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ABSTRACT 
 

During composite manufacturing processes, multiple steps are involved, each step 
introducing new physical and chemical processes. These processes alter the properties 
of the constituents (fiber and matrix), affecting the behavior of the composite materials. 
The changes in the properties of the fiber are not that significant. Whereas the 
mechanical and thermal properties of the matrix such as Young’s modulus, Poisson’s 
ratio, coefficient of thermal expansion etc. change significantly. Residual stresses are 
developed in the composite due to thermal expansion mismatch of the constituents and 
cure shrinkage of the resin. These resulting residual stresses have a considerable impact 
on the mechanical properties and performance of the composites. Also, cracks develop 
in the composite system during the manufacturing process which can affect the 
performance of the composite. 

When the composite system with residual stresses is mechanically loaded, the 
system exhibits a drop in the strength after a critical stress state is reached. To predict 
the critical stress at which the drop occurs we use the continuum damage method called 
the Smeared Crack Approach (SCA). Using SCA we can predict the stress-strain 
behavior of an RVE as the damage progresses. The critical stress value of the microscale 
RVE acts as the corresponding strength of the composite on a macro-scale level. 

To account for the variability in a composite system we randomly generate different 
RVEs. This is done by varying the number of fibers and the location of fibers using a 
statistic distribution for a fixed volume fraction. Then we conduct the simulations of 
manufacturing and progressive damage to identify the strength values of the RVEs. 

The strength values obtained are then used to assign to the different regions of a 
semi-discrete damage model of a composite laminate in macro-scale. The unique 
aligned meshing strategy of the model decomposes the bulk non-linearity and 
localization zones which provide a proper load transfer pathway. This random 
assignment of the strength values simulates the realistic behavior of a composite where 
each region has almost the same material properties but different strength values due to 
the uncertainties associated with the manufacturing processes. 
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INTRODUCTION  
 

Fiber-reinforced composites are used extensively in the transportation sector to 
prepare light weight structural components. The manufacturing of these composites 
takes place at high temperatures to ensure the complete curing of the resin. However, 
the manufacturing process induces defects in the matrix because of which there is a 
significant difference between the neat resin matrix properties and the in-situ matrix 
properties. These manufacturing-induced effects have been investigated in the existing 
literature, but there was no quantitative relationship developed to determine how these 
manufacturing effects are influencing the deviation of the in-situ matrix properties from 
that of the neat resin properties. 

The present work aims to address this issue by incorporating the manufacturing 
induced effects to predict the composite laminate's non-linear behavior when 
mechanically loaded. This is done by incorporating the effects of the fiber distribution 
and accounting for the residual stresses that develop in a representative volume element 
(RVE). We run simulation of the manufacturing process on the RVE which leads to 
development of residual stresses. This information of residual stresses is used when the 
RVEs are simulated with a mechanical loading.  

When the RVE is mechanically loaded, initially the stress-strain relationship is 
linear because of the linear elasticity. However, when a critical stress state is reached 
i.e., the when the micro-cracks in the matrix coalesce into macro cracks the stress starts 
decreasing with the increase in strain. This progressive damage analysis is performed 
by using the continuum smeared crack method in this paper called the Smeared Crack 
Approach. The advantage of using continuum damage models over the discrete damage 
models is that the computational costs and modeling effort is significantly lower. 
However, in the case of continuum smeared crack methods, the fidelity may be lower 
than that of a discrete crack model. Fidelity is the ability of a model to capture stress 
gradients, such as those that occur near notches, free edges and cracks, and the ability 
to resolve details such as the type of cracks, interactions between cracks etc. It is found 
in literature that in order to capture the directionality of a matrix crack with a comparable 
mesh size, a passive control of the crack directionality can be introduced by using fiber 
aligned meshes. The current model aims for high discreteness for capturing sharp matrix 
cracks, while retaining the benefits of the efficiency of smeared crack approaches. This 
method is therefore characterized as a semi-discrete damage model [1].  

