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Abstract— Humans often use natural language instructions1

2 to control and interact with robots for task execution. This 
3 poses a big challenge to robots that need to not only parse 
4 and understand human instructions but also realise semantic 
5 understanding of an unknown environment and its constituent 
6 elements. To address this challenge, this study presents a vision-7 

language model (VLM)-driven approach to scene understanding 8 

of an unknown environment to enable robotic object ma-9 

nipulation. Given language instructions, a pre-tained vision-10 

language model built on open-sourced Llama2-chat (7B) as 11 

the language model backbone is adopted for image description 12 

and scene understanding, which translates visual information 13 

into text descriptions of the scene. Next, a zero-shot-based 14 

approach to fine-grained visual grounding and object detection 15 

is developed to extract and localise objects of interest from 16 

the scene task. Upon 3D reconstruction and pose estimate 17 

establishment of the object, a code-writing large language model 18 

(LLM) is adopted to generate high-level control codes and link 19 

language instructions with robot actions for downstream tasks. 20 

The performance of the developed approach is experimentally 21 

validated through table-top object manipulation by a robot.

I. INTRODUCTION22

Humans often instruct robots to assist in collaborative23

24 tasks, where language instructions are a promising manner 
25 to realise natural interactions with robots [1]. However, the 
26 use of natural language instructions in robot control and in-
27 teractions with unknown environments remains a challenge. 
28 For this purpose, robots need to have the capability of not 
29 only parsing natural language instructions but also semantic 
30 understanding of unknown interaction environments [2]. A 
31 simple natural language instruction issued by humans is built 
32 on the understanding of working environments and cognitive 
33 reasoning of operation tasks [3]. However, the robot does 
34 not initially have such capabilities such as natural language 
35 processing and semantic understanding [4]. Thanks to the 
36 advancement of vision techniques, the combination of visual 
37 systems with artificial i ntelligence ( AI) a lgorithms enables 
38 environmental perception, object recognition and manipula-
39 tion, and fusing the visual perception and natural language 
40 description enables robots with enhanced capabilities in task 
41 execution. As an example, applications of neural radiance 
42 fields ( NeRFs) i n v isual-based r obotic m anipulation have 
43 been investigated to realise 3D reconstruction of physical 
44 environments [5]. Upon visual representation establishment 
45 of objects, NLP algorithms can comprehend language-based
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instructions and facilitate the downstream tasks with the 
support of visual information [6].

In recent years, the emergence of large language models 
(LLMs) such as BERT [7], Llama [8], GPT-4 [9], and 
Gemma [10] has demonstrated notable performance and 
achievements in the field o f g enerative A I a nd robotic 
applications. Built on transformer architectures, LLMs are 
trained on massive amounts of datasets, which allows them to 
generate high-quality and comprehensive language text [11]. 
More recently, various applications of leveraging LLMs in 
NLP tasks, cognitive reasoning, decision making and robot 
control have been reported [12]. For example, leveraging 
LLMs to facilitate human-robot interactions (HRIs), robot 
task planning, code generation, and text parsing has been 
reported in the literature [13][14][15]. Robotists demand 
natural HRIs and seamless collaborative task execution, 
given the broad deployment of language models. The fusion 
of LLMs and robotics can unlock new opportunities to 
enable robots to have human-like capabilities of NLP and 
text generation [16]. In addition, massive visual data are 
included in the training dataset of foundation models, and the 
emergence of vision-language models (VLMs) can interpret 
a mixture of visual and language inputs [17][18], and these 
pre-trained VLMs act as the bridge between visual and tex-
tual information, enabling handling a wide range of vision-
language tasks. Additionally, the use of pre-trained language 
models for scene understanding of household objects was 
investigated [19]. However, semantic scene understanding is 
a problem of paramount importance for robotic manipulation, 
and robots still lack common-sense knowledge of objects 
among manipulation tasks.

Scene understanding is of critical importance in robotics, 
especially autonomous robotic systems and interaction con-
trol, and it refers to context extraction from visual data [20]. 
Given language instructions, it facilitates robots have seman-
tic understanding of the scene and its elements (or objects) 
and then provides a base for downstream tasks such as object 
localisation and manipulation. Various approaches to facil-
itate scene understanding in HRIs, autonomous navigation 
and component recognition have been reported in the litera-
ture [21]. For example, a simple task of a robot is to correctly 
enumerate how many objects are in the scene and segment 
them from the background without prior knowledge [21]. 
However, scene understanding of more complex activities 
is still a challenging task that requires retrieving contextual 
information from the scene, e.g., objects, events, or concepts. 
For this purpose, research efforts on a complete semantic-
level description of the scene [22], 3D scene understanding 93



Fig. 1. Overview of VLM-driven scene understanding and robotic object manipulation.

