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ABSTRACT

This study presents a structured methodology for the optimization of composite
manufacturing processes, focusing specifically on autoclave techniques to mitigate
issues such as the spring-in effect. The initial phase employs Sequential Quadratic
Programming (SQP) in a weighted-sum approach to optimize the cure cycle, using
Radford's equation for spring-in angle estimation and a multi-physics, multi-scale
MATLAB model to investigate the cure and temperature-dependent laminate response.
This phase underscores the efficacy of the selected optimization algorithm,
demonstrating a significant reduction in spring-in while ensuring a high degree-of-cure.
Subsequently, the study incorporates an integrated Finite Element Analysis (FEA)
optimization framework linking ABAQUS and MATLAB. This framework utilizes the
Non-dominated Sorting Genetic Algorithm I (NSGA-II) for multi-objective
optimization with an integrated composite manufacturing processing model. This
second phase illustrates the framework's robust capabilities in composite cure cycle
optimization, providing a well-distributed set of optimal solutions in an efficient
timeframe. The study highlights the potential of the approaches and frameworks
investigated to improve the efficiency, performance, and quality of composite parts.
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INTRODUCTION

Composite materials are increasingly becoming indispensable in the production of
high-performance structures, largely due to their exceptional properties. They exhibit a
high strength-to-weight ratio, offer design flexibility, and provide fatigue and corrosion
resistance, among other attributes. However, manufacturing processes for these
composites can be challenging, especially due to effects such as spring-in, which
predominantly occurs as a result of combined thermal and chemical shrinkage during
the curing process.

Despite the advancement in high fidelity curing-stress-deformation models, it has
become increasingly clear that these are not sufficient in isolation. While such models
are vital for the successful understanding and prediction of composite part behavior, we
are often inundated with a multitude of factors that influence the composite's complex
response during curing. Consequently, we can leverage curing simulation to investigate
these effects, yet, turning this information into tangible improvements in the
manufacturing process is still a considerable challenge.

To effectively harness the power of these sophisticated models, additional tools and
methods are needed. This recognition leads us to integrate techniques such as statistical
analysis, uncertainty quantification, and optimization into our framework. These
approaches are not only complementary to the models but also crucial in facilitating an
informed decision-making process in composite manufacturing.

The purpose of this study is to address these challenges through a two-phase effort
in developing a versatile optimization approach for composite manufacturing processes.
The benchmark for this study is an L-shaped composite part, which is a common feature
in composite structures. With its inherent susceptibility to the spring-in effect, the L-
shaped composite serves as a significant representative of the extent of distortion that
more intricate components may experience during the manufacturing process.

In this study, our optimization approach is geared towards minimizing the spring-in
effect, maintaining high degree of cure (DOC), and ensuring a reasonable processing
time. We underscore that our ultimate objective is not to merely optimize cure cycles
for these specific targets, but rather to establish a methodology that can be broadly
applied across different facets of composite manufacturing.

EFFICIENT CURING-STRESS-DEFORMATION MODEL

This study aims to optimize composite cure cycles to minimize the spring-in effect,
maintain high degrees of cure (DOC), and ensure reasonable processing time. To
achieve this, the capability to model the curing of the composite, and the effect of curing
on the stress-deformation response is required. A curing model typically integrates
essential inputs including material properties, cure cycle parameters, heat transfer
conditions, and geometric information, to generate outputs encompassing the degree of



cure, thermal history, chemical shrinkage, material properties, and potential residual
stresses or distortions of the composite structure.

Resin properties are viscoelastic and change during curing. The idea of the cure
hardening instantaneously linear elastic (CHILE) model is to simplify changes in
properties and viscoelastic behavior by eliminating information that is not significant to
the results of interest. Our CHILE model is physics based and the material input
parameters are the fiber and matrix properties, including the cure kinetics parameters.
In this study, we considered the thermoset resin system EPON 862/W, for which the
cure kinetics can be expressed using the Kamal-Sourour autocatalytic model as [1]
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where ¢ is the degree of cure (DOC). Based on the temperature evolution, this

differential equation is solved numerically using a 4™ order Runge-Kutta method to
obtain the cure evolution, and this exothermic reaction in turn generates heat.

