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Abstract

Human-Robot Collaboration (HRC) aims to create environments where robots can understand workspace dynamics and actively assist humans

in operations, with the human intention recognition being fundamental to efficient and safe task fulfilment. Language-based control and
communication is a natural and convenient way to convey human intentions. However, traditional language models require instructions to be
articulated following a rigid, predefined syntax, which can be unnatural, inefficient, and prone to errors. This paper investigates the reasoning
abilities that emerged from the recent advancement of Large Language Models (LLMs) to overcome these limitations, allowing for human
instructions to be used to enhance human-robot communication. For this purpose, a generic GPT 3.5 model has been fine-tuned to interpret and
translate varied human instructions into essential attributes, such as task relevancy and tools and/or parts required for the task. These attributes
are then fused with perceived on-going robot action to generate a sequence of relevant actions. The developed technique is evaluated in a case
study where robots initially misinterpreted human actions and picked up wrong tools and parts for assembly. It is shown that the fine-tuned LLM
can effectively identify corrective actions across a diverse range of instructional human inputs, thereby enhancing the robustness of human-robot
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1. Introduction Natural human language offers a promising solution for
correcting robotic predictions, similar to human-to-human
interactions. Unlike brainwaves or gesture-based control,
language-based communication provides a natural, real-time,
and convenient method for error correction that is independent
of ongoing actions. However, ambiguity and polysemy that are
inherent to human language pose challenges for robots, as
conventional language control protocols require precise and
rigid syntactic structures. These protocols necessitate exact
descriptions of the objects for a robot to act on, such as the
length of a screwdriver, instead of only saying “shorter”. As
depicted in Fig. 1, a command using rigid syntax provides
detailed quantitative information (Fig. 1. (a)), whereas a
command presented in natural human language may lack
specific details (Fig. 1. (b)).

Human-Robot Collaboration (HRC) focuses on the physical
and cognitive interactions between humans and robots working
towards common objectives. In HRC communication, a
cognitive model is commonly employed to collect data from
both the environment and human operators, before
transforming it into commands for robot management [1].
Advances in sensor technologies and machine learning, such as
Convolutional Neural Network (CNN), has enhanced robots’
abilities to process image data, recognize human actions, and
predict future activities, thereby facilitating cooperative tasks
[2]. However, the unpredictable nature of human behavior and
potential errors in Al model predictions require an adaptive
mechanism to correct errors and accurately interpret human
intentions.
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In the situation described above, language understanding is
essential in HRC, where the analysis of grammatical structures
has emerged as a promising method to pave the way. For
instance, categorizing language into noun and verb clauses
facilitates the transformation of flexible natural language into
structured statement expressions [3]. A limitation of the
grammatical approach is its ineffectiveness when processing
terms not seen during training. The advent of Large Language
Models (LLMs) offers enhanced understanding and reasoning
capabilities infused with common sense, enabling them to
interpret meanings without extensive manual annotations. Over
the past few years, LLMs have gained attention across various
fields, from healthcare to finance and manufacturing [4].

R i N

Pick up the 7-inch Pick up the
| red screwdriver. shorter one.

(a) Rigid, Predefined Syntax Command

(b) Human Language Command

Fig. 1. Predefined command and human natural language

Despite these advantages, integrating LLMs into HRC poses
unique challenges. The main issue is content awareness: robots
must understand both the workplace environment and
workflow conditions to act properly. Since LLMs were
originally designed for general use, adapting them to the
diverse conditions of the HRC domain is complex.
Additionally, the need for deterministic responses is critical, as
variability in LLMs can result in discrepancies during
interpretation and application, potentially leading to
unintended robotic actions.

To address these challenges, an HRC-adapted LLM has
been developed by fine-tuning the GPT-3.5 model from
OpenAl with an HRC-based dataset. This process converts
human language input into a configuration for robot
manipulation, which is subsequently integrated with ongoing
robot actions through a control module, ultimately producing
executable commands for the robot to correct errors.
Contributions from this study include:

(1) Established an HRC-based data framework to guide the
generation of natural language for specific HRC tasks,
synthesizing varying completion levels of communication. The
language model is utilized to refine the LLM, bridging the gap
between general applications and the specifics for HRC.

(2) Proposed a language control method that corrects
prediction errors by fine-tuned LLM with a specifically
prepared language model. This enhanced LLM is integrated
into a robotic communication module, improving cooperation
efficiency between the robot and human operators (expert or
non-expert) through natural language commands.

(3) Developed an error correction control module that
combines current robot state with fine-tuned LLM’s outputs to
generate a sequence of corrective actions, enabling the robot to
correct tool selection errors, and then pick up the correct tool.

