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ABSTRACT 
We analyze both finite and infinite systems of Riccati equations derived from 

stochastic differential games on infinite networks. We discuss a connection to the 

Catalan numbers and the convergence of the Catalan functions by Fourier 

transforms. 
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INTRODUCTION 

The Catalan numbers 𝐶𝑛, 𝑛 ≥ 0 appear as a sequence of natural numbers defined by 

 𝐶𝑛: = 1𝑛 + 1 (2𝑛𝑛 ) = (2𝑛)!𝑛! (𝑛 + 1)! ,  𝑛 ≥ 0 (1.1) 
 

For example, 𝐶0 = 1, 𝐶1 = 1, 𝐶2 = 2  and so on. This increasing sequence satisfies the 

recurrence relations 

 𝐶𝑛 = 𝐶0𝐶𝑛−1 + 𝐶1𝐶𝑛−2 +⋯+ 𝐶𝑛−1𝐶0 =∑  𝑛
𝑗=1  𝐶𝑗−1𝐶𝑛−𝑗,  𝑛 ≥ 1 (1.2) 

 

and grows like 4𝑛𝑛−3/2/√𝜋, as 𝑛 → ∞. The Catalan numbers appear in many combinatorial 

counting problems, for example, counting of non-crossing partitions, the number of the Dyck 

words, the number of standard Young tableaux (see the monographs [5], [6], [7] by Stanley). 

In this paper we shall discuss the Catalan numbers and more generally Catalan functions in 

the context of the stochastic differential games on infinite network introduced in the recent 

papers (Feng, Fouque and Ichiba [1] and [2], see also the referenced papers therein for the 

related mean-field games, some topics of stochastic differential games and their applications), 

where the Catalan functions are defined by the solution to the system of the infinite Riccati 

equations. Note that the system of the infinite Riccati equations determines the Nash 

equilibrium of the stochastic differential game for infinitely many players. Then we prove the 

convergence of the solution of the finite Riccati equation corresponding to a stochastic 
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differential game for finitely many players (say 𝑁 players) on a periodic network, as 𝑁 → ∞, 

to the solution of a system of infinite Riccati equations. 

 

Following Feng, Fouque and Ichiba [1], let us recall the following Riccati equation for the 

countably many continuous functions 𝜑𝑡𝑖 , 𝑖 ∈ ℕ0, 0 ≤ 𝑡 ≤ 𝑇, given by the system 

 𝜑̇𝑡𝑖 = d𝜑𝑡𝑖 d𝑡 =∑  𝑖
𝑗=0  𝜑𝑡𝑗𝜑𝑡𝑖−𝑗 − 𝜀𝑖;  𝑖 ∈ ℕ0 (1.3) 

 

where 𝜀𝑖  are given by some real constants 𝜀0: = 𝜀, 𝜀1: = −𝜀, 𝜀𝑖 = 0  for 𝑖 ≠ 0,1 , and the 

terminal conditions are 𝜑𝑇0 : = 𝑐, 𝜑𝑇1 : = −𝑐, 𝜑𝑇𝑖 : = 0  for 𝑖 ≠ 0,1 . Here, “ ’ " denotes the 

differentiation with respect to 𝑡, and the superscript 𝑖 is not the power of function 𝜙 but the 

index 𝑖 ∈ ℕ0. Given 𝜀 > 0 and 𝑐 ≥ 0, the solution {𝜑𝑡𝑖 , 𝑖 ∈ ℕ, 0 ≤ 𝑡 ≤ 𝑇} of (1.3) exists and is 

unique (Lemma 1 of [1]). We call such sequence of functions the Catalan functions. 

 

The solution 𝜑𝑡𝑖 , 0 ≤ 𝑡 ≤ 𝑇, 𝑖 ∈ ℕ0 depends on 𝜀 and 𝑇. Particularly, we take 𝜀 = 1 = 𝜀0 = −𝜀1, 

and consider the stationary solution by letting the time derivative zero, that is, 𝜑̇𝑡𝑖 ≡ 0, 𝑖 ∈ℕ0, 𝑡 ≥ 0. Then the stationary solution {𝜑𝑖}𝑖∈ℕ0  of (1.3) satisfies 

 𝜑0 = 1,  𝜑1 = −12 ,   and  𝜑𝑖 = −12∑  𝑖−1
𝑗=1 𝜑𝑗𝜑𝑖−𝑗;  𝑖 ≥ 2 

 

Thus, the relation between the stationary solution {𝜑𝑖}𝑖≥1 of (1.3) and the Catalan numbers {𝐶𝑖}𝑖∈ℕ0  in (1.1) is 

 𝜑𝑖 = −2𝐶𝑖−14𝑖 ;  𝑖 ≥ 1 (1.4) 
 

Let us also recall the Riccati equation for 𝑁 continuous functions 𝜙𝑡𝑖 , 𝑖 = 0,1, … ,𝑁 − 1,0 ≤ 𝑡 ≤𝑇, given by the following system 

 𝜙̇𝑡𝑖 : = d𝜙𝑡𝑖 d𝑡 = ∑  𝑁−1
𝑗=0  𝜙𝑡𝑗𝜙𝑡𝑁+𝑖−𝑗 − 𝜀𝑖;  𝑡 ≥ 0 (1.5) 

