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Abstract

The Socratic method is a way of guiding stu-
dents toward solving a problem independently
without directly revealing the solution to the
problem by asking incremental questions. Al-
though this method has been shown to signif-
icantly improve student learning outcomes, it
remains a complex labor-intensive task for in-
structors. Large language models (LLMs) can
be used to augment human effort by automati-
cally generating Socratic questions for students.
However, existing methods that involve prompt-
ing these LLMs sometimes produce invalid out-
puts, e.g., those that directly reveal the solu-
tion to the problem or provide irrelevant or
premature questions. To alleviate this prob-
lem, inspired by reinforcement learning with
AI feedback (RLAIF), we first propose a data
augmentation method to enrich existing So-
cratic questioning datasets with questions that
are invalid in specific ways. Also, we propose
a method to optimize open-source LLMs such
as LLama 2 to prefer ground-truth questions
over generated invalid ones, using direct pref-
erence optimization (DPO). Our experiments
on a Socratic questions dataset for student code
debugging show that a DPO-optimized LLama
2-7B model can effectively avoid generating
invalid questions, and as a result, outperforms
existing state-of-the-art prompting methods1.

1 Introduction

Learning based on a conversation that consists of
questions and answers, where the student responds
to questions posed by a more knowledgeable in-
structor, has been proven to be effective in teaching
students about a particular concept (Wood et al.,
1976). In particular, Socratic questioning, which
refers to a way for the instructor to guide a student
to solve a problem (within their zone of proximal
development) by asking them questions that pro-

1The code for our paper can be found at: https://github.
com/umass-ml4ed/socratic-quest-gen

mote thinking while not directly revealing the so-
lution (Quintana et al., 2018), is a very effective
pedagogical method in conversation-based learning
and tutoring.
Recent advances in large language models

(LLMs) (Bubeck et al., 2023) have led to the rapid
development of chatbots that promote student learn-
ing by automatically generating the instructor’s
utterances (Dan et al., 2023; Kazemitabaar et al.,
2024; Tanwar et al., 2024). One key area of interest
in the development of such chatbots is question gen-
eration, which can help students solve logical prob-
lems in the mathematics and programming domains
(Al-Hossami et al., 2023; Shridhar et al., 2022).
Typically, question generation in educational appli-
cations has focused on generating practice or as-
sessment questions, in biology exams (Wang et al.,
2018), reading comprehension (Ashok Kumar et al.,
2023), math practice (Wang et al., 2021), and pro-
gramming exercises (Sarsa et al., 2022). As a spe-
cific form of question generation, Socratic question
generation has gained attention, owing to its effec-
tiveness in improving student learning outcomes by
eliciting critical thinking and self-discovery during
problem-solving (Paul and Elder, 2007).
Socratic questions generation is a complex

task because it involves mapping out the step-by-
step thought process of students during problem-
solving, locating the cause of their error, and pro-
viding effective questions without revealing the so-
lution. Manually generating Socratic questions can
be a cognitively demanding and time-consuming
task for instructors. Several recent works proposed
to automatically generate Socratic questions using
LLMs: In math education, (Shridhar et al., 2022)
shows that generating a sequence of Socratic sub-
questions and prompting students to answer helps
them solve math word problems more successfully.
In computer science education, (Al-Hossami et al.,
2024, 2023) releases a dataset on Socratic questions
for student code debugging and provides baselines
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based on LLM prompting and finetuning. In partic-
ular, the authors prompt GPT-3.5-turbo and GPT-4
(Bubeck et al., 2023) in a chain-of-thought man-
ner (Wei et al., 2022) to generate Socratic ques-
tions. A human study by the authors shows that
the generated questions can sometimes be invalid
in several different ways, including being irrele-
vant to the problem, repetitive of earlier dialogue
turns, or too direct and revealing the solution pre-
maturely, which may hamper students’ learning
processes. Since GPT models are proprietary and
expensive, the authors also attempt to fine-tune the
open-source Flan-T5 model (Chung et al., 2022);
however, doing so proves to be ineffective due to
its insufficient scale and the pretraining procedure
used.
In this paper, we propose a method to improve

the validity of automatically generated Socratic
questions using open-source LLMs. Our method is
inspired by recent developments in reinforcement
learning with AI feedback (RLAIF) (Lee et al.,
2023); our method consists of two phases, data
augmentation and preference optimization. Specifi-
cally, our contributions are as follows:

• To the best of our knowledge, this work is the
first to introduce a data augmentation method
to create negative samples, i.e., invalid ques-
tions, to help us train LLM-based Socratic
question generation methods.

