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Phonon thermal transport between two in-plane, two-dimensional
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The phonon thermal conductance of subnanometric vacuum gaps between two in-plane nanoribbons of two-
dimensional materials (graphene and silicene) is analyzed using the atomistic Green’s function method and
by employing the Tersoff and Lennard-Jones potentials for describing the interatomic interactions. It is found
that the phonon conductance decays exponentially with the size of the gap. Three exponential regimes have
been identified. In the regime where the Lennard-Jones (L-J) potential is driven by the repulsive interatomic
forces, caused by the overlap of electronic orbits, there is a sharp exponential decay in conductance as the gap
increases (e−10.0d for graphene). When both the repulsive and the attractive (van der Waals) interatomic forces
contribute to the L-J potential, the decay rate of the conductance significantly reduces to e−2.0d for graphene
and e−2.5d for silicene. In the regime where attractive van der Waals forces dominate the L-J potential, phonon
conductance has the slowest exponential decay as e−1.3d for both silicene and graphene. It is also found that the
contribution from the optical phonons to the conductance is non-negligible only for very small gaps between
graphene nanoribbons (d < 1.6 Å). The phonon conductance of the gap is shown to vary with the width of the
nanoribbon very modestly, such that the thermal conductivity of the gap linearly increases with the nanoribbon
widths. The results of this study are of significance for a fundamental understanding of heat transfer in the
extreme near-field regime and for predicting the effect of interfaces and defects on heat transfer.

DOI: 10.1103/PhysRevB.109.235411

I. INTRODUCTION

Heat transfer between two media separated by a vacuum
gap is said to be in the extreme near-field regime when the
gap size is smaller than a few nanometers. Heat transfer in
this regime is of significance both from a fundamental point of
view and for applications in heat-assisted magnetic recording
[1,2], scattering tunneling microscopy [3], and interfacial heat
transfer, to name only a few. It is now known that heat transfer
in the extreme near-field regime can simultaneously occur
by phonons, photons, and electrons (in the case of metallic
media) [4–25]. Recent studies comparing the contributions
from these three energy carriers to the total thermal con-
ductance in the extreme near-field regime have found that,
in the absence of a bias voltage, phonons are the dominant
heat transfer mechanism at subnanometric separation gaps
[4–6,10,14,15,18,20–22]. So far, phonon heat transfer through
a vacuum gap has been studied using the nonequilibrium
Green’s function method [6,8,12,18,20–22], nonequilibrium
molecular dynamics simulations [19,23,25], elastic contin-
uum model [4,9,10,13], scattering boundary method [7],
lattice dynamics [5,15], and fluctuational electrodynamics
[14,16,24]. These studies have provided significant insight
into phonon heat transfer through an extremely small vacuum
gap between dielectric [6–8,10,15,23,25], semiconducting
[4,5,20], and metallic [9,11,13,14,16–19,21,22,24] media. It
has been found that the contribution of phonons to the heat
flux cannot be neglected, and energy transfer by phonons
through the gap significantly enhances thermal conductance

[4–6,9,14,19–24]. Nonequilibrium molecular dynamic simu-
lations have shown that phonon conductance exponentially
decreases with increasing the separation gap between two
planar platinum slabs [19]. The atomistic Green’s function
method used with the density functional theory simulations
have shown a gap-dependent conductance as d−11.9±1.2 for
two silicon planar media [20]. Using the nonequilibrium
Green’s function method and molecular dynamics simula-
tions, it has been revealed that anharmonicity only has a
moderate effect on the phonon conductance of a gap between
two metallic media [22], while phonon conductance for a
gap between dielectric media is significantly affected by the
anharmonic effects [23]. The effect of a bias voltage, which is
applied in the experimental studies on vacuum gaps between
metallic media [3,21,26–29], on the conductance of the gap
has also been studied. A recent study has found that the
low bias voltage applied in experimental studies has a weak
effect on the phonon heat transfer [22]. Some studies have
shown that the main carrier responsible for transferring heat
through the gap depends on the applied bias voltage, and the
contribution from the electrons to the heat flux is dominant
for the voltages in the same order of those applied in the ex-
perimental studies [18,24]. The thermal conductance through
a gap mediated by the phonons induced by the Casimir force
has also been analyzed, and it is shown that the contribution
of these phonons to thermal transport is non-negligible when
the gap size is smaller than the lattice constant [7].