 

of ordinary differential equations for 𝑖 = 0,1, … ,𝑁 − 1 and 0 ≤ 𝑡 ≤ 𝑇 with the given terminal 

values 𝜙𝑇0 : = 𝑐 =:−𝜙𝑇1 > 0,𝜙𝑇𝑖 : = 0, 𝑖 = 2,… ,𝑁 − 1 and real constants 𝜀0: = 𝜀 =:−𝜀1 > 0 and 𝜀𝑖: = 0 for 𝑖 = 2,… ,𝑁 − 1. We impose the periodic condition 𝜙!𝑖 = 𝜙𝑖+𝑁 for every 𝑖 ∈ ℤ. The 

solution {𝜙𝑡𝑖 , 𝑖 = 0,1, … ,𝑁 − 1,0 ≤ 𝑡 ≤ 𝑇} of (1.5) exists uniquely and depends on 𝑁. 

 

The finite system (1.5) leads us to the Nash equilibrium for the 𝑁-player, linear-quadratic 

stochastic differential game on the finite directed chain periodic network, while the infinite 
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system (1.3) leads us to the Nash equilibrium for the infinitely many player, linear-quadratic 

stochastic differential game on the infinite directed chain network. In [1] and [2] the question 

of the convergence of the Nash equilibrium for the 𝑁 player game to the Nash equilibrium for 

the infinitely many player game was left as an open question in the periodic case considered 

here. In this paper we solve this open question positively. 

 

The main results of this paper are the following propositions of convergence. 

 

Proposition 1 

For any fixed 𝑗 ∈ ℕ0 and 𝑡 ∈ [0, 𝑇], the solution 𝜙𝑡𝑗  of the finite system (1.5) converges to 𝜑𝑡𝑗  of 

the infinite system (1.3), as 𝑁 → ∞. That is, 

 lim𝑁→∞ 𝜙𝑡𝑗 = 𝜑𝑡𝑗;  𝑗 ∈ ℕ0, 𝑡 ∈ [0, 𝑇] (1.6) 
 

Proposition 2 

For any fixed 𝑖 ∈ ℕ0 and 𝑡 ∈ [0, 𝑇], we have the convergence results 

 lim𝑁→∞  ∑  𝑁−1
𝑗=0  𝜙𝑡𝑗𝜙𝑡𝑁+𝑖−𝑗 =∑  𝑖

𝑗=0  𝜑𝑡𝑗𝜑𝑡𝑖−𝑗 ,   and  lim𝑁→∞   ∑  𝑁−1
𝑗=𝑖+1  𝜙𝑡𝑗𝜙𝑡𝑁+𝑖−𝑗 = 0 (1.7) 

 

Proposition 3 

For any 𝐾 ∈ ℕ0, 𝑇 > 0, the solution {𝜙𝑡𝑖 , 𝑖 = 0,1, … ,𝑁 − 1, 0 ≤ 𝑡 ≤ 𝑇} of (1.5) and the solution {𝜑𝑡𝑖 , 𝑖 ∈ ℕ, 0 ≤ 𝑡 ≤ 𝑇} of (1.3) satisfy 

 lim𝑁→∞  sup0≤𝑖≤𝐾   sup0≤𝑡≤𝑇  |𝜙𝑡𝑖 − 𝜑𝑡𝑖| = 0 (1.8) 
 

That is, the first 𝐾 elements of the solution of (1.5) converges uniformly to the first 𝐾 

elements of the solution of (1.3), as 𝑁 → ∞. 

 

These results are proved in the following sections by Fourier transforms. The key 

observations are the representations (2.11) and (2.13) of the solutions {𝜙𝑡𝑗} and {𝜑𝑡𝑗} of the 

Riccati equations (1.5) and (1.3) in terms of the solution {𝑓𝑡(𝑥)} in (2.8) of an auxiliary Riccati 

equation (2.5) below. After this manuscript was prepared, the recent papers [3] and [4] by 

Miana and Romero were brought up to our attention. In these papers a slightly general 

quadratic equation for Catalan generating functions, its spectrum and resolvent operator are 

studied from the point of view of functional analysis. In contrast to [3] and [4], the results 

here on the convergence of the solutions are more concrete, because of the specific form (1.3) 

of quadratic equation and because of the Fourier transforms. The generalization of the results 

in the current paper will be a theme of another paper. 

 

FOURIER TRANSFORMS AND RICCATI EQUATIONS 

Let us define the discrete Fourier transform {𝜙̂𝑡𝑘 , 𝑘 = 0,1, … , 𝑁 − 1}, 0 ≤ 𝑡 ≤ 𝑇 of the solution {𝜙𝑡𝑖 , 𝑖 = 0,1, … ,𝑁 − 1,0 ≤ 𝑡 ≤ 𝑇} of the Riccati equation (1.5) by 
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𝜙̂𝑡𝑘: = ∑  𝑁−1
𝑗=0  𝜙𝑡𝑗 exp (−2𝜋√−1𝑗𝑘𝑁 ) ;  𝑘 = 0,1, … ,𝑁 − 1,0 ≤ 𝑡 ≤ 𝑇 (2.1) 

 

