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Abstract

We study the ranking of individuals, teams, or objects, based on pairwise comparisons
between them, using the Bradley-Terry model. Estimates of rankings within this model
are commonly made using a simple iterative algorithm first introduced by Zermelo almost
a century ago. Here we describe an alternative and similarly simple iteration that provably
returns identical results but does so much faster—over a hundred times faster in some
cases. We demonstrate this algorithm with applications to a range of example data sets
and derive a number of results regarding its convergence.

1. Introduction

The problem of ranking a set of individuals, teams, or objects on the basis of a set of pairwise
comparisons between them arises in many contexts, including competitions in sports, chess,
and other games, paired comparison studies of consumer choice, and observational studies
of dominance behaviors in animals and humans (Zermelo, 1929; Bradley and Terry, 1952;
Davidson and Farquhar, 1976; David, 1988; Cattelan, 2012). If a group of chess players play
games against one another, for example, how can we rank the players, from best to worst,
based on the outcome of those games? The outcomes may be contradictory or ambiguous—
underdogs sometimes win and strong players sometimes lose—so we adopt a probabilistic
model. In the most common version we assign a numerical score si to each individual i and
the probability pij of i beating j is assumed to be some function of the difference in their
scores pij = f(si − sj). The most popular choice of functional form is the logistic function
f(s) = 1/(1 + e−s), which gives

pij =
esi

esi + esj
. (1)

This is the Bradley-Terry model, first introduced by Zermelo (1929) and heavily studied
in the years since, particularly following its rediscovery by Bradley and Terry (1952). For
convenience, one often introduces the shorthand πi = esi so that pij can also be written as

pij =
πi

πi + πj
, (2)

and we will do that here. Zermelo (writing in German) referred to the non-negative param-
eters πi as Spielstärken or “playing strengths,” although they are elsewhere variously called
worth parameters, skill parameters, merit parameters, ratings, or simply weights. Following
Zermelo, we will call them strengths.

Given the outcomes of a series of pairwise competitions between N competitors the
strengths can be estimated straightforwardly. Commonly one makes a maximum-likelihood
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estimate. Defining wij to be the total number of times i beats j, or zero if i and j never
competed, it can be shown that the maximum-likelihood values of the strengths are given
by a simple procedure: starting from any convenient initial values we iterate the equation

π′

i =

∑N
j=1

wij
∑N

j=1
(wij + wji)/(πi + πj)

(3)

until convergence is reached. This algorithm was also first described by Zermelo (1929) and
we will refer to it as Zermelo’s algorithm. An extraordinary number of papers have been
written about it, its variants, its properties, and its applications.

Although widely used, however, Zermelo’s algorithm is known to be slow to converge
(Dykstra, 1956; Hunter, 2004). In this paper we study the alternate iteration

π′

i =

∑N
j=1

wijπj/(πi + πj)
∑N

j=1
wji/(πi + πj)

. (4)

We show that iteration of this equation solves the same problem and converges to the same
solution as Zermelo’s algorithm but does so significantly faster—over a hundred times faster
in some cases. Given that Eq. (4) is also simple to implement we know of no reason not to
favor it over Eq. (3).

In recent years a number of other authors have also considered alternative and poten-
tially more efficient algorithms for ranking under the Bradley-Terry model. One promis-
ing approach employs spectral methods that estimate rankings based on the properties of
random walks on the network of directed interactions between individuals (Maystre and
Grossglauser, 2015; Negahban et al., 2017; Agarwal et al., 2018). Although they do not di-
rectly maximize likelihood under the Bradley-Terry model, these algorithms can be shown
to converge closely to the maximum-likelihood solution. Some versions are quite numeri-
cally efficient, though they can also be complex to implement. Minorization-maximization
(MM) algorithms, which optimize a minorizing proxy for the likelihood function, can also
be applied to ranking problems. For the Bradley-Terry model the appropriate MM algo-
rithm turns out to be exactly equivalent to Zermelo’s algorithm and hence offers no speed
improvement (Hunter, 2004), but techniques have been suggested for accelerating conver-
gence (Vojnovic et al., 2019) and the MM formulation also provides an elegant route to
developing algorithms for generalizations of the model. Perhaps more directly competitive
with our approach is one of the simplest of methods: one can fit the Bradley-Terry model
using Newton’s method applied to the derivative of the likelihood. For small applications
with only a few individuals or teams to be ranked this is typically the fastest approach,
although for such small cases the difference may be moot. As the number N of individuals
gets larger, however, Newton’s method becomes impractical because the time taken per iter-
ation of the algorithm scales as N3, which quickly becomes prohibitive (Hunter, 2004). For
Eq. (4) the time per iteration scales only as the number of pairwise competitions, making
this approach faster for larger applications. Maximum-likelihood methods are not the only
approach for fitting: one can also adopt Bayesian approaches, although these usually require
Monte Carlo estimation and hence are not competitive in terms of speed (Davidson and
Solomon, 1973; Caron and Doucet, 2012). Overall, the particular combination of simplicity
and speed offered by Eq. (4) makes it an attractive approach for practical applications.
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The rest of this paper is organized as follows. In Section 2 we describe and derive
Zermelo’s original ranking algorithm and the new algorithm proposed here. In Section 3 we
prove that the new algorithm converges to the same unique maximum-likelihood solution as
Zermelo’s algorithm. In Section 4 we briefly discuss a larger family of ranking algorithms of
which Zermelo’s algorithm and our own are special cases. Within this family, the algorithm
of this paper is the fastest to converge and hence it is our primary focus. In Sections 5 and 6
we describe two extensions of our approach, one to maximum a priori (MAP) estimation
of rankings and the other to a (previously proposed) generalization of the Bradley-Terry
model that allows for ties or draws in competitions. In Section 7 we apply our algorithms
to a broad selection of example data, both real and synthetic, finding in every case that the
algorithm of this paper is faster than Zermelo’s, often by a wide margin. In Section 8 we
give our conclusions. Some additional technical results are presented in appendices.

2. Iterative algorithms and the Bradley-Terry model

Consider a tournament where N players or teams play games of some kind against one
another in pairs. We will initially assume that no ties or draws are allowed, so there is a
clear winner and loser of every game. The case where ties are allowed is treated separately
in Section 6. We assume that the probability pij that player i beats player j obeys Eq. (1)
and we consider the strengths πi to be a measure of the skill of the players, higher values
indicating better players.

Note that the win probabilities pij are invariant under multiplication of all the πi by
any constant. One can remove this ambiguity by imposing any convenient normalization
condition. Here we fix the geometric mean strength to be 1, which is equivalent to setting
∏

i πi = 1. This choice has the nice effect that the probability p1 of a player with strength π
beating the average player with strength 1 is p1 = π/(π+1) and hence π = p1/(1−p1). Thus
the strength parameter has a simple interpretation: it is the odds of beating the average
player.