While phonon conductance through extremely small vac-
uum gaps has been studied for dielectric, semiconducting, and
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FIG. 1. (a) A schematic of the system under study. Two in-plane, semi-infinite nanoribbons of graphene or silicene are separated by a
vacuum gap of size d . The nanoribbons have a width W , and they are at temperature T . The phonon conductance of the gap is to be calculated
using the atomistic Green’s function (AGF) method. In the AGF method, the system under study is divided into a left contact, a device, and a
right contact region. (b) The lattice structure, lattice vectors, and a side view of the graphene and silicene nanoribbons.

metallic media, no study has been dedicated to phonon con-
ductance of a gap separating two-dimensional materials. The
phonon thermal transport within single (e.g., Ref. [30]) and
multiple (e.g., Ref. [31]) layers of two-dimensional materials
has also been studied, but no study is done on phonon conduc-
tance across a vacuum gap separating two two-dimensional
materials. In this paper, we study phonon heat transfer be-
tween two in-plane, semi-infinite nanoribbons of graphene
and silicene separated by a subnanometric vacuum gap. Due
to superior thermal properties, graphene has found several
applications in thermal management [30], energy storage
[32], and electronics [33,34]. The supreme electronic prop-
erties of silicene combined with its low thermal conductivity
make this two-dimensional material a promising candidate for
thermoelectric devices [35]. Additionally, silicene can be ex-
ploited for applications in nanoelectronics, particularly since
it can more easily be integrated in silicon-based electronics
compared to graphene [36–38]. Understanding heat transfer
through a subnanometric gap between these two-dimensional
materials is important not only from a fundamental point of
view, but also for predicting thermal resistance in the presence
of cracks and nanovoids in these materials [39]. We estimate
the phonon conductance of the gap using the atomistic Green’s
function method and by utilizing the Tersoff and Lennard-
Jones potentials for modeling the interatomic interactions in
the nanoribbons and across the gap, respectively. We analyze
how the conductance of the gap varies with the size of the gap
as well as the temperature and width of the nanoribbons. We

demonstrate exponential laws for phonon conductance versus
gap size and compare the contributions from the acoustic and
optical phonons to the thermal conductance.

The rest of this paper is organized as follows. The problem
under study is explained in Sec. II, and the methods employed
for solving this problem are presented in Sec. III. The results
are provided in Sec. IV, and the concluding remarks are sum-
marized in Sec. V.

II. DESCRIPTION OF THE PROBLEM

The problem under study is schematically shown in
Fig. 1(a). Two in-plane, semi-infinite nanoribbons of a two-
dimensional material are separated by a vacuum gap of size
d . The nanoribbons are one atom thick with thicknesses, t , of
3.35 and 4.65 Å for graphene and silicene, respectively. The
width of the nanoribbons is W , and their temperature is fixed
at T . Both graphene and silicene have a hexagonal honeycomb
structure. The lattice structure and vectors for graphene and
silicene are shown in Fig. 1(b). While graphene is completely
flat, silicene has a buckled structure with a buckling of 0.45 Å
[see Fig. 1(b)]. The phonon conductance of the gap between
the two nanoribbons is to be calculated.

