
AEDFL: Efficient Asynchronous Decentralized Federated Learning with
Heterogeneous Devices

Ji Liu†⇤‡ Tianshi Che†§ Yang Zhou⇤§ Ruoming Jin¶ Huaiyu Dai|| Dejing Dou**

Patrick Valduriez††

Abstract
Federated Learning (FL) has achieved significant achievements re-
cently, enabling collaborative model training on distributed data
over edge devices. Iterative gradient or model exchanges between
devices and the centralized server in the standard FL paradigm suf-
fer from severe efficiency bottlenecks on the server. While enabling
collaborative training without a central server, existing decentral-
ized FL approaches either focus on the synchronous mechanism
that deteriorates FL convergence or ignore device staleness with
an asynchronous mechanism, resulting in inferior FL accuracy. In
this paper, we propose an Asynchronous Efficient Decentralized FL
framework, i.e., AEDFL, in heterogeneous environments with three
unique contributions. First, we propose an asynchronous FL sys-
tem model with an efficient model aggregation method for improv-
ing the FL convergence. Second, we propose a dynamic staleness-
aware model update approach to achieve superior accuracy. Third,
we propose an adaptive sparse training method to reduce commu-
nication and computation costs without significant accuracy degra-
dation. Extensive experimentation on four public datasets and four
models demonstrates the strength of AEDFL in terms of accuracy
(up to 16.3% higher), efficiency (up to 92.9% faster), and computa-
tion costs (up to 42.3% lower).

Keywords – Federated Learning, Decentralized Machine
Learning, Asynchronous Learning, Staleness-Aware Model Up-
date, Sparse Training

1 Introduction
In recent years, a huge amount of data is generated on nu-
merous edge devices, which contain sensitive information of
end users, e.g., location information, private images, finan-
cial accounts, etc. While the implementation of diverse laws
or regulations, e.g., General Data Protection Regulation, hin-
ders the data aggregation, Federated Learning (FL) emerges
as an efficient approach to deal with distributed data. A typ-
ical distributed FL architecture consists of multiple devices
and a centralized parameter server [40], which transfers gra-
dients or models between devices and servers without mov-
ing raw data [42]. FL is deployed in multiple applications
[54] and various domains [20].

‡J. Liu is with Hithink RoyalFlush Information Network Co., Ltd.,
Hangzhou, China. † equal contribution. ⇤ corresponding author: jiliu-
work@gmail.com, yangzhou@auburn.edu.

§T. Che and Y. Zhou are with Auburn University, United States.
¶R. Jin is with Kent State University, United States.
||H. Dai is with North Carolina State University, United States.

**D. Dou is with Boston Consulting Group, Beijing, China.
††P. Valduriez is with Inria, University of Montpellier, CNRS, LIRMM,

Montpellier, France and LNCC, Petropolis, Rio de Janeiro, Brazil

The distributed FL training is typically composed of
local training on each device and model aggregation on the
server. The server can select available devices and broadcasts
a global model to the selected devices. Then, the model is
updated based on the local data within each selected device,
which is coined local training. After receiving the updated
models from the selected devices, the server aggregates them
with the global model and generates a new global model,
which is denoted as model aggregation. The training process
can be either synchronous [42] or asynchronous [47]. With
the synchronous FL mechanism, the model aggregation is
carried out after receiving all updated models, while, the
asynchronous FL enables model aggregation when parts of
the models are received.

While edge devices are generally heterogeneous with
diverse computation or communication capacities, the syn-
chronous distributed FL corresponds to inferior efficiency
due to stragglers, i.e., modest devices [44]. The asyn-
chronous mechanism in FL may lead to inferior accuracy or
even fail to converge with non-Independent and Identically
Distributed (non-IID) data [47]. In addition, the centralized
FL incurs severe communication or computation workload
on the server, which becomes a bottleneck and results in low
efficiency and a single point of failure.

Decentralized FL [45] is proposed to alleviate the com-
munication bottleneck on the central server. Decentralized
FL organizes the devices with a connected topology and en-
ables each device to communicate with its neighbors in a
peer-to-peer manner. Each device aggregates its local model
with the models or gradients transferred from its one-hop
neighbors without relying on a central server. Decentral-
ized FL generally inherits from decentralized learning [56],
which can be either synchronous [34, 57] or asynchronous
[35]. The synchronous mechanism relies on a global clock to
synchronize the training process on each device, which cor-
responds to low efficiency with heterogeneous devices. The
asynchronous mechanism enables model aggregation with-
out synchronization, which can well utilize heterogeneous
devices while incurring a staleness problem and degrading
the accuracy. Existing decentralized approaches generally
exploit static weights within the model aggregation process
with inferior accuracy.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited833

D
ow

nl
oa

de
d

08
/3

0/
24

 to
 7

2.
15

.1
25

.8
4

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

As the computation and communication capacities of
edge devices are limited, model compression methods, e.g.,
pruning [60] or sparse training [4] methods, can be exploited
to shrink the models so as to reduce the computation and
communication costs. Personalized sparse training in decen-
tralized FL [15] is proposed to reduce communication and
computation costs with heterogeneous devices. However, the
pruning process either degrades the accuracy due to lossy
strategies or requires a centralized server. In addition, the
decentralized personalized sparse training approach only fo-
cuses on the current weights and the local data without con-
sidering the interaction with neighbors, which corresponds
to inferior accuracy.

In this paper, we propose a novel Asynchronous
Efficient Decentralized Federated Learning framework, i.e.,
AEDFL, for heterogeneous environments. To deal with het-
erogeneous devices, we enable asynchronous training on
each device with a new dynamic model aggregation method.
The dynamic model aggregation method consists of a rein-
forcement learning-based model selection method and a dy-
namic weight update strategy. In addition, we propose an
original adaptive sparse training method to further reduce
computation and communication costs so as to improve effi-
ciency with a lossless method based on the consideration of
the impacts on both the current loss and the whole training
process. The main contributions are summarized as follows:

• We propose an original asynchronous decentralized FL
system model with a novel dynamic model aggregation
method for collaborative model training with heteroge-
neous devices. Our proposed dynamic model aggrega-
tion method consists of a reinforcement learning-based
model selection approach to choose proper models and
a dynamic weight update strategy to adjust the weights
of each model, which can improve the accuracy.

• We propose a new adaptive sparse training method to
reduce the computation and communication costs so
as to improve efficiency. The adaptive sparse training
method shrinks the model based on the weights of
neurons in the model, the gradients, and the values
in the Hessian matrix while minimizing the impact on
the current loss function to improve the accuracy and
considering the impact of the pruning operation in the
following training process.

• We conduct extensive experiments to compare AEDFL
with representative approaches based on four typical
models over four real-world datasets. Experimental
results demonstrate the superb advantages of AEDFL
in terms of accuracy, efficiency, and computation costs.

