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Vision-language model-driven scene understanding and robotic object
manipulation
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Abstract— Humans often use natural language instructions
to control and interact with robots for task execution. This
poses a big challenge to robots that need to not only parse
and understand human instructions but also realise semantic
understanding of an unknown environment and its constituent
elements. To address this challenge, this study presents a vision-7
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language model (VLM)-driven approach to scene understanding s
of an unknown environment to enable robotic object ma-s
nipulation. Given language instructions, a pre-tained vision-io
language model built on open-sourced Llama2-chat (7B) as 11
the language model backbone is adopted for image description 12
and scene understanding, which translates visual information 13
into text descriptions of the scene. Next, a zero-shot-based 1
approach to fine-grained visual grounding and object detection s
is developed to extract and localise objects of interest from ic
the scene task. Upon 3D reconstruction and pose estimate 17
establishment of the object, a code-writing large language model s
(LLM) is adopted to generate high-level control codes and link 19
language instructions with robot actions for downstream tasks. 20
The performance of the developed approach is experimentally 21
validated through table-top object manipulation by a robot.

I. INTRODUCTION

Humans often instruct robots to assist in collaborative
tasks, where language instructions are a promising manner
to realise natural interactions with robots [1]. However, the
use of natural language instructions in robot control and in-
teractions with unknown environments remains a challenge.
For this purpose, robots need to have the capability of not
only parsing natural language instructions but also semantic
understanding of unknown interaction environments [2]. A
simple natural language instruction issued by humans is built
on the understanding of working environments and cognitive
reasoning of operation tasks [3]. However, the robot does
not initially have such capabilities such as natural language
processing and semantic understanding [4]. Thanks to the
advancement of vision techniques, the combination of visual
systems with artificial i ntelligence ( AI) a Igorithms enables
environmental perception, object recognition and manipula-
tion, and fusing the visual perception and natural language
description enables robots with enhanced capabilities in task
execution. As an example, applications of neural radiance
fields ( NeRFs) i n v isual-based r obotic m anipulation have
been investigated to realise 3D reconstruction of physical
environments [5]. Upon visual representation establishment
of objects, NLP algorithms can comprehend language-based
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instructions and facilitate the downstream tasks with the
support of visual information [6].

In recent years, the emergence of large language models
(LLMs) such as BERT [7], Llama [8], GPT-4 [9], and
Gemma [10] has demonstrated notable performance and
achievements in the field o fg enerative A Ia nd robotic
applications. Built on transformer architectures, LLMs are
trained on massive amounts of datasets, which allows them to
generate high-quality and comprehensive language text [11].
More recently, various applications of leveraging LLMs in
NLP tasks, cognitive reasoning, decision making and robot
control have been reported [12]. For example, leveraging
LLMs to facilitate human-robot interactions (HRIs), robot
task planning, code generation, and text parsing has been
reported in the literature [13][14][15]. Robotists demand
natural HRIs and seamless collaborative task execution,
given the broad deployment of language models. The fusion
of LLMs and robotics can unlock new opportunities to
enable robots to have human-like capabilities of NLP and
text generation [16]. In addition, massive visual data are
included in the training dataset of foundation models, and the
emergence of vision-language models (VLMs) can interpret
a mixture of visual and language inputs [17][18], and these
pre-trained VLMs act as the bridge between visual and tex-
tual information, enabling handling a wide range of vision-
language tasks. Additionally, the use of pre-trained language
models for scene understanding of household objects was
investigated [19]. However, semantic scene understanding is
a problem of paramount importance for robotic manipulation,
and robots still lack common-sense knowledge of objects
among manipulation tasks.

Scene understanding is of critical importance in robotics,
especially autonomous robotic systems and interaction con-
trol, and it refers to context extraction from visual data [20].
Given language instructions, it facilitates robots have seman-
tic understanding of the scene and its elements (or objects)
and then provides a base for downstream tasks such as object
localisation and manipulation. Various approaches to facil-
itate scene understanding in HRIs, autonomous navigation
and component recognition have been reported in the litera-
ture [21]. For example, a simple task of a robot is to correctly
enumerate how many objects are in the scene and segment
them from the background without prior knowledge [21].
However, scene understanding of more complex activities
is still a challenging task that requires retrieving contextual
information from the scene, e.g., objects, events, or concepts.
For this purpose, research efforts on a complete semantic-
level description of the scene [22], 3D scene understanding

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

7

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93



20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

e —>
BE 43
4t
l l-_} Object detection

Code generation

CLE

Fig. 1.