2.1 Zermelo’s algorithm

Suppose the tournament consists of a total of M games between pairs of players and let
wij be the number of times that player i beats player j. Using these data we can make
a maximum-likelihood estimate of the strengths πi as follows. The likelihood of the ob-
served games given the strengths (represented by a matrix W = [wij ] and vector π = [πi]
respectively) is

P (W |π) =
∏

ij

p
wij

ij =
∏

ij

(

πi
πi + πj

)wij

, (5)

so that the log-likelihood is

logP (W |π) =
∑

ij

wij log
πi

πi + πj
=

∑

ij

wij log πi −
∑

ij

wij log(πi + πj). (6)

Differentiating with respect to πi for any i and setting the result to zero we get

1

πi

∑

j

wij −
∑

j

wij + wji

πi + πj
= 0, (7)
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which can be rearranged to read

πi =

∑

j wij
∑

j(wij + wji)/(πi + πj)
. (8)

In general this equation has no closed-form solution but it can be solved numerically by
simple iteration: one picks a suitable set of non-negative starting values for the πi—random
values are often used—and then computes new values π′

i according to

π′

i =

∑

j wij
∑

j(wij + wji)/(πi + πj)
. (9)

Iterating this process, it can be proved subject to certain conditions that we converge to the
global maximum of the likelihood and hence obtain an estimate of the strengths πi (Zermelo,
1929; Ford, 1957; Hunter, 2004). The values can then be sorted in order to give a ranking
of the players, or simply used in their raw form as a kind of rating. The iteration can be
performed synchronously (all πi updated at the same time) or asynchronously (πi updated
one by one in cyclic fashion), but it is generally believed that asynchronous updating is
more efficient, since the update of any individual πi benefits from the improved estimates
of previously updated ones. In this paper we use asynchronous updates. Our convergence
results in Sections 3 and 4 are also for the asynchronous case.

This iterative algorithm, first described by Zermelo (1929), is the standard method for
calculating rankings within the Bradley-Terry model and has seen numerous applications
over the years in a wide variety of contexts.

2.2 An alternative algorithm

In a sense, computing maximum-likelihood estimates for the Bradley-Terry model is a
straightforward problem. As discussed in Section 3, the likelihood is concave and many
standard convex optimization methods can be applied. Speed, however, is of the essence
in practical applications of the model, so considerable effort has been exerted in recent
years to find solution methods faster than Zermelo’s algorithm (Maystre and Grossglauser,
2015; Negahban et al., 2017; Agarwal et al., 2018; Vojnovic et al., 2019). Some of these are
quite complex, but here we propose a very simple approach that also turns out to be highly
efficient.

Grouping the terms slightly differently, Eq. (7) can be rewritten as

1

πi

∑

j

wij

πj
πi + πj

−
∑

j

wji

πi + πj
= 0, (10)

which can be rearranged as

πi =

∑

j wijπj/(πi + πj)
∑

j wji/(πi + πj)
. (11)

This suggests a different iterative algorithm for the Bradley-Terry model. Again we choose
suitable starting values (for instance at random), then we iterate the form

π′

i =

∑

j wijπj/(πi + πj)
∑

j wji/(πi + πj)
(12)

4



to convergence. In Section 3 we prove that, like Zermelo’s algorithm, this process converges
to the global maximum of the likelihood.

One nice feature of this algorithm is that it is transparent from Eq. (12) that πi = 0 for
any individual who loses all their games and πi = ∞ for any individual who wins all their
games. Furthermore, the iteration converges to these values in a single step. The same
values are also returned by the standard Zermelo algorithm, but it is less obvious from
Eq. (9) that this is true—it is some work to demonstrate the result for the player who wins
every game and moreover it takes the Zermelo algorithm an infinite number of iterations
to reach the correct value instead of just one iteration. This is a special case of the more
general finding, which we explore in this paper, that (12) converges faster than Zermelo’s
algorithm.

3. Convergence

In this section we prove that the iteration of Eq. (12) converges to the global maximum of
the likelihood, Eq. (5), from any starting point, whenever a maximum exists.

Zermelo proved that the likelihood has only one stationary point for πi ≥ 0, correspond-
ing to the global maximum, provided the πi are normalized as discussed in Section 2 and
the directed network of interactions (the network with adjacency matrix wij) is strongly
connected, i.e., there is a directed path through the network from every individual to every
other (Zermelo, 1929; Ford, 1957). If the network is not strongly connected then there are
no stationary points and there is no maximum of the likelihood, and hence our problem has
no solution. For the moment we will assume, as other authors have done, that the network
is strongly connected and hence that there is a maximum of the likelihood, although we
show how to relax this requirement in Section 5.

Since any fixed point of the iteration of Eq. (12) corresponds to a stationary point
of the likelihood, and since the iteration generates non-negative values of πi only (given
non-negative initial values), it follows that if the iteration converges to a fixed point that
point must be the global maximum. To prove that it converges to a fixed point it suffices
to demonstrate that the value of the log-likelihood always increases upon application of
Eq. (12) unless a fixed point has been reached, since the log-likelihood cannot increase
without bound, being bounded above by the maximum.

We consider the asynchronous version of the iteration of Eq. (12) in which a single πi is
updated at each step, all others πj remaining the same. The πi are updated in order until
all N have been updated. Consider the step on which a particular πi is updated. We define
a function f(πi) equal to the sum of the terms in the log-likelihood, Eq. (6), that depend
on πi:

f(πi) =
∑

j

wij log
πi

πi + πj
−

∑

j

wji log(πi + πj). (13)

Noting that log x ≤ x−1 for all real x > 0 and making the substitution x → x/y, we derive
the useful inequality

log x ≤ log y +
x

y
− 1 (14)
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for all x, y > 0, or equivalently

log y ≥ log x− x

y
+ 1, (15)

with the exact equality holding if and only if x = y. This implies for any πi and π′

i that

log
π′

i

π′

i + πj
≥ log

πi
πi + πj

− πi/(πi + πj)

π′

i/(π
′

i + πj)
+ 1 = log

πi
πi + πj

+
(π′

i − πi)/π
′

i

(πi + πj)/πj
, (16)

and (14) implies that

log(π′

i + πj) ≤ log(πi + πj) +
π′

i + πj
πi + πj

− 1 = log(πi + πj) +
π′

i − πi
πi + πj

. (17)

Evaluating Eq. (13) at the point π′

i defined by Eq. (12) and applying these two inequalities,
we find that

f(π′

i) =
∑

j

wij log
π′

i

π′

i + πj
−
∑

j

wji log(π
′

i + πj)

≥
∑

j

wij log
πi

πi + πj
+

π′

i − πi
π′

i

∑

j

wij

πj
πi + πj

−
∑

j

wji log(πi + πj)− (π′

i − πi)
∑

j

wji

πi + πj

=
∑

j

wij log
πi

πi + πj
−
∑

j

wji log(πi + πj)

+ (π′

i − πi)

[

1

π′

i

∑

j

wij

πj
πi + πj

−
∑

j

wji

πi + πj

]

= f(πi), (18)

where we have used Eq. (13) again, the term inside the square brackets vanishes because
of (12), and the exact equality applies if and only if π′

i = πi.

Thus f(πi) always increases upon application of Eq. (12) and hence so also does the
log-likelihood, unless π′

i = πi, in which case the log-likelihood remains the same but could
still increase when one of the other πi is updated. Only if π′

i = πi for all i does the log-
likelihood not increase at all, but if this occurs then by definition we have reached a fixed
point of the iteration, and hence we have reached the global maximum. This now guarantees
convergence of the iterative algorithm of Eq. (12) to the global likelihood maximum.

