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ABSTRACT
We analyze both finite and infinite systems of Riccati equations derived from
stochastic differential games on infinite networks. We discuss a connection to the
Catalan numbers and the convergence of the Catalan functions by Fourier
transforms.
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INTRODUCTION
The Catalan numbers C,,n > 0 appear as a sequence of natural numbers defined by
C.o 1 <2n)_ (2n)! -0 11
Y n+1\n _n!(n+1)!'n_ (11)

For example, €, =1,C; =1,C, =2 and so on. This increasing sequence satisfies the
recurrence relations

n
CTL = Cocn_l + Clcn_z + -4+ C—n_lco = z Cj_lcn_j, nz= 1 (12)
j=1

and grows like 4"n=3/2 /\/m, as n — oo. The Catalan numbers appear in many combinatorial
counting problems, for example, counting of non-crossing partitions, the number of the Dyck
words, the number of standard Young tableaux (see the monographs [5], [6], [7] by Stanley).
In this paper we shall discuss the Catalan numbers and more generally Catalan functions in
the context of the stochastic differential games on infinite network introduced in the recent
papers (Feng, Fouque and Ichiba [1] and [2], see also the referenced papers therein for the
related mean-field games, some topics of stochastic differential games and their applications),
where the Catalan functions are defined by the solution to the system of the infinite Riccati
equations. Note that the system of the infinite Riccati equations determines the Nash
equilibrium of the stochastic differential game for infinitely many players. Then we prove the
convergence of the solution of the finite Riccati equation corresponding to a stochastic
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differential game for finitely many players (say N players) on a periodic network, as N — oo,
to the solution of a system of infinite Riccati equations.

Following Feng, Fouque and Ichiba [1], let us recall the following Riccati equation for the
countably many continuous functions ¢;,i € N, 0 < t < T, given by the system

o d j .

ot = 22 Z wloi — i i €N, (13)
where ¢! are given by some real constants =g eli=—¢g et =0fori+#0,1, and the
terminal conditions are @2:=c,@r:= —c,@t:=0 for i # 0,1. Here, “ ' " denotes the

differentiation with respect to t, and the superscript i is not the power of function ¢ but the
index i € Ny. Given e > 0 and ¢ > 0, the solution {(pé,i ENO<LSt< T} of (1.3) exists and is
unique (Lemma 1 of [1]). We call such sequence of functions the Catalan functions.

The solution ¢},0 <t < T,i € N, depends on € and T. Particularly, we take e = 1 = &% = —¢?,

and consider the stationary solution by letting the time derivative zero, that is, ¢ = 0,i €
Ny, t = 0. Then the stationary solution {(p‘}iEN of (1.3) satisfies
0

i—1
z Pl =2
j=1

Thus, the relation between the stationary solution {(pi}i>1 of (1.3) and the Catalan numbers
{Ci}ien, in (1.1) is

N[ =

1 .
' =109 =-3 and ¢'=—

i 2Ci—l .
¢ = ;=1 (1.4)

Let us also recall the Riccati equation for N continuous functions ¢{,i = 0,1,..,N —1,0 <t <
T, given by the following system

iz = <Pt d¢t Z ¢t N+i-j _ el t >0 (1.5)

of ordinary differential equations fori = 0,1,...,N —1and 0 < t < T with the given terminal
values ¢p%:=c =1 —¢p+ > 0,¢p-.:=0,i = 2,...,N — 1 and real constants €% = ¢ =: —&' > 0 and
ghi=0fori =2,..,N — 1. We impose the periodic condition ¢! = ¢‘*" for everyi € Z. The
solution {d)i,i =01...N-10<t< T} of (1.5) exists uniquely and depends on N.

The finite system (1.5) leads us to the Nash equilibrium for the N-player, linear-quadratic
stochastic differential game on the finite directed chain periodic network, while the infinite
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system (1.3) leads us to the Nash equilibrium for the infinitely many player, linear-quadratic
stochastic differential game on the infinite directed chain network. In [1] and [2] the question
of the convergence of the Nash equilibrium for the N player game to the Nash equilibrium for
the infinitely many player game was left as an open question in the periodic case considered
here. In this paper we solve this open question positively.

The main results of this paper are the following propositions of convergence.

