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ABSTRACT 

Compaction of pre-impregnated fiber sheets (prepregs) is crucial to the formation 
of defects such as wrinkles and void. This study presents an anisotropic hyper-
viscoelastic constitutive model to predict the compaction deformation and force of 
prepregs considering the influence of temperature on resin behaviors. The entire stack 
of individual prepregs is homogenized as an anisotropic continuous material whose 
strain energy density function is developed considering normal, shear, and coupling 
between normal behaviors. The proposed constitutive model integrates prepreg 
relaxation responses through generalized Maxwell models. The proposed novel 
constitutive model was implemented in the commercial Finite Element Analysis (FEA) 
software Abaqus as a user-defined material subroutine, UMAT. The modeling 
parameters were characterized by a discrete micromechanics model. The modeling 
approach was further applied to simulate a stepwise compaction process of carbon 
fiber/polyamide 6 prepregs to demonstrate the predictive capability. 
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INTRODUCTION 
 

Advanced fiber reinforced composites have boosted the transportation and high-end 
aerospace fields owing to their prominent durability, resistance to corrosion, design 
flexibility and stiffness-to-weight ratio over the past decades. Pre-impregnated fiber 
sheets (prepregs) play a critical role in the manufacturing of composites, providing 
consistent uniform resin distribution, enhanced mechanical properties and improved 
handling characteristics. These advantages contribute to their widespread application in 
various manufacturing techniques such as autoclave processing, stamp forming, and the 
rapidly developing automated fiber placement (AFP). Consolidation is an essential step 
of manufacturing, where prepregs are compacted by pressure rollers, vacuum bags, or 
heated platens that apply controlled pressure and heat to consolidate to ensure good 
bonding between plies and eliminate voids or air entrapment. It has been pointed out 
that the thickness change during consolidation is closely associated with void content 
[5, 6] and wrinkle formation at radius and tapered geometries [7, 8, 11]. Therefore, 
studying the compaction behavior is essential to reduce the defects and achieve 
consistent high-quality products. Temperature is a key factor to be considered because 
it greatly affects the resin status, which can be solid, liquid, and rubbery state. Take 
thermoplastic resin as an example. As temperature surpasses 𝑇𝑇𝑔𝑔, amorphous polymer 
transitions from a glassy solid state to a rubbery state. The reduced stiffness allows for 
fiber rearrangement and distinct thickness change of prepregs during compaction. If 
temperature exceeds melting temperature 𝑇𝑇𝑚𝑚, the crystalline portion also passes into 
soft state. Consequently, resin shows significant viscous behavior and potential flow 
occurs, increasing the overall compressibility. Hence, it is necessary to model the 
compaction behavior of prepregs when resin is in the rubbery and liquid states at 
elevated temperature. 

In the literature, lots of experimental work has been done to study the influence of 
temperature on the compaction behavior of prepregs with and without pre-
consolidation. In Valverde’s work [10], fiber-reinforced thermoplastic cruciform 
samples were compacted with the same pressure but different temperatures. It shows 
that the material is thermally stable at temperatures below 𝑇𝑇𝑚𝑚, and the thickness 
reduction of the compacted sample is significantly smaller than the reduction for 
temperature above 𝑇𝑇𝑚𝑚. As temperature increases to a level (above 𝑇𝑇𝑚𝑚), resin becomes 
fully molten. Further increasing the temperature results in minor viscosity drop with 
similar thickness reduction. The compaction experiments of IM6/8552 and IMA/M21 
thermoset composites shows decreasing compacted thickness with temperature 
increasing up to 70℃, beyond which the thickness becomes insensitive to the 
temperature [6]. The plies expanded in the lateral direction as they were pressed in the 
thickness direction, which was positively related to temperature below 70℃ and 
converges above 70℃. The expansion was found to be nonuniformly distributed and 
relevant to specimen dimensions. For pre-consolidated samples, the middle layers 
expanded more than the top and bottom layers due to the tool/ply interaction at the 
boundaries. The temperature-dependency of thickness and lateral expansion are 
attributed to two main types of flow [1, 2, 6, 9, 10]: bleeding/percolation flow, which 
escapes from the fiber bed without shifting it due to pressure gradient, and 
squeezing/shear flow, which pushes fibers along the flow direction. Bleeding flow 
typically happens to low viscosity liquid, while squeezing flow is more prominent in 
high viscosity resin. Squeezing and bleeding flow can co-exist in one material system. 



Squeezing flow may also transfer to bleeding flow, and this might explain the 
converging lateral expansion of thermoset composite samples [6]. 