The rest of the paper is organized as follows. In Section
2, we present the related work. In Section 3, we present
the system model of AEDFL. In Section 4, we propose

our dynamic model aggregation method. In Section 5,
we propose our sparse training method. In Section 6, we
demonstrate the experimental results. Section 7 concludes.
2 Related Work
Parallel, distributed, and federated learning have been exten-
sively studied in recent years [5, 7, 39, 13, 12, 29, 49, 16, 64,
66, 17, 22, 6, 51, 37, 52, 53, 23, 24, 65, 68, 31, 62, 72, 61,
3, 69, 70, 30, 21, 60, 67, 19, 11, 10]. FL [42] is proposed to
train a global model with distributed non-IID data on hetero-
geneous devices. Numerous model aggregation algorithms
[42, 33, 48, 60, 37, 39, 6, 7, 41, 5, 22, 32, 66] are proposed
for synchronous FL. The synchronous FL mechanism is in-
efficient due to stragglers devices. While asynchronous FL
[38] can deal with the device heterogeneity, the staleness
may degrade the efficiency or the accuracy [47]. Although
staleness-based weight discount [50], feature representation
adjustment [9], and learning rate adjustment [63] can adjust
the training process, they do not consider the direct impact
on the loss function or the difference among diverse devices,
which results in inferior accuracy.

Decentralized FL [45] enables devices to communi-
cate with their one-hop neighbors in a peer-to-peer man-
ner without a central server. Many decentralized FL [56]
approaches directly exploit the decentralized learning tech-
niques [34, 59]. Synchronous [34] decentralized learning
synchronizes the training process on each device, which fa-
vors homogeneous environments. Asynchronous decentral-
ized learning [35] can deal with heterogeneous resources
while incurring staleness problems. Existing decentralized
FL approaches [56] are generally synchronous while exploit-
ing static weights within the model aggregation process with
inefficiency or accuracy degradation. Asynchronous decen-
tralized FL can deal with heterogeneous devices, while each
device needs to send its models to all other devices. This
mechanism generates heavy communication overhead when
the number of devices is significant. To reduce the com-
munication overhead, exponential topology [1], where each
device is connected to the magnitude of log(n) with n repre-
senting the number of devices, can be exploited thanks to its
excellent performance [57]. Although grid and ring topolo-
gies can be exploited as well, they correspond to low gener-
alization capacity [73].

Pruning techniques can be exploited for sparse training
in the FL [2, 4], aiming to reduce computation and commu-
nication costs for devices with limited computation and com-
munication capacities. However, existing sparse training ap-
proaches [15], which only focus on the weights or ranks of
neurons in the model, often lead to reduced accuracy. In ad-
dition, the pruning process is usually implemented on mod-
els that are not fully trained[2], yet existing approaches, e.g.,
HAP [58], assume pruning a well-trained model. Further-
more, the pruning process can lead to personalized models

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited834

D
ow

nl
oa

de
d

08
/3

0/
24

 to
 7

2.
15

.1
25

.8
4

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Device 1

Local Dataset 1

① Local model update

!!

Device 7

Local Dataset 7

⑦ Local model update

!" Device 2

Local Dataset 2

② Local model update

!#

Device 3

Local Dataset 3

③ Local model update

!$

Device 4

Local Dataset 4

④ Local model update

!%Device 5

Local Dataset 5

⑤ Local model update

!&

Device 6

Local Dataset 6

⑥ Local model update

!'

Device 0

Local Dataset 0

⓪ Local model update

!(

Figure 1: The system model of AEDFL. We consider 8
devices in this figure. Each device has 3 neighbor devices
(represents by dashed lines). When a device updates its local
model, it sends the model to a randomly sampled neighbor
(represented by the solid lines). Each device is coordinated
by a coordinator (represented by the dash-dotted lines).

[15]. However, current methods often overlook the potential
impact of the pruned sections on subsequent training, leading
to reduced accuracy. Finally, contemporary sparse training
methods, e.g., HAP and DisPFL [15], neglect the impact of
the pruning process on the gradients, resulting in significant
accuracy degradation during FL’s training process.

3 System Model
In this section, we propose the system of AEDFL. First, we
detail the system architecture of AEDFL, including the asyn-
chronous communication based on the exponential topology.
Then, we present the local update within each device.

As shown in Figure 1, we consider a decentralized FL
environment with multiple devices and a coordinator. Please
note that although there is a centralized coordinator in the
system, it is quite different from a central server. Similar
to that in Cassandra [26], the coordinator only manages the
index and the heartbeats of each device without participating
in the training process or the model aggregation process of
FL. Each device is connected to the system and gets an index
from the coordinator for the following training process. Each
device i has a local dataset Di = {xi, yi}si with xi and
yi representing a sample and si representing the number
of samples on Device i. We denote the number of all the
samples by s. Then, the objective of the training process of
FL is formulated as follows:

(3.1) min
m

"
F(m) ,

1

s

nX

i=1

siFi(mi)

#
,

where m is the parameters of the whole global model (with-
out pruning), Fi(mi) ,

1
si

P
{xi,yi}2Di

f(mi, xi, yi) is the
loss function on Device k with f(mi, xi, yi) capturing the
error of the local model mi on the sample {xk, yk}.

During the training process, we exploit an exponential
topology [1, 34], where each device has O(log(n)) neigh-
bors with n representing the number of devices in the sys-

① Local
training

Local Dataset i

!!

Device i

②
Model

aggregation

Model "!
"!#$

Model "$
"!

Model "%
"! Model "&

"!

Model "!
"!#"# Model "!

"!

③
Model
pruning

Model "!
"!

Full model

Figure 2: The local update of AEDFL. In each device, the
models of all its neighbors are cached. When a neighbor
sends its updated model, the corresponding cached model is
atomically updated. The model pruning (marked in gray)
is carried out in specific local updates. The full model
structure is kept during the training process. “M” represents
the number of neighbor models.

tem. Please note that the topology is independent of commu-
nication network among devices. The topology represents
the information transfer among multiple devices. We assume
that the devices can communicate with each other. While the
exponential topology is exploited in our framework, other
topologies can be utilized as well. We define wi,j as the
weight to transfer information from Node j to Node i, as
follows:

wi,j

(
> 0 i = j + 2k, k 2 Z, or i = j;
= 0 otherwise.