III. METHODS

The phonon conductance of the vacuum gap, σ , due to
a small temperature difference, δT , across the gap can be
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written as

σ = 1

2π

∫ ωc

0
σωdω, (1)

where ω is the angular frequency of phonons, ωc is the cutoff
frequency of phonons, and σω is the spectral conductance
found using the Landauer formula as [40]

σω = h̄ω

A

∂ f (ω,T )

∂T
�(ω). (2)

In Eq. (2), A is the cross-sectional area of the gap per-
pendicular to the transport direction, h̄ is the reduced Planck
constant, f = (eh̄ω/kBT − 1)

−1
is the Bose-Einstein distri-

bution function of phonons with kB being the Boltzmann
constant, and � is the transmission function of phonons across
the gap. The transmission function of phonons is found using a
three-dimensional atomistic Green’s function (AGF) method.
In this method, the system is divided into three regions,
namely, the left contact (or left lead), device, and right contact
(or right lead) regions as schematically shown in Fig. 1(a).
The device region contains the vacuum gap as well as a few
layers of carbon or silicon atoms at each side. Since the device
region is very small, a ballistic phonon transport can be as-
sumed. The transmission function can be found using Caroli’s
formula as [41]

�(ω) = Tr(�LG
†
d�RGd ), (3)

where Tr and the superscript † indicate the trace and
Hermitian operators, respectively, and Gd is the subset of the
overall Green’s function of the system, which is associated
with the device region. The device subset of the Green’s
function, Gd , can be found as [42]

Gd = [ω2I − Hd − 	]
−1

, (4)

where I is the unit dyad and Hd is the device subset of the
dynamical matrix of the system, H , given by [40,42]

Hi j = 1√
MiMj

⎧⎪⎨
⎪⎩

∂2U
∂ui∂u j

, i �= j

− ∑
i �= j

∂2U
∂ui∂u j

, i = j.
(5)

In Eq. (5), U is the potential energy function of the sys-
tem, ui and u j are the spatial displacements associated with
degrees of freedom i and j, respectively, and Mi and Mj are
the atomic masses corresponding to degrees of freedom i and
j, respectively. In Eq. (4), 	 = 	L + 	R, where 	L and 	R

are the self-energy matrices of the left and right contacts,
respectively, and they are found as [40]

	L = τLgLτ
†
L , (6a)

	R = τRgRτ
†
R, (6b)

where τL and τR are the subsets of the dynamical matrix
connecting the left and right contacts to the device region,
respectively, and gL and gR are the uncoupled Green’s function
of the left and right contacts, respectively, given by

gL = [(ω2I + i0+) − HL], (7a)

gR = [(ω2I + i0+) − HR]. (7b)

In Eqs. (7a) and (7b), HL (HR) is the subset of the dy-
namical matrix associated with the left (right) contact, and
0+ = δ0ω

2 with δ0 being an infinitesimally small positive
number accounting for the phonon exchange between the con-
tacts and the surroundings [42]. In our simulations, δ0 = 10−4

is assumed as reducing δ0 below 10−4 does not affect the
simulation results. The terms �L and �R in Eq. (3) are found
using the self-energy matrices of the left and right contacts as
�ρ=L,R = i(	ρ − 	†

ρ ).
The Tersoff potential is used for modeling the interatomic

interactions in graphene [43] and silicene [44] nanoribbons,
while the Lennard-Jones potential [45,46] is used for model-
ing the interactions between atoms separated by the vacuum
gap. Since the device region required for convergence of the
AGF simulations is small, the Lennard-Jones potential is com-
puted between all the atoms located in this region.

To verify the accuracy of our implementation of the AGF
method, we have compared our results obtained for phonon
conductance or transmission function of three different sys-
tems with those published in literature. Figure 2(a) compares
the results of the current study for the conductance of a one-
dimensional chain of silicon atoms multiplied by the surface
area of the chain, σA, with those obtained by Zhang et al.
[47] at various temperatures. The strength of the Si-Si bonds
is assumed to be 32 N/m. Figure 2(b) shows the spectral
thermal conductance of an infinitely long graphene nanorib-
bon of width 10 nm at a temperature of T = 300 K. The
Tersoff potential has been used for modeling the interatomic
forces in graphene [43]. The results from the current study
have been compared with the work by Li et al. [48]. Finally,
the transmission function obtained for a vacuum gap between
one-dimensional atomic chains of silicon and platinum under
a bias voltage of 0.8 V is compared with those by Jarzembski
et al. [21] in Fig. 2(c). The Si-Si and Pt-Pt bond strengths
are assumed as 6.16 and 6.31 N/m, respectively, while the
Lennard-Jones potential and the Coulomb force have been
used for modeling the van der Waals and electrostatic forces
through the vacuum gap, respectively [21]. The agreement
of the results of the current study with the previous work
verifies the accuracy of the implemented AGF method for
studying the thermal conductance of a vacuum gap between
two nanoribbons of two-dimensional materials.