Scholars also put forward various modeling approaches to study the temperature-
dependent compaction behavior. Belnoue et al. [1] developed a flow-compaction model 
to capture the strain and strain-rate dependent viscosity of thermoset material at elevated 
temperature. A Power law was adopted to capture the strain-rate dependence. The strain 
dependence was further decomposed into two terms: one considering the compaction of 
a homogenized material with uniform strain and the other one accounting for the 
composite microstructure. Bleeding flow was treated as longitudinal squeezing flow. 
The uniform formulation made it easy to incorporate both flow types in his model. The 
transition from squeezing flow to bleeding flow was considered and triggered by either 
the shear strain at the edges of prepregs or the normal strain in the center reaching a 
critical value. The model, together with transversely isotropic Neo-Hookean model for 
fiber, was applied to the simulation of autoclave processing to predict wrinkling of 
IM7/8552 prepreg produced during bagging procedure [11]. This approach was also 
suitable for thermoplastic materials such as PPS and PEEK under compaction and 
Automated Fiber Placement (AFP) [10]. The comparison between predictions and 
experimental results indicates that the model has excellent capability to capture the 
thermoplastic thickness evolution and flow modes during compaction at high 
temperatures (mostly above melting point). However, contrary to the fact, the model 
asserts that only the bleeding flow exists for thermoplastic composites compacted below 
melting temperature, attributed to the quickly reached compaction plateau at these 
temperatures [2]. An improved model removed the coupling between locking point and 
the transition of flow types, but the maximum lateral expansion and compaction limit 
were still mainly controlled by empirical artificial strains, rather than the elastic 
contribution of resin and fiber. Some scholars utilized temperature-dependent 
parameters in the homogeneous constitutive model. Large deformation was predicted, 
but the deformation mechanism was not investigated. 

In this study, a hyper-viscoelastic constitutive model is developed to predict the 
compaction behavior of prepregs when resin is in liquid and rubbery states at elevated 
temperature. The strain energy density function (SEDF) is decomposed into the three 
terms for normal behaviors, three terms for shear behaviors, and a coupling term that 
describes the lateral expansion due to squeezing flow. A generalized Maxwell model is 
associated with each energy term except for axial tension to describe the time-
dependence. The model was implemented via finite element analysis (FEA) commercial 
software Abaqus user-defined material subroutine (UMAT). The modeling parameters 
for prepregs with resin in the rubbery state were obtained by a discrete micromechanics 
model, where randomly packed fibers were explicitly modeled. A fluid-structure 
interaction model will be developed in future work to consider the liquid resin.  
Compaction experiments were carried out and compared to a corresponding simulation 
to examine predictive capability of the proposed model. The model is innovative owing 
to its efficiency and incorporation of a microscale deformation mechanism when resin 
is at rubbery and liquid states. The rest of the paper is organized as follows. The SEDF 
and stresses are formulated in the “Modeling framework” section. Then, the 
characterizations of modeling parameters are shown in the “Characterization of 
modeling parameters” section. The “Model validation” section shows the comparison 
between a compaction experiment and simulation to validate the methodology. 

 



 
MODELING FRAMEWORK 

 
In this section, an anisotropic hyper-viscoelastic material-processing model is 

developed for the compaction of multi-ply prepregs considering the temperature-
dependent relaxation behavior of resin and thermal expansion. The focus is to introduce 
a coupling term to capture the effect of squeezing flow and add the nonequilibrium 
stresses, due to resin viscoelastic behavior, to the total stresses based on a Maxwell 
model. 
 
Thermal expansion 

 
Even though processing temperature mostly influences viscoelastic behavior, the 

model also takes into account thermal effects through a thermal expansion model. This 
is important when resin is in the rubbery state and subjected to temperature changes, as 
thermal expansion can contribute significantly to the overall deformation. In the 
hyperelastic modeling framework, the overall deformation gradient, 𝑭𝑭, can be 
multiplicatively decomposed into a mechanical part, 𝑭𝑭𝑀𝑀, and a thermal part, 𝑭𝑭𝑇𝑇 [12]. 

