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Abstract. Table detection played a vital role in scanned document mining and
understanding. The complex nature of tables hasmade table detection cumbersome
and resource-intensive. In this paper, a novel two-path semi-supervised single-
shot object detection framework was proposed for automatic detection of table
in scanned documents. The proposed framework includes a shared VGG16 net-
work and a two-path single-shot object detection model comprising of supervised
and unsupervised subnetworks for table detection and classification. CascadeTab-
Net General dataset was employed to validate the effectiveness of the proposed
framework. Experimental results demonstrated that the model implemented under
the proposed framework is robust across various amount of available annotated
documents (labeled data) for training. It can detect and classify tables in scanned
document effectively even when training on very limited labeled data. For exam-
ple, the precision of the proposed model is within 3% of a supervised model
(SSD300) when training on only 10% of labeled data and 90% of unlabeled data.

Keywords: Table Detection · Semi-supervised Learning · Object Detection ·
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1 Introduction

In recent years, a lot of the traditional paper-based transactions are shifted online and
being automated [17]. This business change has resulted in the rapid growth of the
digital version of documents and has necessitated digitization of documents like paper-
based invoices and receipts by scanning them. Table offers important information and
provides structure for information in the documents. In many cases, documents contain
various types of table-based information that is presented in various forms and layout [6].
Specifically, table can either be open or closed, where the open table has no borderlines
while the closed table uses borderlines to separate rows and columns [26].

Because of the importance of tables in data representation and information delivery,
table detection has become increasingly important and it has attracted a lot of attention.
Table detection in scanned documents aims at detecting key information from tables
[3]. Several methods for table detection were developed including rule-based approach
[7, 10] and deep learning-based methods [1, 6] for closed table detection [11] and open
table detection [18]. In addition, the use of statistical learning has been explored [25] to
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detect and recognize tables in scanned documents. So far deep learning-based methods
have recorded the best performance based on the robust and excellent complex feature
extraction techniques, achieving state-of-the-art result in table detection. However, most
of the deep learning approaches are supervised learning-based approaches,which require
a huge amount of labeled data to train a model successfully. It is well known that
annotation of large amount of scanned documents for table detection is very expensive
and resource intensive. Moreover, it could not be achieved in a real-time fashion. On the
other hand, there exist large amount of unannotated documents (unlabeled data).

Fig. 1. Framework of the proposed two-path semi-supervised learning (TPSSL). Sample xi is
the input. Label yi is available only for the labeled inputs (annotated documents). The associated
cross-entropy loss is to evaluate the table classification loss and the smooth L1 loss is to evaluate
the table localization loss for the supervised subnetwork. Mean squared error is employed to
evaluate both the table classification and table localization loss of the unsupervised subnetwork.

In this paper, we proposed a semi-supervised single-shot detection framework to
detect tables in scanned documents. The proposed approach uses very limited annotated
documents while taking advantage of large amount of unannotated documents for train-
ing. It is a one-stage table detection framework built upon two-path replica subnetwork
and single-shot detection (SSD) technique [14]. The detailed framework is shown in
Fig. 1. Specifically, it consists of a shared VGG network for low-level feature extraction,
one supervised subnetwork and one un-supervised subnetwork. The supervised subnet-
work calculates the loss from the labeled data using cross entropy and smooth L1 loss for
classification and localization losses, respectively. The unsupervised subnetwork made
use of mean squared error to determine the classification and localization loss. The over-
all loss is calculated from the weighted sum of both the supervised and the unsupervised
losses which is further used to optimize the proposed model. The proposed framework
was validated on table detection with CascadeTabNet General dataset including ICDAR
2019 and other public datasets. The experimental results demonstrate the effectiveness
of the proposed method even with very limited amount of labeled training data.

In summary, the contributions of this paper include:

– A novel two-path semi-supervised object detection framework is proposed for table
detection and classification in scanned documents. The framework is comprised
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of supervised and unsupervised subnetwork built upon single-shot object detection
method to detect and classify tables.

– The proposed framework made use of both labeled and unlabeled data to successfully
localize and classify tables within scanned document.

– Experimental results demonstrated that the model implemented under the proposed
framework is robust across various amount of available labeled training data.

