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ABSTRACT

Conflict, manifesting as riots and protests, is a common occurrence in urban environments worldwide. Understanding their
likely locations is crucial to policymakers, who may (for example) seek to provide overseas travelers with guidance on safe areas,

or local policymakers with the ability to pre-position medical aid or police presences to mediate negative impacts associated with

riot events. Past efforts to forecast these events have focused on the use of news and social media, restricting applicability to areas

with available data. This study utilizes a ResNet convolutional neural network and high-resolution satellite imagery to estimate
the spatial distribution of riots or protests within urban environments. At a global scale (N=18,631 conflict events), by training
our model to understand relationships between urban form and riot events, we are able to predict the likelihood that a given
urban area will experience a riot or protest with accuracy as high as 97%. This research has the potential to improve our ability

to forecast and understand the relationship between urban form and conflict events, even in data-sparse regions.

1 | Introduction

Bl instances of social unrest, often manifesting as riots or protests,
wield significant influence on the communities, regions, and
nations where they unfold (Bencsik 2018). The repercussions of
such events are wide-ranging, ranging from geopolitical trans-
formations (i.e., riots in Egypt in 2011 (Joya 2011), and Hong
Kong in 2019 (Purbrick 2019)) to substantial economic losses
(exemplified by the hundreds of millions of dollars incurred
during the 2011 riots in the UK (Bencsik 2018)). These events
may result in human casualties, as evidenced by food riots
in Africa in 2007-2008 (Berazneva and Lee 2013) and riots
caused by garbage collection issues in Beirut in 2015 (El Warea
et al. 2019). These events impact cities across the entire globe,
with recent examples in Latin America (Eckstein 2001), Asia
(Purbrick 2019), Africa (Joya 2011; Berazneva and Lee 2013),
and Europe (Andronikidou and Kovras 2012). Because of the

importance of these events, scholars across multiple disciplines
have sought to both predict and understand them, using a wide
range of data sources and techniques (Pond and Lewis 2019;
Snow, Vliegenthart, and Corrigall-Brown 2007; Davies
et al. 2013). However, most of these approaches have relied on
sources that may not be available or reliable in geographies of
interest, such as news articles. Here, we explore the capability
of satellite imagery to aid in the prediction of protest and riot
events, explicitly seeking to understand the degree to which this
globally available source of information may be able to augment
existing predictive methodologies. This approach exploits cor-
relations between the human-built environment—that is, urban
form (Fox and Bell 2016)—and the likelihood of a protest or con-
flict event at a given geographic location.

One of the core innovations that enable us to estimate social
events (such as conflict) from satellite imagery is convolutional
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modeling (Goodman, BenYishay, and Runfola 2021). Deep
learning, including the use of Convolutional Neural Networks
(CNNp), is being used in a wide range of applications from de-
tecting changes in urban environments (Daudt et al. 2018) to
tracking typhoons (Riittgers et al. 2019). This includes inno-
vations from the field of computer vision, which have shown
the capability of CNNs to detect objects (Shin et al. 2016) and
classify images (Krizhevsky, Sutskever, and Hinton 2017;
Chauhan, Ghanshala, and Joshi 2018). Deep learning can be
used in conjunction with satellite imagery to perform many
different classification and detection tasks, such as detecting
infrastructure destruction in conflict environments (Nabiee
et al. 2022), identifying ships (Leclerc et al. 2018; Patel, Bhatt,
and Mazzeo 2022), land cover and land use analysis (Helber
et al. 2019; Kussul et al. 2017; Carranza-Garca, Garca-Gutiérrez,
and Riquelme 2019; Lv et al. 2024), urban expansion (Zhang
et al. 2018, 2019; He et al. 2019), and road quality analysis
(Brewer et al. 2021). Building on this work, in this piece we
combine global-scope high-resolution satellite imagery sourced
from Planet with information on the spatial distribution of pro-
test and riot events from ACLED, seeking to establish the degree
to which satellite information can be used to directly predict the
geospatial locations of protest events.

This paper is structured as follows. In Section 2, we introduce
background literature pertaining to modeling civil unrest, deep
learning, and satellite imagery. In Section 3, we discuss our data
collection and methodology. In Section 4, we present our results.
In Section 5, we provide some conclusions and discussion.

2 | Background

2.1 | Measurement and Modeling
of Riots and Protests

Riots and protests constitute integral components of democratic
societies (U.S. Constitution 1791; Anderson and Mendes 2006), yet
it is imperative for government authorities to effectively mitigate
the economic and human costs that may be associated with these
events to maintain stable governance (Klein and Regan 2018). This
is accentuated by the heightened prevalence of protests and riots
on a global scale in recent years (Ciorciari and Weiss 2016). One
viable strategy for authorities to temper the negative impacts of
these events is through preemptive allocation of resources, such
as medical units (Gong and Batta 2007) or increased international
presence (i.e., UN peacekeepers) in anticipation of unrest (Greer
and McLaughlin 2010). On the international scale, in an attempt
to protect citizens who are traveling abroad, responsible govern-
mental foreign offices (the US Department of State as an exam-
ple) may also issue travel warnings for particular areas to avoid
(Léwenheim 2007). However, proactive approaches necessitate
the capacity to predict both the time and location of potential con-
flict events (Wu and Gerber 2017).

A number of approaches exist which aid in the measurement and
prediction of protests or riots (Wu and Gerber 2017). Past litera-
ture, for instance, has demonstrated the utility of news reports in
providing valuable insights into civil conflict, such as riots and pro-
tests in response to rising food prices (Heslin 2021). Using this ap-
proach, studying riots in France, researchers were able to replicate

the spread of riots using an epidemic-like model with as few as six
parameters that included population demographics, police reports,
and spatial information (Bonnasse-Gahot et al. 2018). Social media
platforms represent another venue for authorities to detect and
analyze real-world events, including social unrest like riots and
protests (Becker, Naaman, and Gravano 2011; Korolov et al. 2016;
Petrovi¢, Osborne, and Lavrenko 2010). X (formerly Twitter) is a
common focus of these studies, and can be used as a near real-
time reporting source, distinguishing between real-world events
and random tweets with 83% accuracy (Becker, Naaman, and
Gravano 2011). Analysis of Twitter data demonstrates the correla-
tive relationship between daily hashtag use and protests, enabling
predictions 24-48h prior to protests in Baltimore and New York
City during 2015 (Korolov et al. 2016). Prior work in this field has
show the ability to predict the probability of fatalities associated
with conflict events using satellite imagery, within conflict areas
in Nigeria, with accuracy rates of 80% when combining Landsat
imagery and CNNs (Goodman, BenYishay, and Runfola 2021).