• We use the preference information in the
dataset, i.e., pairs of valid and invalid Socratic
questions, to optimize Llama 2 (Touvron et al.,
2023), an open-source LLM, using direct pref-
erence optimization (DPO). (Rafailov et al.,
2023).

• We show that our method using the Llama
2-7B model outperforms existing state-of-the-
art methods that rely on larger, proprietary
models such as GPT-3.5 and GPT-4 on the
Rouge-L metric and are comparable in terms
of BERTScore. We also use a series of case
studies to illustrate the quality of Socratic
questions we generate and that DPO con-
sistently outperforms supervised fine-tuning
(SFT).

2 Related Work

2.1 Question Generation in Education
In education, question-generation systems are used
to create learning materials and problem sets for

quizzes and exams. (Wang et al., 2021) introduces a
framework for generating math word problems that
incorporates a module for checking the consistency
of the word problem generated in terms of the un-
derlying equations that it solves. Our idea of check-
ing the consistency of the synthetically generated
samples in data augmentation is inspired by theirs.
(Ashok Kumar et al., 2023) proposes a data aug-
mentation and an over-generate and rank method to
fine-tune a language model Flan-T5 (Chung et al.,
2022) to generate questions for reading comprehen-
sion. Their data augmentation method prompts a
larger LLM to augment the dataset with valid ques-
tions (positive examples) corresponding to a pas-
sage in the reading comprehension and then uses
this augmented dataset for standard fine-tuning of
a smaller open-source LLM. Unlike their work, our
data augmentation method involves prompting a
larger LLM to generate invalid questions (nega-
tive examples) to create a preference dataset that
we use for performing preference optimization on
a smaller open-source LLM. In computer science
education, recent works show the effectiveness of
LLMs like OpenAI Codex and GPT-4 (Sarsa et al.,
2022; Kumar and Lan, 2024) on generating pro-
gramming exercise questions, code explanations,
and test cases. (Al-Hossami et al., 2024, 2023)
introduce a Socratic code debugging dataset, to
help a student debug their code along with max-
imizing the students’ learning outcomes. Their
experiments with prompting models like GPT-3.5-
turbo, and GPT-4 show that these models tend to
hallucinate and produce invalid questions. To ad-
dress this issue, our work builds upon theirs to
fine-tune language models to align the generated
questions towards ground-truth human preferences
and discourage the models from generating invalid
questions.

2.2 Reward/ Preference Optimization

Fine-tuning language models to align with human
preferences has proven to be beneficial in various
natural language processing tasks (Kreutzer et al.,
2018; Stiennon et al., 2020; Ziegler et al., 2019;
Ouyang et al., 2022). Traditional methods first
learn a reward model using a dataset of human pref-
erences and optimize the language model for the
downstream task using the rewards obtained from
the reward model with reinforcement learning (RL)
algorithms such as PPO (Schulman et al., 2017).
There are two drawbacks to this method. First, it
is hard to obtain a dataset of human preferences

109



as it is an expensive and sometimes cognitively
demanding task. To address this issue, RLAIF pro-
cures rewards from an AI system, such as an LLM,
and has become a scalable and cheaper alternative
(Lee et al., 2023). Second, although preference
optimization of LLMs using RL algorithms like
PPO is effective, it is significantly more challeng-
ing and time-consuming than traditional supervised
learning as it involves tuning multiple LLMs and
sampling rewards in real time. To address this issue,
the DPO method (Rafailov et al., 2023) optimizes
a language model to a preference dataset in an RL-
free manner by formulating the problem as a binary
classification task.
In the domain of education, (Shridhar et al.,

2022) proposes a reward-based method to generate
Socratic sub-questions to solve math word prob-
lems. Similar to our method they define reward
characteristics like fluency, granularity, and an-
swerability to prefer sub-questions that have these
desired characteristics. They use REINFORCE
(Williams, 1992) a popular RL algorithm to op-
timize their model by sampling rewards from ex-
ternal systems in real time. Our method is dif-
ferent from theirs as we first prompt an LLM to
generate invalid Socratic questions (negative exam-
ples) to construct a preference dataset. We then use
this fixed dataset to tune an open-source LLM in
an RL-free method, i.e., using DPO which makes
the training more stable and less complex. (Hicke
et al., 2023) proposes a DPO-based method for
fine-tuning LLama 2 (Touvron et al., 2023) for
question-answering on a dataset of Piazza posts for
an introductory programming course. They create a
proxy preference dataset by using the edit history of
Piazza posts by preferring the final versions of an-
swers as opposed to the earlier versions. However,
the setting of their work is different from ours as we
focus on Socratic question generation and propose
a method to create the preference dataset using data
augmentation. (Scarlatos et al., 2024) propose a
method to perform DPO on LLama 2 for the task
of feedback generation to help students solve math-
ematics word problems. To create preference pairs
they prompt LLMs like Codex (Chen et al., 2021)
and GPT-3.5 turbo to generate bad feedback and
rate the feedback based on a pre-defined rubric us-
ing GPT-4. Our problem setting is different from
theirs as we focus on the programming education
domain and for our task the LLM needs to provide
a series of step-by-step feedback in the form of a
dialogue-based interaction through Socratic ques-