 
𝑭𝑭 = 𝑭𝑭𝑀𝑀𝑭𝑭𝑇𝑇 (1) 

 
The thermal deformation gradient for unidirectional prepregs is related to temperature 
change, 𝑇𝑇 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟, and coefficient of thermal expansion (CTE), 𝛼𝛼1 and 𝛼𝛼2 (𝛼𝛼3) as 
 

𝑭𝑭𝑇𝑇 = �
1 + 𝛼𝛼1(𝑇𝑇 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟) 0 0

0 1 + 𝛼𝛼2(𝑇𝑇 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟) 0
0 0 1 + 𝛼𝛼2(𝑇𝑇 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟)

� (2) 

 
The CTE of a lamina can be determined through the extended concentric cylinder 
assemblage (ECCA) model by Zhang et al. [13]. Since time-dependent resin properties 
are used in the model, lamina CTE could end up being time dependent as well. However, 
a separate viscoelastic study of the authors’ group reveals that lamina’s longitudinal 
CTE is strongly time dependent but has small magnitude, and transverse CTE shows 
negligible time dependence. Therefore, it is safe to assume that CTE along each 
direction is constant. The values are summarized in the characterization section. 
 
Anisotropic hyper-viscoelastic model 
 

A mesoscale unit cell (UC) of unidirectional prepreg sheets, shown in Figure 1 (a) , 
is homogenized as a continuous transversely isotropic hyperelastic material whose 
SEDF, denoted as 𝑊𝑊, can be divided into two parts: an elastic part 𝑊𝑊𝑟𝑟 and a viscous 
part 𝑊𝑊𝑣𝑣 as 
 

𝑊𝑊 = 𝑊𝑊𝑟𝑟 + 𝑊𝑊𝑣𝑣 (3) 
 
The fiber direction is denoted as 1, in-plane transverse direction as 2, and out-of-plane 
transverse direction as 3. It is assumed that prepreg deformation during consolidation 
processes can be decomposed into six basic modes, which are tension/compression in 



the 1-, 2-, and 3-directions as well as the shear in the 1-2, 1-3, and 2-3 planes, together 
with a coupling term between the tension/compression behaviors along the 2- and 3-
directions. The pseudo-invariants are defined to represent the large deformation as 
 

𝐼𝐼4
𝑖𝑖𝑖𝑖 = �𝐴𝐴𝑖𝑖�𝑇𝑇 ∙ 𝑪𝑪 ∙ 𝐴𝐴𝑖𝑖 (4) 

 
 

  
(a) (b) 

Figure 1. (a) A UC of unidirectional prepregs, and (b) The linear Maxwell model containing one 
elastic element and one Maxwell element. 

 
 
where 𝑖𝑖 and 𝑗𝑗 both can be 1, 2, 3 in a three-dimensional analysis. 𝑪𝑪 is the right Cauchy-
Green deformation tensor computed from 𝑪𝑪 = 𝑭𝑭𝑀𝑀T𝑭𝑭𝑀𝑀. The mechanical deformation 
gradient matrix 𝑭𝑭𝑀𝑀 is defined as 𝑭𝑭𝑀𝑀 = 𝝏𝝏𝝏𝝏

𝝏𝝏𝝏𝝏
, where 𝝏𝝏 is the position in the deformed 

configuration and 𝝏𝝏 is the position in the reference configuration. 𝐴𝐴𝑖𝑖 are the vectors 
pointing in the directions of interest. Here, 𝐴𝐴𝑖𝑖 align with the 𝑖𝑖-direction in the material 
coordinates. Due to the symmetry of 𝑪𝑪, there are only six independent pseudo-
invariants: 𝐼𝐼411, 𝐼𝐼422, 𝐼𝐼433, 𝐼𝐼412, 𝐼𝐼413, and 𝐼𝐼423. Here, 𝐼𝐼411, 𝐼𝐼422, and 𝐼𝐼433 are the square of the 
stretch 𝜆𝜆𝑖𝑖 along each direction of interest, expressed in Equation 5. Henceforth in this 
paper, dummy index is ignored. 
 

𝐼𝐼4𝑖𝑖𝑖𝑖 = �𝐴𝐴(𝑖𝑖)�
𝑇𝑇
∙ 𝑪𝑪 ∙ 𝐴𝐴(𝑖𝑖) = 𝜆𝜆𝑖𝑖

2 (5) 
  
𝐼𝐼412, 𝐼𝐼413, and 𝐼𝐼423 can be related to the sinusoidal function of the shear angles 𝛾𝛾 as 
 

𝑠𝑠𝑖𝑖𝑠𝑠 𝛾𝛾𝑖𝑖𝑖𝑖 =
𝐼𝐼4
𝑖𝑖𝑖𝑖

�𝐼𝐼4𝑖𝑖𝑖𝑖𝐼𝐼4
𝑖𝑖𝑖𝑖

 (6) 

 
The expression of 𝑊𝑊𝑟𝑟 contains seven parts.  
 