The critical stress values of the composite that are obtained from the microscale 
RVE model are used as the strength values for the macroscale model in the fiber aligned 
semi discrete damage approach. The dominant mode of in-plane failure is the matrix 
failure, the cohesive modeling between plies also must be accounted for apart from 
modeling each ply individually. 
 
 
CONSTITUTIVE MODEL 

 
To model the progressive damage of composites, the two widely used models are 

the continuum smeared crack methods (CSCM) and discrete crack methods (DCM). 
But the computational costs of discrete methods rise as the number of components to be 
modeled increases. Therefore, it is impractical to model the response of a large structure 
with multiple failure mechanisms present in a geometrically nonlinear setting. CSCM 



are often more efficient compared to DCM, however, the fidelity may be lower. 
Compared to the explicit modelling of cracks, in the CSCM, the effect of cracks is 
modeled during progressive failure much more efficiently. To construct the constitutive 
law for the post-peak behavior of the composite, we adopted the Smeared Crack 
Approach (SCA). In the SCA, the effect of the micro-cracks is smeared over a 
characteristic length. This smearing effect is mathematically characterized by 
deteriorating the secant stiffness of the material as the damage progresses once the 
transition criteria is satisfied. 

The transition criteria (failure criteria) used for each of the plies is the maximum 
stress criteria. When the local stresses reach the critical strength value, we conclude that 
failure has initiated and the material transitions from pre-peak behavior to post-peak 
behavior. The pre-peak behavior corresponds to the matrix micro damage due to the 
growth of voids and flaws in the matrix, while the post-peak behavior corresponds to 
the accumulation of matrix micro damage which leads to matrix macroscopic cracking. 
The pre-peak behavior is governed by a linear elastic constitutive law, i.e., a strain-based 
formulation, while in the post-peak regime the softening of the material is captured by 
a displacement-based formulation of linear traction separation law [4]. 

 In the pre-peak regime, standard continuum descriptions of the material are 
assumed to hold. In the post-peak regime, it is assumed that the total strain (𝜀𝜀) may be 
split up into a continuum part and a crack part. 

 
  ε  = εco           (in the pre-peak regime)              (1) 

 
  ε  = εco + εcr   (in the post-peak regime)            (2) 
 

The continuum strain (𝜀𝜀𝑐𝑐𝑐𝑐) can further be decomposed as a sum of the elastic (𝜀𝜀𝑒𝑒𝑒𝑒), 
plastic (𝜀𝜀𝑝𝑝𝑒𝑒) and thermal strain (𝜀𝜀𝑡𝑡ℎ) contributions as shown below: 

 
  εco = εel + εpl + εth                                                (3) 
 

In the current formulation, we are not considering any plasticity to be present. 
Therefore 𝜀𝜀𝑐𝑐𝑐𝑐= 𝜀𝜀𝑒𝑒𝑒𝑒 + 𝜀𝜀𝑡𝑡ℎ. The relation between the local crack strains and the global 
crack strains as shown in equation (4) below: 

 

  εcr = N ecr = N �
𝜀𝜀𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐
𝛾𝛾𝑡𝑡1𝑐𝑐𝑐𝑐
𝛾𝛾𝑡𝑡2𝑐𝑐𝑐𝑐

�                                          (4) 

 
Similarly, global stress (𝜎𝜎) can be transformed to yield the tractions at the crack 

interface (𝑠𝑠𝑐𝑐𝑐𝑐): 
 

  𝑠𝑠𝑐𝑐𝑐𝑐 =  �
𝜎𝜎𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐
𝜏𝜏𝑡𝑡1𝑐𝑐𝑐𝑐
𝜏𝜏𝑡𝑡2𝑐𝑐𝑐𝑐

� = 𝑁𝑁𝑇𝑇𝜎𝜎                                           (5) 

 
The tractions at the crack interface are related to the crack strain through the secant 

stiffness matrix and a damping matrix by 



 
   𝑠𝑠𝑐𝑐𝑐𝑐 =   𝐷𝐷𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐 + 𝐷𝐷𝑑𝑑𝑑𝑑𝑒𝑒𝑐𝑐𝑐𝑐̇                                 (6) 

 
The damping matrix makes the crack progression a time-dependent property. It is 

used to smoothen the numerical solution scheme. Any numerical scheme involves a 
discrete time step. The crack strain rate is accordingly approximated with finite 
differences. 