2. Related work

2.1. Development of language models

Natural language serves as the predominant mode of
communication among humans. The objective of Natural
Language Processing (NLP) is to transform human language
into symbolic forms comprehensible to computers, or to render
machine language into formats understandable by humans.
Bengio et al. proposed the first neural language model, which
was implemented using a feedforward neural network,
generating a probability distribution of a word [5]. Advancing
this field, in 2013, Mikolov et al. proposed Word2vec, which
enables large-scale word-embedding to become feasible [6]. In
2017, Vaswani et al. developed a groundbreaking neural
network called transformer, which has demonstrated
significantly improved performance in parallel computing and
long-term dependencies [7]. Building on the success, Devlin et
al. proposed bidirectional encoder representations from
transformers (BERT) in 2018, which was able to generate deep
bidirectional language representations and showed excellent
advantages in 11 NLP tasks [8]. Simultaneously, the
Generative Pre-trained Transformer (GPT from OpenAl) was
proposed, efficiently encoding contextual relationships and
exhibiting superior reasoning abilities [9,10].

One limitation of the general GPT is that it may not
adequately recognize the specific environmental settings in
manufacturing such as HRC, or the varied linguistic practices
of operators. This underscores the need for domain-specific
LLMs to capture and interpret nuances accurately.
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Fig. 2. Working process of Transformer model

2.2. Human intention Recognition in HRC

One of the principal research interests in HRC is the
investigation of collaboration processes between humans and
robots [4]. Unlike humans, who can easily perceive changes in
their environment and status, robots fundamentally lack this
flexible perceptual capability that is critical to collaborative
interactions. Generally, there are three main methods for robots
to perceive and understand human intentions: gesture control
[11], brainwave control [12], and language control [13].

Among these, language control stands out as it is not
affected by the current human actions, thereby less vulnerable
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to noise in model predictions. Park et al. contributed to this area
by developing a framework that improves HRC on construction
sites through the integration of Bidirectional Long Short-Term
Memory with Conditional Random Field (BiLSTM-CRF) and
BERT models. This framework uses the BiLSTM-CRF to
capture contextual information in sequence labeling, while
employing the BERT model for language understanding [13].
Additionally, the development of LLM has enabled more
effective communication between humans and robots using
language, allowing robots to process environmental
information through verbal commands [14].

On the other hand, language control in HRC has been
performed via rigid, predefined syntax, making it difficult for
robots to interpret instructions naturally. This limitation poses
a challenge and restricts its broader application.

3. Methodology
3.1. Fine-tuned language model

LLM has shown significant potential in communication like
answering questions, text summarization, and translation, due
to the pre-trained model technologies and the Transformer
architecture [7]. Through pre-training, LLMs develop a
common sense that boosts performance across various
downstream tasks [15]. This capability enables the effective
integration of LLMs into HRC through task-specific fine-
tuning. The outcome of such adaptation is enhanced interaction
and comprehension between humans and robots, leading to
increased collaborative efficiency and functionality.

The fine-tuned LLM leverages the transformer architecture,
introduced by Vaswani et al. [7]. As shown in Fig. 2, the
Transformer model comprises two main components: an
encoder and a decoder. The encoder processes the input
sequence and includes six identical layers, each has two sub-
layers: a multi-head self-attention mechanism and a position-
wise fully connected feed-forward network. The decoder also
contains six identical layers but adds a masked multi-head
attention layer, ensuring that the outputs depend only on
previous sequence elements. This structure enables the
transformer-based model to generate outputs through a series
of computations detailed in subsequent sections. The output of
the transformer-based model can be computed as follows:

ap = UW, + W, (1)

where W, is the token embedding matrix and W, is the
position embedding matrix. U includes the input sequence
to the transformer-based model. The working process of
transformer-based model involves the generation of the Query
(Q), Key (K), and Value (V) matrix for each token in the input:

Q= Wo*rai_,K=Wg*a_y V=Wyxa_,, (2)

where Wy, Wy, Wy are the weight matrices specific to each
head in the multi-head attention mechanism, and a;_; is the
previous output from the attention mechanism of the
corresponding input. Calculating the similarity by comparing
the Query and the Key of other tokens through the dot product:

similarity = Q + KT 3)
where T denotes the transpose of K matrix, the attention_score
using SofiMax function with the output from Eq. 3 yields:

KT
attention_socre = sof tmax( ) (4)
vk
where dy represents the dimension of K. The output of the
attention mechanism Y;_; can be computed by multiplying
attention_score with V, where V is the size of the vocabulary:

Y,_, = attention_score * V (5)

In addition to the attention sub-layers, the Transformer model
includes a position-wise fully connected feed-forward
network, which comprises two linear transformations with a
ReLU activation function applied in between. The term Yi-1 is
fed through a separate feed-forward neural network with its
own parameter W, and b,. The final output a; of the feed-
forward network is:

a; = ReLu(Y;_y) * W, + b,, (6)

and the parameters of the network can be optimized with the
cross-entropy loss function as follows:

L= _Z Y, log(¥;) %

where Y; is the true token embeddings and ¥; is the predicted
one, N represents token numbers.