Scene description

abew|
EIELTS

jo pelqo
R

1salapul

uononsul
abenbue]

[23], and the spatial relationship of objects in a scene
were explored [24]. Most of the existing approaches rely
on semantic segmentation from 2D/3D visual information
and also require high computational efforts. Few studies
have investigated the textual description of the scenes by
highlighting critical objects but with the need for fewer
computational resources.

To close the gaps, this study presents a pre-trained vision-
language model-driven approach to scene understanding and
robotic object manipulation. As shown in Fig. 1, visual
information of the target scene is fed into a pre-trained
VLM built on Llama2 (7B) that is trained on publicly
available data, to build a semantic understanding of the
scene, and it includes text representation of the scene and its
coarse detection of the objects. In parallel, a zero-shot-based
approach to fine-grained visual grounding from complex
scene tasks is developed for object detection with its location
representation by a bounding box with text labels. Upon the
detected 2D object, a 3D reconstruction of the object with
pose estimates where the details can be found in our previous
work [2] is overlaid on the 2D object and defined as control
input of downstream tasks. Then, language instructions of
tasks are fed into a code-writing LLM to generate high-
level control code for object manipulation. Finally, the visual
results of the objects are assigned to the variables of these
codes for control action execution.

The remainder of the paper is organised as follows. Section
2 presents the problem statement and methods. Section
3 introduces pre-trained VLM-driven scene understanding
and object grounding, and Section 4 links natural language
with robot actions via a code-writing LLM, followed by
experimental validation. Finally, Section 5 draws conclusions
and highlights future work.

II. PROBLEM STATEMENT AND METHODS
A. Problem definition

As shown in Fig. 2, an NLP task (NLPT) to robots is
formulated as NLPT = {T,S,P,0}, where T is the textual
content that can be a sentence or a phrase. S, P, and
O represent a subject (executor), a predicate (action) and
an object (component to be acted on) of T, respectively.

Scene understanding

a table with a tool
Object selection

e

High-level code

Programme

. ) Camera
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is next to

Pose info

Robot
m actions

Overview of VLM-driven scene understanding and robotic object manipulation.

IR
NLP task: | A robot | |a componenti
NLP
(NLP) u = Grounding
Semantics:  Subject (S) Predicate (P) Object (O) ’-;-‘
Plan: Executor Action  Component acted on

Fig. 2. Semantic segmentation of a natural language task.

By adding visual information, textual information of O is
processed and grounded into a real-world object by a pre-
trained VLM for object detection. However, 2D represen-
tation of the object detection cannot support robotic object
manipulation (e.g., grasping) that needs object’s 3D model
and pose information. In parallel, having robots to parse
and understanding language instruction for downstream task
(e.g., robot control) remains a challenge. Within such a
context, the research questions explored in this study are
summarised as follows:

« How to use a VLM for zero-shot sample-based text
description and semantic understanding of an unknown
scene?

« How to link visual grounding and fine-grained object
detection with additional 3D reconstruction for down-
stream tasks (e.g., object manipulation)?

« How to parse language instructions and generate high-
level control codes for robot actions and manipulation?

B. Architecture of LLM built on Llama?2

Fig. 3 presents an architecture of a fine-tuned LLM
built on open-sourced Llama2 (7B) for scene understanding
and object description. It adopts the same architecture of
MiniGPT-v2 [25], and it demonstrated better performance
on handling various vision-language tasks, compared with
LLMs with similar-level parameters including
Flamingo-9B,  MiniGPT-4  (13B), BLIP-2  (13B),
InstructBLIP (13B), LLaVA (13B) and Shikra (13B). The
model takes a vi-sion transformer (ViT) [26] and a
querying transformer (Q-Former) [27] visual backbone,
which remains frozen during all training phases.
Adjacent visual output tokens
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from a ViT backbone are concatenated and projected into
the Llama2 language model space via a linear projection
layer. Finally, Llama2 language tokens are directly utilised
to handle vision-language tasks such as image recognition
and object grounding. The details of the adopted architecture
can be found in [25].

:>I¢ = Querying transformer
Y ] 3 Q-Former
®Z =

P 227 — | f
Visual 3 = 2  Feature |ff o
|||h % processing § 133 extraction “ S .” l

= Queries Text

Image dataset
Linear projector

i\ Image description
Prompt > \- LLM (Llama 2) :
Text - Object detection

Fig. 3. Architecture of VLM for scene description and object detection
(adapted and modified from [25]).