4. Other iterative algorithms

Given the existence of two different iterations, Eqs. (9) and (12), that both converge to
the same maximum-likelihood estimate, one might wonder whether there exist any others.
In fact, it turns out there is an entire one-parameter family of iterations that includes (9)
and (12) as special cases, and all of them converge to the same solution. Of these iterations,
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Eq. (12) converges most rapidly and hence is our primary focus in this paper, but for the
interested reader we discuss the full family briefly in this section.

For any α we can rewrite Eq. (10) in the form

1

πi

∑

j

wij

απi + πj
πi + πj

−
∑

j

αwij + wji

πi + πj
= 0, (19)

which we can solve by iterating

π′

i =

∑

j wij(απi + πj)/(πi + πj)
∑

j(αwij + wji)/(πi + πj)
(20)

until convergence is achieved. When α = 1 this procedure is equivalent to Zermelo’s al-
gorithm, Eq. (9). When α = 0 it is equivalent to the algorithm presented in this paper,
Eq. (12). For negative α the iteration does not generate positive values of πi in general
and hence is invalid, but for zero or positive α it gives a whole range of algorithms, all of
which converge to the same maximum-likelihood solution as Zermelo’s algorithm. When
0 ≤ α ≤ 1, convergence can be proved using a straightforward generalization of the method
of Section 3 as follows.

Since the log-likelihood has only a single stationary point corresponding to the global
maximum, and since any fixed point of (20) is a solution of (19) and hence corresponds
to a stationary point of the log-likelihood, it follows that if (20) converges to a fixed point
at all it must converge to the global likelihood maximum. To show that it converges to a
fixed point it suffices, as previously, to show that the log-likelihood always increases upon
application of (20) unless a fixed point has been reached. To do this we rewrite Eq. (13)
for the terms in the log-likelihood that depend on πi as

f(πi) = α
∑

j

wij log πi + (1− α)
∑

j

wij log
πi

πi + πj
−
∑

j

(αwij + wji) log(πi + πj). (21)

For any πi, π
′

i the inequality (15) implies that

log π′

i ≥ log πi −
πi
π′

i

+ 1 = log πi +
π′

i − πi
π′

i

, (22)

with the exact equality applying if and only if π′

i = πi. Evaluating Eq. (21) at the point π′

i

given by Eq. (20) and applying this inequality along with (16) and (17), we find for 0 ≤ α ≤ 1
that

f(π′

i) = α
∑

j

wij log π
′

i + (1− α)
∑

j

wij log
π′

i

π′

i + πj
−
∑

j

(αwij + wji) log(π
′

i + πj)

≥ α
∑

j

wij

[

log πi +
π′

i − πi
π′

i

]

+ (1− α)
∑

j

wij

[

log
πi

πi + πj
+

(π′

i − πi)/π
′

i

(πi + πj)/πj

]

−
∑

j

(αwij + wji)

[

log(πi + πj) +
π′

i − πi
πi + πj

]

= f(πi) + (π′

i − πi)

[

1

π′

i

∑

j

wij

απi + πj
πi + πj

−
∑

j

αwij + wji

πi + πj

]

= f(πi), (23)
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where we have employed Eq. (21) again, the term in square brackets in the penultimate line
vanishes because of Eq. (20), and the exact equality applies if and only if π′

i = πi. Thus
f(πi) always increases upon application of (20) unless π′

i = πi.

The rest of the proof follows the same lines as in Section 3 and hence convergence to the
global likelihood maximum is established. As a corollary, this also provides an alternative
proof of the convergence of Zermelo’s algorithm (the case α = 1) which is significantly
simpler than the original proof given by Zermelo (1929) or the later proof by Ford (1957).

The method of proof used here does not extend to the case of α > 1, because 1 − α
becomes negative and the inequality in (23) no longer follows from (16). It is still possible
to prove convergence for α > 1 but the proof is more involved. See Appendix A for details.

Numerical measurements, some of which are presented in Section 7, indicate that con-
vergence of the algorithms of this section becomes monotonically slower with increasing α,
so that the main algorithm presented in this paper, Eq. (12), which corresponds to the
smallest allowed value of α = 0, is the fastest, and it is on this case that we concentrate in
the remainder of the paper. Some formal results on rates of convergence as a function of α
are presented in Appendix B.

5. Prior on the strength parameters

Equation (12) provides a complete algorithm for fitting the Bradley-Terry model. In prac-
tice, however, pure maximum-likelihood fits such as this can be problematic for this model.
In particular, as mentioned in Section 3, a likelihood maximum exists only if the network of
interactions is strongly connected. If this condition is not met then the score parameters si
will diverge and the algorithm of Eq. (12)—and indeed all maximum-likelihood methods for
this model—will fail.

The root cause of this problem is that the maximum-likelihood fit effectively assumes a
uniform (improper) prior on the si, which places all but a vanishing fraction of its weight on
arbitrarily large values and, when coupled with a network that is not strongly connected,
causes divergences. An effective solution is to impose a better-behaved prior on si and then
compute a maximum a posteriori (MAP) estimate of the scores instead of a maximum-
likelihood estimate (MLE). A range of priors have been proposed for this purpose (Davidson
and Solomon, 1973; Caron and Doucet, 2012; Whelan, 2017) but arguably the most natural
is a logistic prior. Recall from Section 2 that the probability p1 of a player with strength π
winning against the average player is p1 = π/(π + 1). In the absence of any evidence to
the contrary, we assume this probability to be uniformly distributed between zero and one
so that P (p1) = 1, a least informative or maximum-entropy prior. Then the prior on the
scores s = log π is

P (s) = P (p1)
dp1
ds

=
dp1
dπ

dπ

ds
=

π

(π + 1)2
=

1

(es + 1)(e−s + 1)
, (24)
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which is the logistic distribution. Combining this result with Eq. (5) we then get a posterior
probability on the scores that is given, up to a multiplicative constant, by

P (s|W ) ∝
∏

ij

(

esi

esi + esj

)wij
∏

i

1

(esi + 1)(e−si + 1)

=
∏

ij

(

πi
πi + πj

)wij
∏

i

πi
(πi + 1)2

. (25)

Maximizing this posterior probability instead of the likelihood regularizes the values of the
scores, preventing them from diverging. It also removes the invariance under multiplication
of the πi by a constant and hence eliminates the need to normalize them.

The iterative algorithm of Eq. (12) can be generalized straightforwardly to this MAP
estimate. As observed by Whelan (2017), the prior for individual i can be thought of as

πi
(1 + πi)2

=
πi

πi + 1
× 1

πi + 1
, (26)

which is precisely the probability that i plays two games against the average player (who
has π = 1) and wins one of them and loses the other. Thus Eq. (25) can be thought of as the
likelihood of a Bradley-Terry model in which we have added two fictitious games for each
player, one won and one lost, and we can maximize this likelihood (and hence the posterior
of Eq. (25)) using the same algorithm as before, merely adding these extra fictitious games
to the data. This also means that our proof of convergence generalizes to the MAP case
and that the network of interactions is now strongly connected, so the probability maximum
always exists.