3.2. HRC natural language command instruction framework

To train the model for interpreting natural language
instructions with missing information, an HRC-based
command framework has been developed. Because human
instruction may not contain all the critical details, robots must
resort to additional environmental context to properly and
correctly respond to the human instruction. Contemporary
cognitive theories emphasize that the structured nature of
human language, rather than its versatility, is its most
significant attribute [16]. These theories posit that human
linguistic behavior adheres to grammatical principles,
especially the Subject-Verb-Object (SVO) word order [16,17].
In this presented study, the language commands have been
structured into components of Subject, Object, and Context, as
illustrated in Fig. 3. Notably, the Verb is integrated within the
Context component to align closely with the specific demands
of the HRC scenario.

Example: |Return the flat-head screwdriver||I|want the Phillips|screwdriver

Context Subject Object
Fig. 3. Syntax structure of language instruction

Understanding the Subject is essential for a LLM to
correctly predict robotic actions. Humans naturally use
environmental and contextual cues to interpret instructions,
which is a capability often lacking in general LLM.

Contextual understanding is critical for an LLM to choose
the appropriate action among multiple possibilities. Without
this, robots may face ambiguities, unsure whether to hand over
a tool to the operator or return it to the toolbox.

Additionally, accurate identification of the Object in a
command is crucial. The Object typically represents the tool
required by human operators, underscoring the need for clear
and precise communication to ensure successful HRC.
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To make the instructions abstract and natural for practical
communication in HRC, the natural language commands were
synthesized by minimizing the explicit content, specifically by
omitting the Subjects, Objects, or Contexts, as illustrated in
Table 1, to mimic the conversational style in natural human
communication. Such an approach, however, poses significant
challenges for robots in discerning human intentions due to the
ambiguity of the commands.

3.3. Control Module

The Control Module’s primary function is to receive and
process the output from the fine-tuned LLM, converting it to a
robotic manipulation configuration. Additionally, the module
records the robot’s current state, such as the actions being
executed (e.g., picking up or returning) and the characteristics
of the tool currently held by the robot. By integrating the
LLM’s output with the robot’s current state, the Control
Module effectively infers the human operator’s actual
intentions, generating the final configuration that includes the
expected robot actions, tool names, and features.

Table 1. Natural language command after removing corresponding part

Removed Command Challenges
component
Initial command Return the flat-head screwdriver, | want NA

the Phillips screwdriver.
Not the flat-head screwdriver, the

Subject Phillips screwdriver. What is the desired action?
) Return the flat-head one, | want the What is the tool human
Object I
Phillips one. wants?
Context | want the Phillips screwdriver. Whatto do with the tool in
hand?

Subject and - What is the tool human wants
Object Not the flat-head one, the Phillips one. and the desired action?
Sublect and What is the desired action and
J The Phillips screwdriver. what to do with the tool in

Context
hand?
Obiect and What is the tool human wants
Clontext | want the Phillips one. and what to do with the tool in

hand?

What to do first? What to do
next and what is the tool
human actually wants?

Subject, Object

The Philli .
and Context e Fhillps one

As shown in Fig. 4, the current state stores the robot’s
activity status, and the Control Module can determine the
ongoing action, such as picking up a blue Phillips screwdriver,
by reading this state.

LLM Output
Verb clause configuration:
{Return; None; Red}

Fine-tuned LLM

Current States
Action: Pick Up|
Action3Retum (Compare| Tool name:
screwdriver
Color: Blue
Type: Phillips,

Desired States

Tool name: None

Color: Red

New Shafes 1. {Return; screwdriver; blue)

2. {Pick up; screwdriver; red)

Type: Phillips

Robot command

Control Module
LLM and output Control module generate robot command Execute robot commanc
Fig. 4. Workflow of the control module
When an instruction lacks specific information, such as the

tool name expected by the human operator, the Control Module

plays the role of facilitating the correct understanding and
interpretation of the human instruction. By analyzing the
working status output from the LLM, the module identifies
discrepancies in the human language command and identify
errors in the robot’s current operational state. Further
integration of the robot’s current status indicates that the human
command did not correct the name of the tool, but rather its
attribute, such as the color. Consequently, the Control Module
synthesizes the data from the LLM with the robot’s operational
status, conducts a comparison, and adjusts the status
accordingly. This process results in a finalized sequence of
robotic commands: (1) return the currently held tool; (2)
retrieve and deliver the tool as specified by the human operator.

rrrrrrrr Catirges |-

. Idon'tneed the blue . Tdon't want the heavy|
Tnitial o mmer; I need the Initial  duty wrench; I want
red hammer. the regular wrench.

