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Abstract

Human-Robot Collaboration (HRC) aims to create environments where robots can understand workspace dynamics and actively assist humans 
in operations, with the human intention recognition being fundamental to efficient and safe task fulfilment. Language-based control and 
communication is a natural and convenient way to convey human intentions. However, traditional language models require instructions to be 
articulated following a rigid, predefined syntax, which can be unnatural, inefficient, and prone to errors. This paper investigates the reasoning 
abilities that emerged from the recent advancement of Large Language Models (LLMs) to overcome these limitations, allowing for human 
instructions to be used to enhance human-robot communication. For this purpose, a generic GPT 3.5 model has been fine-tuned to interpret and 
translate varied human instructions into essential attributes, such as task relevancy and tools and/or parts required for the task. These attributes 
are then fused with perceived on-going robot action to generate a sequence of relevant actions. The developed technique is evaluated in a case 
study where robots initially misinterpreted human actions and picked up wrong tools and parts for assembly. It is shown that the fine-tuned LLM 
can effectively identify corrective actions across a diverse range of instructional human inputs, thereby enhancing the robustness of human-robot 
collaborative assembly for smart manufacturing. 
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1. Introduction

Human-Robot Collaboration (HRC) focuses on the physical 
and cognitive interactions between humans and robots working 
towards common objectives. In HRC communication, a 
cognitive model is commonly employed to collect data from 
both the environment and human operators, before 
transforming it into commands for robot management [1]. 
Advances in sensor technologies and machine learning, such as 
Convolutional Neural Network (CNN), has enhanced robots’ 
abilities to process image data, recognize human actions, and 
predict future activities, thereby facilitating cooperative tasks 
[2]. However, the unpredictable nature of human behavior and 
potential errors in AI model predictions require an adaptive 
mechanism to correct errors and accurately interpret human 
intentions.

Natural human language offers a promising solution for 
correcting robotic predictions, similar to human-to-human 
interactions. Unlike brainwaves or gesture-based control, 
language-based communication provides a natural, real-time, 
and convenient method for error correction that is independent 
of ongoing actions. However, ambiguity and polysemy that are 
inherent to human language pose challenges for robots, as 
conventional language control protocols require precise and 
rigid syntactic structures. These protocols necessitate exact 
descriptions of the objects for a robot to act on, such as the 
length of a screwdriver, instead of only saying “shorter”. As 
depicted in Fig. 1, a command using rigid syntax provides 
detailed quantitative information (Fig. 1. (a)), whereas a 
command presented in natural human language may lack 
specific details (Fig. 1. (b)).
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In the situation described above, language understanding is 
essential in HRC, where the analysis of grammatical structures 
has emerged as a promising method to pave the way. For 
instance, categorizing language into noun and verb clauses 
facilitates the transformation of flexible natural language into 
structured statement expressions [3]. A limitation of the
grammatical approach is its ineffectiveness when processing 
terms not seen during training. The advent of Large Language 
Models (LLMs) offers enhanced understanding and reasoning 
capabilities infused with common sense, enabling them to 
interpret meanings without extensive manual annotations. Over 
the past few years, LLMs have gained attention across various 
fields, from healthcare to finance and manufacturing [4].

Despite these advantages, integrating LLMs into HRC poses 
unique challenges. The main issue is content awareness: robots 
must understand both the workplace environment and 
workflow conditions to act properly. Since LLMs were
originally designed for general use, adapting them to the 
diverse conditions of the HRC domain is complex. 
Additionally, the need for deterministic responses is critical, as 
variability in LLMs can result in discrepancies during 
interpretation and application, potentially leading to 
unintended robotic actions.

To address these challenges, an HRC-adapted LLM has 
been developed by fine-tuning the GPT-3.5 model from 
OpenAI with an HRC-based dataset. This process converts 
human language input into a configuration for robot 
manipulation, which is subsequently integrated with ongoing 
robot actions through a control module, ultimately producing 
executable commands for the robot to correct errors. 
Contributions from this study include:

(1) Established an HRC-based data framework to guide the 
generation of natural language for specific HRC tasks, 
synthesizing varying completion levels of communication. The 
language model is utilized to refine the LLM, bridging the gap 
between general applications and the specifics for HRC.