Here, the superscript 𝑘 for 𝜙̂. is not the power but the index. √−1 is the imaginary unit, the 

complex square root of -1. Inverting the discrete Fourier transform, we obtain 

 𝜙𝑡𝑗 = 1𝑁∑  𝑁−1
𝑘=0   𝜙̂𝑡𝑘exp (2𝜋√−1𝑗𝑘𝑁 ) ;  𝑗 = 0,1, … ,𝑁 − 1 (2.2) 

 

and in particular, 

 𝜙𝑡0 = 1𝑁∑  𝑁−1
𝑘=0   𝜙̂𝑡𝑘;  0 ≤ 𝑡 ≤ 𝑇 (2.3) 

 

Since the discrete Fourier transform of the convolution of two sequences is the product of 

their discrete Fourier transforms, it follows from the Riccati equation (1.5) that 𝜙̂𝑡𝑘 in (2.1) 

satisfies the one-dimensional Riccati equation 

 𝜙̂𝑡𝑘˙ = (𝜙̂𝑡𝑘)2 − (1 − 𝑒−2𝜋√−1𝑘/𝑁)𝜀;  0 ≤ 𝑡 ≤ 𝑇 (2.4) 
 

with the terminal condition 𝜙̂𝑇𝑘 = (1 − 𝑒−2𝜋√−1𝑘/𝑁)𝑐  for 𝑘 = 0,1, … ,𝑁 − 1 . 

In a similar manner, replacing 𝑘/𝑁 by 𝑥 in (2.4) , let us consider the following, one-

dimensional, auxiliary Riccati equation for ℂ-valued function {𝑓𝑡(𝑥),0 ≤ 𝑡 ≤ 𝑇, 𝑥 ∈ [0,1]} 
defined by 

 𝑓𝑡(𝑥) = (𝑓𝑡(𝑥))2 − (1 − 𝑒−2𝜋√−1𝑥)𝜀;  0 ≤ 𝑡 ≤ 𝑇,  𝑥 ∈ [0,1] (2.5) 
 

with the terminal condition 𝑓𝑇(𝑥) = (1 − 𝑒−2𝜋√−1𝑥)𝑐, 𝑥 ∈ [0,1]. 
 

Since both Riccati equations (2.4) and (2.5) are scalar-valued ordinary differential equations, 

we solve them explicitly by the standard method of solving the general Riccati equation of the 

form 

 𝑦̇𝑡 = 𝑎𝑡 + 𝑏𝑡𝑦𝑡 + 𝑐𝑡(𝑦𝑡)2;  0 ≤ 𝑡 ≤ 𝑇 (2.6) 
 

with some (smooth) functions 𝑎. , 𝑏. , 𝑐. That is, solving a second-order ordinary differential 

equation 𝑢̈𝑡 − (𝑏𝑡 + 𝑐̇𝑡𝑐𝑡) 𝑢̇𝑡 + 𝑎𝑡𝑐𝑡𝑢𝑡 = 0 (2.7) 
 

for {𝑢𝑡}, we obtain the solution 𝑦𝑡 = −𝑢̇𝑡/(𝑐𝑡𝑢𝑡), 0 ≤ 𝑡 ≤ 𝑇 for the general Riccati equation. 

The solutions to our Riccati equations (2.4) and (2.5) are given by the following proposition. 



 

 

 

 

 

411 

Feng, Y., Fouque, J.-P., & Ichiba, T. (2024). Catalan Numbers, Riccati Equations and Convergence. European Journal of Applied Sciences, Vol - 12(4). 

407-418. 

URL: http://dx.doi.org/10.14738/aivp.124.17471 

Proposition 4 

The solution of the auxiliary Riccati equation (2.5) is given by 

 𝑓𝑡(𝑥) = √𝜀𝔯(𝑥)𝑒√−1𝜽(𝑥) ⋅ 𝔞+(𝑥)𝔢𝑡+(𝑥) − 𝔞−(𝑥)𝔢𝑡−(𝑥)𝔞+(𝑥)𝔢𝑡+(𝑥) + 𝔞−(𝑥)𝔢𝑡−(𝑥) (2.8) 
 

where 𝔞±(𝑥) and 𝔢𝑡±(𝑥) are ℂ-valued functions defined by 

 𝔞±(𝑥):= √𝜀 ± 𝑐𝔯(𝑥)𝑒√−1𝜽(𝑥),  𝔢𝑡±(𝑥): = exp (±√𝜀𝔯(𝑥)𝑒√−1𝜽(𝑥)(𝑇 − 𝑡));  0 ≤ 𝑡 ≤ 𝑇 (2.9) 
 

With 

 𝔯(𝑥): = [2(1 − cos (2𝜋𝑥))]1/4,  𝜽(𝑥): = 12 arctan ( sin (2𝜋𝑥)1 − cos (2𝜋𝑥)) ∈ [0, 𝜋) (2.10) 
 

for fixed 𝑥 ∈ [0,1]. 
 

Proof. For each fixed 𝑥 ∈ [0,1], we shall solve the Riccati equation (2.5) for {𝑓𝑡(𝑥)}, as the 

special case of the general Riccati equation (2.6) with 𝑎𝑡: = −(1 − 𝑒−2𝜋√−1𝑥)𝜀, 𝑏𝑡: = 0, 𝑐𝑡 =1, 0 ≤ 𝑡 ≤ 𝑇. By the transformation from 𝑦. in 2.6 to 𝑢. in 2.7), it amounts to solving the 

second-order differential equation 

 𝑢̈𝑡 + (1 − 𝑒−2𝜋√−1𝑥)𝜀𝑢𝑡 = 0;  0 ≤ 𝑡 ≤ 𝑇.  
 