The relation between the total stiffness (global) i.e. "𝜎𝜎" and the total strain (global) 
i.e. "𝜀𝜀" is: 

  𝜎𝜎 = 𝐷𝐷𝑐𝑐𝑐𝑐𝜀𝜀                                                           (7) 
 

Where (𝐷𝐷𝑐𝑐𝑐𝑐) is the continuum stiffness matrix, given by 𝑆𝑆𝑐𝑐𝑐𝑐−1 and (𝑆𝑆𝑐𝑐𝑐𝑐) is 
compliance matrix given as follows for an isotropic material: 
 

𝑆𝑆𝑐𝑐𝑐𝑐 =  

⎣
⎢
⎢
⎢
⎢
⎡

1/𝐸𝐸 −𝜈𝜈/𝐸𝐸 −𝜈𝜈/𝐸𝐸 0 0 0
−𝜈𝜈/𝐸𝐸 1/𝐸𝐸 −𝜈𝜈/𝐸𝐸 0 0 0
−𝜈𝜈/𝐸𝐸 −𝜈𝜈/𝐸𝐸 1/𝐸𝐸 0 0 0

0 0 0 2(1 + 𝜈𝜈)/𝐸𝐸 0 0
0 0 0 0 2(1 + 𝜈𝜈)/𝐸𝐸 0
0 0 0 0 0 2(1 + 𝜈𝜈)/𝐸𝐸⎦

⎥
⎥
⎥
⎥
⎤

       (8) 

 
(𝑆𝑆𝑐𝑐𝑐𝑐) for a transversely isotropic material is given as shown in equation (9). 

 

𝑆𝑆𝑐𝑐𝑐𝑐 =  

⎣
⎢
⎢
⎢
⎢
⎡

1/𝐸𝐸1 −𝜈𝜈12/𝐸𝐸1 −𝜈𝜈12/𝐸𝐸1 0 0 0
−𝜈𝜈12/𝐸𝐸1 1/𝐸𝐸2 −𝜈𝜈23/𝐸𝐸2 0 0 0
−𝜈𝜈12/𝐸𝐸1 −𝜈𝜈23/𝐸𝐸2 1/𝐸𝐸2 0 0 0

0 0 0 1/𝐺𝐺12 0 0
0 0 0 0 1/𝐺𝐺12 0
0 0 0 0 0 2(1 + 𝜈𝜈23)/𝐸𝐸2⎦

⎥
⎥
⎥
⎥
⎤

           (9) 

 
Combining all equations results in an implicit relation between the crack strain and 

the total elastic strain. 
 
  𝑒𝑒𝑐𝑐𝑐𝑐 =  �𝐷𝐷𝑐𝑐𝑐𝑐(𝑒𝑒𝑐𝑐𝑐𝑐) + 𝑁𝑁𝑇𝑇𝐷𝐷𝑐𝑐𝑐𝑐𝑁𝑁 +

1
∆𝑡𝑡
𝐷𝐷𝑑𝑑𝑑𝑑�

−1
�𝑁𝑁𝑇𝑇𝐷𝐷𝑐𝑐𝑐𝑐𝜀𝜀𝑐𝑐𝑐𝑐 + 1

∆𝑡𝑡
𝐷𝐷𝑑𝑑𝑑𝑑𝑒𝑒𝑐𝑐𝑒𝑒𝑑𝑑𝑐𝑐𝑐𝑐 �                                                      

(10) 
 

Finally, the relation between total stress and total strain in the post-peak regime is 
formulated as 