Alternatively, and perhaps more conveniently, we can derive an explicit algorithm for
the MAP case by differentiating Eq. (25) with respect to πi for any i, which leads to the
iteration

π′

i =
1/(πi + 1) +

∑

j wijπj/(πi + πj)

1/(πi + 1) +
∑

j wji/(πi + πj)
. (27)

This is the generalization of Eq. (12) to the MAP case. It is completely equivalent to adding
the fictitious games and has the same guaranteed convergence. One can also add the same
prior to the traditional Zermelo algorithm of Eq. (9), which gives

π′

i =
1 +

∑

j wij

2/(πi + 1) +
∑

j(wij + wji)/(πi + πj)
. (28)

In Section 7 we present the results of numerical experiments on the rate of convergence
both of these MAP estimators and of the MLEs, using Eqs. (9), (12), (27), and (28).

6. Ties

Ties or draws can occur in certain types of competition, such as chess and soccer. There
are a number of ways to generalize ranking calculations to include ties. The simplest is
just to consider a tied game to be half of a win for each of the players. This approach
is used for instance in the Elo chess rating system and can be trivially incorporated into
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our calculations by modifying the values wij . A more sophisticated approach, however,
incorporates the probability of a tie into the model itself. There is more than one way to
do this (Rao and Kupper, 1967; Davidson, 1970). Here we employ the modification of the
Bradley-Terry model proposed by Davidson (1970). One again defines strengths πi for each
player and the probabilities of a win pij and a tie qij between players i and j are

pij =
πi

πi + πj + 2ν
√
πiπj

, qij =
2ν

√
πiπj

πi + πj + 2ν
√
πiπj

, (29)

where ν > 0 is a parameter which controls the overall frequency of ties and which we will
estimate by maximum likelihood along with the strengths. Note that when πi = πj we have
qij = ν/(1 + ν) and hence ν = qij/(1 − qij), so ν can be interpreted as the odds of a tie
between evenly matched players.

The form (29) satisfies the obvious requirements that pij+pji+qij = 1 and qij = qji, and
also has the intuitive property that the probability of a tie is greatest when the players are
evenly matched and vanishes as πi and πj become arbitrarily far apart. As with the standard
Bradley-Terry model, the probabilities pij and qij are invariant under multiplication of all πi
by a constant, and again we remove this ambiguity by normalizing them so that

∏

i πi = 1.

Davidson (1970) proposed an iterative algorithm for computing maximum-likelihood
estimates of the strengths and the parameter ν within this model. Defining wij as before
to be the number of times i beats j and tij = tji to be the number of ties, we can write the
likelihood of a set of observations W = [wij ], T = [tij ] as

P (W,T |π, ν) =
∏

ij

p
wij

ij

∏

i<j

q
tij
ij

=
∏

ij

(

πi
πi + πj + 2ν

√
πiπj

)wij
∏

i<j

(

2ν
√
πiπj

πi + πj + 2ν
√
πiπj

)tij

, (30)

and the corresponding log-likelihood is

logP (W,T |π, ν) =
∑

ij

(

wij +
1

2
tij

)

log πi +
1

2
log 2ν

∑

ij

tij

−
∑

ij

(

wij +
1

2
tij

)

log
(

πi + πj + 2ν
√
πiπj

)

. (31)

The combination wij +
1

2
tij comes up repeatedly in the analysis so, following Davidson, we

define the convenient shorthand aij = wij +
1

2
tij and

logP (W,T |π, ν) =
∑

ij

aij log πi +
1

2
log 2ν

∑

ij

tij −
∑

ij

aij log
(

πi + πj + 2ν
√
πiπj

)

. (32)

Differentiating with respect to πi and setting the result to zero gives

1

πi

∑

j

aij =
∑

j

(

aij + aji
) 1 + ν

√

πj/πi

πi + πj + 2ν
√
πiπj

. (33)
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This equation has no general closed-form solution for πi but Davidson proposed solving it
by the obvious iteration

π′

i =

∑

j aij

∑

j

(

aij + aji
)

(

1 + ν
√
πj/πi

πi + πj + 2ν
√
πiπj

) . (34)

We can also calculate a maximum-likelihood estimate of the parameter ν by differentiat-
ing (32) with respect to ν to get

1

2ν

∑

ij

tij =
∑

ij

aij
2
√
πiπj

πi + πj + 2ν
√
πiπj

, (35)

which is again solved by iteration:

ν ′ =
1

2

∑

ij tij

∑

ij aij

(

2
√
πiπj

πi + πj + 2ν
√
πiπj

) . (36)

Davidson used asynchronous updates in which one applies Eq. (34) to each πi in turn, then
applies (36) once to update ν, then repeats until convergence is achieved. This is a natural
generalization of Zermelo’s algorithm, Eq. (9), to situations where ties are allowed, and it
includes Zermelo’s algorithm as the special case when ν = 0 and tij = 0. Davidson proved
that the procedure always converges to the global likelihood maximum (when the maximum
exists), but once again convergence can be slow in practice. Here we propose an alternative
algorithm which generalizes Eq. (12) and is substantially faster.

Equation (33) can be rearranged in the form

1

πi

∑

j

aij
πj + ν

√
πiπj

πi + πj + 2ν
√
πiπj

=
∑

j

aji
1 + ν

√

πj/πi

πi + πj + 2ν
√
πiπj

, (37)

which can be solved by iterating the equation

π′

i =

∑

j aij

(

πj + ν
√
πiπj

πi + πj + 2ν
√
πiπj

)

∑

j aji

(

1 + ν
√
πj/πi

πi + πj + 2ν
√
πiπj

) . (38)

Similarly, writing aij = wij +
1

2
tij , Eq. (35) can be rearranged in the form

1

2ν

∑

ij

tij
πi + πj

πi + πj + 2ν
√
πiπj

=
∑

ij

wij

2
√
πiπj

πi + πj + 2ν
√
πiπj

, (39)

which can be solved by iterating

ν ′ =

1

2

∑

ij tij

(

πi + πj
πi + πj + 2ν

√
πiπj

)

∑

ij wij

(

2
√
πiπj

πi + πj + 2ν
√
πiπj

) . (40)
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Equations (38) and (40) are the appropriate generalization of (12) to the case with ties
and they include (12) as the special case when ν = 0 and tij = 0. Again we recommend
applying the equations asynchronously: one cycle of the algorithm involves updating each πi
in turn using Eq. (38) then applying Eq. (40) once to update ν, and repeating until con-
vergence is achieved. As we show in Section 7, this procedure converges significantly faster
than Davidson’s algorithm.

The proof that Eqs. (38) and (40) do in fact converge to the likelihood maximum follows
similar lines to that for the case without ties but the algebra is tedious so we omit it here.
The interested reader can find it in Appendix C.

7. Results

The iterations (12) and (27) (for the case without ties) and (38) and (40) (with ties) converge
significantly faster in typical applications than the traditional algorithm of Zermelo or its
extension for the case where ties are allowed. In this section we illustrate the convergence
rates with a selection of example applications to both real and synthetic data.