With the definitions (2.10) of 𝔯(𝑥) and 𝜃(𝑥), the square roots of −(1 − 𝑒−2𝜋√−1𝑥) is given by ±√−1𝔯(𝑥)𝑒√−1𝜃(𝑥). Hence, the solution 𝑢. to the second-order differential equation is given by 

 𝑢𝑡(𝑥) = 𝔠1(𝑥) ⋅ 𝑒√−1𝔯(𝑥)𝑒√−1𝜽(𝑥)𝑡 + 𝔠2(𝑥) ⋅ 𝑒−√−1𝔯(𝑥)𝑒√−1𝜽(𝑥)𝑡;  0 ≤ 𝑡 ≤ 𝑇 

 

for some 𝔠𝑖(𝑥), 𝑖 = 1,2 which are determined by the terminal condition 𝑓𝑇(𝑥) = −𝑢̇𝑇(𝑥)/𝑢𝑇(𝑥), and 𝑓𝑡(𝑥) = −𝑢̇𝑡(𝑥)/𝑢𝑡(𝑥) is given by (2.8) for 𝑥 ∈ [0,1], 𝑡 ∈ [0, 𝑇]. 
 

Proposition 5 

With {𝑓𝑡(𝑥)} defined in (2.8), the solution of the Riccati equation (2.4) and the solution of the 

Riccati equation (1.5) are represented by 

 𝜙̂𝑡𝑘 = 𝑓𝑡 (𝑘𝑁) ,   and  𝜙𝑡𝑘 = 1𝑁∑  𝑁
𝑗=1  𝑓𝑡 (𝑘𝑁) exp (2𝜋√−1𝑗 ⋅ 𝑘𝑁) (2.11) 

 

for 𝑘 = 0,1, … , 𝑁 − 1,0 ≤ 𝑡 ≤ 𝑇. Thus, there exists a constant  

 𝑐𝑇: = sup0≤𝑡≤𝑇  sup𝑥∈[0,1]  |𝑓𝑡(𝑥)| ∈ (0,∞), 
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such that 

 sup𝑁≥2   sup0≤𝑘≤𝑁−1  sup0≤𝑡≤𝑇  |𝜙𝑡𝑘| ≤ sup𝑁≥2   sup0≤𝑘≤𝑁−1  sup0≤𝑡≤𝑇  |𝜙̂𝑡𝑘| ≤ 𝑐𝑇 (2.12) 
 

Proof. For each fixed 𝑘 = 0,1, … , 𝑁 − 1, we solve the Riccati equation (2.4) for the discrete 

Fourier transform 𝜙̂𝑡𝑘 and obtain 𝜙̂𝑡𝑘 = 𝑓𝑡(𝑘/𝑁) in a similar procedure, replacing 𝑘/𝑁 by 𝑥 in 

the proof of Proposition 4. Substituting it to the inverse discrete Fourier transform (2.2), we 

obtain (2.11). The uniform bound (2.12) is obtained directly by the representations (2.11). 

 

In order to prove Proposition 1, we derive the following representation of the infinite Riccati 

solution {𝜑𝑡𝑘} in terms of the auxiliary Riccati solution {𝑓𝑡(𝑥)} in (2.8). 

 

Proposition 6 

With the solution {𝑓𝑡(𝑥)} in (2.8) of the auxiliary Riccati equation (2.5), the solution {𝜑𝑡𝑗} of 

the infinite Riccati equation (1.3) is represented as 

 𝜑𝑡𝑗 = ∫  10  𝑓𝑡(𝑥)𝑒2𝜋√−1𝑗𝑥 d𝑥;  𝑗 ∈ ℕ0, 0 ≤ 𝑡 ≤ 𝑇 (2.13) 
 

Consequently, we have the upper bound 

 sup𝑗∈ℕ0   sup0≤𝑡≤𝑇  |𝜑𝑡𝑗| ≤ 𝑐𝑡 = sup0≤𝑡≤𝑇   sup𝑥∈[0,1] |𝑓𝑡(𝑥)| ∈ (0,∞) (2.14) 
 

Proof. Note that the family {𝑒−2𝜋√−1𝑗𝑥, 𝑗 ∈ ℕ0} of continuous functions on [0,1] forms an 

orthonormal basis of the space 𝐿2([0,1]), and the right hand of (2.13) is the 𝑗-th Fourier 

coefficient of 𝑓𝑡  with respect to this orthonormal basis, that is, 

 𝑓𝑡(𝑥) =∑  ∞
𝑗=0   𝐜𝑗,𝑡𝑒−2𝜋√−1𝑗𝑥,  𝐜𝑗,𝑡: = ∫  10  𝑓𝑡(𝑦)𝑒2𝜋√−1𝑗𝑦 d𝑦;  𝑥 ∈ [0,1], 𝑡 ∈ [0, 𝑇] (2.15) 

 