– The proposed method can detect tables in scanned document effectively even when
training on very limited labeled data. For example, the precision of the proposed
model is within 3% of a supervised model (SSD300) when training on only 10% of
labeled data and 90% of unlabeled data.

The rest of the paper is organized as follows. Section 2 reviews some related work.
The proposed framework is explained in detail in Sect. 3. Experimental results and
analysis are presented in Sect. 4. Section 5 concludes the paper.

2 Related Work

The growing use of digital documents in the last few decades resulted in the increasing
trend seen in information extraction and conversion of a paper-based document to digital
format. The introduction and wide use of portable document format (PDF) contributed
to this rise in demand. Online commerce and education have also made digital form
of information exchange a must at this time. This increasing demand in digital records
necessitated the focus on document understanding and automation [23]. Table detection
from documents has brought a tremendous value in the field of commerce and education
[23].

As technology advances, table detection problem evolved into machine learning
problems resolved by support vector machine (SVM) [12], sequence labeling [22] and
ensemble [2]. Cesarini et al. [2] developed Tabfinder that first converted the document
into an MXY tree representation and then searched for blocks surrounded by lines.
Perez et al. [16] proposed layout heuristic with k-nearest neighbor for recognizing table
structure. With further advancement in machine learning, other robust machine learning
methods were also proposed. Farrukh et al. [4] modeled a reasoning approach that
combined k-means clustering, random forest, and markov logical network for table
structure recognition. Rashid et al. [19] developed a multilayer neural network for table
structure recognition through using some artificial features for cell classification and
post-process to enhance the result.

The outstanding success recorded by deep neural networks inspired researchers to
explore deep learning for table detection and localization in documents. Gilani et al. [6]
first modeled table detection as a time-series learning problem using Faster RCNN. Arif
and Shafait [1] made use of semantic color-coding to improve the performance of Faster
R-CNN. He et al. [9] developed page segmentation using FCN. Hao et al. [8] proposed
table detection in portable document formats using deep neural networks. Recently,
Siddiqui et al. [21] modeled DeCNT by integrating Faster RCNNwith deformable CNN.
This framework adopted its receptive field-based to its input and achieved excellent
performance on IC-DAR2017. Most of deep neural network methods have generated
state-of-the-art performance in table detection and structure recognition. They have also
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tackled the earlier problem of format and layout challenges encountered in the rule-based
detection approach.

In summary,most of the current deep learning-basedmethods are basedon supervised
learning. It requires a large amount of labeled data to implement the detection task.
However, annotating tables and table cells has a huge cost implication. Semi-supervised
learning is a technique that is able to use both labeled data andunlabeled data to reduce the
efforts of data annotation for building machine learning models. Regarding this benefit,
we propose a novel framework of deep semi-supervised learning for table detection.

3 Methodology

The proposed framework is for table detection to localize and classify tables present
on scanned images of documents. Suppose the training data consists of a total N input
images, from which M are labeled. The input xi (i ∈ 1 … N) is represented as a set of
the scanned images of documents. S represents the set of labeled inputs, |S| = M. For
each i ∈ S, there exist a corresponding label yi ∈ 1 … C, where C shows the number
of classes available in the dataset. The framework of the model proposed in this paper
is shown in Fig. 1. The proposed framework of this model and corresponding learning
procedures is to evaluate the network for each training input xi with the supervised path
and the unsupervised path to complete two tasks. The first task is to learn how to detect
tables using labeled data while the second task is to optimize the learning algorithm for
table detection without the ground truth.