C. Method introduction

Two-system approach: A two-system approach is de-
signed for scene description with a full-view image and ob-
ject detection with an object-of-interest image. A collection
of image datasets is fed into a ViT-based visual encoder
to generate a two-dimensional grid of token vectors, and
subsequently flatten it to create a one-dimensional sequence
[26]. As image resolution increases, the number of visual
tokens also grows significantly. By using MiniGPT-v2 for
object detection, large objects can be accurately detected and
identified, while small objects are often resorted to the whole
description of the environment or the image. This means
that it cannot accurately recognise small objects within
a multi-object complex scene. Given these characteristics,
a two-system approach is therefore developed. For scene
understanding, it uses a full-view scene image with all of
the elements to generate a scene description by text. For
fine-grained object manipulation, a scene image is segmented
into a set of grid images, and the image with objects of
interest is used to accurately detect and ground the object
and then provide visual and location information to robots
for manipulation. Most of object manipulation is for table-top
tasks, and their images token from a top-view or eye-in-hand
camera in a certain distance regarding the objects mainly
contain only objects, which can be used as well-segmented
scenes for fine-grained object detection.

Llama2 based user prompt: A prompt user interface
is directly adopted from the Llama2-chat 7B interface to
perform vision language tasks. To adopt the pre-trained LLM
for robotic tasks, a set of prompts for specific functions
are used, and they are 1) ‘describe this image as
detailed’ for image description by texts and associating
the objects of the texts with their correspondence in the
image; 2) ‘detect an object’ for object detection and
2D spatial location grounding. Here, ‘object’ can be

instanced by a specific component such as a tool; 3) ‘refer
an object’ for the object referring with a bounding box
and a text label on it. The prompt template is adopted
from a multi-task instruction template with the task-specific
tokens. It consists of a general input format including image
features, a task identifier token, and an instruction input. The
task-specific tokens provided by MiniGPT-v2 can facilitate
precise and accurate task execution such as visual grounding
and object detection.

III. SCENE UNDERSTANDING AND OBJECT GROUNDING
A. Zero-shot sample-based scene understanding

Scene understanding in this study is focused on a cus-
tomised robotic work cell, and the scene images are not
included in the datasets of training LLMs. These images can
be defined as zero-shot samples for the pre-trained LLM and
utilised to explore its transfer and generalisation capabilities.
Fig. 4 illustrates the performance of scene understanding
by a full-view image. An scene image is fed into the
pre-trained LLM together with a language instruction of
‘describe this image as detailed’. The result
of its description is ‘A robot is next to a table
with ’ in a simplified format, and the pre-trained
model can recognise most of the objects in the image and
reveal the spatial relationship of these objects. Therefore,
the result reveals a brief understanding of the given scene
and its constituent elements. In parallel, the visual grounding
of objects pinpoints their 2D spatial locations with accurate
bounding boxes and text labels. Here, associating the object
of the text description with its counterpart of the scene
image is implemented by language reasoning. However, the
components on the table are ambiguously depicted as ‘a
tool’ without detailed identification. This is limited by
the nature of the adopted model that melts small objects
into the environment description. To address this problem,
a fine-grained description and detection of small objects is
necessary, which will be presented in Subsection III-B.

Describe this image as detailed

[ robot is next to a table W|th a tool]

%

=
9]

3

o
%’
=

[=]

=

Fig. 4. Zero shot sample-based scene understanding and visual grounding.

B. Fine-grained object detection and grounding

As shown in the left-side sub-figure of Fig. 5, an image
with only objects of interest (two parts) is segmented from
the whole scene image and uploaded to the pre-trained
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model, and the instruction of ‘detect valve cover’is
prompted to detect the object of the valve cover, followed
by the output of accurate detection and grounding with a
bounding box and text label. It reveals that the developed
fine-grained object detection approach can realise precise
detection and localisation of the small object. Also, a test
of how small the obiject can be detected is performed given

Visual
Grounding

{<16><43>
<40><79>}

Fig. 5.
complex scenario (right).