(2) Proposed a language control method that corrects 
prediction errors by fine-tuned LLM with a specifically 
prepared language model. This enhanced LLM is integrated 
into a robotic communication module, improving cooperation 
efficiency between the robot and human operators (expert or
non-expert) through natural language commands.

(3) Developed an error correction control module that 
combines current robot state with fine-tuned LLM’s outputs to 
generate a sequence of corrective actions, enabling the robot to 
correct tool selection errors, and then pick up the correct tool.

2. Related work

2.1. Development of language models

Natural language serves as the predominant mode of 
communication among humans. The objective of Natural 
Language Processing (NLP) is to transform human language 
into symbolic forms comprehensible to computers, or to render 
machine language into formats understandable by humans. 
Bengio et al. proposed the first neural language model, which 
was implemented using a feedforward neural network, 
generating a probability distribution of a word [5]. Advancing 
this field, in 2013, Mikolov et al. proposed Word2vec, which 
enables large-scale word-embedding to become feasible [6]. In 
2017, Vaswani et al. developed a groundbreaking neural 
network called transformer, which has demonstrated 
significantly improved performance in parallel computing and 
long-term dependencies [7]. Building on the success, Devlin et 
al. proposed bidirectional encoder representations from 
transformers (BERT) in 2018, which was able to generate deep 
bidirectional language representations and showed excellent 
advantages in 11 NLP tasks [8]. Simultaneously, the 
Generative Pre-trained Transformer (GPT from OpenAI) was 
proposed, efficiently encoding contextual relationships and 
exhibiting superior reasoning abilities [9,10].

One limitation of the general GPT is that it may not 
adequately recognize the specific environmental settings in
manufacturing such as HRC, or the varied linguistic practices 
of operators. This underscores the need for domain-specific 
LLMs to capture and interpret nuances accurately.

2.2. Human intention Recognition in HRC

One of the principal research interests in HRC is the 
investigation of collaboration processes between humans and 
robots [4]. Unlike humans, who can easily perceive changes in 
their environment and status, robots fundamentally lack this 
flexible perceptual capability that is critical to collaborative 
interactions. Generally, there are three main methods for robots 
to perceive and understand human intentions: gesture control 
[11], brainwave control [12], and language control [13].

Among these, language control stands out as it is not 
affected by the current human actions, thereby less vulnerable 

Fig. 1. Predefined command and human natural language

Fig. 2. Working process of Transformer model
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to noise in model predictions. Park et al. contributed to this area 
by developing a framework that improves HRC on construction 
sites through the integration of Bidirectional Long Short-Term 
Memory with Conditional Random Field (BiLSTM-CRF) and 
BERT models. This framework uses the BiLSTM-CRF to 
capture contextual information in sequence labeling, while 
employing the BERT model for language understanding [13]. 
Additionally, the development of LLM has enabled more 
effective communication between humans and robots using 
language, allowing robots to process environmental 
information through verbal commands [14].

On the other hand, language control in HRC has been 
performed via rigid, predefined syntax, making it difficult for 
robots to interpret instructions naturally. This limitation poses 
a challenge and restricts its broader application.

3. Methodology

3.1. Fine-tuned language model

LLM has shown significant potential in communication like 
answering questions, text summarization, and translation, due  
to the pre-trained model technologies and the Transformer 
architecture [7]. Through pre-training, LLMs develop a 
common sense that boosts performance across various 
downstream tasks [15]. This capability enables the effective 
integration of LLMs into HRC through task-specific fine-
tuning. The outcome of such adaptation is enhanced interaction 
and comprehension between humans and robots, leading to 
increased collaborative efficiency and functionality.