(3.2)

In addition, we further define the topology matrix W =
[wi,j]

n�1
i,j=0 2 Rn⇥n as the matrix to represent the topol-

ogy. The training process of AEDFL consists of three stages.
First, each device gets its index from the coordinator. Then,
each device performs its local update. Afterward, each de-
vice sends its updated model to a randomly selected neigh-
bor. The second and third steps are repeated until satisfy-
ing predefined conditions, e.g., a predefined number of iter-
ations on each device is achieved or the consensus distance
is smaller than a predefined value. The consensus distance is
defined as the average discrepancy of local models between
any two nodes. Although each device has O(log(n)) neigh-
bors, we take advantage of random selection for the model
diffusion so as to further reduce communication overhead.
Please note that the local update and the model diffusion can
be executed in parallel in order to improve efficiency. Fur-
thermore, the local update and the model diffusion are asyn-
chronous and thus independent. The asynchronous training
can well alleviate the inefficiency brought by the heterogene-
ity of devices.

As shown in Figure 2, the local update of AEDFL on
each device consists of three steps. First, the local model
is updated based on the local dataset exploiting Stochastic

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited835

D
ow

nl
oa

de
d

08
/3

0/
24

 to
 7

2.
15

.1
25

.8
4

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Gradient Descent (SGD) [74]. Afterward, the local model
is aggregated with the cached models from its neighbors
in the model aggregation process (see details in Section
4). To reduce the model size, in certain local updates, we
perform model pruning (see details in Section 5). Finally,
an updated model is generated, which is sent to one of its
neighbors. At the same time, we create another copy of the
updated model, which continues to be updated from the first
step. Within each device (i), there are O(log(n)) cached
models. Each model corresponds to the local model of a
device (j) such that Device i is a neighbor of Device j, i.e.,
!i,j > 0. When Device j sends its model (mtj

j) to Device
i, the corresponding cache j on Device i is updated. This
process is atomic to ensure that the whole model is available
for model aggregation. As a model may take much memory
space, the cached model can be either placed on the memory
of the GPU (GPU RAM) or the memory of the device (CPU
RAM). When the model is placed on the memory of the
device, it may take extra time to move the model to the GPU
within the model aggregation process. Thus, we first choose
the GPU memory by default. When the GPU memory is not
enough or there are numerous devices in the system, we take
extra memory space of the device for the cached models. The
consensus distance can be calculated based on the cached
models and the local model.
4 Dynamic Model Aggregation
In this section, we propose our dynamic model aggregation
method. First, we propose a novel reinforcement learning-
based model selection method. Then, we present a dynamic
weight adjustment strategy. Last but not least, we present a
model aggregation method to merge diverse models.

In order to achieve the objective defined in Formula 3.1,
we dynamically aggregate the local model and the cached
neighbor models. We formulate the problem of the local
update process as a bi-level optimization problem as defined
in Formula 4.3:

min
mi,!i

2

4Fi(mi,!i) ,
1

si

X

(xi,yi)2Di

f(agg(mi,!i), xi, yi)

3

5 ,

s.t.
X

!i = 1,

(4.3)

where agg(mi,!i) represents the model aggregation pro-
cess, !i = {!i,i,!i,i+1,!i,i+2, ...,!i,i+2m} represents a set
of weights for the local model and neighbor models within
the model aggregation process and the sum equals to 1.
4.1 Model Selection In this section, we propose a rein-
forcement learning-based method to select proper neighbor
models for model aggregation. While the training process is
asynchronous, the cached models within each device are of
diverse versions. For instance, Device i is among the neigh-
bor devices of Devices j and j0. Then, the cached models
for Devices j and j0 are m

tj
j and m

tj0
j0 with tj and tj0 repre-

senting the number local updates executed on Device i when
receiving m

tj
j and m

tj0
j0 , respectively. We denote the number

of local updates on Device i by ti. Then, when tj << ti, the
cached model mtj

j may not be beneficial within the model
aggregation because of stale knowledge. When tj0 � ti, it
is of much possibility to improve the local model of Device
i with m

tj0
j0 . In addition, some models may be already ag-

gregated in a previous local update, which can be ignored in
the following model aggregation. Thus, we construct a rein-
forcement learning-based model to intelligently select proper
neighbor models for the model aggregation process.

The reinforcement learning-based model consists of two
modules. The first module is a priority neural network
composed of a Long Short-Term Memory network and two
fully connected layers. The output of the priority neural
network is the priority possibility to choose each neighbor
model. The second module is a priority converter, which
selects the neighbor models based on the priority possibility.

Within the training process on a device, we define the
reward as the loss value calculated based on the local loss
function, i.e., Fi(w

ti
i , ⇣

ti
i) with ⇣tii representing the sampled

data in SGD. Inspired by [75], we update the priority neural
network based on Formula 4.4 as follows:
(4.4)

✓ti+1 = ✓ti�⌘0
log(n)X

m=0

r✓ti
logP (cm|c(m�1):1; ✓t)(Rt� li),

where ✓ti represents the parameters in the priority neural
network on Device i at t-th local training, ⌘0 refers to
the learning rate, log(n) is the number of cashed neighbor
models, cm corresponds to whether Model m is selected,
current local loss (Rt) on device i is the reward, i.e., Rt =
Fi(w

ti
i , ⇣

ti
i), and li is a constant value for the bias, i.e.,

the average loss of the last certain times of local training
on Device i. The input of the model includes whether the
model is aggregated, the staleness of the model, and the
loss value of the model. The model can be pre-trained with
some heuristics, e.g., the model that is already aggregated
should not be selected for the following model aggregation
(which is synthetic model selection data), which correspond
to the profiling results from real training process. Then,
the model can be updated during the training process of
AEDFL. To the best of our knowledge, we are among the
first to propose a reinforcement learning-based approach to
select the model of neighbors for model aggregation so as to
improve accuracy.
4.2 Dynamic Weight Update In this section, we propose
our dynamic weight update method. In order to address
the bi-level optimization problem defined in Formula 4.3,
we propose a dynamic weight update method for the model
aggregation process. We exploit the SGD method to update
the local model mi as defined in Formula 4.5 for the model
aggregation on Device i.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited836

D
ow

nl
oa

de
d

08
/3

0/
24

 to
 7

2.
15

.1
25

.8
4

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

(4.5) m
ti+ 1

2
i mti

i � ⌘tirm
ti
i
Fi(m

ti
i ,!

ti
i),

where rm
ti
i
Fi(m

ti
i ,!

ti
i) represents the gradients in SGD,

and ⌘ti refers to the learning rate. Then, we dynamically
update the weights of neighbor models !i. We use Formula
4.6 to calculate the importance of neighbor model j:

(4.6) !
0ti
i,j =

sj ⇤ �ti
i,jq

4ttii,j ⇤ loss
ti
j

,

where !
0ti
i,j is the importance of the cached model from De-

vice j on Device i, �ti
i,j is a control parameter to be dynam-

ically updated, 4ttii,j represents the difference between the
current number of local update ti and the number of local
updates when the model is updated from Device j, losstij
refers to the loss of the model on Device j. 4ttii,j can well
represent the staleness of the neighbor model of Device j on
Device i. While a doubly-stochastic weight matrix can help
obtain a consensual solution [59] we calculate the weight of
neighbor model j with Formula 4.7.