 
  𝜎𝜎 =  �𝐷𝐷𝑐𝑐𝑐𝑐 − 𝐷𝐷𝑐𝑐𝑐𝑐𝑁𝑁 �𝐷𝐷𝑐𝑐𝑐𝑐 + 𝑁𝑁𝑇𝑇𝐷𝐷𝑐𝑐𝑐𝑐𝑁𝑁 +

 1
∆𝑡𝑡
𝐷𝐷𝑑𝑑𝑑𝑑�

−1
𝑁𝑁𝑇𝑇𝐷𝐷𝑐𝑐𝑐𝑐� 𝜀𝜀𝑐𝑐𝑐𝑐 − 1

∆𝑡𝑡
�𝐷𝐷𝑐𝑐𝑐𝑐(𝑒𝑒𝑐𝑐𝑐𝑐) + 𝑁𝑁𝑇𝑇𝐷𝐷𝑐𝑐𝑐𝑐𝑁𝑁 +

 1
∆𝑡𝑡
𝐷𝐷𝑑𝑑𝑑𝑑�

−1
𝐷𝐷𝑑𝑑𝑑𝑑𝑒𝑒𝑐𝑐𝑒𝑒𝑑𝑑𝑐𝑐𝑐𝑐 .               (11) 



 
The total stress-strain description, such as equation (11), which is more suited for 

large time increments during reversed loading, is pursued here. Equation (10) is a highly 
non-linear equation for the crack strain. It is solved via Newton's method by defining a 
function that is to be minimized. Along with this, it is also required to account for the 
mismatch of the thermo-mechanical properties of the constituent fiber and matrix which 
lead to the build-up of the residual stresses inside the composite which will influence 
the failure response of the composite under the subsequent loading. 
 
SCA for the Matrix  
 

When we are formulating the relations for the smeared crack formulation for a 
matrix the continuum stiffness matrix (𝐷𝐷𝑐𝑐𝑐𝑐) and the compliance matrix (𝑆𝑆𝑐𝑐𝑐𝑐) should be 
for an isotropic material as shown in equation 8. 
 
SCA for the Composite 
 

But, when formulating the relations for smeared crack approach in the composite, 
the continuum stiffness matrix (𝐷𝐷𝑐𝑐𝑐𝑐) and the compliance matrix (𝑆𝑆𝑐𝑐𝑐𝑐) should be for a 
transversely isotropic material as shown in equation 9. 

 
This is important to understand that we first use SCA for the matrix when working 

on the microscale level of a composite. We assume that the crack can only form and 
propagate in the matrix whereas the fiber is assumed to not undergo any cracking and 
damage. In the macroscale when we are modeling the laminate by homogenizing the 
composite properties, there we use SCA for the composite which will be further 
explained in the following sections of the paper. 
 
 
RVE GENERATION  

 
In order to understand the residual stresses developed in a composite system during 

the manufacturing process and the impact it has on the progressive damage of the 
composite it is sufficient to just look at the ‘cooling’ (temperature drop) part of the 
curing cycle from the vitrification point to the end of the curing cycle [3]. The simulation 
of the cooling (temperature drop) is conducted on a randomly generated RVE by 
specifying the fiber volume fraction and the number of fibers we want to be present 
within this RVE. The idea behind conducting simulations on a randomly generated RVE 
is to be able to capture the randomness and uncertainty that is associated with the 
manufacturing process where it is not necessary that all the fibers are equidistant from 
each other and are packed in ideal configurations such as square packing or hexagonal 
packing. 

 
 



 
Figure 1. Randomly generated RVE. 

 
 
Figure 1 shows a randomly generated RVE which has 9 fibers in it and has a fiber 

volume fraction of around 51%. Upon conducting a simulation of the temperature drop 
from 383.15 K (glass transition temperature of resin) to the room temperature 298.15 K 
the residual stress profile that is developed in the RVE is as shown in figure 2. Further 
when the RVE is mechanically loaded the progressive damage simulation is done by 
applying the concept of Smeared Crack Approach (SCA) the stress vs strain plot is 
obtained as shown in figure 3 and the crack contour plot is as shown in the figure 4. The 
red elements in figure 4 are the ones that have failed; hence the red elements together 
are how the crack path looks like. 