IV. RESULTS AND DISCUSSION

Figure 3 shows the phonon conductance, σ , of a gap
between two graphene nanoribbons with a width of W =
10.08 nm versus temperature for three gap sizes of d = 0,
0.2, and 1 Å. The phonon conductance for a gap of size
d = 0 corresponds to the thermal conductance of a single
nanoribbon, which is 4.3 GW/(m2 K) at room temperature and
is in agreement with previous studies [48–50]. The gap size,
d , is defined as the displacement of one of the nanoribbons by
distance d relative to the case where the two nanoribbons are
connected forming a continuous nanoribbon (see the inset of
Fig. 3). It is seen that thermal conductance of the gap drops
by more than one order of magnitude when a gap as small as
0.2 Å exists between the two nanoribbons. The conductance
continues to decrease with increasing the gap to 1 Å. This
reduction in thermal conductance with increasing d can be
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FIG. 2. Verification of the implemented atomistic Green’s function method for modeling the phonon conductance of a vacuum gap between
two semi-infinite media. (a) The phonon conductance, σ , multiplied by the surface area, A, for a one-dimensional chain of silicon atoms. The
results obtained in the present study are compared with those from Zhang et al. [47]. (b) The spectral conductance, σω, of a graphene nanoribbon
with a width of W = 10 nm and a temperature of T = 300 K obtained in the present study in comparison to that from Li et al. [48]. (c) The
transmission function of phonons through a vacuum gap of size d between a one-dimensional chain of silicon atoms and a one-dimensional
chain of platinum atoms. The results of the current study are compared with those from Jarzembski et al. [21].

explained by considering that the phonon transport across the
gap is mediated by the interatomic interactions across the gap,
which are modeled using the Lennard-Jones potential. The
Lennard-Jones potential between atoms i and j across the gap,
Vi j , is inversely proportional to the interatomic distance, ri j , as
Vi j = 4ε[( x

ri j
)12 − ( x

ri j
)6], where ε is the potential depth and

x is the distance at which the potential energy between the
two atoms is zero. As the distance between atoms increases
with increasing the gap size, the interatomic potential rapidly
decreases resulting in a sharp drop in thermal conductivity
[see Fig. 5(b) for Vi j between two closest carbon atoms lo-
cated across the gap from each other]. It is also seen that
thermal conductance of the vacuum gap initially increases
with increasing the temperature and then eventually plateaus.
For ballistic phonon transmission across a subnanometric gap,
the transmission function, �, predicted using the atomistic
Green’s function is independent of the temperature, such that

thermal conductance determined using Eqs. (1) and (2) has
similar temperature dependence as the specific heat of the
material, c [c ∝ ∫∞

0 h̄ωg(ω) ∂ f (ω,T )
∂T dω, where g is the density

of states]. Initially, the number of phonons with a given fre-
quency ω (which has a temperature dependence as ∂ f (ω,T )

∂T )
sharply increases with increasing the temperature, and then it
plateaus at the Debye temperature (see the inset of Fig. 3 for
h̄ω∂ f (ω,T )