As shown in Fig. 1, for each of the training input xi sample i.e., the scanned images
and the corresponding class label yi and object coordinates passes through the super-
vised branch of the network. The proposed framework built upon the single-shot object
detection (SSD) [14] passes the input through a shared network for low level feature
extraction. This shared network layer, derived from VGG16 backbone, comprises of
seven CNN blocks responsible for extracting low-level features from the input image.
It generated feature maps as its output to the auxiliary layer. The auxiliary convolution
blocks, which are additional CNN blocks integrated with the shared network, further
extracts features at multiple scales and progressively decreases the size of the input at
each subsequent layer. The various sizes of the generated feature maps from various
convolution filters are then passed to the last layer, the prediction layer, where the table
predictions are made. The output of the prediction layer is anchor boxes and class labels
for the detected tables. This predicted anchor boxes and labels are then matched with
the class labels and bounding boxes of tables. The overlap between the anchor boxes
and the ground truth of table localization, referred to as intersection-over-union (IoU)
are measured. The predictions that have IoU greater than 0.5 in value are considered
as positive samples, while the lower IoU results are considered as negative samples or
wrong predictions. All redundant anchor boxes are removed through a post-processing
concept known as non-maximum suppression.

The learning process is initiated with positive and negative training samples obtained
from the matched anchor boxes. The main objective is to start the training with positive
samples and gradually train the model to shift the predictions towards the ground truth.
Each grid cell with a positive sample generates a probability vector, and a four elements



434 J. Bello et al.

vector to adjust the position of the anchor box to match the ground truth box. After every
training step, the priors, in which the overall cost function diminishes, are kept and
re-adjusted towards the ground-truth boxes better. The model convergence is achieved
when the loss curve becomes stable or when the deviation between the ground-truth and
prior is close to zero.

Furthermore, the proposed semi-supervised framework aimed to optimize the learn-
ing procedure using unlabeled data. The unlabeled training input xi passes through the
shared network and then through the supervised and unsupervised network. Two pre-
diction vectors which are new representations of the input data are generated from the
supervised and the unsupervised networks, respectively. The supervised and the unsu-
pervised network are similar but the output from them is stochastic in nature. It implies
that there will be difference between the two prediction vectors for the same input sam-
ple. Given that the original input xi is the same, this difference can be seen as an error
and thus minimizing the mean square error (MSE) is a reasonable objective in the learn-
ing procedure. The overall network is evaluated for the classification and localization
loss with the supervised path including share network and supervised network and the
unsupervised path including shared network and unsupervised network, which results in
prediction vectors csupi and lsupi for table classification and localization in the ii supervised
branch and cunsupi and lunsupi for table classification and localization ii in the unsupervised
branch. The two pair of vectors are used to evaluate the overall loss which is given by:

L = − 1

|B|
∑

i∈B∩S
(fsoftmax

(
csupi

)[
yi

] + fsmoothL1
(
lsupi

)[
yi

]

+ w(t) × 1

K |B|
(∑

i∈B
∥∥csupi − cunsupi

∥∥2 + ∥∥lsupi − lunsupi

∥∥2
)

(1)

B is the mini-batch within the learning process. The overall objective loss L is a
weighted sumof the localization (L) and confidence (C) losses for both the supervised and
unsupervised branches. This loss consists of two main components. The first component
is used to evaluate the supervised loss just for the labeled inputs with cross entropy loss
and smooth L1 loss. The second unsupervised component evaluates for all inputs (both
labeled and unlabeled), and then penalizes the variant predictions for the same training
input xi by calculating the Mean Squared Error (MSE). To enable the model combine
the result of the supervised loss and unsupervised loss, the latter is scaled by a weighting
function w(t) that is time-dependent, starting from zero; it ramps up through a Gaussian
curve.

4 Results and Analysis

4.1 Datasets

We employed the Cascade TabNet General dataset [17] which was created by combin-
ing various public datasets published for table detection including ICDAR 2019 [5],
Marmot [13] and Github. Specifically, ICDAR 2019 dataset includes images of word
and latex documents with text. Marmot dataset is a publicly available dataset published
by the Institute of Computer Science and Technology of Peking University. It contains
texts from Chinese and English. The last part of the dataset was extracted from Github
repositories including 1,934 scanned document with 2,835 tables.
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4.2 Experimental Settings

In this experiment, our proposed model is employed to implement table detection. The
key hyper-parameters of the proposed model are: Batch size: 4, Number of epoch: 100,
Optimizer: SGD, Learning rate: 0.0001.