As the resin cures, it transitions from a liquid to the solid phase, the glass transition
temperature simultaneously grows monotonically with DOC, which can be described
using the DiBenedetto Equation [2]
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where T, . Is the glass transition temperature, T, go and T: are the glass transition

temperatures of the un-cured and fully-cure resin, respectively. Detailed discussion
regarding experimental characterization of the cure-dependent glass transition
temperature of EPON 862/W is given in [3]. When the resin temperature is above or

below 7T, ¢ » 1t 1s said to be in the rubbery or glassy state, respectively.

We consider accumulation of stress-deformation after resin gelation occurs and the
material is therefore no longer able to fully relax. Since the resin shows a thermo-
viscoelastic response during curing, the composite cure-dependent constitutive relation
becomes

o(t) = jo Cr(t —s)%(g —&" —&™)ds 3)

where Cr is the composite relaxation stiffness matrix. The CHILE model assumes the
stress analysis can be simplified by assuming that the composite relaxation modulus can
be decomposed into instantaneous and time-dependent parts as [4]

E(t)=E,+Ee"" (4)

When the resin is in the rubbery phase, the relaxation time is small, and the relaxation

modulus can be approximated as ER = Ea. When the resin is in the glassy phase, the
relaxation time is large, and the relaxation modulus can be approximated as



EG = Ea + Em . As a result, the cure-dependent composite constitutive relation can be
simplified as

o(t) = j(:c,. (t)%(g —&" - )dt 5)

where i =R, G represent the composite properties at the rubbery and glassy phases,
respectively. We implement Equation (5) in incremental form as

Ao =C(Ae—Ae"™ - Ae™) (6)

where Ao is the stress increment, and Agt™ and A" are the free thermal and chemical
strain increments.

Multi-scale modeling

In this study, we represent the composite laminate as a homogeneous orthotropic
solid. Our curing model takes fiber and matrix properties as input material properties,
and the resin properties are cure and temperature dependent, therefore, we homogenize
the effective composite thermo-mechanical properties, as shown conceptually in Figure
1. The Extended Concentric Cylinder Assemblage (ECCA) micromechanics models [5]
is adopted to compute the effective lamina properties, and the laminate properties are
homogenized using an extended Classical Laminated Plate Theory (CLPT)-based
approach to obtain the full 3D properties, including effective elastic properties, and
coefficients of thermal and chemical expansion.
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Figure 1. Conceptual diagram of multi-scale curing-stress-deformation model used in this study.

During the composite manufacturing process, thermal and chemical strain
increments, used in Equation (6), accumulate due to changes in temperature and degree
of cure as,

Aeth = aAT
ASCh — BAd) (7)



where a and f are the homogenized coefficients of thermal and chemical expansion
vectors, respectively, and AT and A¢ are temperature and cure increments, respectively.
It is noted that B is a negative number as the chemical effects are manifested as cure
shrinkage. In this study, we consider two implementations of the efficient curing model,
the MATLAB and FEA (ABAQUS) implementations, namely, to predict the processing
induced spring-in angle.

MATLAB implementation

In the MATLAB implementation, we define the temperature history directly by
discretizing the cure-cycle. The temperature-cure-dependent properties are
homogenized at each increment, and the thermal and chemical strain increments are
obtained by Equation (7). Then, the spring-in is computed using Radford’s equation as
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where the subscripts 8 and r designate the azimuthal and radial directions, respectively.
This allows us to obtain an estimated spring-in response without discretizing geometry
or structural analysis. The advantages of this implementation are high efficiency and
straightforward application to optimization, as the model is contained directly in a
function, which is the conventional way to pass the objective function to an optimization
algorithm.

FEA implementation

The FEA implementation utilizes a user-defined material subroutine, known as
UMAT, within the ABAQUS commercial software, and offers significant flexibility by
enabling tool-part interaction and heat transfer analysis through discretization. While
the current study excludes heat transfer analysis for the sake of simplicity and
operational efficiency, it remains an intriguing prospect for future investigation. By
incorporating heat transfer analysis into the optimization framework, a more complete
and accurate influence of the cure cycle can be achieved, and additional objectives
defined, such as minimization of thermal gradients.