Proposition 1
For any fixed j € Ny and t € [0, T], the solution qbt] of the finite system (1.5) converges to ¢ of
the infinite system (1.3), as N — oo. That is,

lim ¢f = ¢f; j €No,t €[0,T] (1.6)

Proposition 2
For any fixed i € Ny and t € [0, T], we have the convergence results

N-1 i N-1

: J g N+i—j _ j o i-j : j g N+i=j _

1\1,1330 b; b, —z ¢; ¢, *, and 1\111_1330 z (OMON =0 (1.7)
j=0 Jj=0 j=i+1

Proposition 3
For any K € N, T > 0, the solution {d)é,i =01,...N-10<t< T} of (1.5) and the solution
{phi € N,0 <t < T} of (1.3) satisfy

lim sup sup |¢>£ - <p§| =0 (1.8)
N-og<ickostsT

That is, the first K elements of the solution of (1.5) converges uniformly to the first K
elements of the solution of (1.3),as N — oo.

These results are proved in the following sections by Fourier transforms. The key
observations are the representations (2.11) and (2.13) of the solutions {¢/} and {/} of the
Riccati equations (1.5) and (1.3) in terms of the solution {f;(x)} in (2.8) of an auxiliary Riccati
equation (2.5) below. After this manuscript was prepared, the recent papers [3] and [4] by
Miana and Romero were brought up to our attention. In these papers a slightly general
quadratic equation for Catalan generating functions, its spectrum and resolvent operator are
studied from the point of view of functional analysis. In contrast to [3] and [4], the results
here on the convergence of the solutions are more concrete, because of the specific form (1.3)
of quadratic equation and because of the Fourier transforms. The generalization of the results
in the current paper will be a theme of another paper.

FOURIER TRANSFORMS AND RICCATI EQUATIONS
Let us define the discrete Fourier transform {(ﬁ{f, k=01,..,N— 1}, 0 <t < T of the solution
{(,bé,i =0,1,..,N — 1,0 <t < T} of the Riccati equation (1.5) by
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; 2nv—1jk
&/ exp(—T]>; k=01,.,N-1,0<t<T 2.1)

y
~
Il
-
i M?
o =

Here, the superscript k for ¢. is not the power but the index.v—1 is the imaginary unit, the
complex square root of -1. Inverting the discrete Fourier transform, we obtain

N-
1 N 2nVv—=1jk\ .
t:NZ#‘ p (2 =01 @2

and in particular,

I/\
I/\
ﬂ

(2.3)

N—
_12
_N

k=0

Since the discrete Fourier transform of the convolution of two sequences is the product of
their discrete Fourier transforms, it follows from the Riccati equation (1.5) that ¢¥ in (2.1)
satisfies the one-dimensional Riccati equation

_ (&c)z _ (1 _ e—Zn\/—_lk/N)g; 0<t<T (2.4)

with  the terminal condition ¢k = (1 — e‘Z”‘/__”‘/N)c for k=01,.. N—1
In a similar manner, replacing k/N by xin (2.4) , let us consider the following, one-

dimensional, auxiliary Riccati equation for C-valued function {f;(x),0<t<T,x €[0,1]}
defined by

fi(0) = (i) —(1—e ") 0 <t < T, x € [0,1] (2.5)
with the terminal condition fr(x) = (1 — e"Z"‘/"_lx)c, x € [0,1].
Since both Riccati equations (2.4) and (2.5) are scalar-valued ordinary differential equations,
we solve them explicitly by the standard method of solving the general Riccati equation of the
form
Ve=ar+ by +c(y) 0<t<T (2.6)

with some (smooth) functions a., b., c. That is, solving a second-order ordinary differential
equation

(bt p )ut +aiciur =0 (2.7)
t

for {u.}, we obtain the solution y, = —u,/(c;u,),0 <t < T for the general Riccati equation.
The solutions to our Riccati equations (2.4) and (2.5) are given by the following proposition.
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Proposition 4
The solution of the auxiliary Riccati equation (2.5) is given by

at ()ef () — a” (N)er (x)

_ V=10(x) .
i) = et S T e e )

(2.8)

where a®(x) and ¢/ (x) are C-valued functions defined by
at(x): = Ve £ cr(x)eV™10®, of (x): = exp(+Ver(x)eV"10(T —1)); 0< t < T (2.9)
With

sin(2mx)

1
() = [2(1 = cosm)], B(0)s = zaretan (20 oo

) € [0,7) (2.10)

for fixed x € [0,1].

