An Early Case Study with Multi-Tenancy Support in SPDK’s
NVMe-over-Fabric Designs

Darren Ng, Charles Parkinson, Andrew Lin, Arjun Kashyap, and Xiaoyi Lu
{dng350,cparkinson2,alin85,akashyap5,xiaoyi.lu}@ucmerced.edu
University of California, Merced

ABSTRACT

Resource disaggregation is prevalent in datacenters since it pro-
vides high resource utilization when compared to servers dedicated
to either compute, memory, or storage. NVMe-over-Fabrics (NVMe-
oF) is the standardized protocol used for accessing disaggregated
storage over the network. Currently, the NVMe-oF specification
lacks any semantics to prioritize I/O requests based on different
application needs. Since applications have varying goals — latency-
sensitive or throughput-critical I/O — we need to design efficient
schemes in order to allow applications to specify the type of perfor-
mance they wish to achieve. Furthermore, with additional tenants,
we need to provide the respective specified performance optimiza-
tions that each application requests, regardless of congestion. This
is a challenging problem, as the current NVMe specification lacks se-
mantics. to support multi-tenancy. Our early study research poster
brings awareness to the ways in which the we can bring multi-
tenancy support to the NVMe-oF specification.

1 INTRODUCTION

The term performance has different meanings for applications since
some applications optimize for latency while others optimize for
throughput. Hence, the underlying storage system/runtime needs
to be made aware of whether the application I/O is latency-sensitive
or throughput-critical. Since the underlying storage runtime is not
multi-tenant aware, it treats all the I/O requests with the same
priority. The problem is exacerbated by the fact that the NVMe-oF
protocol, a popular remote storage protocol, does not support pass-
ing application hints to the storage system about their performance
goals.

Some work has been done to add priority and Quality-of-Service
(QoS) support to local SSD accesses [1-4] while others have imple-
mented the same for disaggregated storage [5, 6]. ReFlex [5] uses
a highly customized storage disaggregation stack to enable prior-
ity support while our design adds priority design to the popular
NVMe-oF protocol used for storage disaggregation. blk-switch [6]
simulates the priority in Intel SPDK [7] by varying the niceness
value of the different application processes and does not tag indi-
vidual application I/O requests. Thus, there is still a gap to truly

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SC °23, November 12—17, 2023, Denver, CO

© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

support priority schemes in the userspace NVMe-oF runtime with
multi-tenancy support.

We take a preliminary step in studying necessities of multi-
tenancy support in SPDK’s NVMe-oF protocol and illustrate the
early benefits of supporting multi-tenancy. Unlike previous work,
we move our implementation into the userspace. In the future, we
hope to create an extensive evaluation of multi-tenancy support
for NVMe-oF.

2 MOTIVATION

In this section we would like to answer the question - What are the
benefits of multi-tenancy support? In datacenters and HPC, it is com-
mon for a multi-tenancy environment to be highly desirable and
allows devices to serve more applications and users at once. Con-
sidering that different applications may not optimize for the same
performance goals, SPDK’s NVMe-oF will not be able to deliver
desired performance respective to each application. By supporting
multi-tenancy within SPDK, each application will be able to achieve
a specified performance optimization strategy regardless of other
concurrent applications.

For this early study, we choose to augment Intel SPDK with
priority schemes and multi-tenant support since it is a widely used
userspace storage library in HPC systems. For instance, Intel Dis-
tributed Asynchronous Object Storage (DAOS) which is a widely
popular exascale storage stack [8—10], internally uses SPDK [11].
Another question that presents itself - What factors of existing
SPDK NVMe-oF protocol violates multi-tenancy support? In our early
observations, we have framed two major factors that prevent it
multi-tenancy: computation order and semantic data passing. The
main requirement of multi-tenancy support is to provide the respec-
tive performance optimization that is specified by an application
and we review them in this section.

Computation order. The NVMe-oF target processes each re-
quest in the order received. Thus an application with low latency
objectives may be required to wait behind a very large number of
requests from a high throughput application. As shown in Figure 1,
we can observe multiple requests from two different applications
of different performance objectives and how a latency-sensitive
application may have long latencies for its requests. Thus the multi-
tenancy requirement is not upheld. Latency-sensitive requests can
also disrupt the throughput-critical requests as the target must now
switch between processing two different types of requests within
one batch of throughput-critical requests. This can negatively im-
pact throughput-critical requests for high-throughput applications
which similarly will not uphold multi-tenancy requirements.