𝑊𝑊𝑟𝑟 = �𝑊𝑊𝜉𝜉
𝑟𝑟

7

𝜉𝜉=1

 (7) 

 
The first three parts, as shown in Equation 8, describe the normal behaviors. 𝐸𝐸1, 𝐸𝐸2, and 
𝐸𝐸3 are the effective moduli controlling the fiber tension, in-plane transverse tension, and 



through-thickness compaction, respectively. For a transversely isotropic material, 𝐸𝐸2 is 
assumed to equal to 𝐸𝐸3. 
 

𝑊𝑊𝑖𝑖
𝑟𝑟 =

𝐸𝐸𝑖𝑖
2
�𝐼𝐼4𝑖𝑖𝑖𝑖 − 1�2 (8) 

 
The 4th to 6th parts describe the shear behaviors and are expressed in Equation 9, 
where 𝑘𝑘 = 𝑖𝑖 + 𝑗𝑗 + 1 and 𝑖𝑖 < 𝑗𝑗. 𝐺𝐺𝑖𝑖𝑖𝑖 is the modulus that controls the shear behavior in 
𝑖𝑖-𝑗𝑗 plane. 𝜉𝜉𝑖𝑖𝑖𝑖 is the initial value of sin 𝛾𝛾𝑖𝑖𝑖𝑖. 
 

𝑊𝑊𝑘𝑘
𝑟𝑟 =

𝐺𝐺𝑖𝑖𝑖𝑖
2
⎝

⎛ 𝐼𝐼4
𝑖𝑖𝑖𝑖

�𝐼𝐼4𝑖𝑖𝑖𝑖𝐼𝐼4
𝑖𝑖𝑖𝑖
− 𝜉𝜉𝑖𝑖𝑖𝑖

⎠

⎞

2

 (9) 

 
The last part describes the lateral expansion by coupling the normal behaviors along 2- 
and 3-directions. 
 

𝑊𝑊7
𝑟𝑟 = 𝐷𝐷1(1 − 𝐽𝐽2)2  (10) 

  
D1 is the modulus controlling the extent of the Poisson’s effect along the 2- and 3-
directions. Since fiber is inextensible in the axial direction, it is assumed that through-
thickness compaction does not cause any expansion in the 1-direction. Without the 
coupling term 𝑊𝑊couple

𝑟𝑟 , through-thickness compaction will result in pure material loss. 
With the coupling term, lateral expansion and material loss could exist at the same time. 
If volume is not conserved after compaction, the reduced volume is assumed to be the 
material loss caused by bleeding flow along the fiber direction. Larger D1 makes the 
coupling stronger, decreasing the extent of material loss. 𝐽𝐽2 is a pseudo-invariant that 
describes the deformed area in the 2-3 plane over the initial reference area, which is 
defined as 
 

𝐽𝐽2 = det��𝐼𝐼4
22 𝐼𝐼423

𝐼𝐼432 𝐼𝐼433
�� = 𝐼𝐼422𝐼𝐼433 − 𝐼𝐼423𝐼𝐼423 (11) 

  
Then, the equilibrium second Piola-Kirchhoff stress can be computed as 
 

𝑺𝑺 
𝜉𝜉 = 2

𝜕𝜕𝑊𝑊𝜉𝜉
𝑟𝑟

𝜕𝜕𝑪𝑪
, 𝜉𝜉 = 1, 2, 3, … 7 (12) 

  
here ξ represents the deformation mode.  

In this paper, the viscous energy was considered for all the energy terms except for 
𝑊𝑊1

𝑟𝑟, because the axial behavior of prepregs is dominated by elastic fibers. 
 

𝑊𝑊𝑣𝑣 = �𝑊𝑊𝜉𝜉
𝑣𝑣

7

𝜉𝜉=2

 (13) 

  



The corresponding nonequilibrium stress 𝑸𝑸ξ of 𝑊𝑊ξ
v is captured by a linear Maxwell 

model incorporating one elastic element and one Maxwell element, as shown in Figure 
1 (b).  The evolution of 𝑸𝑸ξ is described by 
 

𝑸𝑸𝜉̇𝜉 +
𝑸𝑸𝜉𝜉

𝜏𝜏𝜉𝜉
= 𝑷𝑷𝜉̇𝜉  (14) 

  
where 𝑷𝑷ξ is the second Piola-Kirchhoff stress carried by the spring in the Maxwell arm; 

the relaxation time 𝜏𝜏ξ = 𝜂𝜂1
ξ

𝐸𝐸1
ξ; 𝑸𝑸ξ̇ = 𝑑𝑑𝑸𝑸ξ

𝑑𝑑𝑑𝑑
; 𝑷𝑷ξ̇ = 𝑑𝑑𝑷𝑷ξ

𝑑𝑑𝑑𝑑
; and ξ is an integer ranging from 2 to 

7. Further, assume that 𝑷𝑷ξ is proportional to 𝑺𝑺 
ξ and the ratio is denoted as a constant 𝛽𝛽ξ. 

It also depicts the ratio of the viscous energy to the elastic energy. 
 