7.1 Computer-generated data

As our first example, we apply our algorithms to a collection of random computer-generated
data sets. In these calculations we generated synthetic test data with N = 1000 players and
M = 50 000 games, for an average of 100 games per player. The players for each game are
chosen uniformly at random (with replacement) and the winners of the games are chosen
using the Bradley-Terry model itself: scores si for each player are drawn from a logistic
distribution P (s) = 1/[(es + 1)(e−s + 1)] and then the winner of each game is chosen at
random according to the probability pij of Eq. (1). In cases where the resulting network
of interactions is not strongly connected, games are discarded and redrawn until a strongly
connected network is achieved, to ensure that a likelihood maximum does exist as discussed
in Section 3.

Figure 1a shows the results of applying both Zermelo’s algorithm and the algorithm of
this paper to one such synthetic network. Initial values of πi were chosen randomly such
that si is drawn from the logistic distribution 1/[(es + 1)(e−s + 1)]. (Other methods of
choosing the initial values have been proposed and may improve performance in some cases
(Dykstra, 1956), but we avoid these here to separate effects of the different algorithms from
effects of the initial values.) Figure 1a shows how the log-likelihood, Eq. (6), converges to
its final value on successive iterations of each algorithm. As we can see, the algorithm of this
paper (top curve, solid points) comes close to the final value of the log-likelihood after only
two iterations, while Zermelo’s algorithm (bottom curve, open points) takes significantly
longer. The other curves in the figure (gray points) show values for various algorithms in the
family defined in Section 4, parametrized by the quantity α as in Eq. (20), and it appears
that convergence becomes monotonically slower with increasing α, as mentioned previously
in Section 4.

Arguably, however, Fig. 1a fails to truly show how much faster the algorithm of this
paper is. Figure 1b gives an alternative view. In this plot we show the root-mean-square
(RMS) difference (averaged over all players) between the current estimate of the probability
p1 = πi/(πi+1) of beating the average player and the final converged value. We choose this

12
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Figure 1: Convergence of the iterative algorithms studied here. (a) The log-likelihood,
Eq. (6), for a synthetic network of 1000 players and 50 000 games. The plot
shows the value on successive iterations for the algorithm of this paper, Zermelo’s
algorithm, and a selection of algorithms from the family defined in Section 4.
(b) The root-mean-square (RMS) deviation from the final maximum-likelihood
solution for the same synthetic data set. (c) The log-likelihood for the dominance
hierarchy of vervet monkeys described in Section 7.2. (d) The RMS deviation for
the same dominance hierarchy data set.

quantity because the probability of beating the average player is typically more uniformly
distributed than the πi themselves and hence the average over players is better behaved,
minimizing effects of fluctuations and dependency on outliers. As the figure shows this
quantity converges enormously faster for our algorithm than for Zermelo’s algorithm, being
already more than a thousand times better than the value for Zermelo’s algorithm after less
than ten iterations. Indeed there is a significant gulf in the speed of convergence between
our algorithm and all of the others shown in the figure: for all the nonzero values of α
convergence is much slower than it is for α = 0.

To make these comparisons more quantitative, we have conducted extensive further tests
using synthetic data of the type described here. In these tests we first iterate Eq. (12) until
it converges to high precision, effectively solving for the maximum-likelihood solution at
or close to the limits of numerical accuracy. Then, using either the Zermelo algorithm or
our new algorithm, we measure the number of iterations needed to converge to this final
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solution within a prescribed level of accuracy. Specifically we require that the probability
πi/(πi + 1) of beating the average player converge to within 10−6 from its final value for
all i. This criterion is more stringent—and arguably more realistic—than criteria based on
convergence of the value of the log-likelihood (Vojnovic et al., 2019).

For tests of the algorithm of Section 5 for MAP estimates with a logistic prior the
same procedure was used to generate data and we compare the convergence of the new
algorithm of Eq. (27) against the generalized Zermelo algorithm of Eq. (28). For the case
with ties the procedure was similar, but wins, losses, and ties were generated according to
the probabilities pij and qij of Eq. (29) with ν = 1

2
and we compare the convergence rate

of Eqs. (38) and (40) against Eqs. (34) and (36) with an initial value of ν = 1 in all cases.
All tests were averaged over 100 randomly generated data sets and the results are re-

ported in Table 1. As these results show, the algorithm of this paper is much faster than
Zermelo’s algorithm. For the standard maximum likelihood estimate (the most common
application) the difference is spectacular: the new algorithm is over a hundred times faster.
Where Zermelo’s algorithm takes an average of more than 1200 iterations to converge, the
new algorithm takes just 12. For the MAP estimates the difference in running time is
less extreme but still large—the new algorithm is over eight times faster than Zermelo’s
algorithm—while for the case with ties the new algorithm is an impressive 42 times faster.

7.2 Real-world data

In this section we present example applications to several real-world data sets and show
that our algorithm also offers significant speed improvements in these settings. The data
sets we study are as follows.

Wolves: A typical animal dominance hierarchy data set describing observations of subor-
dinate behaviors among members of a family of 15 captive wolves in Arnhem, Netherlands
as reported by van Hooff and Wensing (1987).

Vervet monkeys: A larger dominance hierarchy data set describing observations of ag-
onistic interactions of various kinds among 63 wild vervet monkeys in the Samara Private
Game Reserve in South Africa, as reported by Vilette et al. (2020). The original data set
had 66 monkeys, but three were removed in order to ensure that the network of interactions
was strongly connected, as discussed in Section 3.

American football: As an example of an application to sports competition, this data set
describes professional American football games played in the US National Football League
during a single season. Unlike association football, American football proceeds by a series
of discrete plays in which the team currently in possession of the ball attempts to advance
it up the field. This data set consists of individual plays in all games between the 32 teams
in the league during the 2016 regular season, as compiled by Yurko et al. (2019). Only
passing plays, running plays, punts, sacks, and field goals were used in the analysis. Other
plays such as kickoffs and conversions were excluded. The team in possession of the ball is
considered to have won a play if either (a) they score points on the play or (b) they advance
the ball and retain possession; otherwise the other team wins the play.

Political figures: The results of an online paired comparison survey conducted by the
Washington Post newspaper in 2010, in which readers were presented with pairs of promi-
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Iterations to reach convergence
Data N M Zermelo This paper Speed-up

W
it
h
ou

t
ti
es

M
L
E

Synthetic 1000 50 000 1270± 470 12± 2 ×104
Wolves 15 10 382 2410± 10 145± 1 ×17
Vervet monkeys 63 11 621 232± 8 19± 1 ×12
American football 32 35 741 49± 3 15± 1 ×3.4
Political figures 67 76 632 54± 3 8± 5 ×7.1
Photographs 9097 247 531 911± 4 22± 0 ×41

W
it
h
ou

t
ti
es

M
A
P Synthetic 1000 50 000 1560± 40 185± 18 ×8.5

Wolves 15 10 382 49 200± 1700 2200± 110 ×22
American football 32 35 741 19 200± 1500 6000± 600 ×3.3
Photographs 9097 247 531 1186± 3 82± 10 ×14

W
it
h
ti
es Synthetic 1000 50 000 1130± 760 27± 8 ×42

Soccer 177 898 1650± 16 421± 5 ×3.9
School students 2155 8970 2770± 10 613± 1 ×4.5
Chess 14 852 623 727 1750± 90 162± 9 ×11

Table 1: The number of iterations required for the algorithms discussed in this paper to
converge in applications to real and synthetic (computer-generated) data. Results
are averaged over 100 runs and rounded to three figures. N is the number of
individuals or teams being ranked, M is the total number of interactions among
all individuals, and the figures following “±” are standard deviations about the
mean, giving an indication of the amount of variation in the results. “Speed-up” is
the average factor by which the method of this paper improves upon the traditional
Zermelo algorithm, or its generalizations for the MAP case and the case where ties
are allowed.

nent political figures and asked to judge which had had the worse week in politics. The
data were made available on the survey platform allourideas.org.