Discretization plays a crucial role in the FEA implementation as it divides the
geometry into finite elements, allowing for detailed tool-part interactions to be captured.
This enables a more accurate representation of the manufacturing process, considering
factors such as contact, friction, and thermal effects. To measure the spring-in angle, the
change of slope of nodes along the flange of the L-shaped geometry is computed
following demolding. To measure the final DOC, the integration point volume average
is taken.

As a first step in the optimization study, a trend insight of the cure-cycle effects on
spring-in angle was pursued by designing eight cure cycles for the EPON862/W resin
system. The curing process was simulated for each case and the spring-in angle was
measured from each result, along with the degree of cure and processing stresses. The
results of each cure-cycle were compared to identify the optimum. The results are shown



in Figure 2. Based on these preliminary results, we concluded that spring-in is highly
dependent on the cure cycle, and tool-part interaction introduces added complexity.
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Figure 2. FEA “trend-insight” curing results including tool-part-interaction, with cure-cycle as “T”,
spring-in, DOC, and internal stress history.

Experimental validation

For the purpose of experimentally validating the FEA processing model,
manufacturing experimentation was conducted using an aluminum female mold and
isothermal cure cycle. The experiment yielded an average spring-in angle of 1.95°.
Subsequently, a corresponding simulation using the FEA model was executed with
identical tooling and cure cycle as employed in the experiment. The output from the
simulation closely mirrored the experimental result, yielding a spring-in angle of 1.90°.
This close match supports the accuracy and applicability of the FEA model in
reproducing realistic scenarios. The experimental specimen and corresponding
simulation are visually represented in Figure 3 (a) and (b) respectively.
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Figure 3. Composite L-shape manufactured using female tooling; (a) experiment and (b) simulation.

PHASE 1: OPTIMIZATION OF CURE CYCLE USING SQP (NON-FEA)
Problem Description

In this study, the cure cycles are optimized. The design variables are three
temperature ramping rates, a,, a,, and a3, two temperature holds, T; and T,, together
with hold durations, t; and t,, which are illustrated in Figure 4.
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Figure 4. Illustration of cure cycles and design variables.
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The objective of this study is to minimize the spring-in angle while keeping a short
duration and DOC, ¢, close to 1. They are considered as three objective functions.

f=nfit+tnrf,+nsf; C))
where
f1 = abs(AB)
fo=1-1¢
fz =t/10000

where 1y, 15, and 73 are the weights of the three objective functions, and ¢ is the total
duration of cure cycles. The three functions are fully independent. When t is increased,
the spring-in effect can be decreased, and the curing can be more completed. However,
if t is excessive, the further decrease of the f; and f, does not worth the time cost.



Sequential Quadratic Programming (SQP) Algorithm

An in-house SQP algorithm was written in MATLAB to conduct the optimization
in this study [6, 7]. The algorithm starts with finding a search direction, s, from the
current point, x. The problem itself is transformed into quadratic form as:

Minimize
Q(s) = f(x) + Vf(2)"s +5"Bs (10)

Subject to

Here, a matrix B is used to approximate the Hessian matrix using the Broyden—
Fletcher-Goldfarb—Shanno (BFGS) method. Initially, B is an identity matrix. If g; is
satisfied or linear, then §; = 1. Otherwise, §; = 0.9. MATLAB function “quadprog” is

adopted to solve for s. Next, the step size a is found by making use of an exterior penalty
approach to approximate Lagrangian function:

®(a) = f(x + as) + Z wi{max[0, g;(x + as)|} (12)
=1

J

where u; are updated based on Lagrange Multipliers, A;, from the search direction
results.

|Aj| for the first iteration
1
uj = { max [|/1]|,§(u]’ + |A]|)] for subsequent iterations and (13)

u

; are the u; in the previous step

The MATLAB function “fminbnd” is used to compute the optimal a at the current
point. The next point would be:

x1=x1"1+qs (14)
Then, it is necessary to update the approximation of Hessian using BFGS method