𝑷𝑷𝛼𝛼

𝑺𝑺 
𝛼𝛼 =

𝐸𝐸1𝛼𝛼

 𝐸𝐸𝑟𝑟𝛼𝛼
=
𝑊𝑊𝛼𝛼

𝑣𝑣

 𝑊𝑊𝛼𝛼
𝑟𝑟 = 𝛽𝛽𝛼𝛼 (15) 

  
Then, the evolution of 𝑸𝑸ξ can be computed by solving the ordinary differential equation. 
 

𝑸𝑸𝜉̇𝜉 +
𝑸𝑸𝜉𝜉

𝜏𝜏𝜉𝜉
= 𝛽𝛽𝜉𝜉𝑺𝑺 

𝛼̇𝛼 (16) 

 
The total second Piola-Kirchhoff stress is, 
 

𝑺𝑺 = �𝑺𝑺 
𝜉𝜉

7

𝜉𝜉=1

+ �𝑸𝑸𝜉𝜉
7

𝜉𝜉=2

 (17) 

 
and the total Cauchy stress is 
 

𝝈𝝈 =
1
𝐽𝐽
𝐹𝐹𝑺𝑺𝐹𝐹𝑇𝑇 (18) 

 
The model was implemented in Abaqus via UMAT user-subroutine, where Cauchy 
stresses and the consistent Jacobian were required to be updated. 
 

 
CHARACTERIZATION OF MODELING PARAMETERS 

 
This section discusses the characterization of the modeling parameters of the hyper-

viscoelastic model, also referred to as the effective moduli, when resin is in the rubbery 
state. A discrete micromechanics model was built in Abaqus. As shown in Figure 2 (a), 
the model was made of a cubic representative volume element (RVE) containing 
randomly packed fibers in a resin domain. It is assumed that no flow is involved, and 
the rubbery resin has no-slip contact with fiber. The information of the RVE is displayed 
in Table 1. Twenty fibers [3] were included to make the cube representative enough to 
generate consistent homogenized properties without consuming excessive 
computational cost. The random packing was generated by simulating the interaction 



between fibers in a periodic domain until the desired fiber volume fraction and 
minimum gap are achieved. In the micromechanics model, periodic boundary 
conditions were also applied to the faces, edges, and corners of the cube. In each model, 
only one homogenized stress term is non-zero, indicating free deformation for the other 
deformation modes. The RVE underwent a 0.01s ramp deformation process, followed 
by a 0.07s dwell process. Six deformation modes, i.e., axial normal (in 1-direction), 
transverse normal (in 2- and 3-directions), and shear (in 1-2, 1-3, and 2-3 planes), were 
considered separately. The total axial normal deformation was 1% of the original size, 
while the magnitudes of other deformation modes were 10% of the original size to 
consider large deformation. 
 

 
  

(a) (b) 
Figure 2. (a) the micromechanics model, and (b) the lateral expansion 

due to through-thickness compaction. 
 
 
This paper investigates the behaviors of carbon fiber (CF) pre-impregnated with 

polyamide 6 (PA6) as an example. It has been shown in the research of Kehrer et al. [4] 
that the modulus of PA6 shows strong frequency dependence at 75℃, which is between 
PA6’s glass transition temperature (50℃) and melting temperature (225℃). Therefore, 
75℃ is chosen as an example temperature. The storage modulus of PA6 samples with 
moisture content of less than 0.3wt.% was provided for temperature from 0℃ to 200℃ 
and frequency from 0.5HZ to 50HZ obtained from dynamic mechanical analysis tests 
[4]. The relaxation parameters of PA6 at 75℃ were identified by fitting the storage 
modulus vs. frequency data to a linear Maxwell model in frequency domain with R-
square of 95.61%, which can be expressed as 

 

frequency domain: 𝑅𝑅(𝜔𝜔) = 𝑅𝑅𝑟𝑟 + 𝑅𝑅𝑢𝑢
𝜔𝜔2𝜏𝜏2

1 + 𝜔𝜔2𝜏𝜏2
 

time domain: 𝑅𝑅(𝑡𝑡) = 𝑅𝑅𝑟𝑟 + 𝑅𝑅𝑢𝑢 exp �−
𝑡𝑡
𝜏𝜏
� 

(40) 

 



where 𝜔𝜔 = 2𝜋𝜋𝜋𝜋. The resulting resin parameters are shown in Table 2. Carbon fibers 
were modeled as a transversely isotropic linear elastic material, whose properties are 
also shown in Table 2. 