To show (2.13), we shall verify that the Fourier coefficients {𝐜𝑗,𝑡} satisfy the infinite Riccati 

equation (1.3) and we apply its uniqueness of the solution. Since {𝑓𝑡(𝑥)} satisfies the auxiliary 

Riccati equation (2.5), by the direct calculation we obtain 

 dd𝑡 ∫  10  𝑓𝑡(𝑥)𝑒2𝜋√−1𝑗𝑥 d𝑥 = ∫  10  𝑓𝑡(𝑥)𝑒2𝜋√−1𝑗𝑥 d𝑥
 = ∫  10   ((𝑓𝑡(𝑥))2 − (1 − 𝑒−2𝜋√−1𝑥)𝜀)𝑒2𝜋√−1𝑗𝑥 d𝑥
 = ∫  10   (𝑓𝑡(𝑥))2𝑒2𝜋√−1𝑗𝑥 d𝑥 − 𝜀𝑗 ,  𝑗 ∈ ℕ0, 𝑡 ∈ [0, 𝑇]

 



 

 

 

 

 

413 

Feng, Y., Fouque, J.-P., & Ichiba, T. (2024). Catalan Numbers, Riccati Equations and Convergence. European Journal of Applied Sciences, Vol - 12(4). 

407-418. 

URL: http://dx.doi.org/10.14738/aivp.124.17471 

where {𝜀𝑗} was defined as 𝜀0 = 𝜀 = −𝜀1 > 0, and 𝜀𝑖 = 0, 𝑖 ≥ 2. For the first term of the right 

hand, it follows from (2.15) and the convolution of the Fourier series that 

 ∫  10   (𝑓𝑡(𝑥))2𝑒2𝜋√−1𝑗𝑥 d𝑥 = ∫  10  (∑  ∞
ℓ=0  𝐜ℓ,𝑡𝑒−2𝜋√−1ℓ𝑥∑ ∞

𝑘=0   𝐜𝑘,𝑡𝑒−2𝜋√−1𝑘𝑥)𝑒2𝜋√−1𝑗𝑥 d𝑥
 = ∑  𝑗

𝑘=0  (∫  10  𝑓𝑡(𝑥)𝑒2𝜋√−1𝑘𝑥 d𝑥)(∫  10  𝑓𝑡(𝑥)𝑒2𝜋√−1(𝑗−𝑘)𝑥 d𝑥) 

 

Substituting this expression in (2.16), and because of (2.15), we obtain the infinite Riccati 

equation 

 𝐜̇𝑗,𝑡 = dd𝑡 ∫  10  𝑓𝑡(𝑥)𝑒2𝜋√−1𝑗𝑥 d𝑥
 = ∑  𝑗

𝑘=0   𝐜𝑘,𝑡𝐜𝑗−𝑘,𝑡 − 𝜀𝑗;  𝑗 ∈ ℕ0, 0 ≤ 𝑡 ≤ 𝑇
 

 

equivalent to (1.3). Also, the terminal condition satisfies   

 𝐜𝑇,𝑗 = ∫  10 𝑓𝑇(𝑥)𝑒2𝜋√−1𝑗𝑥 d𝑥 = ∫  10 𝑐(1 − 𝑒−2𝜋√−1𝑥)𝑒2𝜋√−1𝑗𝑥 d𝑥 = 𝑐𝑗 , 
 

where {𝑐𝑗} was defined as 𝑐0 = 𝑐 = −𝑐1 > 0 and 𝑐𝑖 = 0, 𝑖 ≥ 2. Thus, by the uniqueness of the 

solution to the infinite Riccati equation (1.3), we identify 𝐜𝑗,𝑡 = 𝜑𝑡𝑗 , 𝑗 ∈ ℕ0, 𝑡 ∈ [0, 𝑇] as in 

(2.13). 

 

Proof of Proposition 1 

Now we shall prove Proposition 1. Substituting (2.11) into the inverse discrete Fourier 

transform 2.2, we obtain the Riemann sum 

 𝜙𝑡𝑗 = 1𝑁∑  𝑁−1
𝑘=0 𝜙̂𝑡𝑘exp (2𝜋√−1𝑗𝑘𝑁 ) = 1𝑁∑  𝑁−1

𝑘=0 𝑓𝑡 (𝑘𝑁)exp (2𝜋√−1𝑗 ⋅ 𝑘𝑁) 

 

for 𝑗 = 0,1, … ,𝑁 − 1,0 ≤ 𝑡 ≤ 𝑇. Since 𝑓𝑡(𝑥)𝑒2𝜋√−1𝑘𝑥 is a continuous function of 𝑥 for every 

fixed 𝑗 and 𝑡, taking the limit as 𝑁 → ∞, we obtain the limit of 𝜙𝑡𝑗 , 
 lim𝑁→∞ 𝜙𝑡𝑗 = lim𝑁→∞   1𝑁∑  𝑁−1

𝑘=0  𝑓𝑡 (𝑘𝑁) exp (2𝜋√−1𝑗 ⋅ 𝑘𝑁) = ∫  10  𝑓𝑡(𝑥)𝑒2𝜋√−1𝑗𝑥 d𝑥 = 𝜑𝑡𝑗 (2.19) 
 

for each fixed 𝑗 ∈ ℕ0 and 𝑡 ∈ [0, 𝑇], thanks to the identification in Proposition 6. 
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Proof of Proposition 2 