4.3 Evaluation Metrics

We evaluate the performance of our model using different evaluationmetrics [15], which
include average Precision, average Recall, and average Fscore. In addition, Mean Aver-
age Precision (mAP) was applied for evaluation where Average Precision (P) is calcu-
lated for every class from the area under the precision-recall curve. Precision measures
the percentage of the model predictions that are correct after matching them with the
ground truth. And Recall (R) measures the rate of all the possible ground-truth boxes
being detected. The below equations show the formulae for Precision and Recall.

P = TP

TP + FP
(2)

R = TP

TP + FN
(3)

Fscore = 2 × P × R

P + R
(4)

True Positive (TP) is the number of predictions by the model that has intercession
over union (IoU) greater than 0.5 with ground-truth boxes. False Positive (FP) is the
number of predictions by the model with the IoU less than 0.5 with ground-truth boxes.
False Negative is the number of ground-truth boxes that the trained model does not
detect. Their confidence score ranks predictions from highest to lowest. Finally, average
Precision (AP) is evaluated as the average of maximum precision values at the chosen
recall values. Mean Average Precision (mAP) is simply the average of APs over all the
classes as shown in Eq. 5. The more significant the mAP, the higher performance is the
model achieved.

mAP = 1

C

∑
c∈C APC (5)

4.4 Experimental Results

We explore different evaluation metrics to measure the performance of the proposed
model. Table 1 showed the performance comparison between the proposed model and
two state-of-the-art supervised learning-based models including Single-shot detection
(SSD) [14] and YOLOV3 [20]. Compared to the baselines, the proposed models can
achieve competitive performance even learning on limited labeled training data. For
example, the proposed model (TPSSL) can achieve similar precision and competitive
F-score and recall when training on 40% labeled data. Moreover, in general, the per-
formance of TPSSL was improved when training with more labeled training data. It



436 J. Bello et al.

Table 1. Comparing performance between baselines and proposed models (TPSSL). The base-
lines including SSD300, SSD512, and YOLOV3 were built through training on fully labeled data
while we applied 10%, 20%, 30%, 40% and 50% labeled data together with unlabeled data to
accomplish learning of the proposed models.

Model Precision Recall F-score mAP

SSD300 [14] 97.86 42.73 59.49 81.16

SSD512 [14] 96.30 44.53 60.90 84.35

YOLOV3 [20] 49.48 65.42 56.35 64.96

TPSSL (10%) 94.81 33.39 49.82 61.16

TPSSL 20%) 94.65 37.48 53.70 65.91

TPSSL (30%) 93.50 40.27 56.29 71.89

TPSSL (40%) 97.67 40.57 57.32 76.27

TPSSL (50%) 97.11 40.79 57.45 74.88

indicated that more labeled training data will help enhance performance for the pro-
posedmodel, which is consistent with observations of previous work on semi-supervised
learning [24].

Table 2 presented the performance comparison with different ratios of labeled train-
ing data combined with various IoU. It can be observed that with the increased IoU, the
performancewas dropped significantly since higher IoU requiredmore overlaps between
predicted bounding-box and ground truth to obtain correct predictions for calculating
prediction, recall, and F-score. In addition, with less labeled training data, the trend of
performance reduction with increased IoU is more significantly. For example, compar-
ing cases between 10% and 50% available labeled training data, with increased IoU, the
precision is decreased from 94.81% to 10.78% for the 10% case while it is reduced from
97.11% to 27.20% for 50% case. It is expected that more labeled training data will build
a more robust model, which is also confirmed through comparing baselines and TPSSL.

Moreover, Figs. 2, 3, and 4 explore the effects of different learning rates on the
performance of the proposed model. It is observed that the proposed model performed
successfully across all three learning rates. It is also observed that themodel performance
improved slightly with decreased learning rate. For example, the precision, recall, and
F-score all improved slightly when there are 40% labeled training data with decreased
learning rate. This can be attributed to the fact that the model learns slowly in smaller
steps with lower learning rates, thereby is able to converge with higher performance,
unlike a larger learning rate seems to make the proposed model converge too quickly
and result in lower performance. We also observed that the bars dropped dramatically
with the increased IoU when the labeled training data is very limited (say, 10%), while
the bars dropped much slower with the increased IoU when more labeled training data
are available (say, 40%). This implies that performances with higher IoU are greatly
impacted with fewer labeled training samples.
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Table 2. Comparing performances generated with different ratios of labeled training data under
various IoU.