The fine-tuned LLM leverages the transformer architecture, 
introduced by Vaswani et al. [7]. As shown in Fig. 2, the 
Transformer model comprises two main components: an 
encoder and a decoder. The encoder processes the input 
sequence and includes six identical layers, each has two sub-
layers: a multi-head self-attention mechanism and a position-
wise fully connected feed-forward network. The decoder also 
contains six identical layers but adds a masked multi-head 
attention layer, ensuring that the outputs depend only on 
previous sequence elements. This structure enables the 
transformer-based model to generate outputs through a series 
of computations detailed in subsequent sections. The output of 
the transformer-based model can be computed as follows:= + (1)
where is the token embedding matrix and is the
position embedding matrix. includes the input sequence 
to the transformer-based model. The working process of 
transformer-based model involves the generation of the Query
( ), Key ( ), and Value ( ) matrix for each token in the input:= , = = , (2)
where , , are the weight matrices specific to each
head in the multi-head attention mechanism, and is the 
previous output from the attention mechanism of the 
corresponding input. Calculating the similarity by comparing
the Query and the Key of other tokens through the dot product:= (3)
where denotes the transpose of matrix, the attention_score
using SoftMax function with the output from Eq. 3 yields:

_ = , (4)
where represents the dimension of . The output of the 
attention mechanism can be computed by multiplying 
attention_ score with , where is the size of the vocabulary:= _ (5)
In addition to the attention sub-layers, the Transformer model 
includes a position-wise fully connected feed-forward
network, which comprises two linear transformations with a 
ReLU activation function applied in between. The term Yl 1 is 
fed through a separate feed-forward neural network with its 
own parameter and . The final output of the feed-
forward network is:= ( ) + , (6)
and the parameters of the network can be optimized with the 
cross-entropy loss function as follows:

= log (7)
where is the true token embeddings and is the predicted 
one, N represents token numbers.

3.2. HRC natural language command instruction framework

To train the model for interpreting natural language 
instructions with missing information, an HRC-based 
command framework has been developed. Because human 
instruction may not contain all the critical details, robots must 
resort to additional environmental context to properly and 
correctly respond to the human instruction. Contemporary 
cognitive theories emphasize that the structured nature of 
human language, rather than its versatility, is its most 
significant attribute [16]. These theories posit that human 
linguistic behavior adheres to grammatical principles, 
especially the Subject-Verb-Object (SVO) word order [16,17]. 
In this presented study, the language commands have been 
structured into components of Subject, Object, and Context, as 
illustrated in Fig. 3. Notably, the Verb is integrated within the 
Context component to align closely with the specific demands 
of the HRC scenario.

Understanding the Subject is essential for a LLM to 
correctly predict robotic actions. Humans naturally use 
environmental and contextual cues to interpret instructions, 
which is a capability often lacking in general LLM.

Contextual understanding is critical for an LLM to choose 
the appropriate action among multiple possibilities. Without 
this, robots may face ambiguities, unsure whether to hand over 
a tool to the operator or return it to the toolbox.

Additionally, accurate identification of the Object in a 
command is crucial. The Object typically represents the tool 
required by human operators, underscoring the need for clear
and precise communication to ensure successful HRC.

Fig. 3. Syntax structure of language instruction
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To make the instructions abstract and natural for practical 
communication in HRC, the natural language commands were 
synthesized by minimizing the explicit content, specifically by 
omitting the Subjects, Objects, or Contexts, as illustrated in 
Table 1, to mimic the conversational style in natural human 
communication. Such an approach, however, poses significant 
challenges for robots in discerning human intentions due to the 
ambiguity of the commands.

3.3. Control Module

The Control Module’s primary function is to receive and 
process the output from the fine-tuned LLM, converting it to a 
robotic manipulation configuration. Additionally, the module 
records the robot’s current state, such as the actions being 
executed (e.g., picking up or returning) and the characteristics 
of the tool currently held by the robot. By integrating the 
LLM’s output with the robot’s current state, the Control 
Module effectively infers the human operator’s actual 
intentions, generating the final configuration that includes the 
expected robot actions, tool names, and features. 

Table 1. Natural language command after removing corresponding part

Removed 
component Command Challenges

Initial commandReturn the flat-head screwdriver, I want 
the Phillips screwdriver. N/A

Subject
Not the flat-head screwdriver, the 

Phillips screwdriver. What is the desired action?

Object Return the flat-head one, I want the 
Phillips one.

What is the tool human 
wants?