Bpp"B  nn’
B*=B - + (15)
p’Bp pny

where p = x9 — x971 and § = 0y + (1 — 8) Bp. The vector y is the change of the
gradient of the Lagrangian function. The scalar 8 is chosen as

1 p'y > 02p"Bp
6={ 08p'Bp therwi (16)
—_—_— otherwise
p'Bp —pTy



Optimal Design

The in-house SQP algorithm was used to optimize the cure cycle in the composite
manufacturing process of a curved composite section. Three objectives were used,
namely, the spring-in angle, the process time (total duration of the cure cycle), and the
DOC. A weighted-sum approach was used to combine the multiple objectives in a single
objective function, and the weights were assigned to the three terms such that they were
on the same order of magnitude, and the order of importance was as follows; 1. Spring-
in angle, 2. Process time, and 3. DOC. The absolute value of the spring-in angle was
used, as in our case it is desired to achieve a spring-in angle as close to zero as possible.
The DOC ranges from 0-1, and it is desired to be as close to 1 as possible, though values
above 95% are acceptable, therefore, the weight of the DOC term was set to increase
when DOC dips below 95%, similar to a penalty function. For mass production in the
industry, processing time is extremely important to reduce as much as possible. The
process-time term used in this study is proportional to the total duration of the cure
cycle.

The manufacturer provides what is called the manufacturer recommended cure
cycle (MRCC), which serves as a simple guideline for general processing, but does not
account for specific design requirements or part geometry. TABLE 1 presents the design
variables corresponding to the MRCC, and the resulting optimal design when using the
MRCC as the initial design. The simulated manufacturing process results are presented
for the initial (MRCC) design in Figure 5. (a), and the optimal design in Figure 5. (b).
Here, the red curve shows the applied temperature-time history, which is dictated by the
seven design variables, the dotted black curve shows the degree-of-cure development,
and the blue curve shows the spring-in response. The title of each plot displays the final
spring-in angle and final degree-of-cure, and the total duration of the cure cycle is the
limit of the x axis, in seconds. The MRCC results for spring-in, processing-time, and
DOC are 2.1°, 10800 s, and 98.8%, respectively. The optimal cure cycle results are 1.2°,
8960 s, and 97.9%, respectively, which represents a significant improvement.

TABLE 1. INITTAL AND FINAL DESIGN STARTING WITH THE MANUFACTURER
RECOMMENDED CURE CYCLE.

Design a; a; as Ty T, ty ta
(K/min) (K/min) (K/min) (K) (K) (min) (min)

Xo 9.6667 1 3.2222 443.15 443.15 0 120
x" 20 20 0.0234  403.1414 465 94.0692  29.0852

Initially, the problem was formulated as single-objective to optimize spring-in only,
which resulted in many local minima or flat regions in the design space, which was not
suitable for our optimization algorithm, and resulted in sensitivity to the initial design.
By incorporating the process-time and DOC as additional objectives, rather than
constraints, additional slope is superimposed throughout the design space, which
improved the optimization performance and allowed us to produce more optimal design.
After improving the formulation of our problem as weighted-sum multi-objective, the
results were no longer highly sensitive to the initial design. To demonstrate this, we



randomized the initial design to produce a sequence of optimization results and find that
while the initial designs vary greatly, the optimized designs are consistent, with spring-
in, process-time, and DOC typically around 1.5°, 7000 s, and 98%, respectively.
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Figure 5. Manufacturing process simulation results using, (a) manufacturer recommended cure cycle
as initial design, and (b) the corresponding optimized cure cycle.
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Figure 6. Performance of the optimization process; (a) convergence of the design and fitness
overlaid with the objective function value, and (b) values of the individual terms in
the weighted-sum multi-objective function.