tions instead of just providing the feedback once
for a given problem.

3 Problem Definition and Dataset

We study the problem of Socratic question gener-
ation in conversations between a Student and an
Instructor, where the Instructor’s goal is to guide
the Student through the process of solving a prob-
lem. Concretely, our goal is to generate Socratic
questions at a particular dialogue turn for the in-
structor during the conversation, given the dialogue
history and contextual information about the prob-
lem the Student is trying to solve and their solution.
In this work, we use the dataset for code debug-

ging introduced in (Al-Hossami et al., 2024, 2023).
The dataset is based on didactic conversations be-
tween a Student and an Instructor, where the Stu-
dent is a novice programmer tasked with writing
a program for a given problem. The dataset con-
sists of the Student’s buggy code submissions along
with a dialogue between the Instructor and the Stu-
dent, where the Instructor asks Socratic questions
in the form of a conversation to help the Student
debug their code. The conversation consists of di-
alogue turns with each Instructor utterance being
a collection of several possible “ground-truth” So-
cratic questions at that dialogue turn. The dataset
also contains metadata including the problem state-
ment, the test cases, the bug description, and code
fixes to resolve the bug. In total, there are 38 prob-
lems with more than 50 different bugs in student
solutions, and conversations centered around these
buggy codes containing more than 1900 dialogue
turns. The dataset is split into two subsets, a train
set and a test set which contain 135 and 16 dia-
logues, respectively, spread across different prob-
lems.

4 Proposed method

In this section, we describe our method for the task
of Socratic question generation. Our method in-
volves two phases: First, data augmentation, and
second, preference optimization, as shown in Fig-
ure 1.

4.1 Data Augmentation

Inspired by methods in RLAIF (Lee et al., 2023),
we augment the dataset with invalid Socratic ques-
tions constructed by prompting GPT-4 (Bubeck
et al., 2023), which provides realistic negative
samples for LLM-based question generation meth-
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Figure 1: Illustration of our method for LLM-based Socratic question generation, which consists of two phases,
data augmentation, and preference optimization.

ods to train on. We follow the method described
in (Ashok Kumar et al., 2023) to prompt an
LLM to generate synthetic data and employ an-
other instance of the LLM for checking the qual-
ity/consistency of the generated synthetic data. Fol-
lowing the definition mentioned in (Al-Hossami
et al., 2024), invalid Socratic questions fall into the
four following categories:

• Irrelevant questions that are not useful for
the student, as they shift focus from the actual
bug, which may confuse the student.

• Repeated questions that have already been
asked in previous dialogue turns, which are
meaningless to the student.

• Direct questions that directly reveal the bug to
the student, which do not prompt students to
think and may hinder their learning process.

• Premature questions which prompt the stu-
dent to make code fixes before identifying the
bug, which may confuse the student.

To generate invalid questions via an LLM, we
construct a few-shot prompt that consists of 1) the
definition of the categories as mentioned above and
2) an in-context example for each of the invalid
question categories detailed above. Our prompt
encourages the model to reason using a chain-of-
thought method, by first generating the “reasoning
process/logic” behind an invalid question, followed
by the question (Wei et al., 2022). We generate in-
valid questions corresponding to all four categories
at every dialogue turn where the ground truth is
provided.
Following (Ashok Kumar et al., 2023; Wang

et al., 2021), we use a consistency checking step
where we prompt GPT-4 to check the consistency
of the generated questions to filter out inconsistent
questions from the augmented dataset. Inconsistent
questions are those that do not belong to any of the