Baseline 1: SSD300

IoU Precision
(%)

Recall (%) F-score (%)

0.5 97.86 42.73 59.48

0.6 97.78 42.67 59.41

0.7 97.71 42.61 59.34

0.8 95.72 41.54 57.94

0.9 78.49 33.85 47.30

Baseline 2: YOLOV3

IoU Precision
(%)

Recall (%) F-score (%)

0.5 49.48 65.42 56.35

0.6 45.30 59.52 51.45

0.7 34.64 43.79 38.68

0.8 20.47 24.67 22.38

0.9 5.57 6.34 5.92

TPSSL (10% Labeled Data)

IoU Precision
(%)

Recall (%) F-score (%)

0.5 94.81 33.39 49.82

0.6 94.80 31.76 47.58

0.7 87.13 27.95 42.32

0.8 47.22 14.16 21.78

0.9 10.78 3.09 4.80

TPSSL (30% Labeled Data)

IoU Precision
(%)

Recall (%) F-score (%)

0.5 93.50 40.27 56.29

0.6 93.00 39.91 55.85

0.7 89.40 37.86 53.19

0.8 76.89 32.06 45.25

0.9 25.27 9.11 13.39
(continued)
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Table 2. (continued)

TPSSL (50% Labeled Data)

IoU Precision
(%)

Recall (%) F-score (%)

0.5 97.11 40.79 57.45

0.6 96.34 40.29 56.82

0.7 94.61 39.30 55.53

0.8 78.43 32.40 45.85

0.9 27.20 10.48 15.13

Fig. 2. Different performances generated with learning rate 0.001 different ratios of labeled data,
namely 10%, 20%, 30%, 40% and 50% x-axis is for different evaluation metrics while y-axis is
for performance. Different color bars illustrate different batch IoU, where dark blue bars are for
0.5, brown bars are for 0.6, grey bars are for 0.7, Orange bars are for 0.8 and light blue bars are
for 0.9. (Colour figure online)

In summary, increasing the amount of labeled data for training improves the perfor-
mance of the proposed model. The model recorded an acceptable performance even with
very little amount of labeled data, which shows that the proposed model is robust on
detecting tables from scanned documents. Meanwhile, to achieve optimal performance,
the learning rate needs to be selected carefully.
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Fig. 3. Different performances generatedwith learning rate 0.0001 different ratios of labeled data,
namely 10%, 20%, 30%, 40% and 50% x-axis is for different evaluation metrics while y-axis is
for performance. Different color bars illustrate different batch IoU, where dark blue bars are for
0.5, brown bars are for 0.6, grey bars are for 0.7, Orange bars are for 0.8 and light blue bars are
for 0.9. (Colour figure online)

Fig. 4. Different performances generated with learning rate 0.00005 different ratios of labeled
data, namely 10%, 20%, 30%, 40% and 50% x-axis is for different evaluation metrics while y-axis
is for performance. Different color bars illustrate different batch IoU, where dark blue bars are for
0.5, brown bars are for 0.6, grey bars are for 0.7, Orange bars are for 0.8 and light blue bars are
for 0.9. (Colour figure online)

5 Conclusion

In this paper, a novel semi-supervised table detection and classification framework is
proposed for scanned documents. The framework is comprised of supervised and unsu-
pervised subnetwork built upon single-shot object detection method. It made use of both
labeled and unlabeled data to successfully localize and classify tables within scanned
document. Experimental results demonstrated that the proposedmethod can detect tables
in scanned document effectively even when training on very limited labeled data. For
example, the precision of the proposed model is within 3% of a supervised model
(SSD300) when training on only 10% of labeled data and 90% of unlabeled data. This is
extremely valuable in practice because annotation of large amount of scanned documents
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for table detection is very expensive and resource intensive. Moreover, it could not be
achieved in a real-time fashion. On the other hand, there exist large amount of unanno-
tated documents (unlabeled data). Thus, the proposed method is an attractive approach
for table detection in scanned documents when there are very limited resources and/or
time for data annotations which happens very often in reality.
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