Another issue is that SPDK sends too much completion notifica-
tion packets to optimize for high-throughput applications. Each I/O
request requires the NVMe-oF target to deliver a request completion

SC ’23, November 12-17, 2023, Denver, CO

Initiator Initiator
LS TC

[Target]

@l

sbay

: SPDK LS
[. Gain

Latency-Sensitive (LS)
(] Throughput-Critical (TC)

[T

Figure 1: Baseline SPDK timeline of request completions of
two different initiators.

notification. For high-throughput applications, these large number
of request completion notifications consume CPU processing and
can reduce throughput. The reduction in throughput becomes more
visible when multiple applications begin concurrent requests.

Semantic Data Passing. The SPDK library does not support any
priority schemes that would allow the storage system to discern
I/O requests. Thus, the traditional userspace NVMe-oF storage
runtimes can neither interpret nor handle the differential requests
to maximize the specific performance goal the application may
desire. This can only be achieved by providing the semantic data
within each request that denotes the optimization strategy of the
application. In order to bridge this gap we need to enable priority
semantic data passing in SPDK-based NVMe-oF runtime to support
multi-tenancy.

3 EVALUATION

Experimental Setup: Our test environment uses Chameleon Cloud
[12] storage_nvme nodes to provide 10/25Gbps Ethernet experi-
ments. We use an AMD EPYC 7352 2.3GHz processor with 24 cores
and 256 GB RAM.

Performance Analysis: In our early experiments we show results
for throughput on two different interconnects and the throughput
and latency concurrency. We compare the default SPDK numbers
running the perf benchmark with a queue depth of 1 and 128 as the
baseline against latency sensitive and throughput critical initiators
from our design, respectively.

It is observed that there are two factors that are needed to achieve
performance improvement: 1) proper window size selection and 2)
network speed.

Window Size Selection: In our design, we define window size as
the number of requests coalesced into one completion notification
network packet. Figure 2 shows throughput and latency of our de-
sign over increasing window sizes. In this experiment we observe
performance results with multi-tenancy using one throughput-
critical initiator and one latency-sensitive initiator. Our design
achieves a peak throughput gain of 35.9% at a window size of 32,
and over all window sizes, achieves an average improvement in
throughput by 20.6% over SPDK. This is also in tandem with main-
taining a low latency with the difference in latency at -4.5%. Overall,
we can see that a large window size (64) may not always be optimal
and a small window size (<32) will not maximize throughput.

Network Performance Impact: In this subsection, we observe
results with 10 and 25 Gbps Ethernet speeds and how they influence

Darren Ng, Charles Parkinson, Andrew Lin, Arjun Kashyap, and Xiaoyi Lu

3.2 w72 Thr
P ¢ Lat
2
< 3.0
()]
>
© 28
<
[

N
o

SPDK PF-4 PF-8 PF-16 PF-32 PF-64
Window size

Figure 2: Throughput of one NVMe-oF initiator sending
throughput-critical requests concurrently with one sending
latency-sensitive requests. Varying window sizes are shown
(PF-4/8/16/32/64).

led
3 | @@ 10Gbps
AN 25Gbps

w
o

Throughput
N

i,
s,

N
o

/.
SPDK PF-4 PF-8 PF-16 PF-32

Window size

N
EN

PF-64

Figure 3: Throughput for 10 and 25 Gbps while sending a
throughput-critical write workload.

performance. Figure 3 shows performance gain from the baseline
SPDK to our design with varying window sizes. For factor 2), we
can see that both SPDK and our design are hindered in performance
when using 10Gbps speeds. In this case, the network becomes the
bottleneck as it is already saturated. If we observe the 25Gbps Eth-
ernet, we are able to increase throughput as window size increases.
For a window size of 64 at 10Gbps, the completion notification
packets begin to observe more time before being received by the
initiator, exacerbated by network bottleneck, and may negatively
impact performance.