invalid categories listed above. We pose the consis-
tency checking step as a classification task where
GPT-4 predicts a label for each generated ques-
tion over six categories, including the four invalid
categories and two additional categories: “good”
and “incorrect”. Good questions are acceptable
Socratic questions at that particular dialogue turn
and cannot be used as negative samples. Incorrect
questions are unrelated to the problem and the di-
alogue itself and are often erroneous due to LLM
hallucination, which provides little value as easy-
to-tell negative samples. To maintain high data
quality of our preference dataset, we discard all
samples that are predicted as “good” or “incorrect”,
to get the final set of synthetically generated invalid
questions.
Finally, we construct a preference dataset con-

sisting of 2500 tuples of valid and invalid Socratic
questions. In the preference pairs, valid questions
are taken from the ground truth questions in the
original dataset, while the invalid questions are
generated synthetically as described above. Each
valid question from the original dataset is paired
with every synthetically generated invalid question
of all categories to form the augmented dataset.

4.2 Preference Optimization

In this step, we fine-tune an open-source LLM,
Llama 2 (Touvron et al., 2023) for Socratic ques-
tion generation using DPO (Rafailov et al., 2023).
The first step is to perform SFT, i.e., we use the
original dataset, D, as is to fine-tune LLama 2 for
Socratic question generation. For a given conversa-
tion in the train set, we first split the dialogue into
constituent dialogue turns. The input to LLama 2 is
a prompt (p) that consists of a systems message that
instructs the LLM to generate a Socratic question,
the problem metadata, and the current dialogue
history (between the Student and the Instructor).
The output is the valid Socratic question (qv) cor-
responding to that dialogue turn in the dataset. In
the cases where multiple Socratic questions were
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given for a dialogue turn, we treat each one as a
different output associated with the same input for
fine-tuning LLama 2. As shown in Equation 1,
the simple SFT step learns a reference policy ⇡ref
by minimizing the loss LSFT , which serves as the
starting point for preference optimization.
The second step is to perform preference opti-

mization where we fine-tune Llama 2 on the pref-
erence dataset, DP , that we obtain from the data
augmentation phase, using the same prompt, p, as
input that was used for SFT, but with two outputs:
the valid question qv and the invalid question qiv,
for that dialogue turn. As shown in Equation 2,
this preference optimization step learns a human
preference-aligned policy ⇡✓, given the reference
policy ⇡ref obtained from Equation 1, by formulat-
ing the task as a binary classification task, minimiz-
ing the negative log-likelihood loss LDPO, where
� is the Sigmoid function. This minimization leads
to learning ⇡✓, by increasing the likelihood of the
valid question and decreasing the likelihood of the
invalid question while remaining close to the ref-
erence policy ⇡ref which is governed by the hy-
perparameter �. Here ✓ is the parameters of the
preference-aligned policy which is simply the pa-
rameters of the neural network, in our case LLama
2.

LSFT(⇡ref) = �E(qv,p)⇠D[log ⇡ref(qv|p)] (1)

LDPO(⇡✓;⇡ref) =

� E(qv,qiv,p)⇠DP


log �(� log

⇡✓(qv|p)
⇡ref(qv|p)

� � log
⇡✓(qiv|p)
⇡ref(qiv|p)

)

�
(2)

5 Experimental Settings

In this section, we detail the implementation setup,
methods compared, and metrics used to evaluate
our Socratic question generation method.
Implementation details. In the data augmentation
phase, we query OpenAI’s2 GPT-4 using a rate-
based API. We set the temperature of the GPT-4
model to 0.5 to encourage moderate randomness in
the outputs. For the consistency checking GPT-4
model, we use a temperate of 0 to maintain deter-
minism. In the preference optimization phase, we

2https://openai.com/

use Code-Llama (7B) (Roziere et al., 2023) pre-
trained for instruction following tasks, particularly
on code data3. We load our Code-Llama model
in an 8-bit configuration and train using QLora
(Dettmers et al., 2023) with the peft4 HuggingFace
library to facilitate efficient fine-tuning. For the
SFT step, we fine-tune the model for 5 epochs with
a learning rate of 3e-5, and a batch size of 2 by
accumulating gradients for creating a virtual batch
size of 64 which takes about 10 hours to train on a
single Nvidia A6000 GPU. For the DPO step, we
fine-tune the model for 1 epoch with a learning rate
of 3e-5 and a � (which denotes the KL-loss (Joyce,
2011) between the preference policy learned and
the reference SFT policy) of 0.1, with a batch size
of 2, which takes about 6 hours to train. For the
DPO experiments, we carry out a grid search using
hyperparameters learning rate as 1e-5, and 3e-5, �
of 0.1, and 0.5 and number of epochs as 1 and 2 to
arrive at the best-performing hyperparameters as
mentioned above.
Methods. As baselines, we perform zero-shot
prompting of the LLama 2 Chat model5 (Touvron
et al., 2023), denoted by LLama, to generate all
possible Socratic questions for the current conver-
sation turn. We also prompt LLama 2 in a chain-of-
thought (Wei et al., 2022) manner to first generate
the current student misconceptions and then gen-
erate the Socratic questions, denoted by LLama
(CoT).