∂T versus temperature). Figure 4(a) shows the spectral
distribution of phonon conductance at three temperatures of
200, 250, and 300 K for a vacuum gap of size 0.2 Å between
graphene nanoribbons. The dispersion relation of phonons
for a graphene sheet, obtained using the Tersoff interatomic
potential, is shown in Fig. 4(b) [30]. As will be discussed later,
the phonon conductance of the nanoribbons with W > 10 nm
varies very slightly with increasing the width. As such, the
dispersion relation of a graphene sheet can be used for the
nanoribbons with an acceptable accuracy. The �-M region of
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FIG. 3. Phonon conductance, σ , of a vacuum gap of size d be-
tween two graphene nanoribbons with a width of W = 10.08 nm
versus temperature, T . The inset of the figure shows a schematic
depicting the vacuum gap between the two nanoribbons as well as
the mean energy of phonons, h̄ω ∂ f (ω,T )

∂T , versus temperature, T , for
three frequencies of ω

2π
= 10, 30, and 50 THz.

the dispersion relation is relevant to this study [see the inset of
Fig. 4(b)]. Figure 4(b) shows that the phonon conductance at
low frequencies [ω/(2π ) < 24THz] is solely driven by acous-
tic phonons. Conversely, the optical phonons mediate phonon
conductance at large frequencies [ω/(2π ) >∼ 39THz). The
peak spectral conductance occurs around a frequency of
∼29 THz, where the phonon conductance is contributed by
the longitudinal acoustic (LA) and out-of-plane optical (ZO)
phonons.

Figures 4(a) and 4(b) demonstrate that the acoustic
phonons have the dominant contribution to phonon con-
ductance for a vacuum gap of d = 0.2 Å at the three
considered temperatures. It is also seen from Fig. 4(a) that the
contribution of high-frequency optical phonons (LO and TO
phonons) to the conductance of the gap increases from 2.3%
to 6.8% and 12.2% when the temperature increases from 200
K to 250 and 300 K, respectively. This observation can be
explained by considering the fact that the enhancement of the
mean energy of phonons, given by h̄ω∂ f (ω,T )

∂T , with increasing
the temperature is more significant at larger frequencies where
the LO and TO phonons are spectrally located [see the inset
of Fig. 4(a)].

The total thermal conductance of a gap between two
graphene nanoribbons with a width of W = 10.08 nm at a
temperature of T = 300 K is shown versus the size of the gap
d in Fig. 5(a). Three different regimes for phonon conductance
can be realized in Fig. 5(a). In these regimes, the phonon
conductance decays exponentially with the gap size. When
d < 1.62 Å, thermal conductance rapidly reduces with the
gap size as σ ∝ e−10.0d . For 1.62 Å < d < 6 Å, the phonon
conductance continues to decrease with increasing the gap
size. However, the reduction rate reduces significantly, and

the phonon conductance follows an exponential decay with
the gap size as σ ∝ e−2.0d . When d > 6 Å, the reduction rate
of the phonon conductance further reduces as σ ∝ e−1.3d .
The existence of three different regimes for phonon conduc-
tance versus gap size can be explained by considering the
Lennard-Jones potential, which is used for modeling the inter-
atomic interactions across the vacuum gap. The absolute value
of the Lennard-Jones potential between two closest atoms
across the gap, |Vi j |, versus the vacuum gap distance, d , is
shown in Fig. 5(b). As shown in the inset of Fig. 5(b), the
distance between the two closest atoms, r, is related to the
vacuum gap size, d , the C-C bond length (lC−C = 1.42 Å),
and the C-C bond angle (αC−C = 120 ◦) as r2 = l2

C−C + d2 −
2lC−Cd cos(150◦). Figure 5(b) shows that when d < 1.62 Å,
the repulsive forces in the Lennard-Jones potential (which are
due to the overlap of electronic orbitals), completely dom-
inates the total force between the two atoms resulting in a
gap dependence of σ ∝ e−10.0d for the conductance. As the
distance between the two atoms increases over d = 1.62 Å,
the repulsive forces continuously decrease while the attractive
forces become greater. When the gap size is in the range
of 1.62 Å < d < 6 Å, both the attractive and repulsive forces
have significant contributions to the Lennard-Jones potential.
In this regime, as the net force between the atoms reduces, the
reduction rate of the conductance with the gap size decreases
to σ ∝ e−2.0d . As the gap size further increases to above 6 Å,
the attractive van der Waals force dominates the interatomic
interactions, and the conductance reduces exponentially with
distance as σ ∝ e−1.3d . The conductance also closely follows
a gap-size dependence of σ ∝ d−10.4 when d > 6 Å, which
is in agreement with a previous study on the conductance
of a vacuum gap with a size greater than 5 Å between two
silicon plates performed using the density functional theory
for modeling the interatomic potentials [20]. It should be also
mentioned that the same three exponential regimes can be
found for nanoribbons with smaller widths of W = 5.40 and
1.99 nm.