[23], and the spatial relationship of objects in a scene1

were explored [24]. Most of the existing approaches rely2

on semantic segmentation from 2D/3D visual information3

and also require high computational efforts. Few studies4

have investigated the textual description of the scenes by5

highlighting critical objects but with the need for fewer6

computational resources.7

To close the gaps, this study presents a pre-trained vision-8

9 language model-driven approach to scene understanding and 
10 robotic object manipulation. As shown in Fig. 1, visual 
11 information of the target scene is fed into a pre-trained 
12 VLM built on Llama2 (7B) that is trained on publicly 
13 available data, to build a semantic understanding of the 
14 scene, and it includes text representation of the scene and its 
15 coarse detection of the objects. In parallel, a zero-shot-based 
16 approach to fine-grained visual grounding from complex 
17 scene tasks is developed for object detection with its location 
18 representation by a bounding box with text labels. Upon the 
19 detected 2D object, a 3D reconstruction of the object with 
20 pose estimates where the details can be found in our previous 
21 work [2] is overlaid on the 2D object and defined as control 
22 input of downstream tasks. Then, language instructions of 
23 tasks are fed into a code-writing LLM to generate high-
24 level control code for object manipulation. Finally, the visual 
25 results of the objects are assigned to the variables of these 
26 codes for control action execution.

The remainder of the paper is organised as follows. Section27

2 presents the problem statement and methods. Section28

3 introduces pre-trained VLM-driven scene understanding29

and object grounding, and Section 4 links natural language30

with robot actions via a code-writing LLM, followed by31

experimental validation. Finally, Section 5 draws conclusions32

and highlights future work.33

II. PROBLEM STATEMENT AND METHODS34

A. Problem definition35

As shown in Fig. 2, an NLP task (NLPT ) to robots is36

formulated as NLPT = {T,S,P,O}, where T is the textual37

content that can be a sentence or a phrase. S, P, and38

O represent a subject (executor), a predicate (action) and39

an object (component to be acted on) of T , respectively.40

Fig. 2. Semantic segmentation of a natural language task.

By adding visual information, textual information of O is 41

processed and grounded into a real-world object by a pre- 42

trained VLM for object detection. However, 2D represen- 43

tation of the object detection cannot support robotic object 44

manipulation (e.g., grasping) that needs object’s 3D model 45

and pose information. In parallel, having robots to parse 46

and understanding language instruction for downstream task 47

(e.g., robot control) remains a challenge. Within such a 48

context, the research questions explored in this study are 49

summarised as follows: 50

• How to use a VLM for zero-shot sample-based text 51

52description and semantic understanding of an unknown 
scene? 53

54

55

56

57

• How to link visual grounding and fine-grained object 
detection with additional 3D reconstruction for down-
stream tasks (e.g., object manipulation)?

• How to parse language instructions and generate high-
level control codes for robot actions and manipulation? 58

B. Architecture of LLM built on Llama2 59

60

61

62

63

64

65

66

67

68
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Fig. 3 presents an architecture of a fine-tuned LLM 
built on open-sourced Llama2 (7B) for scene understanding 
and object description. It adopts the same architecture of 
MiniGPT-v2 [25], and it demonstrated better performance 
on handling various vision-language tasks, compared with 
LLMs with similar-level parameters including 
Flamingo-9B, MiniGPT-4 (13B), BLIP-2 (13B), 
InstructBLIP (13B), LLaVA (13B) and Shikra (13B). The 
model takes a vi-sion transformer (ViT) [26] and a 
querying transformer (Q-Former) [27] visual backbone, 
which remains frozen during all training phases. 
Adjacent visual output tokens

70



from a ViT backbone are concatenated and projected into1

the Llama2 language model space via a linear projection2

layer. Finally, Llama2 language tokens are directly utilised3

to handle vision-language tasks such as image recognition4

and object grounding. The details of the adopted architecture5

can be found in [25].6

Fig. 3. Architecture of VLM for scene description and object detection
(adapted and modified from [25]).