The resulting stress of the CF/PA6 RVE was homogenized as the integration point 
volume average, according to Equation 41,  
 

𝜎𝜎� = �
𝑉𝑉𝑖𝑖𝜎𝜎𝑖𝑖
𝑉𝑉

𝑁𝑁

𝑖𝑖=1

 (41) 

 
where 𝑉𝑉𝑖𝑖 is the volume of the 𝑖𝑖-th integration point, 𝜎𝜎𝑖𝑖 is the stress value of the 𝑖𝑖-th 
integration point, 𝑉𝑉 is the total volume, and 𝑁𝑁 is the total amount of integration points 
in the model. The stress vs. time results are shown in Figure 3, which were used to 
characterize the parameters of the hyper-viscoelastic model. Note that since 
unidirectional prepregs are transversely isotropic, 𝜎𝜎22 for the normal behavior along the 
2-direction and 𝜎𝜎33 for the normal behavior along the 3-direction are supposed to be 
consistent. However, if not enough random-packed fibers were considered in the 
discrete RVE, large difference between 𝜎𝜎22 and 𝜎𝜎33 might exist. The close value of 𝜎𝜎22 
and 𝜎𝜎33 in Figure 3 (b) suggests the validity of using 20 fibers in the current 
micromechanics model. The average of 𝜎𝜎22 and 𝜎𝜎33 was used to characterize 𝐸𝐸2(𝐸𝐸3), 
𝛽𝛽2(𝛽𝛽3), and 𝜏𝜏2(𝜏𝜏3). Similarly, the average of 𝜎𝜎12 and 𝜎𝜎13 was used to characterize 
𝐺𝐺12(𝐺𝐺13), 𝛽𝛽4(𝛽𝛽5), and 𝜏𝜏4(𝜏𝜏5). The parameters of the coupling term were characterized 
by Poisson’s effect in 2-3 plane. As shown in Figure 2 (b), when RVE was compacted 
in the 2- (or 3-) direction for 10%, expansion occurred in the 3- (or 2-) direction for 
5.46% at 0.01s and 5.49% at 0.08s. The consistent expansion at 75℃ indicates 
negligible energy dissipation for the coupling term. 
 

TABLE 1. MODELING PARAMETERS OF THE DISCRETE MICROMECHANICS MODEL. 
Parameters Meaning Value Unit 

𝑙𝑙 Length of the RVE cube 3.8653E-2 mm 

𝑑𝑑 Diameter of carbon fiber 7.1E-3 mm 

𝑉𝑉𝑟𝑟 Fiber volume fraction 53% -  

𝑁𝑁𝑟𝑟 Number of fibers 20 - 

𝐸𝐸1𝑟𝑟 

Engineering constants of 
transversely isotropic linear 

elastic model  

231000 MPa 

𝐸𝐸2𝑟𝑟 �𝐸𝐸3𝑟𝑟� 15000 MPa 

𝜈𝜈12𝑟𝑟 �𝜈𝜈13𝑟𝑟� 0.27  

𝜈𝜈23𝑟𝑟 0.497  

𝐺𝐺12𝑟𝑟 �𝐺𝐺13𝑟𝑟� 24000 MPa 

𝐺𝐺23𝑟𝑟 5010 MPa 

𝑅𝑅𝑟𝑟 Resin relaxed modulus at 75℃ 867.1 MPa 

𝑅𝑅𝑢𝑢 Resin unrelaxed modulus at 75℃ 344.4 MPa 

𝜏𝜏 Resin relaxation time at 75℃  0.02564 s 

 



The responses of a homogenized RVE under the same deformation modes were also 
modeled in Abaqus. The RVE was simply a cube of unit length, without any boundary 
between fiber and resin. The hyper-viscoelastic model implemented via UMAT 
subroutine was used in this simulation. The effective moduli of the hyper-viscoelastic 
model were characterized when the stress responses of the homogenized RVE agree 
with the stress responses of the discrete RVE. The results are also shown in Figure 3 
and the characterized effective moduli are shown in Table 2. 