The curing cycle parameters of the matrix (EPON 862/W) are as listed in table I. 
The matri and fiber (Carbon) properties of the composite system are as listed in table II 
and table III respectively.  

 
 

 
 

Figure 2. Residual stress contour in RVE that undergoes cure cycle 
(cooling) simulation. 

 
 

 
 
 



 
Figure 3. Stress vs Strain plot for RVE with residual stress that undergoes 

mechanical loading. 
 

 
Figure 4. Crack path in the RVE after onset of failure 

 
 
 
 

TABLE I. THERMO-CHEMO-MECHANICAL PROPERTIES OF 
THE EPON 862/W SYSTEM. 

Symbol Definition Value Unit 
𝜌𝜌𝑚𝑚 Density 1200 kg/m3 

𝐶𝐶𝑝𝑝,𝑚𝑚 Specific Heat 1150 J/kg/K 
𝑘𝑘𝑚𝑚 Thermal 

Conductivity 
0.188 W/m/K 

𝛼𝛼𝑚𝑚𝑅𝑅  CTE at the rubbery 
state 

1.82E-04 1/K 



𝛼𝛼𝑚𝑚𝐺𝐺  CTE at the glassy 
state 

7.78E-05 1/K 

𝜈𝜈𝑠𝑠ℎ𝑇𝑇  Chemical 
shrinkage 
(volume) 

-0.0372 - 

𝐸𝐸𝑚𝑚𝑅𝑅  Modulus at the 
rubbery state 

32.4E+06 Pa 

𝐸𝐸𝑚𝑚𝐺𝐺  Modulus at the 
glassy state 

3.24E+09 Pa 

𝜈𝜈𝑚𝑚𝐺𝐺  Poisson’s ratio at 
the glassy state 

0.35  

𝑇𝑇𝑔𝑔0 Glass transition 
temperature of 

fully cured resin 

246 K 

𝑇𝑇𝑔𝑔∞ Glass transition 
temperature of 
uncured resin 

383 K 

𝜆𝜆 Fitting parameter 0.39 - 
𝜙𝜙𝑔𝑔𝑒𝑒𝑒𝑒 DOC at gelation 0.71 - 

 
TABLE II. MATRIX MATERIAL PROPERTIES. 

Quantity Description Value 
𝐸𝐸𝑚𝑚 Young’s Modulus 3240 MPa 
𝜈𝜈𝑚𝑚 Poisson’s Ratio 0.35 
𝜎𝜎𝑐𝑐𝑐𝑐0  Critical Stress 70 MPa 
𝐺𝐺𝐼𝐼𝐼𝐼 Fracture Energy (Mode-1) 0.32 kJ/m2 

 
 
 

TABLE III. CARBON FIBER PROPERTIES. 
Quantity Description Value 
𝐸𝐸1 Young’s Modulus 

(Longitudinal) 
231 GPa 

𝐸𝐸2 = 𝐸𝐸3 Young’s Modulus 
(Transverse) 

15 GPa 

𝜈𝜈12 = 𝜈𝜈13 Poisson’s ratio 12 and 13 0.27 
𝜈𝜈23 Poisson’s ratio 23 0.497 

𝐺𝐺12 = 𝐺𝐺13 Shear Modulus in 12 and 
13 

24 GPa 

𝐺𝐺23 Shear Modulus in 23 5.01 GPa 
𝛼𝛼1 Coefficient of thermal 

expansion (longitudinal) 
-9E-07 K-1 

𝛼𝛼2 =  𝛼𝛼3 Coefficient of thermal 
expansion (transverse) 

7.2E-06 K-1 

 
 
 



STRENGTH DISTRIBUTION 
 
As discussed earlier there is lot of stochasticity in the process of RVE generation as 

the fiber placement can be varied randomly. Ideally, we should be conducting several 
experiments on the composite and look at the micrographs of the composite to 
understand the fiber placement and the fiber density in the matrix and observe the peak 
stress attained. Then conduct statistical inference on the peak stress data that we have 
and estimate an appropriate statistical distribution of the peak stresses which now act as 
the values for strength in the composite. This distribution should be used to assign the 
strength values in the fiber aligned thin strips in our semi discrete damage model.  