Much of the current research in forecasting social unrest is fo-
cused on the likelihood of a future event (Renaud et al. 2019;
Phillips et al. 2017; Cadena et al. 2015; Filchenkov, Azarov, and
Abramov 2014; Compton et al. 2013). There are other efforts to
better understand and model the characteristics of smaller sub-
events within broader riots, such as shooting or fires (Alsaedi,
Burnap, and Rana 2017). Mathematical modeling of riots
demonstrates an ability to accurately simulate many of the spa-
tial characteristics of riots, including the distance participants
will travel within contiguous riot areas (Davies et al. 2013). X
(formerly Twitter) text analysis demonstrates the ability to detect
and discriminate between disruptive events and normal infor-
mation dissemination (Alsaedi, Burnap, and Rana 2015). Social
media has been studied to demonstrate not only how informa-
tion is distributed about future and concurrent protests, but
also how individuals are recruited into protesting through the
spread of information in their social network (Gonzalez-Bailon
et al. 2011).

The accuracy and spatial specificity of alternative riot and pro-
test forecasting techniques vary. Previous research has shown
that leveraging information from social media (i.e., Tweets)
can result in the accurate prediction of riots in some cities (i.e.,
Baltimore and New York City), but these models require location-
specific information or hashtags which inhibit their use in other
settings (i.e., San Francisco) (Korolov et al. 2016). Related tweet-
based analyses have shown that accurate temporal estimates
across broad geographies are possible but without spatial spec-
ificity in where riots or protests are likely to occur (Gonzélez-
Baildn et al. 2011). Other researchers have used a broader range
of sources to achieve higher spatiotemporal accuracy, such as
police reports, but these techniques are inherently limited to
a small number of areas in which such information is avail-
able (Bonnasse-Gahot et al. 2018; Korolov et al. 2016; Alsaedi,
Burnap, and Rana 2017, 2015; Gonzalez-Bailon et al. 2011).

2.2 | Convolutional Modeling and
Satellite Imagery

In this study, we rely on convolutional neural networks, a type
of deep learning designed for analyzing image data. These
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techniques are effective at detecting, labeling, and differentiat-
ing objects (Krizhevsky, Sutskever, and Hinton 2017; Simonyan
and Zisserman 2014; Zhang, Zhang, and Du 2016; He et al. 2016;
Voulodimos et al. 2018; Gorban, Mirkes, and Tyukin 2020).
CNNs represent a family of deep learning techniques imple-
menting convolutional layers to extract features from an image
(Zhang, Zhang, and Du 2016). Many types of CNN architec-
tures perform well across a wide range of computer vision tasks
(Simonyan and Zisserman 2014; Voulodimos et al. 2018; Szegedy
et al. 2015; Bressem et al. 2020).

There is a long history of utilizing satellite imagery in research
that is based on visually observable characteristics, such as
habitat and land cover change (Alo and Pontius Jr 2008; Stow
et al. 2008; Rogan and Chen 2004), soil evaluation (Foody and
Mathur 2004), and urban land cover (Zhou and Troy 2008).
When satellite imagery is used in conjunction with deep learn-
ing techniques, including CNNs, researchers are able to learn
about topics not normally associated with traditional satellite
imagery uses, such as predicting crime (Najjar, Kaneko, and
Miyanaga 2018) or the prevalence of cancer (Bibault et al. 2020).
Other examples include estimating human migratory flows
(Runfola et al. 2022), estimating educational outcomes (Runfola,
Stefanidis, and Baier 2022), tracking economic growth in China
(Brewer, Lv, and Runfola 2023), predicting road quality (Brewer
et al. 2021), and estimating socioeconomic census variables
from satellite imagery (Runfola et al. 2024).

Inscenarios where data is challenging or impossible (i.e., historic
time periods) to collect, there is increasing evidence that satel-
lite imagery can aid in filling data gaps (Goodman, BenYishay,
and Runfola 2021; Jean et al. 2016; Bharti and Tatem 2018; Hu
et al. 2019; Aung et al. 2021). The capability of satellite infor-
mation becomes particularly important in the context of study-
ing riots and protests, given that the majority of literature we
identify focuses on news or social media sources (Purbrick 2019;
Ciorciari and Weiss 2016; Greer and McLaughlin 2010; Wu and
Gerber 2017; Becker, Naaman, and Gravano 2011; Korolov
et al. 2016; Renaud et al. 2019; Phillips et al. 2017; Cadena
et al. 2015; Filchenkov, Azarov, and Abramov 2014; Compton
et al. 2013; Alsaedi, Burnap, and Rana 2017). Our approach aims
to leverage the availability of satellite imagery as a data source,
increasing the application to predicting events when other tra-
ditional data sources are restricted. There are many countries
of research interest that do not allow free access to social media
or control the news narrative, such as Russia (Gehlbach 2010),
China (Tai 2014), Iran (Rahimi 2015), and Venezuela (Pain and
Korin 2021). Satellite imagery provides a unique capability to ac-
cess data in a country that might restrict access to social media
or control news sources, motivating us to use satellite imagery
to predict conflict.

3 | Data and Methods

The primary objective of this work is to predict if a riot or pro-
test will occur in a specific urban area, based solely on data
from satellite imagery. In order to accomplish this objective, we
leverage convolutional neural networks in combination with
two data sources, ACLED (Raleigh, Kishi, and Linke 2023) and
Planet (Planet Team 2023a). We use these data to generate two

different sets of information: the first set is satellite imagery of
locations where riots occurred, and the second is a set of images
of proximate areas (within the same city) that did not experience
a riot event. Our deep learning model then seeks to disambigu-
ate between these two cases, based on satellite imagery alone.
This section provides details of our data processing and analytic
approach.