 
TABLE 2. CHARACTERIZED PARAMETERS OF THE HYPER-VISCOELASTIC MODEL. 
Parameters Value Unit Parameters Value Unit 

𝐸𝐸1 31000 MPa 𝐺𝐺23 825 Mpa 

𝐸𝐸2 (𝐸𝐸3) 467 Mpa 𝛽𝛽6 0.36  -  

𝛽𝛽2 (𝛽𝛽3) 0.44 - 𝜏𝜏6 0.035  s 

𝜏𝜏2(𝜏𝜏3) 0.033 s 𝐷𝐷1 346 Mpa 

𝐺𝐺12 (𝐺𝐺13) 1005 Mpa 𝛽𝛽7 0  

𝛽𝛽4 (𝛽𝛽5) 0.4 - 𝜏𝜏7 Inf  s 

𝜏𝜏4(𝜏𝜏5) 0.035 s 𝛼𝛼1 −9.000𝑒𝑒
− 07 - 

   𝛼𝛼2 (𝛼𝛼3) 2.700𝑒𝑒 − 05 - 

 
 

 
Figure 3. Consistent stresses from discrete and homogeneous models for (a) axial normal 

deformation, (b) transverse normal deformation, (c) shear in 1-2 and 1-3 planes, 
and (d) shear in 2-3 plane. 

 



 
MODEL VALIDATION 

 
To check the predictive capability of the proposed hyper-viscoelastic model, a 

stepwise compaction experiment was carried out and a corresponding model was 
implemented in Abaqus. The compaction force and deformed shape obtained from the 
experiments and simulations were compared. 
 
Compaction experiment 
 

In the compaction experiment, 65 plies of unidirectional CF/PA6 prepregs from 
SHINDO were compacted at 75℃ in an environmental chamber. The setup of 
compaction tools is shown in Figure 4 (a). Two steel plates, whose surfaces that contact 
prepregs are 71.12 mm × 71.12 mm squares, were connected to the upper grip and lower 
grip of a test machine. A ruler was attached to the lower plate as a measurement 
reference. A camera was placed outside of the chamber to monitor the dimension change 
of prepregs and take pictures.  

 
 

  
(a) (b) 

Figure 4. (a) The setup of experiments, and (b) the setup of simulation. 
 
 

Before the test began, a roll of prepreg was cut into 50 mm × 50 mm square pieces, 
which were stacked one upon another to form a 65-layer assembly. Three assemblies 
were prepared to repeat the same procedure three times. Thickness was measured at 
three different locations for each assembly, and the average initial thickness is 4.009 
mm. Then, the two compaction plates were separated by 7 mm so that a sample can be 
easily put in between the plates, and the whole chamber was heated from 25℃  to 75℃. 
Then, a prepreg assembly was put in, followed by a sufficient dwell to heat the sample 
uniformly. Next, the distance was decreased to 4 mm as the initial status of the test, 
which did not affect the compaction force much. As the test started, the upper plate was 
fixed, and the lower plate was moved towards the upper one. The distance between the 
two plates was decreased at 0.15 mm/s to various distances of 3.5mm, 3mm, and 



2.5mm, each of which was followed by a 4 min dwell for relaxation. Figure 5 records 
the history of averaged force from the three tests together with its standard deviation 
(sample). The force increases greatly when the tool moves. As the dwell starts, the 
compaction force slightly drops and then, becomes steady until the end of the dwell. 
Moreover, the third force increment (𝑡𝑡 = 8 min) is around four times of the second force 
increment (𝑡𝑡 = 4 min), which is also four times of the first increment (𝑡𝑡 = 0 min). This 
is because the inter-ply gap is closing when the samples is just compacted, causing small 
resistance to compaction. Then, the plies are nesting to achieve the applied thickness, 
further reducing the void content and increasing the resistance. If compaction is further 
enhanced, relatively soft resin is compressed more than fiber. As a result, the resin 
content decreases and fiber content increases along the thickness direction, and, 
consequently, more force is transferred through stiff fibers. Therefore, as compaction 
continues, the resistance of material will grow.   

Figure 6 (a) and (b) show the front-view pictures of prepreg at the start and the end 
of the experiment. By comparing the pictures, it is clear that even though resin becomes 
soft at 75℃, the compaction does not lead to an evident expansion along the 2-direction. 
This indicates that the fiber and resin fractions along the thickness do not change a lot. 
The growing force increments (at 𝑡𝑡 = 0, 4, 8 min) are mainly due to the closing of gaps 
and the nesting of prepreg layers. 
 

 
Figure 5. FEA cure-cycle optimization problem (a) stress-deformation output and (b) optimal cure-

cycle compared to MRCC. 
 