Fine-grained object detection (left) and object referring within a

Right-side sub-figure of Fig. 5 shows the result of a test
of object grounding in a complex scene. Compared with the
scene image in Fig. 4, this scene image contains more objects
and a complex environmental background. A language in-
struction of ‘refer robot’ is prompted to refer the robot
in the complex scene and pinpoint its 2D position with an
accurate bounding box. Its location information is depicted in
the left-top (16,43) and right-bottom (40,79) corner position
of the bounding box. This can validate the performance of
the pre-trained model in the visual grounding of key objects
within a complex scene.

IV. LANGUAGE-ACTION TRANSLATION SUPPORTED BY
CODE-WRITING LLM

A. Link language texts with code generation

As shown in Fig. 2, an NLP task for robots can be
decomposed into an executor, actions, and components to be
acted on [28]. Upon a brief understanding of the target scene
and 2D spatial representation of the object in Section III, this
section investigates a vision-language-action model-driven
approach to downstream tasks. Inspired by Code as Policies
(CaP)[29] and Instruct2Act [30], it uses a code-writing LLM
to link language instructions of the tasks and high-level codes
of robot actions, by integrating vision perception and robot
control functions. It allows a robot to execute a sequence
of actions based on an instruction from the user and an
observation image captured by an eye-in-hand camera.

The code-writing model relies on a well-designed prompt
to the LLM for code generation. A complete prompt to
generate codes contains third-party libraries, API definitions,
and in-context examples, and they are introduced as follows:

Third-party libraries: Python code libraries, such as
NumPy, PyTorch, and cv2 can offer essential information
about how APIs use the parameter types in these libraries
for specific functions such as calculation and image pro-
cessing. Importing these libraries can make the code-writing
straightforward without writing all of the codes. The LLM
can use the knowledge of these popular third-party libraries
to perform advanced code generation.

# Vision APIs

# Please use the tools below:

def get_object_images(obj) -> Image:
""Get the current image from camera.
Examples:
images = get_object_images (obj)

"""Call and load pose of the object.
Examples:
object_pose = object_pose(obj)

pass

# Control APIs
# Please use the tools below:
def pick_place(obj) -> str:
"""Run picking and placing actions of
objects.
Examples:
robot_action = pick_place (obj_0, obj_1)

pass
def detect_object(obj) -> str:
""" Detect the object from the image.
Examples:
object_names = detect_object(obj)

pass

def pose_objects -> str: pass

Fig. 6. Example of prompts for vision and control APIs.

API definitions: Given natural language instructions, they
are decomposed into a set of function tasks. These sub-
function tasks are defined and linked with specific APIs, and
the control flow of these APIsis organised sequentially for
task execution. Specifically, this study mainly relies on two
types of APIs and they are for vision perception and robot
action control, namely vision and control APIs as shown in
Fig. 6. Specifically, t heir s pecifications ar e su mmarised as
follows:

e« get_obj_image: gets fine-grained images of objects
of interest by an eye-in-hand camera. It calls a visual
servoing system to transmit and store the images in the
cache variables.

e detect_object: detects and grounds the object that
is extracted from language instructions, among the im-
ages. Specifically, the object of the language instruction
(e.g., valve cover) is assigned to this function, and
then the visual feature of the object is extracted for
recognition and detection, followed by pinpointing the
2D spatial location in the image.

+ pose_object: adds a 3D model representation of the
object and its pose on the detected object where the
technical details can be found in our previous study [2].
It provides position and orientation information of the
object with CAD data for manipulation (e.g., grasping).
The object pose regarding the robotic coordinate system
is calculated by a frame transform and cached in the
defined variable object_pose

e pick_place: perform pick and/or placing tasks of ob-
jects. The variables obj_0 and obj_1 are assigned with
the object to be manipulated. It receives the object’s
pose and position in the robotic coordinate system, and
generates robot paths of object grasping by using robot
operating system (ROS)-based motion planners.

In-context examples: work as a crucial step in in-context
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learning, and instruction-to-code pairs as examples present
the demonstrations of how to learn and generate code from
examples [31]. Specifically, instructions are written as com-
ments directly preceding a block of corresponding solution
code. These instructions are concatenated with examples to
construct a prompt. The prompt is fed into the code-writing
model with the output of a corresponding program.

Given a language instruction, its object names are parsed
and extracted by using language reasoning, and it can be
few-shot prompted using code-writing LLMs to associate
object names with language descriptions, categories, or past
context. Then, the vision APIs for image processing and
object detection is called to provide object’s position and
pose to the control APIs, where the motion planning of the
robot arm is generated by a ROS-based motion planner.