C. Method introduction7

Two-system approach: A two-system approach is de-8

signed for scene description with a full-view image and ob-9

ject detection with an object-of-interest image. A collection10

of image datasets is fed into a ViT-based visual encoder11

to generate a two-dimensional grid of token vectors, and12

subsequently flatten it to create a one-dimensional sequence13

[26]. As image resolution increases, the number of visual14

tokens also grows significantly. By using MiniGPT-v2 for15

object detection, large objects can be accurately detected and16

identified, while small objects are often resorted to the whole17

description of the environment or the image. This means18

that it cannot accurately recognise small objects within19

a multi-object complex scene. Given these characteristics,20

a two-system approach is therefore developed. For scene21

understanding, it uses a full-view scene image with all of22

the elements to generate a scene description by text. For23

fine-grained object manipulation, a scene image is segmented24

into a set of grid images, and the image with objects of25

interest is used to accurately detect and ground the object26

and then provide visual and location information to robots27

for manipulation. Most of object manipulation is for table-top28

tasks, and their images token from a top-view or eye-in-hand29

camera in a certain distance regarding the objects mainly30

contain only objects, which can be used as well-segmented31

scenes for fine-grained object detection.32

Llama2 based user prompt: A prompt user interface33

is directly adopted from the Llama2-chat 7B interface to34

perform vision language tasks. To adopt the pre-trained LLM35

for robotic tasks, a set of prompts for specific functions36

are used, and they are 1) ‘describe this image as37

detailed’ for image description by texts and associating38

the objects of the texts with their correspondence in the39

image; 2) ‘detect an object’ for object detection and40

2D spatial location grounding. Here, ‘object’ can be41

instanced by a specific component such as a tool; 3) ‘refer 42

an object’ for the object referring with a bounding box 43

and a text label on it. The prompt template is adopted 44

from a multi-task instruction template with the task-specific 45

tokens. It consists of a general input format including image 46

features, a task identifier token, and an instruction input. The 47

task-specific tokens provided by MiniGPT-v2 can facilitate 48

precise and accurate task execution such as visual grounding 49

and object detection. 50

III. SCENE UNDERSTANDING AND OBJECT GROUNDING 51

A. Zero-shot sample-based scene understanding 52

Scene understanding in this study is focused on a cus- 53

tomised robotic work cell, and the scene images are not 54

included in the datasets of training LLMs. These images can 55

be defined as zero-shot samples for the pre-trained LLM and 56

utilised to explore its transfer and generalisation capabilities. 57

Fig. 4 illustrates the performance of scene understanding 58

by a full-view image. An scene image is fed into the 59

pre-trained LLM together with a language instruction of 60

‘describe this image as detailed’. The result 61

of its description is ‘A robot is next to a table 62

with a tool’ in a simplified format, and the pre-trained 63

model can recognise most of the objects in the image and 64

reveal the spatial relationship of these objects. Therefore, 65

the result reveals a brief understanding of the given scene 66

and its constituent elements. In parallel, the visual grounding 67

of objects pinpoints their 2D spatial locations with accurate 68

bounding boxes and text labels. Here, associating the object 69

of the text description with its counterpart of the scene 70

image is implemented by language reasoning. However, the 71

components on the table are ambiguously depicted as ‘a 72

tool’ without detailed identification. This is limited by 73

the nature of the adopted model that melts small objects 74

into the environment description. To address this problem, 75

a fine-grained description and detection of small objects is 76

necessary, which will be presented in Subsection III-B. 77

Fig. 4. Zero shot sample-based scene understanding and visual grounding.

B. Fine-grained object detection and grounding 78

As shown in the left-side sub-figure of Fig. 5, an image 79

with only objects of interest (two parts) is segmented from 80

the whole scene image and uploaded to the pre-trained 81



1 model, and the instruction of ‘detect valve cover’ is 
2 prompted to detect the object of the valve cover, followed 
3 by the output of accurate detection and grounding with a 
4 bounding box and text label. It reveals that the developed 
5 fine-grained object detection approach can realise precise 
6 detection and localisation of the small object. Also, a test 
7 of how small the object can be detected is performed given
8 available experimental resources. With a prompt of ’detect 

9 screw’, the small-size screws can be precisely detected and 
10 grounded as show in the sub-figure. For the table-top object 
11 manipulation, an eye-in-hand camera mounted on a robot’s 
12 wrist can have fine-grained i mages o f t he t asks w ithin a 
13 certain distance, which are highly similar to the segmented 
14 image of the scene image.

Visual 
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Refer robotDetect valve cover
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Fig. 5. Fine-grained object detection (left) and object referring within a
complex scenario (right).