(4.7) !ti
i,j =

!
0ti
i,jP

j=i or j2M !
0ti
i,j

,

where !ti
i,j is the weight of the cached model from Device j

on Device i in ti-th local update, and M refers to the set of
neighbors of Device i. In order to minimize the loss value,
we update the control parameter �ti

i,j exploiting formula 4.8.

�ti
i,j = �ti�1

i,j � ⌘�r�
ti�1
i,j

Fi(m
ti
i),(4.8)

where ⌘� is the learning rate, and mti
i is calculated based on

Formula 4.9:
(4.9) mti

i =
X

j=i or j2M
!ti�1
i,j mti�1

j .

The partial derivatives of the loss function on the control
parameter are calculated based on Formula 4.10:

r
�
ti�1
i,j

Fi(m
ti
i)(4.10)

=

P
k=i or (k2M and k 6=j) !

0ti�1
i,k

(
P

k=i or k2M !
0ti�1
i,k)2

sjgTi m
ti�1
jq

4tti�1
i,j ⇤ lossti�1

j

,

where gi represents the gradients of mti
i on Device i.

4.3 Heterogeneous Model Aggregation In this section,
we present our heterogeneous model aggregation method
with the updated weights. Because of the pruning process
(see details in Section 5), the cached neighbor models may
be heterogeneous in terms of structure. We exploit a full
model structure as shown in Figure 2 and masks for each
neighbor model and local model for the aggregation. A full
model structure is an original model without pruning. The
mask is utilized to identify which neuron is kept and which
neuron is removed after pruning. Then, for each parameter

Algorithm 1 Dynamic Model Aggregation
Input:

i: The index of the device
m0

i : The initial model on Device i
T : The maximum number of local updates
M : The set of neighbor models

Output:
mti

i : The global model at Round ti
1: for ti in {1, 2, ..., T} do
2: m

ti� 1
2

i update mti�1
i based on Formula 4.5

3: for j 2M do
4: Update �ti

i,j according to Formula 4.8
5: Update !ti

i,j according to Formulas 4.6 and 4.7
6: end for
7: mti

i update m
ti� 1

2
i with M according to Formula

4.11
8: end for

(µp) in the full model, we can calculate its aggregated value
based on Formula 4.11.
(4.11) µp

i =
1

P
j=i or j2M !ti�1

i,j opj

X

j=i or j2M
!ti�1
i,j µp

i,jo
p
j ,

where opj is the mask of the model from neighbor Device
j with 1 representing the corresponding parameter µp is
not pruned and 0 representing that µp is pruned. After
calculating the parameter values in the full model, the local
model can be generated by exploiting the local mask.

As shown in Algorithm 1, the dynamic model aggre-
gation algorithm consists of multiple local updates. Within
each local update, the local model is updated with the SGD
method (Line 2). Then, for each model in M, the control
parameter is updated (Line 4) and the corresponding weight
value is updated (Line 5). Afterward, the local model and
the neighbor models are aggregated based on Formula 4.11
(Line 7). The convergence analysis can be achieved based
on the existing theoretical works [59, 35], which is out of the
scope of this paper.
5 Sparse Training
We propose a novel adaptive sparse training method to re-
duce computation and communication costs while minimiz-
ing the impact on the loss function and considering the ex-
ploration of the sensitivity of neurons, i.e., the impact of the
pruned parameters in the next rounds of updates. We assume
that at specific rounds of local training, e.g., ti, we carry out
the pruning operation on the whole model, i.e., the model
with all the parameters. Within the pruning operation, we
denote the modification of the local model mi on Device i
by �mi. Then, we denote the impact on the current local
loss function by �FC

i , which can be calculated via Taylor
expansion as defined in Formula 5.12.

�FC
i = Fi(mi +�mi)� Fi(mi)

= gTi �mi +
1

2
�mT

i H�mi +O(||�mi||3),(5.12)

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited837

D
ow

nl
oa

de
d

08
/3

0/
24

 to
 7

2.
15

.1
25

.8
4

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

where gi is the gradient, H represents the Hessian matrix
of the model, and O(||�mi||3) corresponds to higher-order
items, which can be ignored [58]. We retrieve the Hes-
sian matrix efficiently utilizing the PyHessian library [55]
with small computation and storage costs. We associate the
pruned parameters (channels) to p and the remained param-
eters to r. Then, we have:

�FC
i = gTi �mi +

1

2
�mT

i H�mi

=

✓
gpi
gri

◆T ✓
�mp

i
�mr

i

◆
(5.13)

+
1

2

✓
�mp

i
�mr

i

◆T ✓
Hp,p,Hp,r

Hr,p,Hr,r

◆✓
�mp

i
�mr

i

◆
.

Please note that the pruning operation is carried out
during the training process. Thus, we cannot ignore gi, i.e.,
gTi 6= 0. We can have Formula 5.14 minimizing the current
impact �FC

i .

�FC
i =

1

2
(mp

i)
THp,pmp

i � (gpi)
Tmp

i

� 1

2
(mp

i)
THp,r(Hr,r)�1Hr,pmp

i

� 1

2
(gri)

T (Hr,r)�1gri

+ (gri)
T (Hr,r)�1Hr,pmp

i .(5.14)

However, Formula 5.12 only considers the impact of the
current loss value. We further consider the exploration of
the pruned parameters by inserting the magnitude of the
gradients as Defined in Formula 5.15.

�Fi = (1� �g)
|�FC

i |
|Fi|

+ �g
||�gi||2
||gi||2

,(5.15)

where | · | represents the absolute value and 0  �g  1

is a hyper-parameter. The added term �g
||�gi||2
||gi||2 represents

the exploration of the training process, which should be
significant at the beginning of the training process and
small at the end. When the magnitude of gi is significant,
the model is not well trained and we should pay attention
to the exploration. We empirically set �g = ||gi||2

C||gi||max
2

,
with C being a hyper-parameter, gi representing the current
gradients and ||gi||max

2 is the maximum L2 norm of the
gradients in the previous training process. The setting of �g

can help reduce the impact of pruned parameters on gradients
at the beginning and that on loss at the end so as to improve
the accuracy of the model, as the gradients are important to
improve the model at the beginning. In practice, we fine-
tune the value of C in the experimentation. As presented
in Section 4.3, for a device, although the pruned model
is transferred and updated in the local update, the pruned
parameters are still updated when they remain in neighbor
models. Then, during each pruning process, we consider the

whole model as the original model to preserve the parameters
that potentially become important.