Context I want the Phillips screwdriver. What to do with the tool in 
hand?

Subject and 
Object Not the flat-head one, the Phillips one. What is the tool human wants

and the desired action?

Subject and 
Context The Phillips screwdriver.

What is the desired action and 
what to do with the tool in 

hand?

Object and 
Context I want the Phillips one.

What is the tool human wants
and what to do with the tool in 

hand?

Subject, Object 
and Context

    The Phillips one.
What to do first? What to do 

next and what is the tool 
human actually wants?

As shown in Fig. 4, the current state stores the robot’s 
activity status, and the Control Module can determine the 
ongoing action, such as picking up a blue Phillips screwdriver, 
by reading this state.

When an instruction lacks specific information, such as the 
tool name expected by the human operator, the Control Module 

plays the role of facilitating the correct understanding and 
interpretation of the human instruction. By analyzing the 
working status output from the LLM, the module identifies 
discrepancies in the human language command and identify 
errors in the robot’s current operational state. Further 
integration of the robot’s current status indicates that the human 
command did not correct the name of the tool, but rather its 
attribute, such as the color. Consequently, the Control Module 
synthesizes the data from the LLM with the robot’s operational 
status, conducts a comparison, and adjusts the status 
accordingly. This process results in a finalized sequence of 
robotic commands: (1) return the currently held tool; (2)
retrieve and deliver the tool as specified by the human operator.

4. Case study

To implement the developed method for HRC, the GPT-3.5-
1106 model was fine-tuned using the HRC natural language 
command instruction framework, including evaluation of an 
unseen test dataset. Subsequently, an experiment on an Edo 
robot was platformed to evaluate the effectiveness of using 
unstandardized, natural language commands for correcting 
robotic errors.

4.1. Dataset

To facilitate the evaluation, a fine-tuned dataset that 
includes ambiguous but natural human language commands 
was paired with expected robotic configurations. Initially, a 
total of seven instructions were generated using rigid syntax 
with complete information to train the LLM to produce outputs
accurately. Recognizing that a tool can possess multiple 
attributes, such as color and shape, the instructions also 
encompass these features, allowing the LLM to learn the 
diverse ways humans might describe tools. This approach 
aligns with the developed HRC natural language command 
framework, from which multiple sets of natural human 
language instructions were generated.

As illustrated in Fig. 5, the standard training dataset 
comprises 28 command samples, including tool names such as 
hammer and wrench, and color features such as red and blue, 
with additional characteristics such as heavy-duty and regular. 
Moreover, to examine the impact of the size of the dataset size 
on model generalization, an advanced training set with 41 
instructions was generated, following the same criteria. For the 
testing set, different tool names and features from the training 
set were selected to ensure credible evaluation. It is noted that 
the order of reduction in the dataset is not fixed. The intended 
output from this dataset is structured as a dictionary containing 
four keys: Input status, Working status, Tool name, and Tool 

Fig. 5. Training data examples

Fig. 4. Workflow of the control module
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feature. Input status is binary (0 or 1), indicating whether the 
natural language instruction is relevant to the robot’s task (1 for 
yes, 0 for no). Working status reflects the accuracy of the tool 
selection by the robot based on the human’s instructions, with 
1 denoting correct and 0 incorrect. Tool name and Tool feature 
provide details about the tool specified by the human operator, 
with Tool feature detailing the characteristics of the tool as 
described in the human command.

4.2. Fine-tuned LLM performance

The GPT-3.5-turbo-1106 model, which has 175 billion 
parameters, was selected for the presented study due to its 
optimal balance of performance and computational efficiency. 
For the fine-tuned process, the standard training set was
utilized, with the learning rate multiplier set to 2. A cross-
entropy loss function was used. As depicted in Fig. 6, the loss 
value decreased significantly from 3.9532 to 0.2481 after 50
training steps, demonstrating the model’s ability to accurately 
learn from the training samples and generate the expected 
output.