Right-side sub-figure of Fig. 5 shows the result of a test15

of object grounding in a complex scene. Compared with the16

scene image in Fig. 4, this scene image contains more objects17

and a complex environmental background. A language in-18

struction of ‘refer robot’ is prompted to refer the robot19

in the complex scene and pinpoint its 2D position with an20

accurate bounding box. Its location information is depicted in21

the left-top (16,43) and right-bottom (40,79) corner position22

of the bounding box. This can validate the performance of23

the pre-trained model in the visual grounding of key objects24

within a complex scene.25

IV. LANGUAGE-ACTION TRANSLATION SUPPORTED BY26

CODE-WRITING LLM27

A. Link language texts with code generation28

As shown in Fig. 2, an NLP task for robots can be29

decomposed into an executor, actions, and components to be30

acted on [28]. Upon a brief understanding of the target scene31

and 2D spatial representation of the object in Section III, this32

section investigates a vision-language-action model-driven33

approach to downstream tasks. Inspired by Code as Policies34

(CaP)[29] and Instruct2Act [30], it uses a code-writing LLM35

to link language instructions of the tasks and high-level codes36

of robot actions, by integrating vision perception and robot37

control functions. It allows a robot to execute a sequence38

of actions based on an instruction from the user and an39

observation image captured by an eye-in-hand camera.40

The code-writing model relies on a well-designed prompt41

to the LLM for code generation. A complete prompt to42

generate codes contains third-party libraries, API definitions,43

and in-context examples, and they are introduced as follows:44

Third-party libraries: Python code libraries, such as 45

NumPy, PyTorch, and cv2 can offer essential information 46

about how APIs use the parameter types in these libraries 47

for specific functions such as calculation and image pro- 48

cessing. Importing these libraries can make the code-writing 49

straightforward without writing all of the codes. The LLM 50

can use the knowledge of these popular third-party libraries 51

to perform advanced code generation. 52

# Vision APIs
# Please use the tools below:
def get_object_images(obj) -> Image:

"""Get the current image from camera. 
Examples:
images = get_object_images (obj)
"""
pass

def detect_object(obj) -> str:
"""Detect the object from the image. 
Examples:
object_names = detect_object(obj) 
"""
pass

def pose_objects -> str:

"""Call and load pose of the object. 
Examples: 
object_pose = object_pose(obj)
"""
pass

# Control APIs
# Please use the tools below:
def pick_place(obj) -> str:

"""Run picking and placing actions of 
objects. 

Examples: 
robot_action = pick_place (obj_0, obj_1)
"""
pass

53

54

55
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59

60

Fig. 6. Example of prompts for vision and control APIs.

API definitions: Given natural language instructions, they 
are decomposed into a set of function tasks. These sub-
function tasks are defined and linked with specific APIs, and 
the control flow o f t hese A PIs i s o rganised s equentially for 
task execution. Specifically, t his s tudy m ainly r elies o n two 
types of APIs and they are for vision perception and robot 
action control, namely vision and control APIs as shown in 
Fig. 6. Specifically, t heir s pecifications ar e su mmarised as 
follows: 61

• get obj image: gets fine-grained images of objects 62

of interest by an eye-in-hand camera. It calls a visual 63

servoing system to transmit and store the images in the 64

cache variables. 65

• detect object: detects and grounds the object that 66

is extracted from language instructions, among the im- 67

ages. Specifically, the object of the language instruction 68

(e.g., valve cover) is assigned to this function, and 69

then the visual feature of the object is extracted for 70

recognition and detection, followed by pinpointing the 71

2D spatial location in the image. 72

• pose object: adds a 3D model representation of the 73

object and its pose on the detected object where the 74

technical details can be found in our previous study [2]. 75

It provides position and orientation information of the 76

object with CAD data for manipulation (e.g., grasping). 77

The object pose regarding the robotic coordinate system 78

is calculated by a frame transform and cached in the 79

defined variable object pose 80

• pick place: perform pick and/or placing tasks of ob- 81

jects. The variables obj 0 and obj 1 are assigned with 82

the object to be manipulated. It receives the object’s 83

pose and position in the robotic coordinate system, and 84

generates robot paths of object grasping by using robot 85

operating system (ROS)-based motion planners. 86

In-context examples: work as a crucial step in in-context 87



learning, and instruction-to-code pairs as examples present1

the demonstrations of how to learn and generate code from2

examples [31]. Specifically, instructions are written as com-3

ments directly preceding a block of corresponding solution4

code. These instructions are concatenated with examples to5

construct a prompt. The prompt is fed into the code-writing6

model with the output of a corresponding program.7

Given a language instruction, its object names are parsed8

9 and extracted by using language reasoning, and it can be 
10 few-shot prompted using code-writing LLMs to associate 
11 object names with language descriptions, categories, or past 
12 context. Then, the vision APIs for image processing and 
13 object detection is called to provide object’s position and 
14 pose to the control APIs, where the motion planning of the 
15 robot arm is generated by a ROS-based motion planner.