Furthermore, as pruning rates are critical to the pruning
process, we automatically generate a proper pruning rate for
the pruning operation. With the recent success of lottery
ticket for model pruning [2], we exploit a lossless method
to calculate the pruning rate. On Device i, we denote the
initial model by mo

i and the difference between the current
model and the initial model by �mi = mo

i � mi. We sort
the eigenvalues of the Hessian matrix H(mi) in ascending
order, i.e., {hp

i |p 2 (1, di)} with di referring to the rank
of the Hessian matrix and p representing the index. Then,
we calculate the Lipschitz constant, denoted as Li, of a
benchmark function F 0

i (�mi) = H(mi)�OFi(�mi+mi).
We take the first eigenvalue hp

i that satisfies hp+1
i � hp

i >
4Li to calculate a proper pruning rate by p⇤i = p

dk
to achieve

lossless pruning [64]. Afterward, we calculate the pruning
rate with Formula 5.16 with the consideration of neighbors.
(5.16) pi =

X

j2M
!ti
i,jpj + !ti

i,ip
⇤
i ,

where !ti
i,j refers to the weights calculated in Section 4.2.

6 Experiments
In this section, we demonstrate evaluation results for
AEDFL. First, we present the experimental setup. Then,
we show the comparison of AEDFL with 14 baseline ap-
proaches. Afterward, we explain the advantages of dynamic
model aggregation and the sparse training with the ablation
study.
6.1 Setup We consider a decentralized FL system with
100 devices with an exponential graph topology. We exploit
3 datasets, i.e., Emnist-letters (Emnist) [14], CIFAR-10 (CI-
FAR) [25], Tiny-ImageNet [27], and 3 models, i.e., LeNet-5
(LeNet) [28], Resnet-8 (ResNet) [18], VGG-9 (VGG) [46],
for image classification tasks. We further conduct experi-
ments on a Natural Language Processing (NLP) task, i.e.,
sentiment analysis with the IMDb dataset on TextCNN [71],
to demonstrate the generality of AEDFL. We utilize the
Dirichlet distribution to partition the data.

We take 14 existing approaches as baselines, i.e., Fe-
dAvg [42], FedProx [33], FedNova [48], SAFA [50], Sage-
flow [44], AD-PSGD [35], FedSA [8], ASO-Fed [9], Fed-
Buff [43], Port [47], Hrank [36], FedAP [60], HAP [58],
DisPFL [15]. In addition, we denote the version with Rein-
forcement Learning-based model selection by AEDFL-RL,
the version with Dynamic Weight Update by AEDFL-DWU,
and the version with sparse training by AEDFL-P, the version
with dynamic model aggregation by AEDFL-RL-DWU, the
version with all three modules by AEDFL and the version
without any module by AEDFL-0.
6.2 Evaluation of AEDFL As shown in Table 1, AEDFL
corresponds to the highest accuracy and the fastest train-
ing speed among all the approaches. AEDFL significantly
outperforms other baseline approaches in the whole training

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited838

D
ow

nl
oa

de
d

08
/3

0/
24

 to
 7

2.
15

.1
25

.8
4

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Table 1: The accuracy, training time, and computation costs with AEDFL and diverse baseline approaches. “Acc” represents
the convergence accuracy. “Time” refers to the training time (s) to achieve a target accuracy, i.e., 0.9 for LeNet with Emnist,
0.6 for ResNet with CIFAR, and 0.17 for VGG with Tiny-ImageNet, 0.17 for ResNet with Tiny-ImageNet, and 0.65 for
IMDb with TextCNN. “MFP” represents the computational costs (MFLOPs). “/” represents that training does not achieve
the target accuracy.

Method Emnist & LeNet CIFAR & ResNet TinyImageNet & VGG TinyImageNet & ResNet IMDb & TextCNN

Acc Time MFP Acc Time MFP Acc Time MFP Acc Time MFP Acc Time MFP

AEDFL 0.9326 384 0.172 0.7453 314 1.29 0.2025 884 61.8 0.2696 1085 368 0.7976 517 0.389
FedAvg 0.9159 817 0.283 0.6600 3133 1.74 0.1713 5360 73.6 0.2254 3776 452 0.7763 1329 0.652
FedProx 0.9174 696 0.283 0.6136 3935 1.74 0.1726 4357 73.6 0.1645 / 452 0.7625 1289 0.652
FedNova 0.9160 998 0.283 0.6493 3796 1.74 0.1700 4564 73.6 0.2312 3567 452 0.7737 1269 0.652
SAFA 0.9173 800 0.283 0.6751 2050 1.74 0.1701 1742 73.6 0.2305 10101 452 0.7488 1243 0.652
Sageflow 0.9168 767 0.283 0.6755 1614 1.74 0.1740 1742 73.6 0.2323 2863 452 0.7529 1160 0.652
FedSA 0.9158 397 0.283 0.6613 3090 1.74 0.1539 1658 73.6 0.2123 1931 452 0.7746 1105 0.652
ASO-Fed 0.9136 600 0.283 0.6652 1030 1.74 0.1529 1419 73.6 0.2229 1707 452 0.7814 1092 0.652
Port 0.9165 419 0.283 0.6596 1243 1.74 0.1477 1632 73.6 0.2155 2149 452 0.7620 1188 0.652
FedBuff 0.9177 497 0.283 0.6647 3379 1.74 0.1487 1465 73.6 0.2118 1879 452 0.7890 977 0.652
AD-PSGD 0.9129 940 0.283 0.6384 4346 1.74 0.1165 / 73.6 0.1938 1438 452 0.7724 552 0.652
DisPFL 0.9175 402 0.175 0.6473 767 1.48 0.1530 1067 62.5 0.1852 5350 384 0.7448 764 0.587
Hrank 0.9270 394 0.277 0.7121 545 1.46 0.1849 975 62.5 0.2391 2636 384 0.7675 683 0.587
FedAP 0.9280 417 0.278 0.7189 647 1.39 0.1806 936 63.5 0.2381 2991 383 0.7504 1454 0.463
HAP 0.8752 402 0.173 0.6319 572 1.49 0.1632 1010 62.6 0.1794 3947 384 0.7668 928 0.587

process with a small dataset (Emnist) and model (LeNet).
The advantage of AEDFL can be up to 5.8% in terms of con-
vergence accuracy, 61.5% in terms of the training time, and
39.1% in terms of computation costs.