Photographs: Results from the IMDB-Wiki-SbS study of Pavlichenko and Ustalov (2021),
a paired comparison study that asked participants to judge people’s age from photographs.
Participants were presented with 247 531 pairs of faces drawn from a pool of 9097 photo-
graphs and asked to judge which of the people depicted was older. In principle, a ranking
of the results should then be able to order the people from (apparent) oldest to youngest.
A small number of images were excluded from the data set for our calculations to ensure a
strongly connected network.

Soccer: Wins, losses, and draws in 898 men’s international association football matches
between 177 different countries during the year 2011. Data from Mart Jürisoo at kag-
gle.com/martj42. The original network of matches was not strongly connected, so the data
analyzed here represent only the largest strongly connected component of the network.

School students: These data describe declared friendships among 2155 students in a
large US high school and its feeder middle school, from the National Longitudinal Study
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of Adolescent Health (the “Add Health” study, Udry et al. 1997). If student i states that
they are friends with student j but j does not reciprocate (something that occurs often in
these data) we consider it a win for j; if i and j both state they are friends we consider it a
tie. Although in principle friendships are not competitive, there is evidence that friendship
patterns among school students do describe a clear hierarchy because students tend to
claim friendship with others who have higher social status than themselves (Hallinan and
Kubitschek, 1988). Thus ranking calculations applied to data like these can be used to
infer social status (Ball and Newman, 2013). Treating a reciprocated friendship as a tie
is arguably more correct than treating it as two separate wins: reciprocated friendships
clearly violate the assumption of independence in the Bradley-Terry model without ties,
since the two wins never go in the same direction, but there is no equivalent violation for
the model with ties. The same approach could also be applied to other social networks that
show similar reciprocity properties. The network of friendships for this data set was not
strongly connected, so the data analyzed here represent only the largest strongly connected
component of the network.

Chess: Wins, losses, and draws in chess matches between 14 852 expert players on the
online chess server lichess.com during the month of July 2016. For a match to be included,
both players must have had Elo ratings of 2000 or higher at the time of the match. A small
number of players were removed to ensure the network of matches was strongly connected.
The data are from lichess.com via kaggle.com/arevel. With over 600 000 matches, this is
the largest data set considered here.

Figures 1c and 1d show an example of the convergence of the log-likelihood and RMS
error during a single run using the vervet monkey data. The behavior is similar to that
for the synthetic data in Figs. 1a and 1b: the log-likelihood converges most rapidly for
the algorithm of this paper and significantly more slowly for Zermelo’s algorithm. Other
algorithms from the family defined in Section 4 fall between the two, and convergence
appears to become monotonically slower as the parameter α of Eq. (20) increases. The
RMS error shown in Fig. 1d once again shows very rapid convergence for the algorithm of
this paper. All the other algorithms are substantially slower by this measure.

Complete results on time to convergence for the various data sets are presented in
Table 1. The methodology for these calculations was the same as for the synthetic data:
the parameters were first converged to high precision, then the results used to estimate the
time to convergence in a second run of the calculation. Each calculation was replicated 100
times with random initial conditions in which the si were drawn from a logistic distribution
as previously.

The overall picture for these runs is again similar to that for the synthetic data. In all
cases the method of this paper outpaces the traditional Zermelo algorithm. For instance, for
maximum-likelihood estimates in cases without ties the new algorithm is 17 times faster on
the smallest example, the dominance hierarchy of wolves, while on the largest example, the
photographs, it is a remarkable 41 times faster. The smallest difference is for the American
football data set, for which the new algorithm is 3.4 times faster than Zermelo’s algorithm.
For MAP estimates the numbers are similar: the new algorithm is a factor of 22, 14, and
3.3 times faster respectively on these three data sets.
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As with the synthetic data, the speed difference on the tests with ties is less dramatic
though still substantial, with the new algorithm being about 4 to 11 times faster. Conver-
gence was also somewhat slower overall for both algorithms in the case with ties, although
this may have more to do with the fact that these data sets are sparser (which tends to
slow convergence) than with the presence of ties. Notice that convergence of our algorithm
is very fast for the synthetic data with ties, which is relatively dense.

These effects can make a substantial difference to running times in practice. For the
dominance hierarchy of wolves, for instance, a single run of Zermelo’s algorithm (imple-
mented in the Python programming language on an up-to-date but otherwise unremarkable
personal computer circa 2022) converges to the maximum-likelihood solution in a running
time of about 1 minute. The algorithm of this paper, by contrast, takes 3 seconds. For
the more demanding photograph data set, Zermelo’s algorithm takes over 8 minutes; the
method of this paper takes just 11 seconds. For larger applications still, such as to web
data or online social networks, the difference could become very significant.

All the results of this section are numerical. Ideally we would like to be able to prove for-
mally that the algorithms presented in this paper converge faster than Zermelo’s algorithm.
At present we do not have such a proof but we can show certain results. As demonstrated
in Appendix B, we can prove that within the one-parameter family of algorithms defined
in Section 4, all those for α > 1 converge slower than Zermelo’s algorithm (the case α = 1),
which means these are not normally of interest. We can also prove that convergence be-
comes monotonically faster with decreasing α down to some point α < 1, meaning that
there provably exist algorithms that are faster than Zermelo’s algorithm. In general, how-
ever, the proof does not extend to α = 0 (the algorithm of this paper), so for the moment
the finding that convergence is fastest for α = 0 is a numerical one only.

8. Conclusions

We have presented an alternative to the classic algorithm of Zermelo for computing rankings
from pairwise comparisons using fits to the Bradley-Terry model, with or without ties
allowed. Like Zermelo’s algorithm, the method presented is a simple iterative scheme. We
have proved that the iteration always converges to the global maximum of the likelihood
and given numerical evidence that it does so faster—typically many times faster—than
Zermelo’s algorithm. Given that it is also simple to implement we know of no reason not
to favor the algorithm presented here over Zermelo’s algorithm.
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Appendix A: Proof of convergence for α > 1

As discussed in Section 4, Zermelo’s algorithm and the algorithm of this paper are both
special cases of a larger one-parameter family of algorithms given by the iteration of

π′

i =

∑

j wij(απi + πj)/(πi + πj)
∑

j(αwij + wji)/(πi + πj)
(41)

for any α ≥ 0. For 0 ≤ α ≤ 1 the convergence of this iteration to the likelihood maximum
can be proved straightforwardly as described in Section 4. For α > 1 the same method of
proof does not work because 1 − α becomes negative and the inequality in (23) no longer
follows from (16). It is still possible to prove convergence but the method of proof is
somewhat different, as we now describe.

