Ras 
Beirut, Port, Mazraa, Achrafieh, Mousseitbeh, Saifi, Minet El Hosn, 
Rmeil, Bachoura, Medawar, Ain Mreisseh, and Zokak El Blat). These 
neighborhood specific entries have neighborhood specific latitudes 
and longitudes, and we use these neighborhood specific events to con-
struct our data set.

 2 Training was performed using pyTorch on 8 RTX 6000 NVIDIA GPUs. 
On average, models trained using the hyperparameter dataset took 
approximately 6.5 h to complete 40 epochs; our full model across all 
images took 321 h for 100 epochs.

 3 It is important to note that our data set is constructed in a manner 
that would result in relatively high test accuracy. We have one riot 
and ten null riot clips per satellite scene. This means that if our 
model predicted no riot for every clipped image, the model would 
be correct 90.9% of the time. Even given imbalance in the data set, 
our trained model achieves better results, accurately predicting riots 
and null riots over 97% of the time. Further explorations of the value 
of the model in the context of imbalance are described in Section 6.1 
of the appendix.

 4 Data were randomly selected from data used to train the model in 
 appendix Section 6.1.

TABLE 13    |    Model performance metrics for configurations 7 to 12 with learning rate of 1e−05, transitioning from L2 weight decay settings of 0.01 

to 0.001, including variations in freeze layer and dropout pair settings.

Metric Config 7 Config 8 Config 9 Config 10 Config 11 Config 12

Test accuracy (%) 91.51 89.77 92.91 92.33 90.16 92.76

True positives 85 86 54 86 92 80

False positives 64 106 34 32 101 49

False negatives 112 106 113 127 103 101

True negatives 1812 1775 1872 1828 1777 1843

Precision 0.5705 0.4479 0.6136 0.7288 0.4767 0.6202

Recall 0.4315 0.4479 0.3234 0.4038 0.4718 0.4420

F1 score 0.4913 0.4479 0.4235 0.5196 0.4742 0.5161

Learning rate 1e−05

L2 weight decay 0.01 0.001

Freeze layer 0 0 0 5 5 5

Dropout pair (0, 0) (0.1, 0.05) (0.5, 0.1) (0, 0) (0.1, 0.05) (0.5, 0.1)
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