To evaluate the natural language understanding ability of the 
proposed model, comparative evaluations with other versions 
of GPT-3.5 were performed, including GPT-3.5-turbo (not 
fine-tuned), GPT-3.5-0613, and GPT-3.5-0125, all trained on 
the same dataset. Model performance was measured on the test 
dataset using accuracy metrics: human intention accuracy, tool 
name accuracy, and tool feature accuracy, based on the output’s 
Working status, Tool name, and Tool feature. These metrics 
evaluate how well the model identifies human intentions and 
the specific tool attributes mentioned in the commands. The 
accuracy is calculated as:

= (8)

Fig. 7 illustrates the prediction accuracy of these models. In 
each group, from left to right, the first, second, and third models 
constitute the control group, with the fourth model being fine-
tuned proposed model. Compared to the control group, the 

proposed model has shown comparatively the best performance 
in discerning the expected tool name and features from 
instructions, particularly those with a flexible format and 
missing information. This enhanced understanding underscores 
the improved model responsiveness to complex, real-world 
commands in HRC.

Comparative analysis was also performed of performance of 
the fine-tuned model when trained on a standard training set 
versus an advanced training set, to examine the impact of 
training sample volume on the model’s generalization ability. 
As depicted in Fig. 8, within each group, the left bar represents 
the model trained on the standard training set, and the right bar 
corresponds to the model trained on the advanced training set. 
While the model trained on the standard training set was 
capable of making reasonable predictions and producing the 
expected output format, the model trained on the advanced 
training set exhibited enhanced accuracy. This improvement 
demonstrates that the volume of training samples significantly 
influences model performance, with a larger number of 
samples leading to better generalization.

The model’s ability to interpret new input formats where 
human operators describe tools using multiple features was 
also evaluated. For example, if a robot delivers a wrong tool, 
e.g., a red flat head instead of a blue Phillips screwdriver, the 
operator might specify both color and shape to correct the error 
and help the robot to distinguish the desired tool between a red 
Phillips and a blue Phillips screwdriver in the toolbox. These 
features were added in the test dataset to assess the model’s 
accuracy in understanding such detailed commands. As shown 
in Fig. 9, while all models can generate outputs in a fixed 
format, the developed model trained on advanced training set 
achieved higher accuracy.

Within each group, the first two models are control group 

models trained on the standard set, and the two on the right are 
the developed models trained on both the standard and 
advanced sets. Results show that all the models can interpret 
adjectives due to pre-training and fine-tuning has enhanced

Fig. 6. Loss value during the training

Fig. 8. Comparison of prediction accuracy between different data volume

Fig. 9. Comparison of prediction accuracy with multiple featuresFig. 7. Comparison of prediction accuracy with other models
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their ability to link adjectives with the correct tool features, 
improving understanding of complex commands.

4.3. Real-robot experiment

To evaluate the performance of the developed model, it was 
integrated into an Edo robot platform for assisting human 
operators in assembly tasks. The system employs a camera to 
capture images and predict the next step in the assembly 
process, enabling the robot to provide the required tool to the 
operator [18]. When prediction errors occur, operators can use 
natural language commands to correct the robot’s action. This 
correction mechanism, illustrated in Fig. 10, involves six steps:

capturing the operator’s current action to predict the next 
action; robot retrieving the predicted tool; operator 
identifying and correcting tool selection errors; robot 
returning the incorrect tool (e.g., a screwdriver) to where it was 
picked up; robot retrieving the correct tool (e.g., an Allen 
key); robot delivering the right tool to the operator.

5. Conclusion

To address the challenge posed by rigid and predefined 
syntax that is typically required for robots to understand human 
language input and facilitate the development of efficient HRC 
communication, a fine-tuned LLM trained on a tailored HRC 
communication model was developed, which equips the LLM 
with task-specific knowledge and engineering behaviors. 
Experimental results have demonstrated that the fine-tuned 
LLM model can accurately interpret human intentions from 
incomplete language commands, enabling the robot to execute 
effectively action sequences and correct erroneous movements. 

Future research will expand the training dataset with 
different human language behaviors, and explore hint-based 
voice feedback and explanatory mechanisms to enhance the 
intuitiveness and transparency of human-robot communication 
and interaction towards more effective, efficient, and safer 
operations on the factory floors.
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