PHASE 2: INTRODUCTION OF INTEGRATED FEA OPTIMIZATION
FRAMEWORK USING NSGA-II

In the second phase, an integrated Finite Element Analysis (FEA) optimization
framework linking ABAQUS with MATLAB is introduced. The framework features a
closed-loop process involving an optimizer (MATLAB) and an evaluator (ABAQUS
/Python) that interact through text files, enabling a seamless iterative optimization
process. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is employed for
multi-objective optimization.

A flowchart demonstrating the FEA optimization framework is shown in Figure 7.
Here, it is shown that the input to the optimizer program is the “current fitness.csv” file,



containing the fitness of (objective values associated with) the current design. The
optimizer output is the “current design.csv” file, containing the design variables of the
new generation. These design variables are the input for the evaluator program, which
subsequently evaluates the fitness and stores them as output to the “current_fitness.csv”
file, and the cycle repeats.

MATLAB ABAQUS Python

Program (Optimizer) Program (Evaluator)
Write text file
t,t*, ot Copy/modify .inp files
% o stats.csv
X 'f tfavg

Submit .inp files
design_fitness_ B
history.json

raw_history.json

i Write files
~~ current_fitness.csv

Figure 7. Flowchart of FEA optimization framework.
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In the context of our optimization problem, the FEA optimization framework is
grounded in the principles of genetic algorithms. In our application, the cure cycle
parameters, fundamental to the composite manufacturing process, are represented as
evolving genes within the genetic algorithm. Each unique arrangement of these
parameters forms an individual 'design' within the population. The 'fitness' of each
design is evaluated based on the value of the associated objective function, thus
quantifying the design's performance. Following the survival-of-the-fittest principle, the
'winning' designs, i.e., those with the highest fitness, are allowed to reproduce. The
offspring produced are a random amalgamation of the 'genes', or design variables, of
their parent designs, thus ensuring diversity and exploration within the design space. To
further explore this design space and avoid premature convergence to a suboptimal
solution, 'mutation’ is incorporated, introducing random changes to the design variables,
and providing an essential mechanism for the evolution and improvement of designs in
our optimization framework.

NSGA-II is a multi-objective optimization algorithm that uses a genetic algorithm
approach to find a set of solutions known as the Pareto front, which enables true multi-
objective optimization. It balances exploration and exploitation to efficiently identify
diverse and optimal solutions by employing concepts such as nondominated sorting,
selection based on dominance, and genetic operators like crossover and mutation.
NSGA-II, as compared to a standard GA, provides a better exploration and exploitation
of the solution space due to its elitism and diversity preservation mechanisms, though it



can be computationally more demanding due to the need for additional sorting and
ranking steps. The additional steps use existing fitness values to enhance solution
diversity and robustness, aiming for a well-distributed set of optimal solutions without
necessitating extra fitness evaluations, making it well-suited for FEA and composites
manufacturing process optimization.

In the optimization algorithm, the current fitness values of the population,
represented as f;, form the input data, which the algorithm uses to generate the next
generation of individual designs, denoted as x; ;. In this context, the subscript t denotes
the generation. The population comprises of 2N individuals, with each having n design
variables, aiming to optimize M objectives. Thus, x is of size 2N X n and f is of size
2N X M. The reason for the population size being 2N is tied to the sorting, ranking, and
Pareto front procedures; these methods necessitate the inclusion of N parent individuals
alongside their N offspring.

To initialize the optimization procedure, the algorithm generates designs randomly
within the upper and lower bounds of the design variables, which make up the
population and is the optimizer output. The population is written to the current-design
file as shown at the top of Figure 7, containing the matrix x and the base-name of the
optimization problem, and this file constitutes the input to the evaluator program. The
optimizer then calls the evaluator and waits for it to finish before recursing. An
alternative approach verified in this study is for the optimizer and evaluator to both run
in the background and directly call one another.