3.1 | Data
3.1.1 | Selecting Riot Locations

Determining the locations where riots and protests have oc-
curred is the first step in developing a data set for this work.
To identify these locations, we leverage The Armed Conflict
Location Event Data Project (ACLED), an open-source database,
which contains information on a wide range of conflict types
from across the globe (Raleigh, Kishi, and Linke 2023). ACLED
contains more than 1.5 million events from 1997 to 2023, which
we aggregate, categorize, and curate to create a data source that
can specify time and location for conflict. We filter this database
according to a number of criteria:

1. Type of event. We focus our analysis on protests and riots,
which primarily represent urban unrest.

2. Date. We only leverage protest or riot events with a known
date of occurrence.

3. Geography. Only events with a neighborhood-level geo-
graphic footprint are selected.!

After filtering events, we are left with a resultant database of
53,307 events. In order to prevent overrepresentation of any sin-
gle unique location in the database, a maximum of 500 events
are randomly selected from each neighborhood (i.e., “Seoul—
Jongno”). After this stage, a total of 37,728 events across 1089
unique locations are leveraged to construct our dataset of the
location of conflict events.

3.1.2 | Satellite Data

Once we identify the location of riot events, we retrieve rele-
vant PlanetScope satellite imagery both (a) 24-48h prior to each
event, and (b) in similar, nearby geographic locations that did
not experience unrest. PlanetScope—an integrated collection
of images from the Dove, Dove-R, and SuperDove satellites—
provides four-band (RGB and NIR), approximately 3-4m spa-
tial resolution satellite imagery with a daily temporal resolution
(Planet Team 2023b; see Table 1). For both cases of imagery
(with and without riot), we consider images that contain <50%
cloud cover. An example of the imagery available can be seen in
Figure 1.

For each of the 37,728 instances of riots in our filtered ACLED
dataset, we first retrieve a full scene of imagery from 24 to 48h
prior to the event (Table 2). These scenes are guaranteed to en-[Ej
compass the latitude and longitude representing the centroid of
the neighborhood at which a conflict occurred; in cases where
multiple images were available for a given event, we chose the
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one closest in time to the event (with a minimum of 24 h prior
to the event). Ultimately, this process resulted in 19,902 satel-
lite scenes being downloaded, with an average spatial dimen-
sion that can vary depending on the generation of satellite 2 and
geographic latitude of collection. Because riots may occur at the
same location, but at multiple points in time, some locations
(i.e., a seat of government and culturally significant locations)
may appear in the database multiple times; the most common of
these occurrences are summarized in Table 3.

From the satellite scene retrieved for each conflict event, we ex-
tract two types of data. First, we extract a 1 km by 1 km box cen-
tered on the conflict event neighborhood. This box is saved and
identified as the location of the unrest in our database.

Second, we extract a number of cases to serve as null events—
that is, locations from the same urban area, but where no unrest
occurred. To generate these null cases, we follow a multiple step
process in which we:

1. Identify urban areas. We only consider areas in the scene
that have a population density over 300 inhabitants per
kilometer.

2. Exclude areas that are within 10km of the conflict event. We
isolate the conflict event by removing the urban areas that
are within 10 km of the centroid of the neighborhood in
which conflict occurred.

TABLE 1 | Technical wavelength specifications for RGB bands of
PlanetScope sensors (Planet Team 2023b).

Dove classic Dove-R SuperDove

Wavelength  Wavelength  Wavelength
Band (nm) (nm) (nm)
Red 590-670 650-682 650-680
Green 500-590 547-585 547-583
Blue 455-515 464-517 465-515

Neowiel

3. Sample. With the remaining urban areas in the satellite
scene, we generate a list of random centroids which are con-
strained to be a minimum of 2km apart, and select a maxi-
mum of 10 of these to generate 1km box “null” locations at
which no protest or conflict occurred. The 2km separation
ensures that none of our null boxes overlap.

In step 1, we overlay information about the degree of urban-
ization (Schiavina, Melchiorri, and Pesaresi 2023; European
Commission and Statistical Office of the European Union 2021)
onto each satellite scene to determine what portions are urban,
and which parts are not. This is accomplished by using the
DEGURB dataset (Schiavina, Melchiorri, and Pesaresi 2023),
which was developed by the European Commission's Joint
Research Centre. This data categorizes geographical areas into
Urban Centre, Urban Clusters (including towns and suburbs),
and Rural Grid Cells (including villages and dispersed rural)
zones based on population density and contiguity of dense areas
(European Commission and Statistical Office of the European
Union 2021). The DEGURB dataset used in this work is rep-
resentative of 2020 (see Figure 2; Schiavina, Melchiorri, and
Pesaresi 2023). This binary representation of urban areas is then
applied to each satellite scene as a mask, allowing us to select
null cases from proximate urban areas.

In step two, in order to ensure the areas selected for null cases
are distinct from the areas of unrest, we exclude all urban areas
up to 10km away from the centroid of the riot neighborhood
from consideration, as illustrated in Figure 3.

Third, after excluding the 10km region around each unrest
event, from the remaining urban regions in the satellite scene
we select random locations for null-riots. We accomplish this
by generating a list of random latitudes and longitudes that are
within the available regions. We ensure that each of these ran-
dom locations is at least 2km away from any other locations on
our random list. We then take a maximum of ten of these loca-
tions and construct a 1km box around each one. We construct
up to 10 null cases (that do not overlap) from the eligible urban
regions from each scene (noting that less dense urban areas
are occasionally represented by <10 null cases due to a lack of

FIGURE1 | Satelliteimage of Athens Greece, taken 31 January 2018. Imagery © Planet Labs PBC 2023. All rights reserved. Background map from

OpenStreetMap (OpenStreetMap Contributors 2024).
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TABLE 2 | PlanetScope constellation (Planet Team 2023b).

Instrument Image area Availability
Dove classic 25%11.5sq km July 2014 to
April 2022
Dove-R 25x23sq km March 2019 to
April 2022
SuperDove 32.5%19.6 sq km March 2020
to present

TABLE 3 | Neighborhood locations that occur most frequently.

proximate urban areas). A visualization of the results from this
process can be seen in Figure 3.