Initial No challenges

Rc:}::vc What is the desired
Remove ‘ ‘ subject action?

the  Not the blue hammer, | | Remove Not the heavy-duty
subject the red hammer. wrench, the regular
wrench.

Remove What is the desired

the  action? What is the
object

subject

1 ?
Remove N+ the blue one, TR desired tool?
i the  Not the heavy-duty
object the red one. s
object one, the regular one. What is the desired
‘ ! Remove ! .

Remove Remove ‘ the action? What is the
the context  desired tool? What

the  No, the red one.

context context No, the regular one. to do first?

Fig. 5. Training data examples

4. Case study

To implement the developed method for HRC, the GPT-3.5-
1106 model was fine-tuned using the HRC natural language
command instruction framework, including evaluation of an
unseen test dataset. Subsequently, an experiment on an Edo
robot was platformed to evaluate the effectiveness of using
unstandardized, natural language commands for correcting
robotic errors.

4.1. Dataset

To facilitate the evaluation, a fine-tuned dataset that
includes ambiguous but natural human language commands
was paired with expected robotic configurations. Initially, a
total of seven instructions were generated using rigid syntax
with complete information to train the LLM to produce outputs
accurately. Recognizing that a tool can possess multiple
attributes, such as color and shape, the instructions also
encompass these features, allowing the LLM to learn the
diverse ways humans might describe tools. This approach
aligns with the developed HRC natural language command
framework, from which multiple sets of natural human
language instructions were generated.

As illustrated in Fig. 5, the standard training dataset
comprises 28 command samples, including tool names such as
hammer and wrench, and color features such as red and blue,
with additional characteristics such as heavy-duty and regular.
Moreover, to examine the impact of the size of the dataset size
on model generalization, an advanced training set with 41
instructions was generated, following the same criteria. For the
testing set, different tool names and features from the training
set were selected to ensure credible evaluation. It is noted that
the order of reduction in the dataset is not fixed. The intended
output from this dataset is structured as a dictionary containing
four keys: Input status, Working status, Tool name, and Tool
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feature. Input status is binary (0 or 1), indicating whether the
natural language instruction is relevant to the robot’s task (1 for
yes, 0 for no). Working status reflects the accuracy of the tool
selection by the robot based on the human’s instructions, with
1 denoting correct and 0 incorrect. Tool name and Tool feature
provide details about the tool specified by the human operator,
with Tool feature detailing the characteristics of the tool as
described in the human command.

4.2. Fine-tuned LLM performance

The GPT-3.5-turbo-1106 model, which has 175 billion
parameters, was selected for the presented study due to its
optimal balance of performance and computational efficiency.
For the fine-tuned process, the standard training set was
utilized, with the learning rate multiplier set to 2. A cross-
entropy loss function was used. As depicted in Fig. 6, the loss
value decreased significantly from 3.9532 to 0.2481 after 50
training steps, demonstrating the model’s ability to accurately
learn from the training samples and generate the expected
output.

— training loss

10 20 30 40 50 60 70 80 84
Stens.

Fig. 6. Loss value during the training

To evaluate the natural language understanding ability of the
proposed model, comparative evaluations with other versions
of GPT-3.5 were performed, including GPT-3.5-turbo (not
fine-tuned), GPT-3.5-0613, and GPT-3.5-0125, all trained on
the same dataset. Model performance was measured on the test
dataset using accuracy metrics: human intention accuracy, tool
name accuracy, and tool feature accuracy, based on the output’s
Working status, Tool name, and Tool feature. These metrics
evaluate how well the model identifies human intentions and
the specific tool attributes mentioned in the commands. The
accuracy is calculated as:

Number of test cases predicted correctly

accuracy = 8)
Total number of test cases
100% GPT-3.5-turbo (general model) GPT-3.5-0125
D" El GPT-3. 5-n“f.|; S E Proposed model
_ 90% i 82.14%82.14%
S 8% ST
< |/ 71.43%
§ 70% 678 64.29%
5 60%
3 50%
§ 40% 35.71%
2 30%
£ 20%
10% 7.14%
0%

Human intention accuracy ~ Tool name accuracy Tool feature accuracy

Fig. 7. Comparison of prediction accuracy with other models

Fig. 7 illustrates the prediction accuracy of these models. In
each group, from left to right, the first, second, and third models
constitute the control group, with the fourth model being fine-
tuned proposed model. Compared to the control group, the

proposed model has shown comparatively the best performance
in discerning the expected tool name and features from
instructions, particularly those with a flexible format and
missing information. This enhanced understanding underscores
the improved model responsiveness to complex, real-world
commands in HRC.