The first part of the convergence results (1.7) is obtained in a similar manner as in the proof 

of Proposition 1. Indeed, using (2.2) and 2.11, we rewrite the sum as a Riemann sum, and then 

we take the limit, as 𝑁 → ∞ 

 ∑  𝑁−1
𝑗=0  𝜙𝑡𝑗𝜙𝑡𝑁+𝑖−𝑗 = ∑  𝑁−1

𝑗=0   1𝑁∑  𝑁−1
𝑘=0   𝜙̂𝑡𝑘𝑒2𝜋√−1𝑘𝑗/𝑁 ⋅ 1𝑁∑  𝑁−1

ℓ=0   𝜙̂𝑡ℓ𝑒2𝜋√−1(𝑁+𝑖−𝑗)ℓ/𝑁 = 1𝑁2 ∑  𝑁−1
𝑘,ℓ=0  𝑓𝑡 (𝑘𝑁)𝑓𝑡 (ℓ𝑁)∑  𝑁−1

𝑗=0   𝑒2𝜋√−1(𝑘−ℓ)𝑗/𝑁 ⋅ 𝑒2𝜋√−1𝑖ℓ/𝑁 = 1𝑁∑  𝑁−1
𝑘=0   [𝑓𝑡 (𝑘𝑁)]2 𝑒2𝜋√−1𝑖ℓ/𝑁 → 𝑁→∞ ∫  10   (𝑓𝑡(𝑥))2𝑒2𝜋√−1𝑖𝑥 d𝑥 =∑  𝑖

𝑗=0   𝐜𝑗,𝑡𝐜𝑖−𝑗,𝑡 =∑  𝑖
𝑗=0  𝜑𝑡𝑗𝜑𝑡𝑖−𝑗

 

 

for every 𝑡 ∈ [0, 𝑇] and 𝑖 ≥ 0, because of (2.13) and (2.17). Here, 𝟏{𝑘=ℓ} is the indicator 

function which takes 1 on the set 𝑘 = ℓ and 0, otherwise, and 𝐜,𝑡 was defined in (2.15) . This 

proves the first part of the convergence results (1.7). 

 

For the second part of the convergence results, combining the first part (2.20) with the 

convergence of {𝜙𝑡𝑖} in Proposition 1, we obtain 

 ∑  𝑁−1
𝑗=𝑖+1  𝜙𝑡𝑗𝜙𝑡𝑁+𝑖−𝑗 = ∑  𝑁−1

𝑗=0  𝜙𝑡𝑗𝜙𝑡𝑁+𝑖−𝑗 −∑  𝑖
𝑗=0  𝜙𝑡𝑗𝜙𝑡𝑁+𝑖−𝑗 ⟶𝑁→∞∑ 𝑖

𝑗=0  𝜑𝑡𝑗𝜑𝑡𝑖−𝑗 −∑  𝑖
𝑗=0  𝜑𝑡𝑗𝜑𝑡𝑖−𝑗 = 0. (2.21) 

 

Therefore, we conclude the proof of Proposition 2 

 

Proof of Proposition 3 

We shall evaluate the difference 𝐷𝑁(𝑡): = sup0≤𝑖≤𝐾  sup0≤𝑠≤𝑡  |𝜙𝑠𝑖 − 𝜑𝑠𝑖|, 0 ≤ 𝑡 ≤ 𝑇. With the 

time-reversal 𝜙‾𝑡𝑖 : = 𝜙𝑇−𝑡𝑖 , 𝜑‾𝑡𝑖 : = 𝜑𝑇−𝑡𝑖 , 0 ≤ 𝑡 ≤ 𝑇, it follows from the Riccati equations that for 𝑖 = 0,1, … , 𝑁 − 2, 0 ≤ 𝑡 ≤ 𝑇 
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−𝜙‾̇𝑡𝑖 + 𝜑‾̇𝑡𝑖  = 𝜙̇𝑡𝑖 − 𝜑̇𝑡 = ∑  𝑁−1
𝑗=0  𝜙𝑡𝑗𝜙𝑡𝑁+𝑖−𝑗 −∑  𝑖

𝑗=0  𝜑𝑡𝑗𝜑𝑡𝑖−𝑗 = ∑  𝑁−1
𝑗=𝑖+1  𝜙𝑡𝑗𝜙𝑡𝑁+𝑖−𝑗 +∑  𝑖

𝑗=0   [(𝜙𝑡𝑗 − 𝜑𝑡𝑗)𝜙𝑡𝑖−𝑗 + 𝜑𝑡𝑗(𝜙𝑡𝑖−𝑗 − 𝜑𝑡𝑖−𝑗)] = ∑  𝑁−1
𝑗=𝑖+1  𝜙‾𝑡𝑗𝜙‾𝑡𝑁+𝑖−𝑗 +∑  𝑖

𝑗=0   [(𝜙‾𝑡𝑗 − 𝜑‾𝑡𝑗)𝜙‾𝑡𝑖−𝑗 + 𝜑‾𝑡𝑗(𝜙‾𝑡𝑖−𝑗 − 𝜑‾𝑡𝑖−𝑗)].
 