Evaluator program

The evaluator reads the matrix x from the current-design file, along with the base-
name, which it uses to identify the optimization problem. In our framework, the
optimization problem is defined as a Python module, containing the members:

e inp = makeJob(x): Function that makes an ABAQUS input file inp based
on the individual’s design, x;. Submission of this input file runs the
corresponding simulation, producing the corresponding ABAQUS output
database, odb.

e vy = getOutput(odb): Function that extracts raw output y of interest from the
ABAQUS simulation output odb. y is a dictionary that maps the names of the
quantities of interest to their respective values.

e f = Phi(y): Pseudo-objective function that defines the value(s) f to be
minimized, based on the extracted raw output y. This method can be used to
define weighted-sum multi-objective functions via scalar output or true multi-
objective functions with vector output. Additionally, constraints can be
implemented here as penalty functions.

e SUBROUTINE: (optional) String defining the name of a user-defined
FORTRAN subroutine required by the job.

Here, each method is designed to handle a single individual from the population and
define all the information needed by the evaluator program to determine the fitness of
the population. The name of the module contains the problem base-name, allowing it to
be imported dynamically by the evaluator based on the problem at hand. Thus, the
evaluator acts as an interface between the optimization process and the ABAQUS



simulation, translating design decisions into meaningful simulations and retrieving the
necessary output data to assess performance.

The input files corresponding to current-design are generated using ‘makelob’,
which in this case contains a base input file as a f-string and computes the input
parameters from the design variables x;. The program writes a batch file to submit the
jobs in parallel, and while the ABAQUS simulations are running, the Python evaluator
program is checking for completed jobs in the background by monitoring the log files.
This way, the individual outputs for completed simulations can be processed
immediately while the other simulations are still running in parallel, improving the
efficiency of the overall framework. When a simulation completes successfully, the
evaluator program passes the output database to the “getOutput’ to obtain the raw output
values, which in this study include the final spring-in angle, volume average final degree
of cure, and total processing time. The raw output is passed to the "Phi’ pseudo-objective
function to obtain the job’s fitness.

The fitness data is assembled for the entire population and written to the current-
fitness file along with the generation number, which is the output of the evaluator
program, and the input for the optimizer program. The optimizer program now reads
the fitness values for the population it had generated, iterates the generation number,
and computes the next generation based on the fitnesses as described earlier, and the
cycle is complete, as seen in Figure 7.

Features

Figure 7 shows three additional files utilized by the framework not mentioned thus
far, namely, the statistics file ‘“stats.csv”, design-fitness-history file
“design_fitness_history.json”, and raw history “raw_history.json” file, which are not
necessary to form the closed loop, but improve efficiency and usability.

The statistics file is updated each generation with the current generation number, ¢,
the number of generations that the best design has not changed, t*, homogeneity of
current designs, a;,*%*, current best design, x*, the corresponding current best fitness,
[7, and the average fitness of the current population, f 4,,4. These optimization statistics
are used to plot the optimization performance in real time, and compute the stopping
criteria. Stopping criteria include maximum number of generations, average fitness
approaches best fitness (fapg = fpest), designs are homogeneous across population

(a*** < threshold value), best design does not change for several generations (t*>
threshold value).

The purpose of the design-fitness-history is to prevent a single design from being
evaluated more than once. This file maps every unique design to its corresponding
fitness since the first generation. If the objective function is unchanged, the file can be
re-used from previous optimizations. After reading the current-design, the evaluator
checks the design-fitness-history for any of the current designs. Since NSGA-II includes
parents as half of the population, at least half of the population will be in the design-
fitness-history each generation. Additionally, the evaluator will check for any duplicate
designs within the current generation, to ensure that it is only evaluated once.

The raw-history saves the raw output of the best design each generation in JSON
format, and the purpose is to provide the user with meaningful data from the jobs, since
the fitnesses may lack physical interpretation due to their role as an optimization tool.