When the dataset and the model become complicated,
e.g., CIFAR with ResNet or VGG and Tiny-ImageNet with
ResNet or VGG, AEDFL significantly outperforms other
baseline approaches in terms of the convergence accuracy.
At the beginning of the training, AEDFL performs the dy-
namic adjustment of the weights for neighbor models, which
can bring high accuracy in the middle or at the end of the
training process. As shown in Table 1, the advantages of
AEDFL can be up to 8.5%, 13.2%, 9.6%, 10%, 7%, 8.4%,
8%, 8.6%, 8.9%, 15.4%, 9.8%, 7.7%, 7.3%, and 11.3%
higher in terms of accuracy, compared to FedAvg, Fed-
Prox, FedNova, SAFA, Sageflow, FedSA, ASO-Fed, Port,
FedBuff, AD-PSGD, DisPFL, Hrank, FedAP, HAP, respec-
tively. Furthermore, AEDFL corresponds to a short train-
ing time. The training time of AEDFL to achieve a target
accuracy can be up to 90%, 92%, 91.7%, 84.7%, 82.2%,
89.8%, 69.5%, 84.9%, 90.7%, 92.8%, 71%, 52.2%, 56.3%,
and 62.8% shorter compared to FedAvg, FedProx, Fed-
Nova, SAFA, Sageflow, FedSA, ASO-Fed, Port, FedBuff,
AD-PSGD, DisPFL, Hrank, FedAP, HAP, respectively. Fi-
nally, as the sparse training can well reduce the model size,
AEDFL corresponds to much smaller computation costs (up
to 42.3% compared with FedAvg, FedProx, FedNova, SAFA,
Sageflow, FedSA, ASO-Fed, Port, FedBuff, and AD-PSGD,
12.5% compared with DisPFL, 11.5% compared with Hrank,
6.9% compared with FedAP, and 13.6% compared with
HAP), while the corresponding accuracy remains the highest
with the shortest time to achieve target accuracy. Meanwhile,
the minimal advantages of our approach are significant as
well with the most complicated setting (Tiny-ImageNet with

ResNet), i.e., 3.1% higher accuracy, 24.5% faster to achieve
target accuracy, and 3.9% smaller computational cost.

We further conduct sentiment analysis experiments on
the IMDb dataset with TextCNN to demonstrate the gen-
erality of AEDFL. As shown in Table 1, the advantages of
AEDFL can be up to 5.3% in accuracy, 64.4% in training
speed and 40.3% in computation costs. The results reveal
that AEDFL can be easily adopted across various tasks.

Furthermore, we carry out the experimentation with
different network bandwidth, multiple values of C.As it
can adjust the weights of neighbor models and prune local
models, AEDFL incurs the shortest time to achieve target
accuracy. While C has an impact on the accuracy, we fine-
tune the values of C, e.g., C = 1.5 for Emnist & LeNet and
CIFAR & LeNet. In addition, AEDFL corresponds to the
highest accuracy with diverse device heterogeneity.
7 Conclusion
In this paper, we propose a novel Asynchronous Efficient
Decentralized Federated Learning framework (AEDFL),
with three original contributions, i.e., an asynchronous de-
centralized FL system model, a dynamic model aggregation
method consisting of a reinforcement learning-based model
selection method and a dynamic staleness-based weight up-
date strategy, and an adaptive pruning method for sparse
training. We carry out extensive experiments with four mod-
els and four public datasets to demonstrate the significant
advantages of AEDFL in terms of accuracy (up to 16.3%
higher), efficiency (up to 92.9% faster), and computation
costs (up to 42.3% smaller).

Acknowledgements
This research is partially (for T. Che and Y. Zhou) sponsored
by the National Science Foundation (NSF) under Grant No.
OAC-2313191.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited839

D
ow

nl
oa

de
d

08
/3

0/
24

 to
 7

2.
15

.1
25

.8
4

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

References

[1] M. ASSRAN, N. LOIZOU, N. BALLAS, AND M. RABBAT,
Stochastic gradient push for distributed deep learning, in
ICML, 2019, pp. 344–353.

[2] S. BABAKNIYA, S. KUNDU, S. PRAKASH, Y. NIU, AND
S. AVESTIMEHR, Federated sparse training: Lottery aware
model compression for resource constrained edge, in FL-
NeurIPS, 2022, pp. 1–11.

[3] X. BAO, L. LIU, N. XIAO, Y. ZHOU, AND Q. ZHANG,
Policy-driven autonomic configuration management for nosql,
in CLOUD, 2015, pp. 245–252.

[4] S. BIBIKAR, H. VIKALO, Z. WANG, AND X. CHEN, Feder-
ated dynamic sparse training: Computing less, communicat-
ing less, yet learning better, in AAAI, 2022, pp. 6080–6088.

[5] T. CHE, J. LIU, Y. ZHOU, J. REN, J. ZHOU, V. S. SHENG,
H. DAI, AND D. DOU, Federated learning of large language
models with parameter-efficient prompt tuning and adaptive
optimization, in EMNLP, 2024, pp. 1–18.

[6] T. CHE, Z. ZHANG, Y. ZHOU, X. ZHAO, J. LIU, Z. JIANG,
D. YAN, R. JIN, AND D. DOU, Federated fingerprint learning
with heterogeneous architectures, in ICDM, 2022.

[7] T. CHE, Y. ZHOU, Z. ZHANG, L. LYU, J. LIU, D. YAN,
D. DOU, AND J. HUAN, Fast federated machine unlearning
with nonlinear functional theory, in ICML, 2023.

[8] M. CHEN, B. MAO, AND T. MA, Fedsa: A staleness-aware
asynchronous federated learning algorithm with non-iid data,
FGCS, 120 (2021), pp. 1–12.

[9] Y. CHEN, Y. NING, M. SLAWSKI, AND H. RANGWALA,
Asynchronous online federated learning for edge devices with
non-iid data, in Big Data, IEEE, 2020, pp. 15–24.

[10] Z. CHEN, G. FENG, B. LIU, AND Y. ZHOU, Construction
policy of network service chain oriented to resource fragmen-
tation optimization in operator network, JEIT, (2018).

[11] Z. CHEN, G. FENG, B. LIU, AND Y. ZHOU, Delay opti-
mization oriented service function chain migration and re-
deployment in operator network, Acta Electronica Sinica, 46
(2018), pp. 2229–2237.

[12] Z. CHEN, X. TAN, Z. ZHOU, AND Y. ZHOU, A channel ag-
gregation based dynamic pruning method in federated learn-
ing, in IEEE GLOBECOM, 2023. To appear.

[13] Z. CHEN, C. ZHOU, AND Y. ZHOU, A hierarchical federated
learning model with adaptive model parameter aggregation,
ComSIS, 20 (2023), pp. 1037–1060.

[14] G. COHEN, S. AFSHAR, J. TAPSON, AND A. VAN SCHAIK,
Emnist: Extending mnist to handwritten letters, in IJCNN,
IEEE, 2017, pp. 2921–2926.

[15] R. DAI, L. SHEN, F. HE, X. TIAN, AND D. TAO, Dispfl: To-
wards communication-efficient personalized federated learn-
ing via decentralized sparse training, in ICML, 2022.

[16] S. GOSWAMI, A. POKHREL, K. LEE, L. LIU, Q. ZHANG,
AND Y. ZHOU, Graphmap: scalable iterative graph process-
ing using nosql, TJSC, 76 (2020), pp. 6619–6647.