Fig. 7. A scheme of linking language instructions into robot actions 
facilitated by vision perception and a code-writing LLM.

B. Experimental Validation16

A case study of table-top object manipulation is performed17

to test and validate the developed system. As shown in Fig. 7,18

a user instructs a Kinova robot arm (with Robotnik Summit-19

XL mobile base) to pick up a valve cover. The robot system20

is controlled by an ROS-based architecture, and a prompt21

interface to the LLM is connected to a PC with Ubuntu20.0422

and a single NVIDIA RTX 4090 GPU.23

Upon the scene understanding of the physical environ-24

25 ment, a text instruction of ‘pick up valve cover’ is 
26 segmented into an action and a component to be acted on, 
27 and they are a predicate of ‘pick up’ and an object of 
28 ‘valve cover’. Then, the language instruction is input 
29 to the code-writing LLM that outputs the high-level control 
30 codes, as shown in the ‘Code’ module of Figure 7. In parallel, 
31 a collection of the scene image is obtained using an eye-
32 in-hand camera (RealSense D435) by calling a vision API 
33 function of ’get object images (obj)’ in the code 
34 module, and the collected image with a specific resolution 
35 is shown in subset 1 , and is cached into a variable of 
36 images. The object of the language instruction (valve 
37 cover) is indexed and grounded into a task identifier token,

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

and the indexed object is assigned to the object of the im-
age detection. The function of object detect(‘valve 
cover’) connects with the image processing approaches in 
Section III to extract the visual feature of the image, and then 
identify the object of the valve cover. The visual grounding is 
used to accurately determine the 2D spatial location among 
the image, indicated by a bounding box and a text label as 
shown in inset 2 .

Upon 3D reconstruction and pose estimate establishment 
through a neural field object modelling [2], a 3D model of the 
valve cover with its pose estimate as shown in Figure 8 (left) 
is overlaid onto its 2D image, and this is implemented by run-
ning the function of refer object(‘valve cover’). 
Then, the position and pose information of the valve cover 
regarding the robotic coordinate system are cached in the 
variable of object pose. The grasping point of object is 
the centre of the object’s re-defined coordinate frame (as 
shown in the pose image of Figure 8 (left)), which is created 
by taking the centre and oriented box of the mesh model of 
the object’s surface structure model and geometry. In parallel, 
such information is sent to the robot controller via a built-in 
visual servoing system (the details can be found in [2]). Once 
the visual information is detected, the control API is executed 
to perform object grasping by the robot. Specifically, the 
position and orientation of the object are loaded into a 
function of ‘pick place(’valve cover’)’ where the 
valve cover is assigned to the variable of obj 0 and the 
variable of obj 1 is empty. Next, the embedded ROS-based 
motion planner outputs robot paths that adopt a top-down 
grasping policy as shown in Figure 8 (middle). Finally, the 
robot arm follows the motion path to perform the robot action 
of the pick place, and the final result is shown in Figure 8 
(right). 70

71

72

73

74

75

76

77

78

79

Fig. 8. Experimental results of robot actions: object’s pose and 3D model 
(left), robot grasping (middle), and robot picking action (right).

V. CONCLUSIONS AND FUTURE WORK

This study presents a vision language model-driven ap-
proach to scene understanding of unknown environments and 
robotic object manipulation supported by vision perception 
and a code-writing LLM. The method adopts a pre-trained 
VLM to bridge visual and textual information for scene 
understanding with outputs of text-based description, and it 
realises the visual grounding of objects of interest with zero-
shot samples, and fine-grained o bject d etection b y a  visual 
encoder and a language decoder. Upon 3D reconstruction 80



and pose estimate establishment for the object, a code-1

writing LLM is used to generate high-level control code for2

object manipulation, and the results of visual perception are3

employed to the control codes for specific robot actions. Ex-4

perimental evaluation using a robotic grasping task confirms5

the following contributions from the vision LLM method:6

7

8

9

10

11

12

13

14

• VLM-driven scene understanding of an unknown in-
teraction environment and text description of its con-
stituent elements.

• A zero-shot-based approach to fine-grained visual 
grounding and object. detection from complex scene 
tasks.

• Linking language instructions with robot actions for 
object manipulation facilitated by vision perception and 
a code-writing LLM.15

Future efforts will be directed to improving the per-16

formance of VLMs in the fine-grained understanding of17

complex environments and consistent element detection and18

generalisation to new tasks. Its utility in realising natural19

human-robot interactions and autonomous robotic systems20

driven by natural language will be investigated.21
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