 

Since we have 𝜙‾0𝑖 = 𝜙𝑇𝑖 = 𝜑𝑇𝑖 = 𝜑‾0𝑖 , integrating both sides over [0, 𝑠](⊆ [0, 𝑇]), taking the 

absolute values and using the triangle inequality, we obtain 

 |𝜙‾𝑠𝑖 − 𝜑‾𝑠𝑖| ≤ ∫  𝑠0   | ∑  𝑁−1
𝑗=𝑖+1  𝜙‾𝑢𝑗𝜙‾𝑢𝑁+𝑖−𝑗| d𝑢 + ∫  𝑠0  ∑  𝑖

𝑗=0   [|𝜙‾𝑢𝑗 − 𝜑‾𝑢𝑗| ⋅ |𝜙‾𝑢𝑖−𝑗| + |𝜑‾𝑢𝑗| ⋅ |𝜙‾𝑢𝑖−𝑗 − 𝜑‾𝑢𝑖−𝑗|]d𝑢.(2.22) 
 

Then the difference 𝐷𝑁(𝑡) satisfies the inequality 

 𝐷𝑁(𝑡) = sup0≤𝑖≤𝐾   sup0≤𝑠≤𝑡  |𝜙𝑠𝑖 − 𝜑𝑠𝑖| = sup0≤𝑖≤𝐾   sup0≤𝑠≤𝑡  |𝜙‾𝑠𝑖 − 𝜑‾𝑠𝑖| +∫  𝑡0   sup0≤𝑖≤𝐾   sup0≤𝑢≤𝑠 max(|𝜙‾𝑢𝑖 |, |𝜑‾𝑢𝑖 |)𝐷𝑁(𝑠)d𝑠≤𝑐𝑁,1(𝑡) + ∫  𝑡0   𝑐𝑁,2(𝑠)𝐷𝑁(𝑠)d𝑠,
 

 

where we defined 𝑐𝑁,1(𝑡): = 𝑡 ⋅ sup0≤𝑖≤𝐾   sup𝑇−𝑡≤𝑢≤𝑇   | ∑  𝑁−1
𝑗=𝑖+1  𝜙𝑢𝑗𝜙𝑢𝑁+𝑖−𝑗| ≤ 𝑐𝑁,1(𝑇),𝑐𝑁,2(𝑡): = 𝐾 ⋅ sup0≤𝑖≤𝐾   sup𝑇−𝑡≤𝑢≤𝑇  max(|𝜙𝑢𝑖 |, |𝜑𝑢𝑖 |) ≤ 𝑐𝑁,2(𝑇) < ∞ 

 

for 0 ≤ 𝑡 ≤ 𝑇. Note that by (2.12) and (2.14), we have sup𝑁  𝑐𝑁,2(𝑇) < ∞. Applying the 

Gronwall inequality, we obtain 

 𝐷𝑁(𝑇) ≤ 𝑐𝑁,1(𝑇) exp (∫  𝑇0  𝑐𝑁,2(𝑡)d𝑡) . (2.24) 
 

Since the function 𝑓. (⋅) is bounded, we may refine the proof of Propositions 1-2. Particularly, 

the approximation of the Riemann sum in (2.20) is uniform over 𝑖 = 0,1, … , 𝐾 and over [0, 𝑇]. 
Thus, we obtain 
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Therefore, combining this with (2.24), we conclude the proof of Proposition 3 

 lim𝑁→∞  sup0≤𝑖≤𝐾   sup0≤𝑡≤𝑇  |𝜙𝑡𝑖 − 𝜑𝑡𝑖| = lim𝑁→∞ 𝐷𝑁(𝑇) ≤ lim𝑁→∞ 𝑐𝑁,1(𝑇)exp (∫  𝑇0   𝑐𝑁,2(𝑡)d𝑡) = 0. 

 

As a consequence of Proposition 3. we have the following corollary which resolves the open 

question left in [1]. 

 

Corollary 2.1 

The 𝑁-player Nash equilibrium of linear quadratic stochastic differential games on the 

directed chain periodic network in [1] converges to the infinitely many player Nash 

equilibrium of linear quadratic stochastic differential games on the infinite directed chain 

network in [1]. 
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Appendix 
Finite System Solved by Matrix Riccati Equation 

The above Riccati equation (1.5) can be written as a matrix Riccati equation 

 Φ̇(𝑡) = Φ(𝑡)Φ(𝑡) − E,  Φ(𝑇): = C (3.1) 
 

where Φ(⋅) is the 𝑁 × 𝑁 matrix-valued function Φ(𝑡): = (Φ𝑖,𝑗(𝑡))0≤𝑖,𝑗≤𝑁−1, 0 ≤ 𝑡 ≤ 𝑇 with Φ𝑖,𝑗(𝑡): = 𝜙𝑡𝑖−𝑗 for 0 ≤𝑖, 𝑗 ≤ 𝑁 − 1 with the condition 𝜙𝑖 = 𝜙𝑖+𝑁 for every 𝑖 ∈ ℤ and E is an 𝑁 × 𝑁 matrix given by 

 

Φ(𝑡): = (  
 𝜙𝑡0 𝜙𝑡𝑁−1 … 𝜙𝑡1𝜙𝑡1 𝜙𝑡0 ⋱ 𝜙𝑡2⋮ ⋱ ⋱ ⋱ ⋮⋮ ⋱ ⋱ ⋱ 𝜙𝑡𝑁−1𝜙𝑡𝑁−1 ⋯ 𝜙𝑡1 𝜙𝑡0 )  