To decode our trained (SFT and DPO) LLM, we
use two decoding techniques, greedy and nucleus
sampling, with a p value of 0.9 temperature of
1, and a number of return sequences of 5. We
refer to these methods coupled with the trained
SFT method as SFT Greedy, SFT Sample-5, and
similarly for the DPO methods. Greedy decoding
takes 30 minutes to complete, whereas Sample-5
takes an hour.
Metrics. To measure the similarity between the
generated Socratic questions and the ground truth
questions, we use two commonly used evalua-
tion metrics in natural language generation tasks:
BERTScore (Zhang* et al., 2020) based on the
DeBERTa language model (He et al., 2021), which
measures the semantic similarity, and Rouge-L
(Lin, 2004), which measures n-gram overlap based

3https://huggingface.co/codellama/
CodeLLama-7b-hf

4https://huggingface.co/docs/peft
5https://huggingface.co/meta-llama/

Llama-2-7b-chat-hf
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Table 1: Performance comparison across different meth-
ods. All GPT baseline results are reported in (Al-
Hossami et al., 2024). Boldface represents the highest
value/s for that column.

Method Rouge-L BERTScore
P R F1 P R F1

GPT-3.5 21.0 14.3 17.0 56.0 43.5 48.9
GPT-3.5 (CoT) 20.3 9.7 12.0 61.7 35.8 41.6

GPT-4 14.1 23.3 17.6 35.4 62.6 45.2
GPT-4 (CoT) 5.2 26.6 8.1 12.6 64.8 19.5

LLama 12.8 18.6 13.2 36.0 48.3 35.9
LLama (CoT) 13.7 15.5 13.2 42.3 49.0 41.0
SFT Greedy 29.7 13.4 17.2 61.8 29.3 36.8
DPO Greedy 30.6 13.3 17.1 65.9 32.7 40.3
SFT Sample-5 14.1 26.0 17.1 32.1 62.9 41.1
DPO Sample-5 15.1 27.9 18.3 34.8 64.3 42.0

on the longest common subsequence (LCS). In ad-
dition, the dataset we use (Al-Hossami et al., 2024,
2023) provides multiple ground truth Socratic ques-
tions at each dialogue turn. To measure the similar-
ity between a set of m LLM-generated questions
with a set of n ground truth questions, we adopt the
process used in (Al-Hossami et al., 2024), which
uses Edmond Blossom algorithm (Galil, 1986) to
find the maximum matching in a complete bipar-
tite graph between the two sets with a total ofmn
edges, where the weight of each edge is computed
using one of the metrics mentioned above. This
step guarantees that every ground-truth question
corresponds to, at most, one LLM-generated ques-
tion, inhibiting semantically equivalent LLM gen-
erations from artificially inflating the metric scores.
The number of True Positives (TP) is the total sum
of the weights of all edges in the optimal matching.
False Positives (FP) are calculated by summing the
difference between every weight of an edge in the
matching with 1. Any unmatched LLM-generated
question counts 1 towards False Positive. Similarly,
any unmatched ground truth question counts 1 to-
wards False Negative (FN). The TP, FP, and FN
values are used to compute the precision, recall,
and F1 score for a particular metric. The metric pe-
nalizes over-generated LLM questions that do not
match with any ground truth questions by classify-
ing them as an FP, thus decreasing the precision.

6 Results and Discussions

In the consistency checking step of the data aug-
mentation phase, we see that 72% of the generated
questions are considered for the preference dataset
creation as 27% of the generated questions are clas-
sified as “good” and 1% as “incorrect”. This result
shows that GPT-4 is more prone to generate “good”

questions for particular dialogue turns than incor-
rect questions that do not relate to the problem and
the dialogue.