After this process is completed, for each conflict event we are
left with a set of one (1 km?) kilometer box representative of
where unrest occurred, and up to 10 (1 km?) km boxes repre-
sentative of urban areas proximate to the unrest event, but with
no known activity. Across our full dataset of 19,902 unrest loca-
tions, 18,634 (93.6%) had 10 null cases available; the distribution
of null cases across images can be seen in Figure 13. Our final

Country Neighborhood Count Earliest date Latest date

Pakistan Karachi—Saddar 278 7 October 2017 30 September 2022
Iran Tehran—District 6 270 9 October 2017 26 September 2022
Iran Tehran—District 12 268 9 October 2017 28 September 2022
Lebanon Beirut—Port 252 7 October 2017 26 September 2022
Greece Athens—Central Athens 247 18 January 2018 28 September 2022
South Korea Seoul—Jongno 240 18 January 2018 21 September 2022
South Korea Seoul—Jung 226 18 January 2018 26 September 2022
Italy Rome—City Center 222 7 January 2018 23 September 2022
India Delhi—New Delhi 220 2 October 2017 4 September 2022
South Korea Seoul—Seocho 220 8 January 2018 28 September 2022

Note: “Earliest” and “Latest” date refer to the earliest and latest date of a protest event for each neighborhood. For example, in the neighborhood of Seocho in Seoul, 220
independent protest or riot events occurred from 8 January 2018 to 28 September 2022. In our analysis, this would be represented by 220 individual satellite tiles, each

taken between 24 and 48 h before the actual event.

FIGURE 2 | A portion of the DEGURB data, highlighting areas of the world that are considered urban in our data set. DEGURB defines urban
regions as those with a density more than 300 inhabitants per km (European Commission and Statistical Office of the European Union 2021) Red

lines represent country-level boundaries (Runfola et al. 2020).

50f 19



dataset includes only locations that have the full complement
of null clips, for a total of 18,631 cases of unrest and 186,310
null cases. We then normalize all of these image clips based on
a sample of the full satellite scenes (Goodman, BenYishay, and
Runfola 2021; Lv et al. 2024; Runfola et al. 2022; Brewer, Lv, and
Runfola 2023). Tests of different permutations of this dataset
(i.e., models with a 1:1 ratio of null and riot cases) can be found
in Section 6.1 of the appendix.

3.2 | Methods

Our overall modeling architecture is summarized in Figure 4.
To estimate the likelihood of an unrest event occurring or not
at each location, we leverage a ResNet18 (He et al. 2016) as our
base model, but replace the fully connected layer with a series
of dense layers that include 128, 64, and 32 hidden nodes. In
order to improve the efficiency of our training, following other

FIGURE 3 | Satellite Image of Athens Greece, taken 31 January 2018. The red box in the center of the image is a 1km box around the riot
location. The green box is a 10km exclusionary area around the riot location, from which we do not draw “null” case contrasts. Areas which fall

outside the green box, that are also urban, are eligible for selection (displayed in purple). From the potential null region, we sample random, non-
overlapping 1km boxes to generate null location clips. Imagery © Planet Labs PBC 2023. All rights reserved. Background map from OpenStreetMap

(OpenStreetMap Contributors 2024).
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FIGURE4 | Asynopsisofouroverall modeling architecture. Stages include the collection of data, pre-processing, network training, categorization,
and explainability analysis. Imagery © Planet Labs PBC 2023. All rights reserved.

6 of 19

Transactions in GIS, 2024



Representative results from hyperparameter tuning efforts.

TABLE 4

Test accuracy

Freeze

FN TN Precision (%) Recall (%) F1 (%)

FP

Drop out (%) TP

layers

L2 decay

Learning rate

Model

62.2 31.5 41.8

34 122 1861

56

92.5

None None No

0.000001

49.2

50.5

48.0

1782

103 93

95

90.5

0.01 First 5 No

0.000015

63.3 47.0 54.0

55 107 1816

0.001 First 5 No 92.2 95

0.00001

Note: All training iterations were based on the same ResNet18 architecture, training with the same 1000 satellite images from the full dataset, for 40 epochs.

literature in the satellite imagery analysis space (Goodman,
BenYishay, and Runfola 2021; Lv et al. 2024; Brewer et al. 2021;
Runfola et al. 2022; Brewer, Lv, and Runfola 2023), we use pre-
trained weights from ImageNet as our initial baseline.

3.2.1 | Hyperparameter Search

Prior to training on all 18,631 events, we first randomly select
a subset of 1000 conflict events (1000 unrest cases and 10,000
null cases) to implement a grid search across hyper-parameters.?
To account for class imbalance, we implement a weighted cross
entropy loss (Ho and Wookey 2019) with an ADAM optimizer
(Kingma and Ba 2014) for our training procedure.

Our hyperparameter search includes trials of different learning
rates, L2 regularization, dropout, freezing layers (results and
parameters from a sample of the trials can be seen in the appen-
dix in Section 6.2). Results from a selection of three of the best
performing cases in the hyperparameter testing are shown in
Table 4. On the basis of these results, we select one model (de-
noted as Model C in Table 4) to test on the full dataset, which is
described in Table 5.

We assess our model by interpreting the overall accuracy, pre-
cision, and recall. The precision is the ratio of true positives to
the number of positive predictions our model made (Davis and
Goadrich 2006), which will measure our model's ability to cor-
rectly predict riots when it does makes a prediction. The recall is
the ratio of true positives to the number of riots in the data set,
which measures our model's ability to identify how frequently
riots are occurring (Davis and Goadrich 2006).

3.2.2 | Additional Analyses

In addition to identifying the best convolutional model perfor-
mance, we implement two additional analysis to better under-
stand the strengths and weaknesses of this approach. These
include (a) generating information on the country-level perfor-
mance of the model and (b) and explanatory model that seeks
to identify the features within a given image that are correlated
with conflict events (or the lack thereof).

To explore the spatial distribution of accuracy of the approach,
we first filter our data to only consider countries that had 500
or more observations (a minimum of 250 riot clips and 250 null
clips). This creates a validation set consisting of 32,548 clipped
images, distributed across 24 countries (see Table 6). From this,
we withhold 20% of each country’s observations for validation
after training. This ensures that each country has at least 100
observations (50 riot clips and 50 null clips) for validation. We
then select the hyperparameters from our best performing
model (model C, see Table 4), and train a ResNet18 using 80% of
the validation data (26,058 images, half riot or protest and half
null) for 50 epochs. We then use the withheld 20% of images
(6490 images, half riot or protest and half null) to test for accu-
racy within each country.

To begin to explore the underlying drivers of model perfor-
mance, we additionally take preliminary steps toward trying
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to assess what features the model may be identifying and using
in predictions. To implement this process, we leverage Score-
CAM (Wang et al. 2020). Score-CAM is a Class Activation
Mapping (CAM) method that attempts to explain, with a
human interpretable visual display, the features within an
image that determine classification. Score-CAM differs from
traditional CAM methods that utilize gradients and instead
use the forward pass scores of activation maps to determine
the significance for target classes (Wang et al. 2020). For the
purposes of this work, Wang et al. found that it outperforms
other techniques when there are multiple objects of relevance
in the scene (Wang et al. 2020), a nearly universal characteris-
tic of satellite imagery.