 ,  𝐄: = ( 
 𝜀 0 ⋯ 0 −𝜀−𝜀 𝜀 ⋱ ⋱ 00 −𝜀 ⋱ ⋱ ⋮⋮ ⋱ ⋱ ⋱ 00 ⋯ 0 −𝜀 𝜀 ) 

 
 

 

and the 𝑁 × 𝑁 matrix 𝐂 determines the terminal condition 

 

𝐂:= ( 
 𝑐 0 ⋯ 0 −𝑐−𝑐 𝑐 ⋱ ⋱ 00 −𝑐 ⋱ ⋱ ⋮⋮ ⋱ ⋱ ⋱ 00 ⋯ 0 −𝑐 𝑐 ) 

 
 

 

Here, Φ̇(𝑡)  stands for the element wise differentiation of Φ(𝑡)  with respect to 𝑡 . 

Let us consider the time reversal parametrized by 𝜏: = 𝑇 − 𝑡 and Ψ(𝜏): = Φ(𝑇 − 𝜏),0 ≤ 𝑡 ≤ 𝑇, 0 ≤ 𝜏 ≤ 𝑇. Then 

the matrix-valued Riccati equation is 

 Ψ̇(𝜏) = −Ψ(𝜏)Ψ(𝜏) + E (3.2) 
 

for 0 ≤ 𝜏 ≤ 𝑇 with the initial value Ψ(0): = C. Its solution is given by 

 Ψ(𝜏) = (O21(𝜏) + O22(𝜏)C)(O11(𝜏) + O12(𝜏)C)−1 (3.3) 
 

where O𝑖𝑗(⋅),1 ≤ 𝑖, 𝑗 ≤ 2 are the 𝑁 × 𝑁 block matrix elements of O(⋅) defined by 

 M:= (0 IE 0) ,  O(𝜏): = (O11(𝜏) O12(𝜏)O21(𝜏) O22(𝜏)) : = exp (M𝜏) (3.4) 
 

for 0 ≤ 𝜏 ≤ 𝑇. Here 0 is 𝑁 × 𝑁 zero matrix and I is 𝑁 × 𝑁 identity matrix. Thus, we obtain the solution to the 

Riccati equation (1.5) as the first column of Φ(𝑡) = Ψ(𝑇 − 𝑡) for 0 ≤ 𝑡 ≤ 𝑇. 

 

The characteristic polynomial of the 2𝑁 × 2𝑁 matrix M in (3.4), in terms of 𝜆 ∈ ℂ, is simply given by 

 det (𝜆I − M) = (𝜆2 − 𝜀)𝑁 − (−𝜀)𝑁 (3.5) 
and hence the eigenvalues are 

 𝜆 = ±√𝜀 ⋅ (1 − exp (√−1 ⋅ 2𝜋𝑘𝑁 )) ;  𝑘 = 0,1, … ,𝑁 − 1 

 

and 𝜆 = 0 has multiplicity of 2. Thus, the size of the eigenvalues is bounded by √2𝜀. For example, in the case of 𝑁 = 4, the eight eigenvalues are 
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{0,0, ±√(1 + √−1)𝜀,±√(1 − √−1)𝜀,±√2𝜀} 
 

The direct numerical calculation of (3.3) is not stable for a large 𝜏, because of multiple eigenvalues. It is often 

suggested (e.g., Vaughan [8]) to calculate iteratively 

 Ψ((𝑘 + 1)Δ𝜏) = (O21(Δ𝜏) + O22(Δ𝜏)Ψ(𝑘Δ𝜏))(O11(Δ𝜏) + O12(Δ𝜏)Ψ(𝑘Δ))−1;  𝑘 = 0,1,2, … 

 

with Ψ(0) = C, where Δ𝜏 is set to be small. 

 

Generating Function for Infinite Riccati Equation 

For the infinite system 1.3 let us recall the generating function 𝑆𝑡(𝑧):= ∑𝑘=0∞  𝑧𝑘𝜑𝑡𝑘  for 𝜑𝑘 , 𝑘 = 0,1,2, … satisfies 

the scaler Riccati equation 

 dd𝑡 𝑆𝑡(𝑧) = [𝑆𝑡(𝑧)]2 − 𝜀(1 − 𝑧),  0 ≤ 𝑡 ≤ 𝑇,  𝑆𝑇(𝑧) = 𝑐(1 − 𝑧) 
 

for |𝑧| < 1. As in Proposition 4, the solution to this Riccati equation is given by 

 𝑆𝑡(𝑧) = √𝜀(1 − 𝑧) ⋅ 𝔞̅+𝔨̅𝑡+−𝔞̅−𝔨̅𝑡−𝔞̅+𝔨̅𝑡++𝔞̅−𝔨̅𝑡−, 

 

where 𝔞̅±: = √𝜀(1 − 𝑧) ± 𝑐(1 − 𝑧),  𝔢̅𝑡±: = exp (±√𝜀(1 − 𝑧)(𝑇 − 𝑡)) 
 

for 0 ≤ 𝑡 ≤ 𝑇, |𝑧| < 1. 

 