For the task of Socratic question generation, Ta-
ble 1 shows the comparison between different meth-
ods on the metrics defined for our task. All the
GPT-3.5 and GPT-4 results are taken from prior
work (Al-Hossami et al., 2024). We observe that
GPT-4 (CoT) has the highest recall and yet the low-
est F1 score. This observation is because, GPT-4
generates a large number of Socratic questions a
few of which are similar to the ground truth ques-
tions, however, a significant fraction of the gen-
erated questions do not correspond to any ground
truth questions, hence being labeled as false pos-
itive, thus decreasing the precision. (Al-Hossami
et al., 2024) also carry out manual analysis to show
that GPT (CoT) outputs are the best despite having
low F1 scores. This observation can be attributed
to the fact that GPT (CoT) has the highest recall
among all other GPT methods and hence better
corresponds to the ground truth questions.
For the baseline methods that use zero-shot

LLama prompting, we observe that LLama (CoT)
is the best, which shows that chain-of-thought
prompting to first generate the students’ current
misconceptions followed by the Socratic questions
is effective. Among the preference optimization
experiments, we see that DPO consistently out-
performs SFT. We also observe that the LLama
(CoT) performs as well as DPO Greedy in terms of
BERTScore F1 as LLama (CoT) generates a higher
number of Socratic questions whereas the DPO
Greedy method just generates one. Hence, the re-
call of the DPO Greedy method is lower than that
of LLama (CoT). Among decoding variants, we see
that the Sample-5 method is better than the Greedy
method highlighting the importance of sampling
multiple possible Socratic questions instead of just
one.
Overall, we see that our preference-optimized

models with DPO give the best Rouge-L scores
for all precision, recall, and F1 scores with DPO
Greedy having the highest precision and DPO
Sample-5 having the highest recall and F1 score
among all the methods. DPO Greedy has the high-
est BERTScore precision, whereas DPO Sample-5
has a recall comparable to the best GPT method,
GPT-4 (CoT). These results suggest that the DPO-
optimized LLama 2-7B model is better than (or as
effective as) much larger models like GPT-4 (25
times larger) for Socratic question generation.

113



Table 2: An example of invalid Socratic questions generated from GPT-4 for a given conversation, which we use to
augment the dataset.

Problem Write a function “top_k(lst: List[int], k: int) -> List[int]” that returns the top k largest
elements in the list. You can assume that k is always smaller than the length of the list.
Example Case: top_k([1, 2, 3, 4, 5], 3) => [5, 4, 3]; top_k([-1, -2, -3, -4, -5], 3) => [-1,
-2, -3]

Bug Description The function removes the element at index ‘max(lst)’ instead of removing an element
equal to ‘max(lst)’. Consequently, the function throws an IndexError on line 5 when a
removed value in ‘lst’ is greater than the length of ‘lst’.

Bug Fixes On line 5, replace ‘lst.pop(max(lst))’ with ‘lst.remove(max(lst))’

Conversation Student: Hi. I am confused. My code doesn’t seem to work. Can you help?
Instructor: Hello. Sure, let’s see. Do you know what might be the issue?
Student: I think the problem is with the ‘.pop()’ method. It seems to have issues with
indexing.

Ground Truth 1. Ok, no worries. Let’s review your code line by line. Could you please explain it to
me?
2. Let’s start with a simple example. What is the output of the following code snippet:
‘top_k([1, 2, 3, 4, 5], 3)’?
3. Could you please explain what line 5 in your code does?
4. Let’s look into the Python documentation. Can you describe what the ‘.pop()’ method
does?

Invalid Generated Irrelevant: What happens if you enter an empty list as the input?
Questions Repeated: Do you know what might be the issue?

Direct: Are you sure you should be using the pop() method to remove the maximum
element from the list?
Premature: Have you considered using the remove() method instead of pop()?

7 Case Study

We now use a case study to illustrate why our
method leads to better Socratic question generation.
First, we show an example of invalid Socratic ques-
tions generated by our data augmentation phase.
Second, we compare different methods for Socratic
question generation.

Table 2 shows an example of the augmented data,
i.e., invalid questions generated by GPT-4 for an ex-
ample problem, which asks students to write code
to return the largest k elements in a list. The stu-
dent’s code (Table 4 Code 1) incorrectly removes
elements at index max(lst) as opposed to remov-
ing elements equal to max(lst), thereby causing
an IndexError. The potential fix to the code is to
replace the .pop() function with .remove(). In
the conversation, we see that the student knows the
problem lies in their use of .pop(). The ground
truth Socratic questions for this dialogue turn are
highly generic, asking the student to review the
code line by line, apply an example test case, or do
further reading on Python documentation. We see
that the four types of invalid questions generated by
GPT-4 are: the irrelevant question is out of context
and does not help the student understand the bug in
their code. The repeated question has already been
mentioned by the instructor. The direct questions
reveal the problematic function .pop() and do not
give room for the students to discover the prob-
lem themselves. The premature question directly

suggests a code change to replace the .pop() with
.remove() function even before the student has
realized the actual bug. These diverse examples of
invalid questions serve as good training data to let
an LLM know what kinds of invalid questions it
should avoid generating.