4 | Results

4.1 | Full Data Set

In this section, we report our findings from our analysis of
the full dataset (N=204,941 clipped images), using the best-
performing model from our hyper-parameter testing (model C,
as described in Table 4). The results of this model are presented
in Table 5.

As Table 5 shows, the approach outlined in this paper achieves
an overall accuracy of 97.39%—that is, of the 40,989 images in
the test dataset, 39,921 were correctly identified as the site of
ariot or not. There are 3646 riot or protest images in the test-
ing set and the model correctly identifies 2741 of these, result-
ing in a recall score of 75.18%. This demonstrates the model's

ability to distinguish riot/protest events from non-riot events.
The model predicts there will be a riot in 2904 of the images
and is only incorrect 163 times producing a precision score of
94.30%. In the context of our scenario, when the model pre-
dicts there will be a riot or protest in an image, it is correct
over 94% of the time.

4.2 | Balanced Validation Data Set

We validate the performance of our model with a data set that
withholds data from training and testing, and has a one-to-one
riot-to-null ratio. The results of this validation training are dis-
played in Table 7. The accuracy of the validation testing was[E
89.41%; 5803 of the 6490 images were correctly identified. This
validation testing has very similar false positive and false nega-
tive rates, resulting in precision, recall, and F1 scores that are
similar to the test accuracy. Of note, the re-trained model which
withheld data for each individual country had a slightly lower
global accuracy than our full results, of 89%. While this 89% ac-
curacy is lower than the accuracy from the full data set shown
in Table 5, the testing circumstances of the validation are more
challenging due to the even split between riot and null in the
validation data set.

In addition to the global accuracy, we also subset our data by
country and report accuracy within each based on a validation

TABLE7 | Resultsfrom validation testing; 6490 images are withheld
during training, half of which are from a riot and half from a non-riot.

Test accuracy 89.41%
TABLE 5 | Results from ResNet18 using the full data set. True positives (predict riot) 2903
Test accuracy 97.39% False positives 345
True positives (predict riot) 2741 False negatives (missed riot) 342
False positives 163 True negatives 2900
False negatives (missed riot) 905 Precision 89.38%
True negatives 37,180 Recall 89.46%
Precision 94.39% F1 score 89.42%
Recall 75.18% Note: These results do not have the class imbalance present in the full data set,
instead there is a single riot clipped image and a single non-riot clipped image
F1 score 33.69% for every full satellite image. The accuracy of the network approaches 90%, with
similar capabilities to distinguish among false positives and false negatives.
TABLE 6 | There are 32,548 clipped images in the validation data set.
Country Images Country Images Country Images Country Images
South Korea 7494 South Africa 1480 Ukraine 924 Greece 634
Pakistan 2622 Chile 1302 Thailand 890 Yemen 604
Iran 2334 Japan 1256 Italy 728 United Kingdom 566
Lebanon 1656 India 1148 Indonesia 678 Taiwan 562
Palestine 1572 Brazil 1112 Russia 668 Peru 522
China 1550 Bangladesh 1092 Venezuela 648 Iraq 506

Note: Half of these are from riots/protests, and half are null clips. Only countries that have at least 500 images are included. Twenty percent of each county's images

will be withheld from training and testing, and used in validation.
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TABLE 8 | Results from country level accuracy after validation testing.

Country Count Accuracy (%) TP FP TN FN
Lebanon 330 94.54 159 12 153 6
Iran 466 94.42 225 18 215 8
Pakistan 524 92.56 247 24 238 15
South Korea 1498 92.12 700 69 680 49
Ukraine 184 91.85 84 7 85 8
Chile 260 91.15 120 13 117 10
Iraq 100 91.00 45 4 46 5
China 310 90.00 140 16 139 15
Palestine 314 89.49 141 17 140 16
Venezuela 128 89.06 58 8 56 6
Bangladesh 218 88.99 90 5 104 19
India 228 88.60 97 9 105 17
Italy 144 88.19 62 7 65 10
Greece 126 87.30 62 15 48 1
Thailand 178 87.08 75 9 80 14
Indonesia 134 86.57 62 13 54 5
Japan 250 85.60 105 16 109 20
Brazil 222 85.14 94 16 95 17
United Kingdom 112 83.93 50 12 44 6
South Africa 296 82.43 114 18 130 34
Taiwan 112 82.14 45 9 47 11
Yemen 120 78.33 41 7 53 19
Russia 132 78.03 50 13 53 16
Peru 104 77.88 37 8 44 15

Note: These results are listed from highest accuracy to lowest accuracy. We have also included the number of True Positives (TP), False Positives (FP), True Negatives

(TN), and False Negatives (FN) for each country.

set (see Section 3.2.2 of our methods). The results of this country-
specific validation testing are shown in Table 8. Lebanon
(94.5%), Iran (94.4%), and Pakistan (92.6%) were the most accu-
rate in this analysis, while Yemen (78.3%), Russia (78.0%), and
Peru (77.9%) were the least accurate countries. No clear regional
patterns existed, though some evidence suggests that accuracy
and total number of observations may be correlated (i.e., less ac-
curate news media reporting in Russia may be attributable to
the lower accuracy in that context).

Of note, we observe a strong correlation between our softmax
classification scores and accuracy within each country around
the world, suggesting that softmax scores can be used as a proxy
for prediction confidence (see Figure 5). While softmax may
bias toward higher degrees of confidence (Pearce, Brintrup, and
Zhu 2021; Subramanya, Srinivas, and Babu 2017), as a relative
metric it may provide helpful guidance to policymakers seeking
to use these types of methods.

4.3 | Explainability of Results

For our best performing model (model C in the Table 5), we
implement Score-CAM on a subset of randomly selected,
paired locations, ultimately consisting of 1089 riot locations,
and 1089 null locations.* The Score-CAM results are then vi-
sually reviewed in an attempt to discern patterns in what the
trained ResNet prioritized in classification. Understanding
the results of utilizing Score-CAM on our data is inherently
difficult to interpret or understand, making this a rich area for
future work; we discuss this limitation further in Section 4.3
of the discussion.