Proof. For each fixed x € [0,1], we shall solve the Riccati equation (2.5) for {f;(x)}, as the
special case of the general Riccati equation (2.6) with a,: = —(1 - e‘Z"\/__lx)s, by:=0,¢c; =
1,0 <t <T. By the transformation from y. in 2.6 tou. in 2.7), it amounts to solving the
second-order differential equation

i+ (1—e 2™ ey, =0, 0<t < T.

With the definitions (2.10) of x(x) and 6(x), the square roots of—(l - e‘Z”‘/‘_lx) is given by
+vV—=Tr(x)eV=19™) . Hence, the solution w. to the second-order differential equation is given by

U (%) = ¢ (x) - eV"T@ETDE |y o VT T o < p <

for some ¢;(x),i = 1,2 which are determined by the terminal condition f7(x) = —u(x)/
ur(x), and f;(x) = —u.(x)/us(x) is given by (2.8) for x € [0,1],t € [0, T].

Proposition 5
With {f;(x)} defined in (2.8), the solution of the Riccati equation (2.4) and the solution of the
Riccati equation (1.5) are represented by

3= (5). and ok = %i o () e 2y 1) 2.11)
j=1

fork =0,1,...,N — 1,0 < t < T.Thus, there exists a constant

Cri = SUPg<e<T SUPxefo,1] [ (X)| € (0, ),
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such that

sup sup sup |¢>,{‘| <sup sup sup |¢A>{f| <cr (2.12)
N>2 0sksN—10st<T N>2 0<k<N—-10<t<T

Proof. For each fixed k = 0,1, ..., N — 1, we solve the Riccati equation (2.4) for the discrete
Fourier transform ¢¥ and obtain ¢¥ = f,(k/N) in a similar procedure, replacing k/N by x in
the proof of Proposition 4. Substituting it to the inverse discrete Fourier transform (2.2), we
obtain (2.11). The uniform bound (2.12) is obtained directly by the representations (2.11).

In order to prove Proposition 1, we derive the following representation of the infinite Riccati
solution {¢¥} in terms of the auxiliary Riccati solution {f;(x)} in (2.8).

Proposition 6

With the solution {f;(x)}in (2.8) of the auxiliary Riccati equation (2.5), the solution {(pt]} of
the infinite Riccati equation (1.3) is represented as

. 1 .
ol = j fr()e?™ X dx; jENy,0<t<T (2.13)
0

Consequently, we have the upper bound

sup sup |(th| <c; = sup sup |f;(x)| € (0,0) (2.14)
JEN O<t<T 0st<Tx€[0,1]

Proof. Note that the family {6‘2”‘/‘_11"‘,] € NO} of continuous functions on [0,1] forms an

orthonormal basis of the space L?([0,1]), and the right hand of (2.13) is the j-th Fourier
coefficient of f; with respect to this orthonormal basis, that is,

o)

1
i) = ) e = [ f0)e T dy xe0ALEE T (215)

j=0 0
To show (2.13), we shall verify that the Fourier coefficients {cj,t} satisfy the infinite Riccati

equation (1.3) and we apply its uniqueness of the solution. Since {f;(x)} satisfies the auxiliary
Riccati equation (2.5), by the direct calculation we obtain

) (et d = | e ax
— f ((ft(x))z _ (1 _ e—Zn\/—_lx)g)QZm/—_ljx dx
0

1
= f (ft(x))zezm/‘_ljx dx — &/, j € Ny, t € [0,T]
0
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where {sj} was defined as € = ¢ = —&' > 0, and € = 0,i > 2. For the first term of the right
hand, it follows from (2.15) and the convolution of the Fourier series that

o)

1 1 o0
.f (ft(x))ZeZH\/—_ljx dx = f (Z C[,te_zm/—_l{’x Z ck‘te—ZH\/—_lkx) e2mV=1jx qy
0 0

£=0 k=0

= z]: (fl ft(x)ezm/__lkx dx) (fl ft(x)ezm/__l(j_k)x dx>
k=0 0 0

Substituting this expression in (2.16), and because of (2.15), we obtain the infinite Riccati
equation

d (1 .
o= g | FiCoem T ax
j
= Z Ck,th_k,t_gj; ] € NO'O <t< T

k=0

equivalent to (1.3). Also, the terminal condition satisfies
cry = Jy frO0e?™ T dx = [ o1 = 2T 2T g = o,

where {cj} was defined as c® = ¢ = —c! > 0and ¢! = 0,i > 2. Thus, by the uniqueness of the

solution to the infinite Riccati equation (1.3), we identify ¢;; = ®l,j €Ny, t €[0,T] as in
(2.13).