 
Compaction simulation 

 
A compaction simulation was implemented in Abaqus using static, general solver 

for 65-layer CF/PA6 prepregs. Figure 4 (b) shows the setup of the model. In this case, 
global coordinates (x-y-z) are consistent with the material coordinates of the lamina (1-
2-3). The top and bottom tools were created as rigid plates mastered by reference points. 
One of them was moved along z direction during simulation, while the other one stayed 



fixed all the time. Only a quarter of the 65-layer sample was created as a 25mm x 25mm 
x 4mm plate, on which symmetrical boundary conditions were applied along the x- and 
y-directions. Initially, the prepreg plate was in contact with the fixed tool, which was 4 
mm away from the other one. In the first step, only temperature increased from 25℃ to 
75℃, and the prepreg block expanded freely. In the second step, the moving tool moved 
by 0.5 mm at 0.15 mm/s towards the fixed tool, followed by a 4 min dwell. 
Subsequently, the motion was repeated twice, following the identical procedures, 
culminating in a tool separation reduction to 2.5 mm. The friction coefficient between 
the prepregs and tools was assumed to be a commonly adopted value of 0.3. 
 

  

 
 
 

 
(a) (b) (c) 

Figure 6. (a) the initial prepregs in experiments, (b) the compacted prepregs in experiments, and (c) 
the compacted shape in simulation. 

 
 

The simulation results shown in Figure 5 record the force vs. time starting from the 
second step to maintain consistent procedures with the experiment. The predicted 
reaction force is almost 200 times of the experimental results. Also, the predicted first 
force increment (𝑡𝑡 = 0 min) is almost twice of the second increment (𝑡𝑡 = 4 min), which 
is also twice of the third increment (𝑡𝑡 = 8 min). This is inconsistent with the trend of 
the experimental results. Figure 6 (b) and (c) shows that both the real expansion and 
predicted expansion are negligible, and the predicted lateral expansion is slightly more 
obvious. The inconsistency of the force might be caused by: 

 
1. The experiment is conducted for multi-layer prepregs rather than thick pre-

consolidated prepreg laminate, while the proposed model assumes the material 
is continuous along the thickness and has not consider the inter-ply contact. 

2. As compaction increases, there could be potential material loss that tends to 
decrease the overall resistance, but also potential increase of fiber fraction along 
thickness direction that tends to increase the overall compaction resistance. In 
the simulation, microstructure change after large compaction deformation was 
not considered, and material loss could be captured, leading to the “soften” of 
the material.  

3. The temperature of the environmental chamber could not be precisely controlled 
due to the machine itself. A new environmental chamber would be used in the 
future. 

4. The experiment itself could have large uncertainty due to minor sample 
inconsistency, human operation, etc. 



 
 
FUTURE WORK 

 
Future work will aim to consider more deformation mechanisms and improve the 

prediction accuracy when resin is in liquid and rubbery states: 
 
1. More deformation mechanism. The inter-ply contact and the microstructure 

change after large deformation would be considered. The hyper-viscoelastic 
modeling parameters will be associated with microstructure parameters. 

2. Liquid resin. The behavior of fibers mixed with liquid resin will be considered, 
including fiber’s elastic contribution, resin’s temperature dependent viscous 
behavior, and resin-fiber interaction, etc. Squeezing flow and bleeding flow will 
be focused on. 

3. Experiments. Compaction experiments for pre-consolidated prepregs at 75 ℃ 
will be conducted and compared to the results of individual plies covered in this 
paper, which should reveal how much inter-ply contact contributes to the force 
change. More comparison between compaction experiments and simulations 
will be conducted at higher temperature, such as 200℃ (above 𝑇𝑇𝑔𝑔 and below 
𝑇𝑇𝑚𝑚) and 260℃ (above 𝑇𝑇𝑚𝑚), to check the model’s predictive capability.  

4. Application. The validated model will be applied to more complex process, 
such as stamp forming of a complex geometry and wrinkle prediction. 

 
 

CONCLUSIONS 
 

This paper puts forward a novel hyper-viscoelastic constitutive model to predict the 
compaction behavior of prepregs when resin in the rubbery state. The SEDF was 
developed considering normal, shear, and the effect of squeezing of resin. Time-
dependent viscoelastic behavior is captured by generalized Maxwell models. Modeling 
parameters were characterized through a discrete micromechanics model. The modeling 
framework was applied to a compaction of CF/PA6 prepregs at 75 ℃ as an example. 
The predicted shape of compacted prepreg is generally consistent with the experimental 
results with slightly overpredicted lateral expansion. However, in the current study, the 
predicted force is larger than the experimental results with a different trend of the 
increasing force. The inconsistency of the compaction force was mostly attributed to the 
oversight of inter-ply contact and microstructure change. Future plans were made to 
solve the current issue and extend the model for prepregs with liquid resin. 
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