Table 3 shows the questions generated by dif-
ferent methods for an example problem that asks
students to write code that returns the factorial of
a number. The student’s code (Table 4 Code 2)
has some indexing errors with the range function,
resulting in the fact variable being multiplied by 0
when the loop starts, hence resulting in the output
of 0 no matter what the input is. In the conversation,
we see that the ground truth questions encourage
the student to debug the code by printing the value
of lines 5 and 6 to examine the variables fact and
i along with the role of range(n). The LLama
output is very verbose and directly reveals that the
problem is in the updation of the ‘fact’ variable.
The LLama (CoT) output is very vague as it does
not refer to the exact line of the code. The SFT
Greedy output correctly asks the student the value
of i but does not provide more details, such as the
value of n. The DPO Greedy method is more help-
ful since it asks the student to check the value of
fact specifically for n=1. The first and fifth ques-
tions by SFT Sample-5 are invalid and directly ask
the value of fact when i is 0, which directly re-
veals the problem that fact is always 0. The third

114



Table 3: Socratic questions generated by different methods.

Problem Write a function ‘factorial(n:int) -> int’ that computes the factorial n! of a natural number n, which is
defined mathematically as: 0! = 1 and n! = n⇥ (n� 1)!. Additionally, if the input integer n is negative
the function should return 0.
Example Cases: factorial(-1) => 0; factorial(0) => 1; factorial(1) => 1; factorial(5) => 120

Bug Descrip-
tion and Fix

On line 6, ‘fact’ is first multiplied with 0 in the first iteration of the for loop and hence remains 0
throughout the loop. To fix the bug, replace ‘i’ with ‘(i + 1)’ in line 6 and replace ‘range(n)’ with
‘range(1, n + 1)’ in line 5.

Conversation Student: Hi! I implemented the factorial function but it doesn’t work and I do not know why. Can you
help?
Instructor: Sure. Can you tell me for what values of n it fails and what values it returns in those cases?
Student: For n = 1 or larger it returns the same value, 0.

Ground Truth 1. Let’s see what happens when ‘n’ is 1. What is the first value that is assigned to variable ‘i’ in line 5?
2. Let’s see what happens when ‘n’ is 1. Before line 6 is evaluated in the first iteration of the for loop,
what are the values of the variables ‘fact’ and ‘i’?
3. Let’s see what happens when ‘n’ is 1. Can you insert a new line between lines 5 and 6 that prints the
values of the variables ‘fact’ and ‘i’?

LLama So, it seems that the issue is that the value of ‘fact’ is not being updated correctly in the loop. Can you
tell me why do you think ‘fact‘ is not being updated?

LLama (CoT) Can you explain why you think the bug is in that specific line?

SFT Greedy What is the value of ‘i’ in the first iteration of the for loop?

DPO Greedy Okay. Let’s start with ‘n = 1’. What do you think ‘fact’ is on line 6?

SFT Sample-5 1. What is the value of ‘fact’ at line 6 when ‘i’ is 0?
2. Let’s take a closer look at the line where ‘fact’ is multiplied. Could you explain the steps you take to
compute that multiplication?
3. 0 is not a factorial, right? What do you think the first step should be?
4. What does this tell us about the implementation?
5. Are you multiplying the initial ‘fact’ value of 1 by ‘i’ at each step?

DPO Sample-5 1. Alright, so for any value of ‘n’ that we pass to the function, what is the output of line 6?
2. Can you tell me what value of ‘i’ is returned in line 6 when ‘n = 1’?
3. Okay. Let’s look at ‘factorial(1)’ and ‘factorial(2)’. What are the values of ‘i’ and ‘fact’ when it goes
into the for loop in those cases?
4. Okay, let’s go line by line. Let’s start from line 5. What do we see?
5. Okay. Can you tell me the steps for computing ‘factorial(n)’ where ‘n’ equals 1?