4 CONCLUSION AND FUTURE WORK

Our early study design provides the ability for workloads to specify
their I/O optimization strategies — latency-sensitive or throughput-
critical — and makes the NVMe-oF runtime multi-tenant aware.
Our design shows the benefit of coalescing request completions
for userspace NVMe-oF runtime. In the future, we will co-design
more HPC and datacenter applications with the proposed design
schemes to demonstrate the benefits.

5 ACKNOWLEDGEMENTS

This work was supported in part by an NSF research grant OAC
#2321123 and a DOE research grant DE-SC0024207. Results pre-
sented in this paper were obtained using the Chameleon testbed
supported by the National Science Foundation

REFERENCES

[1] S.Kim, H. Kim, J. Lee, and J. Jeong, “Enlightening the I/O Path: A Holistic Ap-
proach for Application Performance,” in Proceedings of the 15th Usenix Conference
on File and Storage Technologies, FAST17, (USA), p. 345-358, USENIX Association,
2017.

[2] J. Zhang, M. Kwon, D. Gouk, S. Koh, C. Lee, M. Alian, M. Chun, M. T. Kandemir,
N. S. Kim, J. Kim, and M. Jung, “Flashshare: Punching through Server Storage

An Early Case Study with Multi-Tenancy Support in SPDK’s NVMe-over-Fabric Designs

Stack from Kernel to Firmware for Ultra-Low Latency SSDs,” in Proceedings of
the 13th USENIX Conference on Operating Systems Design and Implementation,
OSDI'18, (USA), p. 477-492, USENIX Association, 2018.

H.-J. Kim, Y.-S. Lee, and J.-S. Kim, “NVMeDirect: A User-space I/O Framework
for Application-specific Optimization on NVMe SSDs,” in 8th USENIX Workshop
on Hot Topics in Storage and File Systems (HotStorage 16), (Denver, CO), USENIX
Association, June 2016.

A. Tai, I. Smolyar, M. Wei, and D. Tsafrir, “Optimizing Storage Performance with
Calibrated Interrupts,” ACM Transactions on Storage (TOS), vol. 18, no. 1, pp. 1-32,
2022.

A. Klimovic, H. Litz, and C. Kozyrakis, “ReFlex: Remote Flash Local Flash,” in
Proceedings of the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 17, (New York, NY,
USA), p. 345-359, Association for Computing Machinery, 2017.

J. Hwang, M. Vuppalapati, S. Peter, and R. Agarwal, “Rearchitecting linux storage
stack for ps latency and high throughput,” in 15¢th { USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 21), pp. 113-128, 2021.
Z.Yang, J. R. Harris, B. Walker, D. Verkamp, C. Liu, C. Chang, G. Cao, J. Stern,
V. Verma, and L. E. Paul, “SPDK: A Development Kit to Build High Performance

[11

SC ’23, November 12-17, 2023, Denver, CO

Storage Applications,” in 2017 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), pp. 154-161, IEEE, 2017.

J. Liu, Q. Koziol, G. F. Butler, N. Fortner, M. Chaarawi, H. Tang, S. Byna, G. K. Lock-
wood, R. Cheema, K. A. Kallback-Rose, D. Hazen, and M. Prabhat, “Evaluation of
HPC Application I/O on Object Storage Systems,” in 2018 IEEE/ACM 3rd Inter-
national Workshop on Parallel Data Storage Data Intensive Scalable Computing
Systems (PDSW-DISCS), pp. 24-34, 2018.

J. Soumagne, J. Henderson, M. Chaarawi, N. Fortner, S. Breitenfeld, S. Lu, D. Robin-
son, E. Pourmal, and J. Lombardi, “Accelerating HDF5 I/O for Exascale Using
DAOS,” IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 4,
Pp. 903914, 2022.

M. S. Breitenfeld, N. Fortner, J. Henderson, J. Soumagne, M. Chaarawi, J. Lombardi,
and Q. Koziol, “Daos for extreme-scale systems in scientific applications,” 2017.
Intel, “DAOS: Revolutionizing High-Performance Storage” https:
/[www.intel.com/content/www/us/en/high-performance-computing/daos-
high-performance-storage-brief html, 2023.

[12] Chameleon Cloud, “Chameleon Cloud.” https://www.chameleoncloud.org/, 2023.