Vision APls
Control APls

Code-writing
LLM

@ images = get_object_images (obj)
@ object_names = detect_object (‘valve cover’)
® object_pose = refer_objects (‘valve cover’)

@ robot_action = pick_place (obj_0, obj_1)

Co&e

Fig. 7.

A scheme of linking language instructions into robot actions
facilitated by vision perception and a code-writing LLM.

B. Experimental Validation

A case study of table-top object manipulation is performed
to test and validate the developed system. As shown in Fig. 7,
a user instructs a Kinova robot arm (with Robotnik Summit-
XL mobile base) to pick up a valve cover. The robot system
is controlled by an ROS-based architecture, and a prompt
interface to the LLM is connected to a PC with Ubuntu20.04
and a single NVIDIA RTX 4090 GPU.

Upon the scene understanding of the physical environ-
ment, a text instruction of ‘pick up valve cover’ is
segmented into an action and a component to be acted on,
and they are a predicate of ‘pick up’ and an object of
‘valve cover’. Then, the language instruction is input
to the code-writing LLM that outputs the high-level control
codes, as shown in the ‘Code’ module of Figure 7. In parallel,
a collection of the scene image is obtained using an eye-
in-hand camera (RealSense D435) by calling a vision API
function of ’get_object_images (obj)’ in the code
module, and the collected image with a specific resolution
is shown in subset @, and is cached into a variable of
images. The object of the language instruction (valve
cover) is indexed and grounded into a task identifier token,

and the indexed object is assigned to the object of the im-
age detection. The function of object_detect (‘valve
cover’) connects with the image processing approaches in
Section III to extract the visual feature of the image, and then
identify the object of the valve cover. The visual grounding is
used to accurately determine the 2D spatial location among
the image, indicated by a bounding box and a text label as
shown in inset (2).

Upon 3D reconstruction and pose estimate establishment
through a neural field object modelling [2], a 3D model of the
valve cover with its pose estimate as shown in Figure 8 (left)
is overlaid onto its 2D image, and this is implemented by run-
ning the function of refer object (‘valve cover’).
Then, the position and pose information of the valve cover
regarding the robotic coordinate system are cached in the
variable of object_pose. The grasping point of object is
the centre of the object’s re-defined coordinate frame (as
shown in the pose image of Figure 8 (left)), which is created
by taking the centre and oriented box of the mesh model of
the object’s surface structure model and geometry. In parallel,
such information is sent to the robot controller via a built-in
visual servoing system (the details can be found in [2]). Once
the visual information is detected, the control API is executed
to perform object grasping by the robot. Specifically, the
position and orientation of the object are loaded into a
function of ‘pick_place (' valve cover’)’ where the
valve cover is assigned to the variable of obj 0 and the
variable of obj_1 is empty. Next, the embedded ROS-based
motion planner outputs robot paths that adopt a top-down
grasping policy as shown in Figure 8 (middle). Finally, the
robot arm follows the motion path to perform the robot action
of the pick_place, and the final result is shown in Figure 8
(right).

Fig. 8. Experimental results of robot actions: object’s pose and 3D model
(left), robot grasping (middle), and robot picking action (right).

V. CONCLUSIONS AND FUTURE WORK

This study presents a vision language model-driven ap-
proach to scene understanding of unknown environments and
robotic object manipulation supported by vision perception
and a code-writing LLM. The method adopts a pre-trained
VLM to bridge visual and textual information for scene
understanding with outputs of text-based description, and it
realises the visual grounding of objects of interest with zero-
shot samples, and fine-grained o bject d etection by a visual
encoder and a language decoder. Upon 3D reconstruction
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and pose estimate establishment for the object, a code-
writing LLM is used to generate high-level control code for
object manipulation, and the results of visual perception are
employed to the control codes for specific robot actions. Ex-
perimental evaluation using a robotic grasping task confirms
the following contributions from the vision LLM method:

¢ VLM-driven scene understanding of an unknown in-
teraction environment and text description of its con-
stituent elements.

o« A zero-shot-based approach to fine-grained visual
grounding and object. detection from complex scene
tasks.

« Linking language instructions with robot actions for
object manipulation facilitated by vision perception and
a code-writing LLM.

Future efforts will be directed to improving the per-
formance of VLMs in the fine-grained understanding of
complex environments and consistent element detection and
generalisation to new tasks. Its utility in realising natural
human-robot interactions and autonomous robotic systems
driven by natural language will be investigated.
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