However, conducting several such experiments is tedious to infer a distribution and 
it is just as good as assuming a distribution for the strength values from an engineering 
standpoint. Therefore, we assume a uniform strength distribution for the longitudinal 
and transverse strengths of the composite and assign strength values to the fiber aligned 
thin strips.  We are assuming the maximum and minimum strength values for both 
transverse and longitudinal strengths as specified in table IV for the IM7/8552 system.  

 
TABLE IV. IM7/8522 SYSTEM PROPERTIES. 

Property Description Value 
𝐸𝐸1 Young’s Modulus 

(Longitudinal) 
128 GPa 

𝐸𝐸2 = 𝐸𝐸3 Young’s Modulus 
(Transverse) 

7.6 GPa 

𝐺𝐺12 = 𝐺𝐺13 In-plane Shear 
Modulus 

4.4 GPa 

𝐺𝐺23 Out of plane Shear 
Modulus 

2.62 GPa 

𝜈𝜈12 =  𝜈𝜈13 In-plane Poisson’s 
Ratio 

0.35 

𝜈𝜈23 Out of plane 
Poisson’s Ratio 

0.45 

𝑋𝑋𝑇𝑇(max),  𝑋𝑋𝑇𝑇(𝑚𝑚𝑚𝑚𝑚𝑚) Longitudinal 
Strength (in 

Tension) 

2415MPa, 2300 MPa 

𝑋𝑋𝐼𝐼(𝑚𝑚𝑚𝑚𝑚𝑚),𝑋𝑋𝐼𝐼  (𝑚𝑚𝑚𝑚𝑚𝑚) Longitudinal 
Strength (in 

Compression) 

1607.55 MPa, 1531 MPa 

𝑌𝑌𝑇𝑇(𝑚𝑚𝑚𝑚𝑚𝑚),𝑌𝑌𝑇𝑇 (𝑚𝑚𝑚𝑚𝑚𝑚) Transverse Strength 
(in Tension) 

96.8 MPa, 44 MPa 

𝑌𝑌𝐼𝐼 Transverse Strength 
(in Compression) 

250 MPa 

𝑆𝑆12(𝑚𝑚𝑚𝑚𝑚𝑚), 𝑆𝑆12(𝑚𝑚𝑚𝑚𝑚𝑚) In-plane Shear 
Strength 

112.11MPa, 78.4 MPa 

𝑆𝑆23 Out of plane Shear 
Strength 

78 MPa 

𝐺𝐺1𝐼𝐼𝐹𝐹  Fracture energy of 
the fiber 

(longitudinal) 

40 kJ/m2 



𝐺𝐺2𝐼𝐼𝐹𝐹  Fracture energy of 
the fiber (transverse) 

4 kJ/m2 

𝐺𝐺𝐼𝐼𝐼𝐼𝑀𝑀 Fracture energy of 
the matrix 

(longitudinal) 

2 kJ/m2 

𝐺𝐺2𝑐𝑐𝑀𝑀  Fracture energy of 
the matrix 

(transverse) 

1 kJ/m2 

  
 
SEMI-DISCRETE FINITE ELEMENT MODEL 

 
To analyze the progressive failure analysis of the composite laminate in uniaxial 

tension, a novel semi-discrete damage model is used as discussed in [2]. In the semi-
discrete damage model fiber-aligned meshes are employed in order to increase the 
fidelity of the model as opposed to model without aligned meshing strategy. Along with 
using a semi-discrete finite element model, it is also necessary to make a smart choice 
when it comes to meshing the model by balancing both efficiency and fidelity [3].  

The semi-discrete finite element model is developed by decomposing the model into 
two regions, a bulk material region and a discrete region consisting of thin strips of 
elements. This idea is adopted from [1]. All regions are modeled with pre-peak linearity, 
that is, the constitutive law for a linear elastic material, but the failure modes are 
separated into these two distinct regions. Matrix splitting failure is only active in the 
thin strips, while fiber failure is active in every element. The efficiency is maintained 
by using only continuum elements. To capture the intra-ply damage, semi-discrete crack 
method (SDCM) is used, while for the inter-ply damage surface-based cohesive contact 
interaction is employed. 