Table 4: Buggy codes corresponding to the case studies

Code 1:
def top_k(lst, k):
result = []
for i in range(k):
result.append(max(lst))
lst.pop(max(lst))

return result

Code 2:
def factorial(n):
if n < 0:
return 0
fact = 1
for i in range(n):
fact = fact * i
return fact

and fourth outputs are either irrelevant or repeated.
The second question, which asks the student to ex-
amine the value of fact is valid since it does not
directly reveal the bug. In contrast, most of the
DPO Sample-5 questions are valid, since they urge
the student to examine the value of i and fact on
lines 5 and 6 with specific values of n, without di-
rectly revealing the bug that i is always 0. Through
these comparisons, we see that DPO improves So-
cratic question generation compared to SFT and
that DPO Sample-5 is highly capable of generating
valid yet diverse questions.

8 Conclusions and Future Work

In this work, we propose a method for Socratic
question generation in programming problem feed-
back scenarios. Our method consists of a data
augmentation phase to create a preference dataset
by synthetically generating invalid questions ac-
cording to four possible categories. We then
use this preference dataset to fine-tune an open-
source LLM, LLama 2-7B, using direct prefer-
ence optimization (DPO). Our results show that
the preference-optimized LLama 2-7B model of-
ten outperforms existing state-of-the-art prompting
methods (on common text similarity metrics) that
rely on much larger GPT models (25 times larger),
by avoiding invalid questions after training on the
augmented dataset. Our method paves the way to-
ward an open-source, accessible, cheaper, privacy-
preserving, yet effective alternative to generating
Socratic questions which can improve students’
learning outcomes without having to rely on propri-
etary rate-based API-accessed models like GPT-4.
There are several avenues for future work. First,
we can develop a technique to differentiate types
of invalid Socratic questions and not treat them
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equally while performing preference optimization.
This technique would require us to modify the in-
herent objective function of DPO to incorporate
more than one unpreferred question for a single
preferred question, which may give us fine-grained
control over the LLM generations. Second, we
can experiment with open-source LLMs that are
larger than 7B to see whether DPO provides more
significant gains over SFT on larger models on the
Socratic question generation task. Third, we can
perform a systematic human evaluation to compare
the performance of our proposed method with other
baselines. Also, we can focus on designing an auto-
matic metric (based on LLM prompting (Liu et al.,
2023)) other than Rouge and BERTScore which
captures the helpfulness of the Socratic questions
without heavily relying on assigning higher scores
only to questions that have high lexical overlap
with the ground-truth questions. Fourth, we can ex-
periment with alternative preference optimization
methods, such as KTO (Ethayarajh et al., 2024)
which do not need explicit preference data in the
form of pairs of valid and invalid questions. Fifth,
we can also explore if Socratic question genera-
tion helps in improving other tasks in computer
science education like test case generation (Kumar
and Lan, 2024) by posing the problem as answer-
ing several Socratic sub-questions (Shridhar et al.,
2022). Finally, we can also explore how to make
Socratic question generation knowledge-aware, i.e.,
generating different questions for students with dif-
ferent knowledge states, which can be estimated
using the open-ended knowledge tracing method
for computer science education (Liu et al., 2022).

9 Limitations

Our work proposes a method for preference opti-
mizing open-source LLMs like LLama 2 for the
task of Socratic question generation for student
code debugging. We use only LLama 2 as the
base model for carrying out preference optimiza-
tion, and not other open-source models like Mistral
(Jiang et al., 2023). Since our main contribution
is the data augmentation and preference optimiza-
tion method, we use only one of the best models
open-source models (LLama 2) to show that our
method outperforms state-of-the-art models like
GPT-4. Future work can also explore the perfor-
mance of different open-source models using a va-
riety of optimization methods including our data
augmentation and preference optimization method

for Socratic question generation. Also, we do not
formally analyze any biases that exist in the gen-
erated augmenting data or the generated Socratic
questions. Future work can focus on measuring
such biases to make our methods that use these
LLMs more inclusive for all students belonging to
different demographics.

10 Ethics Policy

Since our invalid questions are generated using an
LLM potential linguistic or cultural bias related
to the pre-training of the LLM might be reflected.
However, we hypothesize that this bias would be
minimal as Socratic questions are goal-driven, con-
cise, and framed in the second-person perspective
directed toward the student. Our work focuses
on open-source LLMs like LLama for Socratic
question generation as compared to rate-based API-
accessed models like GPT-4 (which is used only
once during data augmentation) which implies that
our methods are privacy-preserving and there is
minimal chance of leakage of students’ confiden-
tial data. However, training LLMs like LLama on
GPUs like A100 for 10 hours results in the emis-
sion of CO2 which might not be environmentally
friendly.
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