Cure model optimization results

The multi-scale curing FEA model was integrated in the FEA optimization
framework. Figure 4 illustrates the design variables, and Figure 8 (a) shows the finite
element model response, respectively, for the cure-cycle optimization problem, where
it is desired to minimize the spring-in angle and processing time, while maximizing the
degree-of-cure. Figure 9 shows the solution history for this example, which is a real-
time visualization of the information contained in the statistics file, where the dashed
blue curve is the average fitness, the solid black curve is the best fitness, the red curve
quantifies the variance of the designs, and the red X marks the number of generations
that the best design has not changed. In this example, the stopping criteria that was met
was the maximum allowable number generations that the best design does not change,
which was five. In this study, the optimization framework ran 190 evaluations of the
curing simulation, arriving at the optimal design in 8.8 minutes. An advantage of using
a genetic algorithm in the FEA optimization framework is that the entire population of
designs can be simulated (depending on computational and licensing resources) in
parallel each generation, which allows for many more fitness evaluations in the same
wall-clock time than could be achieved with other optimization algorithms such as SQP,
which evaluates a single design at a time. The optimal results are shown in Figure 8 (b).
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Figure 8. FEA cure-cycle optimization problem (a) stress-deformation output and (b) optimal
cure-cycle compared to MRCC.
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Figure 9. Optimization performance.



The MRCC results for spring-in, processing-time, and DOC are 2.1°, 10800 s, and
98.8%, respectively. The optimal cure cycle results are 1.1°, 8200 s, and 98.7%,
respectively. The optimization in phase 2 further refines the manufacturing process with
an additional reduction in spring-in, down to 1.1° from the initial 2.1° given by the
MRCC, and a 24% decrease in processing time from the original 10800s to 8200s.
While the fitness evaluation method differed from phase 1, the phase 2 result still
achieved superior outcomes with a slightly lower spring-in angle and processing time,
and slightly higher degree-of-cure.

FUTURE WORK

Future work will aim to expand the current optimization methodology in several
directions:

1. Experimental validation. Fabricate and test composite samples using
optimized cure cycles, comparing their spring-in angles and properties with
control samples.

2. API-based parametric model generation. Integrate an alternative FEA job
maker which relies on generating a complete ABAQUS model using a
parametric Python script, rather than modifying parameters in an existing .inp
file.

3. Influence of tool design. We find that tooling design can effect the resulting
spring-in angle. With the optimization framework as it is, we can provide several
tooling cases and optimize the cure cycle for each one. Alternatively, using the
future API-based model generation, the geometric design of the mold could be
defined parametrically and treated as design variables.

4. Sequentially coupled analyses. Include heat transfer by integrating the
capability for sequentially coupled heat transfer and stress analyses in the
optimization framework.

5. Thermo-visco-elastic curing. Optimize cure-cycle using visco-elastic curing
model and compare with CHILE results and performance.

6. HPC. Integrate high-performance-computing capabilities in the optimization
framework by enforcing Linux compatibility and conforming to SLURM
procedures.

CONCLUSIONS

In conclusion, this study demonstrates the successful application of optimization
algorithms to composite manufacturing and introduces an integrated FEA optimization
framework to enhance the overall efficiency and performance of composite structures.
The developed methodology and framework can be further extended to optimize other
critical parameters in composite manufacturing, leading to high-quality composite parts
with reduced manufacturing time.

Phase 1 of the investigation employed MATLAB and Sequential Quadratic
Programming (SQP), despite their inherent limitations in capturing the complex nature
of composite manufacturing. While SQP was not directly applicable to the optimization



of composite cure cycles, careful formulation of the pseudo-objective function enabled
its effective use, circumventing the challenges posed by local minima in the design
space. The optimization process resulted in a substantial 43% decrease in spring-in and
a 17% reduction in processing time, thereby substantially bolstering manufacturing
performance. Although a marginal reduction in the degree-of-cure was observed, it
remained at a high level, preserving the requisite properties of the composite.

Phase 2 of the study marked a shift to a more comprehensive FEA optimization
framework that effectively leveraged the capabilities of MATLAB and ABAQUS,
deploying NSGA-II for multi-objective optimization tasks. With the integration of an
efficient composite manufacturing processing model, the framework demonstrated the
ability to efficiently optimize cure cycles within a span of just 8.8 minutes on the
author’s local desktop, achieving a further reduction in the spring-in angle and
processing time while maintaining a high degree-of-cure. The advancements achieved
in this phase highlight the potential of the FEA optimization framework as an
instrumental resource for augmenting composite manufacturing processes in the future.
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