Proof of Proposition 1
Now we shall prove Proposition 1. Substituting (2.11) into the inverse discrete Fourier
transform 2.2, we obtain the Riemann sum

1% 2nV=1jk\ 1%~ /k &
¢t N 4 ¢ exp< N ) N L ft N exp | 2mvV—1j N

forj=0,1,..,N—10<t<T. Since ft(x)ez’“/‘_lkx is a continuous function of x for every
fixed j and ¢, taking the limit as N — oo, we obtain the limit of ¢/,

ft (%) exp (Zﬂ\/—_lj - %) = fl fo(x)e2™V=1x 4y = ¢/ (2.19)
0

for each fixed j € Ny and t € [0, T], thanks to the identification in Proposition 6.
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Proof of Proposition 2

The first part of the convergence results (1.7) is obtained in a similar manner as in the proof
of Proposition 1. Indeed, using (2.2) and 2.11, we rewrite the sum as a Riemann sum, and then
we take the limit,as N —» o

N-1 Mot Nt e
Z Pl = Nz e2mV=1kj/N .NZ BLe2mV=IW+i=)/N
J=0 Jj=0 k=0 £=0
N-1 N—-1
- Z f( )ft( )Z e2mV=1(k=0)j/N . p2mV=1it/N
2
N k =0 j=0

1% k\1? .
- -~ 2nvV—1i¢/N
. [ft (N)] €

N:)OO_[O (ft(x))ZeZm/—_lix dx = Z C] tCi— —Jj,t 2 QDL{QOé J

j= j=0

O

for everyt € [0,T] and i = 0, because of (2.13) and (2.17). Here, 1j—p is the indicator
function which takes 1 on the set k = £ and 0, otherwise, and ¢, was defined in (2.15) . This
proves the first part of the convergence results (1.7).

For the second part of the convergence results, combining the first part (2.20) with the
convergence of {d)é} in Proposition 1, we obtain

i
z ¢t N+i—j _ Z ¢t N+i—j Z d’t N+i— ]N_)OOZ ‘Pt‘p _z (pg(pé—J:
j=o

j=i+1 j=0
(2.21)

Therefore, we conclude the proof of Proposition 2

Proof of Proposition 3

We shall evaluate the difference Dy (t): = Supg<i<k SUPoss<t |PE — @i, 0 <t < T. With the
time-reversal ¢p}: = ¢L_,, @i:= @%_,,0 < t < T, it follows from the Riccati equations that for
i=01..,N=-20<t<T
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i
_¢t+(Pt ¢t @ = Z ¢t N+ Z(Png_j

Z Blg T + Z (6! - oD)ot + 0l(#7 - 9!7)]

] =i+1

Z ¢t¢;v+”+2[(¢t oo +al(@7 - o))

j=i+1

Since we have ¢} = ¢} = L = @}, integrating both sides over [0,s](S [0,T]), taking the
absolute values and using the triangle inequality, we obtain

3 -ail< [ Tl [ Z 16— bl - 16271+ 1l 187 = ot

j=i+1

(2.22)

Then the difference Dy (t) satisfies the inequality

Dy(t) = sup sup |¢pi — @i| = sup sup | — @i

0<i<KO0ssst 0<i<KO0sss<t

t
+f sup sup max(|@L|, |@k|)Dy(s)ds
0 O=<isKO=suss
t

<cn,1 (1) +f cn2(s)Dy(s)ds,
0

where we defined

cy1(t):=t- sup sup z ¢u¢ﬁ'+l J < cy1(T),

0<i<KT-t<susT | .
Jj=i+1

cn2():=K- sup sup max(|pl|,|eh]) < ey (T) < oo
0<isKT—-t<u<T
for0 <t <T. Note that by (2.12) and (2.14), we have supycy,(T) < o. Applying the
Gronwall inequality, we obtain