From (15) we have for any x, y, c > 0

log(x+ c) ≥ log(y + c)− y + c

x+ c
+ 1 = log(y + c) +

x− y

x+ c

= log(y + c) +
x− y

x
− (x− y)/x

(y + c)/c
+

c(x− y)2

x(x+ c)(y + c)

≥ log(y + c) +
x− y

x
− (x− y)/x

(y + c)/c
, (42)

which is equivalent to

log x− log y − x− y

x
≥ log

x

x+ c
− log

y

y + c
− (x− y)/x

(y + c)/c
, (43)

with the exact equality applying if and only if x = y. Noting that the left-hand side of this
inequality is always positive by (15), for any α > 1 we then have

log x− log y − x− y

x
≥ α− 1

α

[

log
x

x+ c
− log

y

y + c
− (x− y)/x

(y + c)/c

]

, (44)

which can be rearranged to read

α log x+ (1− α) log
x

x+ c
≥ α

[

log y +
x− y

x

]

+ (1− α)

[

log
y

y + c
+

(x− y)/x

(y + c)/c

]

. (45)

Now setting x = π′

i, y = πi, and c = πj , multiplying by the positive quantities wij , and
summing, we have

α
∑

j

wij log π
′

i + (1− α)
∑

j

wij log
π′

i

π′

i + πj
≥ α

∑

j

wij

[

log πi +
π′

i − πi
π′

i

]

+ (1− α)
∑

j

wij

[

log
πi

πi + πj
+

(π′

i − πi)/π
′

i

(πi + πj)/πj

]

,

(46)

where the exact equality applies if and only if π′

i = πi. In combination with (17), this is
now sufficient to establish the inequality in (23) once again, and hence convergence of the
algorithm for α > 1 is assured.
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Appendix B: Rate of convergence

The numerical results of Section 7 show markedly faster convergence for the algorithms of
this paper than for the standard Zermelo algorithm. As discussed at the end of Section 7,
we do not at present have a proof that convergence is faster, but it is possible to prove
that some algorithms within the family defined in Section 4 converge faster than Zermelo’s
algorithm.

As observed in Fig. 1, the iterative algorithms of this paper show exponential conver-
gence, which is expected—in general all iterations of the form x′ = f(x) converge expo-
nentially, if they converge at all, except in certain special cases that do not apply here.
For the family of algorithms in Section 4 the rate of convergence for any given value of
the parameter α can be quantified by the factor λi(α) by which the distance between the
current estimate of πi and the final maximum-likelihood estimate (MLE) π̂i decreases when
πi is updated, as πi approaches π̂i. Thus

λi(α) = lim
π→π̂

π′

i − π̂i
πi − π̂i

=

(

∂π′

i

∂πi

)

π̂

, (47)

where the subscript π̂ indicates that the derivative is evaluated at the MLE. For instance,
for Zermelo’s algorithm (the case α = 1), applying Eq. (3) we have

λi(1) =

∑

j wij

∑

j(wij + wji)/(π̂i + π̂j)
2

[
∑

i(wij + wji)/(π̂i + π̂j)
]2

=
1

∑

j wij

∑

j

(wij + wji)

(

π̂i
π̂i + π̂j

)2

, (48)

where we have employed (3) again to simplify the expression and made use of the fact that
π′

i = πi = π̂i at the MLE. Assuming once again that the network of interactions represented
by wij is strongly connected, the wij are strictly positive for all i, j. As shown by Ford
(1957), this implies that the π̂i are strictly positive and finite, which means in turn that the
value of λi(1) is strictly positive. For other α, however, the value of λi(α) can be negative
(meaning that convergence to the MLE is oscillatory). This observation will be important
in a moment.

The factor by which the RMS error of Fig. 1 decreases over a complete round of updates
depends asymptotically on the slowest decaying πi and is given by

λmax(α) = max
i

|λi(α)|, (49)

where we take the absolute value to allow for the possibility of negative λi. An algorithm
with given α asymptotically converges faster than Zermelo’s algorithm if λmax(α) < λmax(1).
Here we demonstrate that this is the case for at least some values of α.

We consider how the value λi(α) changes with α and compute the derivative

∂λi

∂α
=

∂

∂α

(

∂π′

i

∂πi

)

π̂

=

(

∂2π′

i

∂πi∂α

)

π̂

. (50)
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From Eq. (20) we have

∂π′

i

∂α
=

[

∑

j

αwij + wji

πi + πj

∑

j

wij

πi
πi + πj

−
∑

j

wij

απi + πj
πi + πj

∑

j

wij

πi + πj

]

/

[

∑

j

αwij + wji

πi + πj

]2

=

∑

j wij/(πi + πj)
∑

j(αwij + wji)/(πi + πj)
(πi − π′

i), (51)

where we have used (20) again in the second line. Differentiating with respect to πi, set-
ting πi = π̂i for all i, and noting again that π′

i = πi at the MLE, we find that

∂λi

∂α
=

(

∂2π′

i

∂πi∂α

)

π̂

=

∑

j wij/(π̂i + π̂j)
∑

j(αwij + wji)/(π̂i + π̂j)

[

1− λi(α)
]

, (52)

where we have used Eq. (47).
The fact that the iteration of Eq. (20) converges to the MLE for all α ≥ 0 implies that

λi(α) must be strictly less than 1 for all i and hence (52) is strictly positive, since wij and
π̂i are strictly positive. At the same time it is also finite, and hence λi(α) is increasing in α
and continuous for all α ≥ 0.

This now establishes some useful results. First, it implies that λi(α) > λi(1) for all i
when α > 1 (and also that λi(α) is positive in this regime). Thus, if the largest value of
λi(1) occurs for i = µ, then

λmax(α) ≥ λµ(α) > λµ(1) = λmax(1). (53)

Hence all algorithms with α > 1 converge slower than Zermelo’s algorithm. For this reason
these algorithms are not normally of practical interest.

Second, we also have λi(α) < λi(1) for all i when 0 ≤ α < 1. Unfortunately, this is
not sufficient to establish that λmax(α) < λmax(1) in this regime (and hence that these
algorithms converge faster than Zermelo’s algorithm) because, as mentioned above, it is not
guaranteed that λi(α) is positive. The value of λi(α) for α < 1 can—and in practice often
does—become negative. This means that |λi(α)| could be larger than λi(1) and indeed it
is straightforward to find cases where this occurs.

On the other hand, we can prove that there exist some algorithms that are faster than
Zermelo’s. Given that λi(α) is continuous and increasing in α, its value must diminish
smoothly and monotonically from α = 1 all the way down to α = 0. Thus, given that
λi(1) is strictly positive, one of two things must happen: either λi(α) never reaches the line
λi(α) = −λi(1), in which case |λi(0)| < λi(1), or it does reach this line, in which case there
exists some ci < 1 such that λi(ci) = −λi(1). In this case, by continuity, |λi(α)| < λi(1) in
the non-vanishing interval ci < α < 1.