[17] G. GUO, D. YAN, L. YUAN, J. KHALIL, C. LONG,
Z. JIANG, AND Y. ZHOU, Maximal directed quasi-clique min-
ing, in ICDE, 2022.

[18] K. HE, X. ZHANG, S. REN, AND J. SUN, Deep residual
learning for image recognition, in CVPR, 2016, pp. 770–778.

[19] J. HONG, Z. ZHU, L. LYU, Y. ZHOU, V. N. BODDETI, AND
J. ZHOU, Int. workshop on federated learning for distributed
data mining, in KDD, Long Beach, CA, 2023, pp. 5861–5862.

[20] J. JIANG, Y. ZHOU, G. ANANTHANARAYANAN, Y. SHU,
AND A. A. CHIEN, Networked cameras are the new big data
clusters, in HotEdgeVideo, 2019, pp. 1–7.

[21] Y. JIANG, C.-S. PERNG, A. SAILER, I. SILVA-LEPE,
Y. ZHOU, AND T. LI, Csm: A cloud service marketplace for
complex service acquisition, ACM TIST, 8 (2019), pp. 1–25.

[22] J. JIN, J. REN, Y. ZHOU, L. LV, J. LIU, AND D. DOU, Accel-
erated federated learning with decoupled adaptive optimiza-
tion, in ICML, vol. 162, 2022, pp. 10298–10322.

[23] J. JIN, Z. ZHANG, Y. ZHOU, AND L. WU, Input-agnostic
certified group fairness via gaussian parameter smoothing, in
ICML, 2022.

[24] R. JIN, D. LI, J. GAO, Z. LIU, L. CHEN, AND Y. ZHOU,
Towards a better understanding of linear models for recom-
mendation, in KDD, 2021, pp. 776–785.

[25] A. KRIZHEVSKY, G. HINTON, ET AL., Learning multiple
layers of features from tiny images, Technical report, Univer-
sity of Toronto, 1 (2009), pp. 1–60.

[26] A. LAKSHMAN AND P. MALIK, Cassandra: a decentralized
structured storage system, ACM SIGOPS operating systems
review, 44 (2010), pp. 35–40.

[27] Y. LE AND X. YANG, Tiny imagenet visual recognition
challenge, CS 231N, 7 (2015), p. 3.

[28] Y. LECUN, L. BOTTOU, Y. BENGIO, AND P. HAFFNER,
Gradient-based learning applied to document recognition,
Proceedings of the IEEE, 86 (1998), pp. 2278–2324.

[29] K. LEE, L. LIU, R. L. GANTI, M. SRIVATSA, Q. ZHANG,
Y. ZHOU, AND Q. WANG, Lightwieight indexing and query-
ing services for big spatial data, IEEE TSC, (2019).

[30] K. LEE, L. LIU, K. SCHWAN, C. PU, Q. ZHANG, Y. ZHOU,
E. YIGITOGLU, AND P. YUAN, Scaling iterative graph com-
putations with graphmap, in IEEE SC, 2015, pp. 57:1–57:12.

[31] K. LEE, L. LIU, Y. TANG, Q. ZHANG, AND Y. ZHOU,
Efficient and customizable data partitioning framework for
distributed big rdf data processing in the cloud, in CLOUD,
2013, pp. 327–334.

[32] G. LI, Y. HU, M. ZHANG, J. LIU, Q. YIN, Y. PENG, AND
D. DOU, Fedhisyn: A hierarchical synchronous federated
learning framework for resource and data heterogeneity, in
ICPP, 2022, pp. 1–10. To appear.

[33] T. LI, A. K. SAHU, M. ZAHEER, M. SANJABI, A. TAL-
WALKAR, AND V. SMITH, Federated optimization in hetero-
geneous networks, in MLSys, 2020, pp. 429–450.

[34] X. LIAN, C. ZHANG, H. ZHANG, C.-J. HSIEH, W. ZHANG,
AND J. LIU, Can decentralized algorithms outperform cen-
tralized algorithms? a case study for decentralized parallel
stochastic gradient descent, in NeurIPS, 2017, pp. 1–11.

[35] X. LIAN, W. ZHANG, C. ZHANG, AND J. LIU, Asyn-
chronous decentralized parallel stochastic gradient descent,
in ICML, 2018, pp. 3043–3052.

[36] M. LIN, R. JI, Y. WANG, Y. ZHANG, B. ZHANG, Y. TIAN,
AND L. SHAO, Hrank: Filter pruning using high-rank feature
map, in CVPR, 2020, pp. 1529–1538.

[37] J. LIU, J. HUANG, Y. ZHOU, X. LI, S. JI, H. XIONG,
AND D. DOU, From distributed machine learning to federated

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited840

D
ow

nl
oa

de
d

08
/3

0/
24

 to
 7

2.
15

.1
25

.8
4

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

learning: a survey, KAIS, 64 (2022), pp. 885–917.
[38] J. LIU, J. JIA, T. CHE, C. HUO, J. REN, Y. ZHOU,

H. DAI, AND D. DOU, Fedasmu: Efficient asynchronous fed-
erated learning with dynamic staleness-aware model update,
in AAAI, 2024, pp. 1–18. To appear.

[39] J. LIU, J. JIA, B. MA, C. ZHOU, J. ZHOU, Y. ZHOU,
H. DAI, AND D. DOU, Multi-job intelligent scheduling with
cross-device federated learning, TPDS, (2022), pp. 535–551.

[40] J. LIU, Z. WU, D. FENG, M. ZHANG, X. WU, X. YAO,
D. YU, Y. MA, F. ZHAO, AND D. DOU, Heterps: Distributed
deep learning with reinforcement learning based scheduling
in heterogeneous environments, FGCS, (2023).

[41] J. LIU, X. ZHOU, L. MO, S. JI, Y. LIAO, Z. LI, Q. GU, AND
D. DOU, Distributed and deep vertical federated learning
with big data, CCPE, (2023), p. e7697.

[42] B. MCMAHAN, E. MOORE, D. RAMAGE, S. HAMPSON,
AND B. A. Y ARCAS, Communication-efficient learning of
deep networks from decentralized data, in AISTATS, 2017.

[43] D. C. NGUYEN, Q.-V. PHAM, P. N. PATHIRANA, M. DING,
A. SENEVIRATNE, Z. LIN, O. DOBRE, AND W.-J. HWANG,
Federated learning for smart healthcare: A survey, CSUR,
(2022), pp. 1–37.

[44] J. PARK, D.-J. HAN, M. CHOI, AND J. MOON, Sageflow:
Robust federated learning against both stragglers and adver-
saries, in NeurIPS, 2021, pp. 840–851.