T

Dy(T) < cy1(T) exp <f cN,Z(t)dt>. (2.24)
0

Since the function f. (+) is bounded, we may refine the proof of Propositions 1-2. Particularly,
the approximation of the Riemann sum in (2.20) is uniform over i = 0,1, ..., K and over [0, T].
Thus, we obtain
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Alllm cy1(T) = 1limT- sup sup |Zj=i+1 buPu | = 0.
500 N—-oo 0<i<KO0sus<T

Therefore, combining this with (2.24), we conclude the proof of Proposition 3

lim sup sup |¢,§ — <p1‘5| = Al’i_r)r(}ODN(T) < Al]i_r)rolocN,l(T)exp (fOT CN 2 (t)dt) = 0.

N—og<i<g0<t<T

As a consequence of Proposition 3. we have the following corollary which resolves the open
question left in [1].

Corollary 2.1
The N-player Nash equilibrium of linear quadratic stochastic differential games on the
directed chain periodic network in [1] converges to the infinitely many player Nash
equilibrium of linear quadratic stochastic differential games on the infinite directed chain
network in [1].
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Appendix
Finite System Solved by Matrix Riccati Equation
The above Riccati equation (1.5) can be written as a matrix Riccati equation

d(t) = ()D(t) — E, ¢(T):=C (3.1)

where ®(-) is the N X N matrix-valued function ®(t): = (CDL-J- (t))0<ij<N_1, 0<t<Twith®,;(t):= d)ti_j for0 <
i,j < N — 1 with the condition ¢! = ¢p'*" for every i € Zand E is an N X N matrix given by

N T ¢ e 0 - 0 -—¢
o P - ¢ — & w0
P(t):= : : ,E=]1 0 —e o :
: L N A |
éV—l ¢t1 ¢? 0 e 0 —g €
and the N X N matrix C determines the terminal condition
c o - 0 -c
—c Cc 0

\ RN 0/
o - 0 —-c ¢
Here, &(t) stands for the element wise differentiation of &(t) with respect to t
Let us consider the time reversal parametrized by 7: =T —tand Y(7): = ®(T —1),0<t <T,0 <t <T. Then
the matrix-valued Riccati equation is
Y1) = -¥Y(@¥(r) +E (3.2)

for 0 < v < T with the initial value W(0): = C. Its solution is given by

(1) = (021(7) + 023 (1)C) (044 (7) + 01, (1)C) " (33)

where 0;;(+),1 < i,j < 2 are the N X N block matrix elements of O(-) defined by

= (g o) 0= (0 0rey) = 00 @

for0 <t <T. Here 0is N X N zero matrix and I is N X N identity matrix. Thus, we obtain the solution to the
Riccati equation (1.5) as the first column of ®(t) = W(T —t)for0 <t < T.

The characteristic polynomial of the 2N X 2N matrix M in (3.4), in terms of A € C, is simply given by

det(Al = M) = (12 — &)Y — (—e)V (3.5)
and hence the eigenvalues are

2tk
z=ije-<1—exp(V—1-%)>; k=01,.,N-1

and A = 0 has multiplicity of 2. Thus, the size of the eigenvalues is bounded by v/2¢. For example, in the case of
N = 4, the eight eigenvalues are
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{0,0, i\/(l +V=1)g, J_r\/(1 —V=1)e, +V2¢}

The direct numerical calculation of (3.3) is not stable for a large 7, because of multiple eigenvalues. It is often

suggested (e.g.,, Vaughan [8]) to calculate iteratively
W((k + 1DAT) = (0,1 (AT) + 0,5, (AT)W(KAT)) (041 (AT) + 01, (AW (kA)) ™Y k =0,1,2, ...
with W(0) = C, where At is set to be small.

Generating Function for Infinite Riccati Equation

For the infinite system 1.3 let us recall the generating function S,(z): = Y,z @¥k for ¢*, k = 0,1,2, ... satisfies

the scaler Riccati equation
d
aSt(z) =[S;(2)]?-e(1-2),0<t<T, Sp(2) =c(1-2)
for |z| < 1. As in Proposition 4, the solution to this Riccati equation is given by
S,(2) = Je(—z) - ket
t Tt +a T

where

at:= Je(1-2)+c(1 —2), &:= exp(+/e(1 = 2)(T — 1))

for0<t<T,J|z| <1
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