While this analysis is inherently qualitative, visual interpreta-
tion indicates a few clear patterns. An example of the first of
these is displayed in Figure 6. We can observe a large sports
stadium in the image in the southeast region of Figure 6. This
large stadium is the location which Score-CAM identifies as
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the portion of the image which leads toward the classification
(indicated through brighter values in the displayed heatmap).
In this case, the sports stadium leads the ResNet to classify the
scene as a non-riot. We can see another example in Figure 7,
in which again, the ResNet identifies the sports stadium as
the reason to classify the scene as a non-riot. We do not offer
any explanation for why the sports stadiums are indicative of
anon-riot scene, but these stadiums provide an example of the
specific features which ResNet is learning to make classifica-
tion decisions.

Another example highlighted in the Score-CAM analysis is shown
in Figure 8. We can see a densely populated area, with a large open
park or green space in the center of the image. The trained network
correctly predicts this image is from a riot or protest. When we ref-
erence the ACLED data, this image is from a protest in the Lalbagh
neighborhood of Dhaka, Bangladesh. Lalbah is a fort built during
the Mughal period in 1678, which was used subsequently by the
British and Bangladesh governments as a location of governance
and influence (Shakur, Islam, and Masood 2010). Today, it is a lo-
cation containing monument's and statues symbolizing rulers and

regimes of the past, that is known as a common location for pro-
tests in the city of Dhaka (Begum 2018). While the deep learning
model was not aware of these historic contexts, the unusual land
use and associated image features were sufficient to classify this as
a likely location of riots.

5 | Discussion and Conclusions

The results presented in Table 5 provide evidence that satellite
information alone can provide useful information for the pur-
poses of predicting where, within an urban environment, protests
and riots are most likely to occur. While this finding is likely to
be of interest to those operating in data-sparse environments, it
is well supported by past social science literature highlighting
the interconnected nature of urban form and social processes
(Fox and Bell 2016; Begum 2018). By engaging in a global-scope
study, here we are able to exploit this correlation by learning what
these patterns are, and then leveraging them in estimation. This
finding held true across multiple model and data permutations
(see Tables 5 and 9), indicating that—even in some of the most
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FIGURES5 | The average softmax for each country when compared to the average accuracy of prediction of each country. Of note, the axis's do not

begin at 0, but instead focus in on the domain and range of the values in the data.

FIGURE 6 |

Example clipped image on the left. The clipped image, a 1 km box around a riot location. The Score-CAM overlayed on top of the

image is shown in the middle. The Score-CAM visual is displayed on the right. Imagery © Planet Labs PBC 2023. All rights reserved.
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FIGURE7 |

Example clipped image on the left. The clipped image, a 1 km box around a non-riot location. The Score-CAM overlayed on top of the

image is shown in the middle. The Score-CAM visual is displayed on the right. Imagery © Planet Labs PBC 2023. All rights reserved.

FIGURE 8

| The image on the left is centered on Lalbagh Fort in Dhaka Bangladesh, taken on 19 November 2021, <48h before a protest at that

location. The Score-Cam visual is displayed on the right. Imagery © Planet Labs PBC 2023. All rights reserved.

challenging situations (i.e., relatively small training and valida-
tion sets), model accuracy can approach or exceed 90%.

Furthermore, this technique performs well across the globe. As
highlighted in Table 7, there do not seem to be any regions that
under perform. Many countries with a relative low accuracy
score (i.e., Russia) are in close proximity to a country with a
higher accuracy score (i.e., China). This pattern holds across
the globe in South America, Asia, the Middle East, and Europe.

Of note, in our softmax analysis seeking to correlate scores to
accuracy, a single outlier, Russia, is observed in Figure 5 and
Table 7. Russia has a lower comparative accuracy to other coun-
tries with similar softmax results. This might be indicative of
Russia's control of news sources (Gehlbach 2010), or inherit in
ACLED's collection of data which relies on news sources and
non-governmental observation organizations that might not be
focused on Russia.

5.1 | Limitations

5.1.1 | Satellite Information

The satellite imagery we incorporate into this study has a num-
ber of notable limitations. First, while a satellite scene might
contain 50% or less cloud cover (see Figure 9), the clipped im-
ages might be completely covered in clouds (see, e.g., Figure 10).
Further, in some cases the conflict event selected may be at the
edge of a scene, with no valid scene available to fill in null in-
B formation, resulting in a partially clipped image (see Figure 11).

TABLE 9 | Results from ResNet18 using only a single riot clip and
single null riot clip per location.

Test accuracy 65.37%
True positives (predict riot) 154
False positives 105
False negatives (missed riot) 46
True negatives 131
Precision 59.46%
Recall 77.0%
F1 score 67.1%

Additionally, some of the clips contain interference or distor-
tion, such as the clip at the bottom of Figure 11.

Inter-related with these challenges, in many scenes, we were un-
able to identify enough geographic locations to support the cre-
ation of 10 null cases. For example, in Figure 12 we can see that
the riot location in consideration does not have any null location
possibilities due to the riot's proximity to the coast, and the con-
comitant lack of proximate urban areas eligible for building null
(no-protest) cases. There are similar limitations that cause the
distribution of clipped images in Figure 13.

Another limitation is in our definition of where conflict
events occurred, as the definition of a “neighborhood” is in-
herently imprecise. We used OpenStreetMap (OpenStreetMap
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Contributors 2024) to visually compare the size of our ten most
repeated locations 3. We were able to confirm that the sizes of
neighborhoods were inconsistent, but rarely of a size greater
than our 10km? exclusionary zone (see Figure 3).

5.1.2 | Explainability

Currently, the majority of explainability techniques in the lit-
erature focus on datasets consisting of object-centric images.
For example, two common data sets CIFAR-10 and CIFAR-100
(Krizhevsky and Hinton 2009) are used in many computer vision
tasks and competitions, but those data sets only have objects cen-
tered in the middle of the picture, taking up most of the image
space. This differs significantly from our satellite imagery. Our
images contain all of the spatial information within a square

kilometer of a city. As opposed to an image of a cat or dog, our im-
ages have multiple buildings, cars, streets, parks, etc. So while cur-
rent explainability techniques can highlight portions of our image
that lead to classification which are easily human interpretable, it
is challenging for us to determine what in the image is being high-
lighted. The example we discuss in Section 4.3, highlights sports
stadiums in Score-CAM outputs as easily identified visually in the
satellite image. There are other patterns that emerge in our Score-
CAM analysis; however it is very difficult to describe many of the
features Score-CAM identifies with easily identifiable semantic
definitions. While we were able to identify a few other patterns,
such as transitions from one zone to another zone (residential to
commercial as an example), we are not confident in interpreting
what these different types of zones are at this time. The field of
explainability, as it relates to satellite images, has very little pub-
lished in literature and remains a strong avenue for future inquiry.