Fiber-aligned meshes are created after we have made partitions to create the thin 
strips in which matrix splitting failure mode is active. Once these thin strips are created, 
we assign mesh controls such that the bulk regions are assigned free mesh control, while 
the matrix-cracking strips are meshed with structured HEX elements. The reason behind 
this is to ensure that a strip is modeled with exactly one element along the transverse 
direction. Randomization is brought into the model by now assigning the values of 
strength based on the strength distributions that we have to these thing strip sections in 
the model. This is achieved by writing a python code as a part of the script to generate 
the ABAQUS model.  

The partition procedure can be tedious to do in ABAQUS GUI, therefore, we resort 
to python scripting as this enables us to have the flexibility of choosing the spacing 
between the thin strips and choosing the thickness of the strips. The appropriate 
thickness of the strips is achieved by following the convention shown in equation 12 as 
mentioned in [2]. 

 
  𝑑𝑑𝑐𝑐𝑐𝑐 = min � 𝑠𝑠

10
, 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝
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�                                           (12) 

 
Where 𝑑𝑑𝑐𝑐𝑐𝑐 is the thickness of the strips, 𝑠𝑠 is the spacing between the thin strips, and 

𝑡𝑡𝑝𝑝𝑒𝑒𝑝𝑝 is the thickness of each ply. The dimensions used for the laminate model are as 
shown in the figure (5) and figure (6). The cohesive zone thickness is 9.525 x 10-3 mm, 



the ply thickness value is 190.50 x 10-3 mm. The total laminate thickness is therefore 
790.575 x 10-3 mm. The length of the laminate is 114.3 mm, and the width of laminate 
is 0.8 mm. We need to have an elastic boundary at the end of the laminate specimen so 
that failure doesn’t occur at the boundaries when the specimen is loaded in tension. 
There must be a transition region from the boundary to the laminate as shown in the 
figure () so that there is smoothening of the mesh between the elastic boundary and the 
gage section of the laminate. The width of mesh transition region was chosen to be half 
the width of the elastic boundary. Width of elastic boundary being 5.175 mm. 

 
 
 

 
 

Figure 5. Thickness dimensions in the [+45/-45/-45/+45] laminate. 
 
 

 

 
FIGURE 6. Length and width dimensions of the [+45/-45/-45/+45] laminate.  
 
 
 
 

 
FIGURE 7. Depicting mesh transition region in +45 ply with aligned mesh. 



RESULTS AND DISCUSSION 
 

We perform the tensile loading simulation on the unnotched composite laminate 
model with aligned mesh and enabling randomization of the strength properties. The 
effect of randomization is observed in the figure 8. The peak stress obtained in both the 
cases is 131.95 MPa and the Young’s modulus value of pre-peak regime is 15081.71 
MPa. The closed form solution however shows that the peak stress is 156.80 MPa and 
the Young’s modulus value of pre-peak regime is 15658.57 MPa. The mismatch in the 
peak stress value of the simulation and the closed form solution is significant. It makes 
sense that the peak stress value is lesser than that of the closed form solution. The reason 
for this might be that the onset of failure can happen at multiple places in the laminate 
instead of happening at just one place. Due to the onset of failure at multiple places, the 
laminate would fail at a lower stress value than the closed form value. Similarly, the 
young’s modulus of the simulation model would be lesser than the closed value for the 
same reason. It is interesting to observe that the pre-peak stress-strain performance of 
the laminate without randomization also happens to have similar behavior as the 
laminate in which randomization is enabled. 

While the simulation results carry meaning and the whole procedure outlines a 
framework on how the effects of manufacturing can be incorporated in the progressive 
damage of a composite laminate, it is important to corroborate these results with 
experimental data.  

 

 
 

FIGURE 8. Stress vs Strain plot of the laminate with and without randomization. 
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