Comparative analysis was also performed of performance of
the fine-tuned model when trained on a standard training set
versus an advanced training set, to examine the impact of
training sample volume on the model’s generalization ability.
As depicted in Fig. 8, within each group, the left bar represents
the model trained on the standard training set, and the right bar
corresponds to the model trained on the advanced training set.
While the model trained on the standard training set was
capable of making reasonable predictions and producing the
expected output format, the model trained on the advanced
training set exhibited enhanced accuracy. This improvement
demonstrates that the volume of training samples significantly
influences model performance, with a larger number of
samples leading to better generalization.

[] Proposed model with standard dataset | Proposed model with advanced dataset

100% i 92.86%
90% 17
80% 78.5 75.0%!
70%
60%
50%
40%
30%
20%
10%

92.86%
82.14%

Prediction Accuracy (%)

0% . " : ‘
Human intention accuracy Tool name accuracy — Tool feature accuracy

Fig. 8. Comparison of prediction accuracy between different data volume

The model’s ability to interpret new input formats where
human operators describe tools using multiple features was
also evaluated. For example, if a robot delivers a wrong tool,
e.g., a red flat head instead of a blue Phillips screwdriver, the
operator might specify both color and shape to correct the error
and help the robot to distinguish the desired tool between a red
Phillips and a blue Phillips screwdriver in the toolbox. These
features were added in the test dataset to assess the model’s
accuracy in understanding such detailed commands. As shown
in Fig. 9, while all models can generate outputs in a fixed
format, the developed model trained on advanced training set
achieved higher accuracy.

Within each group, the first two models are control group

[ GPT-3.5-0613

100% 92.86%
90% §5.71%

Y Y, 0, 0,
80% 7[43‘,/7“7475,\n TBST% g 0, T8STUISSTY

70% 67.86%
60%
50%
40%
30%
20%
10%

0%

[ GPT-3.50125 [ Proposed model(standard)  [__] Proposed model(advanced)

Prediction Accuracy (%)

Human intention accuracy Tool name accuracy — Tool feature accuracy

Fig. 9. Comparison of prediction accuracy with multiple features

models trained on the standard set, and the two on the right are
the developed models trained on both the standard and
advanced sets. Results show that all the models can interpret
adjectives due to pre-training and fine-tuning has enhanced



6 Fanru Gao et al./ Procedia CIRP 00 (2024) 000-000

their ability to link adjectives with the correct tool features,
improving understanding of complex commands.

4.3. Real-robot experiment

To evaluate the performance of the developed model, it was
integrated into an Edo robot platform for assisting human
operators in assembly tasks. The system employs a camera to
capture images and predict the next step in the assembly
process, enabling the robot to provide the required tool to the
operator [18]. When prediction errors occur, operators can use
natural language commands to correct the robot’s action. This
correction mechanism, illustrated in Fig. 10, involves six steps:
(D capturing the operator’s current action to predict the next
action; (2 robot retrieving the predicted tool; (3 operator
identifying and correcting tool selection errors; (@ robot
returning the incorrect tool (e.g., a screwdriver) to where it was
picked up; & robot retrieving the correct tool (e.g., an Allen
key); ® robot delivering the right tool to the operator.

Fig. 10. Edo robot platform-based tool selection error correctness

5. Conclusion

To address the challenge posed by rigid and predefined
syntax that is typically required for robots to understand human
language input and facilitate the development of efficient HRC
communication, a fine-tuned LLM trained on a tailored HRC
communication model was developed, which equips the LLM
with task-specific knowledge and engineering behaviors.
Experimental results have demonstrated that the fine-tuned
LLM model can accurately interpret human intentions from
incomplete language commands, enabling the robot to execute
effectively action sequences and correct erroneous movements.

Future research will expand the training dataset with
different human language behaviors, and explore hint-based
voice feedback and explanatory mechanisms to enhance the
intuitiveness and transparency of human-robot communication
and interaction towards more effective, efficient, and safer
operations on the factory floors.
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