FIGURE 9 | Satellite image of Brazil collected on 1 November 2018. This image contains <50% cloud cover for the full satellite scene. The riot
location indicated in the red square has minimal cloud cover, but other locations in the scene will be impacted by the cloud cover as seen in Figure 10.

Imagery © Planet Labs PBC 2023. All rights reserved. Background map from OpenStreetMap (OpenStreetMap Contributors 2024).

-

FIGURE 10 | Clips from a satellite image of Brazil collected on 1 November 2018. While the full image contains <50% cloud cover, many of the

clips are partially or completely obscured. Imagery © Planet Labs PBC 2023. All rights reserved.

12 0f 19

Transactions in GIS, 2024



5.1.3 | Additional Limitations in images over time could help us overcome this challenge, but

will necessitate new modeling strategies beyond those presented
There are a number of additional limitations of the presented in this piece. Second, we have selected a ResNet18 as our base
work. First, our data is focuses on spatial information, not tem- model, which could limit our model performance if alternative
poral, and thus we do not generate predictions of when a riot architectures are better performing. Another limitation of the
will occur, only the likely urban locations. Leveraging changes presented work is in the limited scope of network architectures

FIGURE 11 | Nine of the null riot clipped images from Athens, Greece. Imagery © Planet Labs PBC 2023. All rights reserved.

FIGURE 12 | Satellite image from Yemen collected on 14 September 2020. The urban areas are shown in red. Most of this image is not usable
because of the lack of urban areas. Imagery © Planet Labs PBC 2023. All rights reserved. Background map from OpenStreetMap (OpenStreetMap
Contributors 2024).
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tested. Here, we focus explicitly on ResNet18, with anecdotal
testing of ResNet50 as a part of initial model exploration. Future
research in this area could benefit from testing a range of dif-
ferent CNN architectures (i.e., VGG, Xception, or ResNeXt) to
determine their relative efficacy in feature detection.

Third, the ACLED database used to construct our imagery data
set is drawn primarily from news sources (ACLED 2023). These
come with some inherent challenges and limitations. If riots and
protests are occurring in regions that traditional news sources
are not reporting about, the events are not likely to populate the
ACLED database. Further, the nature of civil unrest is some-
times difficult to delineate with clear definitions, and different
news organizations may cover a protest in conflicting ways—for
example, a protest that is met with armed government resistance
(ACLED 2023). These challenges are not likely to be overcome

Histogram of Null Clip Existence
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FIGURE 13 | Distribution of null clips from the full 19,902 images

downloaded. Instances where <10 clips were taken are primarily due
to the amount of urban area available in the satellite image. There were
three additional locations that were eventually able to provide 10 null
clips, but not included before the dataset was finalized with 18,631
locations at training time.

in the near term, but are notable as they may impact the results
presented in this study.

5.2 | Conclusions

In this work, we construct a data set consisting of 204,941 satellite
images of riots and protests across the world. After subseting the
images into two classes of riots and non-riots, we train a ResNet18
to identify which images are from locations associated with a riot.
When fine-tuned, our model achieves an accuracy of over 97%,
suggesting that satellite imagery has information of relevance
and value to estimating the location of riot events. This was true
across a wide range of different tests and permutations of the data.
We further provide some initial exploration into the explainabil-
ity of this model, leveraging ScoreCAM to identify features the
model is leveraging in the classification task. This research has
suggested a number of future directions, which may be valuable
to the research community. First, given the promise of spatially
predicting where conflict is likely to occur, research into the tem-
poral domain using satellite data may be of value. Second, we
note the relative lack of explainablity techniques applied to sat-
ellite imagery, and the importance of additional future research
into that domain. Third, we anticipate future efforts can explore
implementing this technique on full satellite images to localize
protest and riot predictions. Finally, we note that future work that
explores new model architectures, or integrating multiple data
sources for conflict information, could provide high value.

6 | Appendix

6.1 | Deduplication Tests

In this section, we present a test that controls for both class imbal- |
ance and geographic bias in our data. Our methodology leverages

alarge set of training data, specifically relying on an arbitrary 10:1

TABLE 10 | All of the models in this table were tested with 100 random locations (100 riot clips and 1000 null clips).
Metric Al A2 B1 B2 C1 C2
Test accuracy (%) 91.59 91.12 90.65 93.93 93.46 86.45
True positives 0 0 0 0 0 0
False positives 0 0 4 0 0 0
False negatives 18 19 16 13 14 29
True negatives 196 195 194 201 200 185
Precision (%) 0.00 0.00 0.00 0.00 0.00 0.00
Recall (%) 0.00 0.00 0.00 0.00 0.00 0.00
F1 score (%) 0.00 0.00 0.00 0.00 0.00 0.00
Learning rate le—06 1le—06 1le—06 1e—-06 le—06 1le—06
Freeze layers 0 0 5 5 10 10
Drop out pair (0, 0) (0.1, 0.05) (0, 0) (0.1, 0.05) (0, 0) (0.1, 0.05)
L2 weight decay 0 0 0 0 0 0

Note: In this table, all models used a learning rate of 1e—06. Models froze either none of the ResNet layers (A1, A2), the first 5 layers (B1, B2), or the first 10 layers (C1,
C2). Between the first two and the second two layers, none of the connections were dropped (A1, B1, C1), or 10% and 5% were dropped (A2, B2, C2).
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TABLE 11 | All of the models in this table were tested with 100 random locations (100 riot clips and 1000 null clips).
Metric D1 D2 El E2 F1 F2
Test accuracy (%) 88.78 86.92 91.12 91.59 88.32 88.78
True positives 5 1 7 5 0 0
False positives 7 13 4 6 0 0
False negatives 17 15 15 12 25 24
True negatives 185 185 188 191 189 190
Precision (%) 41.67 7.14 63.64 45.45 0.00 0.00
Recall (%) 22.73 6.25 31.82 29.41 0.00 0.00
F1 score (%) 29.41 6.67 42.42 35.71 0.00 0.00
Learning rate le—05 le—-05 le-05 le—-05 le—05 le-05
Freeze layers 0 0 5 5 10 10
Drop out pair 0,0) (0.1, 0.05) (0,0) (0.1, 0.05) 0,0) (0.1, 0.05)
L2 weight decay 0 0 0 0 0 0

Note: In this table, all models used a learning rate of 1e—05. Models froze either none of the ResNet layers (D1, D2), the first 5 layers (E1, E2), or the first 10 layers
(F1, F2). Between the first two and the second two layers, none of the connections were dropped (D1, E1, F1), or 10% and 5% were dropped (D2, E2, F2).