Now we repeat the same argument for all i and define c = maxi ci, or c = 0 if |λi(0)| <
λi(1) for all i, and then for all i we have |λi(α)| < λi(1) in the non-vanishing interval
c < α < 1. Now choose any α in this interval and suppose the largest value of |λi(α)| occurs
for i = ν. Then at this α we have

λmax(α) = |λν(α)| < λν(1) ≤ λmax(1). (54)

Hence all algorithms with c < α < 1 converge faster than Zermelo’s algorithm. Algorithms
with 0 ≤ α ≤ c may also converge faster than Zermelo’s algorithm—and the numerical
evidence suggests that they do—but this cannot be proved using the present approach.
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Appendix C: Proof of convergence for the model with ties

For the case where ties are allowed, the proof that iteration of Eqs. (38) and (40) converges
to the maximum of the log-likelihood (32) follows similar lines to that for the case without
ties. Davidson (1970) proved that the likelihood has only a single stationary point with
respect to its parameters, corresponding to the global likelihood maximum, provided the πi
are normalized and the network of interactions is strongly connected (with a tie counting
as an edge in both directions between the relevant pair of players). Since any fixed point
of Eqs. (38) and (40) corresponds to a stationary point of the likelihood, this implies that
if our iteration converges to a fixed point at all then that point is the global maximum. To
prove that we converge to a fixed point it suffices to show that the log-likelihood always
increases upon application of either Eq. (38) or Eq. (40), unless a fixed point has been
reached.

The terms in the log-likelihood of Eq. (32) that depend on πi can be written in the form

f(πi) =
∑

j

aij log
πi

πi + πj + 2ν
√
πiπj

−
∑

j

aji log
(

πi + πj + 2ν
√
πiπj

)

, (55)

where aij = wij +
1

2
tij as previously. Applying the inequalities (14) and (15), we have for

any πi and π′

i

log
π′

i

π′

i + πj + 2ν
√

π′

iπj
≥ log

πi
πi + πj + 2ν

√
πiπj

−
πi/(πi + πj + 2ν

√
πiπj)

π′

i/(π
′

i + πj + 2ν
√

π′

iπj)
+ 1

= log
πi

πi + πj + 2ν
√
πiπj

+

(

√

π′

i −
√
πi

√

π′

i

)

2ν
√
πiπj

πi + πj + 2ν
√
πiπj

+

(

π′

i − πi
π′

i

)

πj
πi + πj + 2ν

√
πiπj

(56)

and

log
(

π′

i + πj + 2ν
√

π′

iπj
)

≤ log
(

πi + πj + 2ν
√
πiπj

)

+
π′

i + πj + 2ν
√

π′

iπj

πi + πj + 2ν
√
πiπj

− 1

= log
(

πi + πj + 2ν
√
πiπj

)

+

(

√

π′

i −
√
πi√

πi

)

2ν
√
πiπj

πi + πj + 2ν
√
πiπj

+
π′

i − πi
πi + πj + 2ν

√
πiπj

. (57)

21



Evaluating Eq. (55) at the point π′

i defined by Eq. (38) and applying these two inequalities,
we have

f(π′

i) =
∑

j

aij log
π′

i

π′

i + πj + 2ν
√

π′

iπj
−
∑

j

aji log
(

π′

i + πj + 2ν
√

π′

iπj
)

≥
∑

j

aij

[

log
πi

πi + πj + 2ν
√
πiπj

+

(

√

π′

i −
√
πi

√

π′

i

)

2ν
√
πiπj

πi + πj + 2ν
√
πiπj

+

(

π′

i − πi
π′

i

)

πj
πi + πj + 2ν

√
πiπj

]

−
∑

j

aji

[

log
(

πi + πj + 2ν
√
πiπj

)

+

(

√

π′

i −
√
πi√

πi

)

2ν
√
πiπj

πi + πj + 2ν
√
πiπj

+
π′

i − πi
πi + πj + 2ν

√
πiπj

]

= f(πi) +
∑

ij

aij

[(

√

π′

i −
√
πi

√

π′

i

)

2ν
√
πiπj

πi + πj + 2ν
√
πiπj

−
(

π′

i − πi
π′

i

)

ν
√
πiπj

πi + πj + 2ν
√
πiπj

]

−
∑

j

aji

[(

√

π′

i −
√
πi√

πi

)

2ν
√
πiπj

πi + πj + 2ν
√
πiπj

−
(

π′

i − πi
πi

)

ν
√
πiπj

πi + πj + 2ν
√
πiπj

]

= f(πi) +
(
√

π′

i −
√
πi)

2

π′

i

∑

j

aij
ν
√
πiπj

πi + πj + 2ν
√
πiπj

+
(
√

π′

i −
√
πi)

2

πi

∑

j

aji
ν
√
πiπj

πi + πj + 2ν
√
πiπj

≥ f(πi), (58)

where we have used Eq. (38) and the exact equality applies if and only if π′

i = πi. Hence
f(πi) always increases upon application of Eq. (38) unless π′

i = πi, and so therefore does
the log-likelihood as well.

The same is also true of the update (40) for the parameter ν. The terms in the log-
likelihood that depend on ν can be written

g(ν) = 1

2

∑

ij

tij log
ν

πi + πj + 2ν
√
πiπj

−
∑

ij

wij log(πi + πj + 2ν
√
πiπj). (59)
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For any ν, ν ′ the inequalities (14) and (15) imply that

log
ν ′

πi + πj + 2ν ′
√
πiπj

≥ log
ν

πi + πj + 2ν
√
πiπj

−
ν/(πi + πj + 2ν

√
πiπj)

ν ′/(πi + πj + 2ν ′
√
πiπj)

+ 1

= log
ν

πi + πj + 2ν
√
πiπj

+

(

ν ′ − ν

ν ′

)

πi + πj
πi + πj + 2ν

√
πiπj

, (60)

log(πi + πj + 2ν ′
√
πiπj) ≤ log(πi + πj + 2ν

√
πiπj) +

πi + πj + 2ν ′
√
πiπj

πi + πj + 2ν
√
πiπj

− 1

= log(πi + πj + 2ν
√
πiπj) + (ν ′ − ν)

2
√
πiπj

πi + πj + 2ν
√
πiπj

. (61)

Evaluating (59) at the point ν ′ given by Eq. (40) and applying these two inequalities we get

g(ν ′) = 1

2

∑

ij

tij log
ν ′

πi + πj + 2ν ′
√
πiπj

−
∑

ij

wij log(πi + πj + 2ν ′
√
πiπj)

≥ 1

2

∑

ij

tij

[

log
ν

πi + πj + 2ν
√
πiπj

+

(

ν ′ − ν

ν ′

)

πi + πj
πi + πj + 2ν

√
πiπj

]

−
∑

ij

wij

[

log(πi + πj + 2ν
√
πiπj) + (ν ′ − ν)

2
√
πiπj

πi + πj + 2ν
√
πiπj

]

= g(ν) + (ν ′ − ν)

[

1

2ν ′

∑

ij

tij
πi + πj

πi + πj + 2ν
√
πiπj

−
∑

ij

wij

2
√
πiπj

πi + πj + 2ν
√
πiπj

]

,

= g(ν), (62)

where the term in square brackets in the penultimate line vanishes because of Eq. (40) and
the exact equality applies if and only if ν ′ = ν. Thus g(ν) always increases upon application
of (40) unless ν ′ = ν, and so therefore does the log-likelihood.

The remainder of the proof follows the same lines of argument as in Section 3 and hence
convergence of Eqs. (38) and (40) to the unique likelihood maximum is established.
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