[45] Y. QU, H. DAI, Y. ZHUANG, J. CHEN, C. DONG, F. WU,
AND S. GUO, Decentralized federated learning for uav net-
works: Architecture, challenges, and opportunities, IEEE
Network, 35 (2021), pp. 156–162.

[46] K. SIMONYAN AND A. ZISSERMAN, Very deep convolu-
tional networks for large-scale image recognition, in ICLR,
San Diego, CA, USA, 2015, pp. 1–14.

[47] N. SU AND B. LI, How asynchronous can federated learning
be?, in IWQoS, 2022, pp. 1–11.

[48] J. WANG, Q. LIU, H. LIANG, G. JOSHI, AND H. V. POOR,
Tackling the objective inconsistency problem in heterogeneous
federated optimization, in NeurIPS, 2020, pp. 7611–7623.

[49] S. WU, Y. LI, D. ZHANG, Y. ZHOU, AND Z. WU, Top-
icka: Generating commonsense knowledge-aware dialogue
responses towards the recommended topic fact, in IJCAI,
2021, pp. 3766–3772.

[50] W. WU, L. HE, W. LIN, R. MAO, C. MAPLE, AND
S. JARVIS, SAFA: A semi-asynchronous protocol for fast fed-
erated learning with low overhead, TC, (2020), pp. 655–668.

[51] D. YAN, W. QU, G. GUO, X. WANG, AND Y. ZHOU,
Prefixfpm: A parallel framework for general-purpose mining
of frequent and closed patterns, VLDBJ, (2022), pp. 253–286.

[52] D. YAN, Y. ZHOU, AND G. GUO, Think-like-a-task program-
ming model, Encyclopedia of Big Data Technologies, (2022).

[53] D. YAN, Y. ZHOU, G. GUO, AND H. LIU, Parallel graph
processing, Encyclopedia of Big Data Technologies, (2022).

[54] T. YANG, G. ANDREW, H. EICHNER, H. SUN, W. LI,
N. KONG, D. RAMAGE, AND F. BEAUFAYS, Applied feder-
ated learning: Improving google keyboard query suggestions,
arXiv:1812.02903, (2018).

[55] Z. YAO, A. GHOLAMI, K. KEUTZER, AND M. W. MA-
HONEY, Pyhessian: Neural networks through the lens of the
hessian, in Big Data, 2020, pp. 581–590.

[56] H. YE, L. LIANG, AND G. Y. LI, Decentralized federated
learning with unreliable communications, JSTSP, (2022).

[57] B. YING, K. YUAN, Y. CHEN, H. HU, P. PAN, AND W. YIN,
Exponential graph is provably efficient for decentralized deep
training, NeurIPS, (2021), pp. 13975–13987.

[58] S. YU, Z. YAO, A. GHOLAMI, Z. DONG, S. KIM, M. W.
MAHONEY, AND K. KEUTZER, Hessian-aware pruning and
optimal neural implant, in CVPR, 2022, pp. 3880–3891.

[59] K. YUAN, Q. LING, AND W. YIN, On the convergence of
decentralized gradient descent, SIOPT, 26 (2016).

[60] H. ZHANG, J. LIU, J. JIA, Y. ZHOU, H. DAI, AND D. DOU,
Fedduap: Federated learning with dynamic update and adap-
tive pruning using shared data on the server, in IJCAI, 2022.

[61] Q. ZHANG, L. LIU, K. LEE, Y. ZHOU, A. SINGH,
N. MANDAGERE, S. GOPISETTY, AND G. ALATORRE, Im-
proving hadoop service provisioning in a geographically dis-
tributed cloud, in CLOUD, 2014.

[62] Q. ZHANG, L. LIU, Y. REN, K. LEE, Y. TANG, X. ZHAO,
AND Y. ZHOU, Residency aware inter-vm communication in
virtualized cloud: Performance measurement and analysis, in
CLOUD, 2013.

[63] W. ZHANG, S. GUPTA, X. LIAN, AND J. LIU, Staleness-
aware async-sgd for distributed deep learning, in IJCAI,
2016, p. 2350–2356.

[64] Z. ZHANG, J. JIN, Z. ZHANG, Y. ZHOU, X. ZHAO, J. REN,
J. LIU, L. WU, R. JIN, AND D. DOU, Validating the lot-
tery ticket hypothesis with inertial manifold theory, NeurIPS,
(2021).

[65] X. ZHAO, Z. ZHANG, Z. ZHANG, L. WU, J. JIN, Y. ZHOU,
R. JIN, D. DOU, AND D. YAN, Expressive 1-lipschitz neural
networks for robust multiple graph learning against adversar-
ial attacks, in ICML, 2021, pp. 12719–12735.

[66] C. ZHOU, J. LIU, J. JIA, J. ZHOU, Y. ZHOU, H. DAI, AND
D. DOU, Efficient device scheduling with multi-job federated
learning, in AAAI, 2022, pp. 9971–9979.

[67] Y. ZHOU, Innovative Mining, Processing, and Application of
Big Graphs, PhD thesis, Georgia Tech, 2017.

[68] Y. ZHOU AND L. LIU, Social influence based clustering of
heterogeneous information networks, in KDD, 2013.

[69] Y. ZHOU, L. LIU, K. LEE, C. PU, AND Q. ZHANG, Fast iter-
ative graph computation with resource aware graph parallel
abstractions, in ACM Symposium on HPDC, 2015.

[70] Y. ZHOU, L. LIU, K. LEE, AND Q. ZHANG, Graphtwist:
Fast iterative graph computation with two-tier optimizations,
VLDBJ, 8 (2015), pp. 1262–1273.

[71] Y. ZHOU, G. PU, X. MA, X. LI, AND D. WU, Distilled one-
shot federated learning, arXiv:2009.07999, (2021), pp. 1–16.

[72] Y. ZHOU, S. SESHADRI, L. CHIU, AND L. LIU, Graphlens:
Mining enterprise storage workloads using graph analytics,
in BigData, 2014.

[73] T. ZHU, F. HE, L. ZHANG, Z. NIU, M. SONG, AND
D. TAO, Topology-aware generalization of decentralized sgd,
in ICML, 2022, pp. 27479–27503.

[74] M. ZINKEVICH, M. WEIMER, A. J. SMOLA, AND L. LI,
Parallelized stochastic gradient descent., in NeurIPS, 2010.

[75] B. ZOPH AND Q. V. LE, Neural architecture search with
reinforcement learning, in ICLR, 2017, pp. 1–16.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited841

D
ow

nl
oa

de
d

08
/3

0/
24

 to
 7

2.
15

.1
25

.8
4

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

	Introduction
	Related Work
	System Model
	Dynamic Model Aggregation
	Model Selection
	Dynamic Weight Update
	Heterogeneous Model Aggregation

	Sparse Training
	Experiments
	Setup
	Evaluation of AEDFL

	Conclusion