TABLE 12
and dropout pair settings.

| Model performance metrics for configurations 1 to 6 with learning rate of 1e—05, with variations in L2 weight decay, freeze layer,

Metric Config1 Config 2 Config 3 Config 4 Config 5 Config 6
Test accuracy (%) 91.80 91.80 91.27 90.69 92.52 91.85
True positives 62 39 43 77 25 78
False positives 54 11 41 65 7 62
False negatives 116 159 140 128 148 107
True negatives 1841 1864 1849 1803 1893 1826
Precision 0.5345 0.7800 0.5119 0.5423 0.7812 0.5571
Recall 0.3483 0.1970 0.2350 0.3756 0.1445 0.4216
F1 score 0.4218 0.3145 0.3221 0.4438 0.2439 0.4800
Learning rate 1le-05

L2 weight decay 0.1 0.01

Freeze layer 0 0 0 5 5 5
Dropout pair (0, 0) (0.1,0.05) (0.5,0.1) (0,0) (0.1,0.05) (0.5,0.1)

ratio of 10 null cases (no conflict event) to 1 positive case (a loca-
tion where a conflict occurred). Furthermore, some geographic
locations are in the database multiple times—that is, there may
have been multiple protests at the same geographic location, even
if they are on different dates (see Table 3). This results in both class
imbalance (10 null cases for every 1 positive case), and geographic
biases from where we draw our events. The class imbalance will
potentially inflate accuracy scores, given a 10 to 1 ratio of null clips
to riot clips—that is, an untrained model could simply predict null
for all images, and achieve an accuracy of 90.9%. Additionally,
with repeated locations, the model will see the riot clip locations
multiple times (i.e., even when each satellite scene has unique spa-
tial information as it is drawn from a different date, the 1-km box
centered on the latitude and longitude of the neighborhood will be

the same). This might allow our network to learn the specifics of
a location, and over-fit to particular locations, instead of learning
what features in urban areas predict riots and protests. Therefore
we construct a limited data set to control for these issues.

To test if these attributes of our data result in bias, we construct a
new dataset that limits the data to a single riot image (1089 1-km
boxes) and a single non-riot image (1089 1-km boxes) per location.
This means that our model is only able to analyze a riot location
a single time during training, regardless of how frequently riots
might happen at that location. This should be a much harder train-
ing task for the model, with far less data available (2178 images in
total; these 2178 images represent roughly 1% of the data available
for training in the full data set of 204,941 images). Under these
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TABLE 13
to 0.001, including variations in freeze layer and dropout pair settings.

| Model performance metrics for configurations 7 to 12 with learning rate of 1e—05, transitioning from L2 weight decay settings of 0.01

Metric Config 7 Config 8 Config 9 Config 10 Config 11 Config 12
Test accuracy (%) 91.51 89.77 92.91 92.33 90.16 92.76
True positives 85 86 54 86 92 80
False positives 64 106 34 32 101 49
False negatives 112 106 113 127 103 101
True negatives 1812 1775 1872 1828 1777 1843
Precision 0.5705 0.4479 0.6136 0.7288 0.4767 0.6202
Recall 0.4315 0.4479 0.3234 0.4038 0.4718 0.4420
F1 score 0.4913 0.4479 0.4235 0.5196 0.4742 0.5161
Learning rate le-05

L2 weight decay 0.01 0.001

Freeze layer 0 0 0 5 5 5
Dropout pair (0, 0) (0.1, 0.05) (0.5,0.1) (0, 0) (0.1, 0.05) (0.5,0.1)

constraints, the maximum classification accuracy we observed
was 67.37% 9. Of note, the recall scores for our full data set and
limited data set were very similar (75.18% and 77.0%, respectively),
despite the different size and scope of the training data.

These results suggest that—even under extremely challenging,
small-N circumstances—deep learning models can still identify
meaningful features that are correlated with protest and riot
events from satellite imagery.

6.2 | All Results

While we focus on our best performing models throughout
this piece, there were a number of additional permutations and
tests we perform while identifying the best modeling strategies,
which we present here. We begin a grid search across select hy-
perparameters, using a small test set of 100 random samples
from our full data set. Initially we are concerned with narrowing
down the selection of the best performing learning rates, freez-
ing layers of the ResNet, and dropping out connections between
our fully connected layers. The results of a sample of these are
shown in Tables 10 and 11.

After the initial grid search, we increase the size of data set to
1000 locations (1000 riot clips, and 10,000 null clips) (Table 12).
We also refine the hyperparameter grid search space. Our best
performing model referred to as Model C in Table 4, is Config 10
in Table 13. Config 10 has the highest F1 score across these grid
search results, reflecting the best balance between Precision and
Recall. Due to this strong performance, these parameters are
used to train with the full dataset.
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Endnotes

! For example, some riots are known to have occurred in Beriut, while
others occurred within neighborhoods in Beriut. There are 12 neigh-
borhoods listed within some of the ALCED entries for Beriut (Ras
Beirut, Port, Mazraa, Achrafieh, Mousseitbeh, Saifi, Minet El Hosn,
Rmeil, Bachoura, Medawar, Ain Mreisseh, and Zokak El Blat). These
neighborhood specific entries have neighborhood specific latitudes
and longitudes, and we use these neighborhood specific events to con-
struct our data set.

2Training was performed using pyTorch on 8 RTX 6000 NVIDIA GPUs.
On average, models trained using the hyperparameter dataset took
approximately 6.5h to complete 40 epochs; our full model across all
images took 321h for 100 epochs.

31t is important to note that our data set is constructed in a manner
that would result in relatively high test accuracy. We have one riot
and ten null riot clips per satellite scene. This means that if our
model predicted no riot for every clipped image, the model would
be correct 90.9% of the time. Even given imbalance in the data set,
our trained model achieves better results, accurately predicting riots
and null riots over 97% of the time. Further explorations of the value
of the model in the context of imbalance are described in Section 6.1
of the appendix.

4Data were randomly selected from data used to train the model in
appendix Section 6.1.
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