The spectrum of the phonon conductance of the vacuum
gap between graphene nanoribbons is strongly dependent on
the size of the gap. The spectral phonon conductance is plotted
in Figs. 6(a)–6(c) for three gap sizes of d = 0.2, 2.5, and
10 Å, for which the conductance is driven by the repulsive,
repulsive-attractive, and attractive forces, respectively. The
graphene nanoribbons have a width of W = 10.08 nm and a
temperature of T = 300 K. Both acoustic and optical phonons
contribute to phonon conductance at the smallest gap size of
d = 0.2 Å, where the repulsive forces have a dominant contri-
bution on phonon conductance. However, the low-frequency
acoustic phonons become the dominant contributor to the
conductance at larger gap sizes of d = 2.5 and 10 Å, for
which the contribution from attractive forces to conductance
is non-negligible or dominant. The low-frequency acoustic
phonons have a longer wavelength, and thus the probability of
their transmission through a large vacuum gap is greater than
that of high-frequency acoustic phonons with a shorter wave-
length. For the same reason, the contribution of LO and TO
phonons, which are active at large frequencies and thus have
a small wavelength, diminishes when the gap size increases to
d = 2.5 and 10 Å.
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FIG. 4. (a) Spectral phonon conductance, σω, of a vacuum gap of size d = 0.2 Å between two graphene nanoribbons with a width of
W = 10.08 nm at three temperatures of T = 200, 250, and 300 K. The inset of the figure shows the mean energy of phonons, h̄ω ∂ f (ω,T )

∂T , versus
frequency, ω

2π
, for three temperatures of T = 200, 250, and 300 K. (b) The dispersion relation of phonons for a graphene sheet as obtained

using the Tersoff interatomic potential [30]. LA, TA, ZA, LO, TO, and ZO stand for longitudinal acoustic, transverse acoustic, out-of-plane
acoustic, longitudinal optical, transverse optical, and out-of-plane optical phonons, respectively.

The phonon conductance of a gap of size d = 0.2 Å
between two graphene nanoribbons at a temperature of
T = 300 K is shown versus the nanoribbon width W in
Fig. 7. The phonon conductance of the gap initially slightly
decreases from ∼0.488 GW m−2 K−1 for W = 1 nm to
∼0.431 GW m−2 K−1 forW = 10 nm (by 11.7%). Increasing
the nanoribbon width beyondW = 10 nm does not change the
phonon conductance of the gap appreciably. Since the phonon
conductance remains almost constant as W increases, the
phonon conductance through the total surface area of the gap

(i.e., σA, where A = Wt and t = 0.335 nm is the thickness of
the graphene nanoribbon) linearly increases with W (see the
inset of Fig. 7).

Lastly, we study the phonon conductance of a vacuum
gap between two silicene nanoribbons. The total conductance
for silicene nanoribbons with a width, W , of 10.56 nm at
a temperature of T = 300 K is shown versus the gap size
in Fig. 8(a). Similar to the case of graphene nanoribbons,
the gap conductance between silicene nanoribbons exponen-
tially decays with increasing the gap size. The Lennard-Jones

FIG. 5. (a) The phonon conductance of a vacuum gap between two graphene nanoribbons with a width ofW = 10.08 nm and a temperature
of T = 300 K versus the size of the gap d . (b) The Lennard-Jones potential function, Vi j , between two closest carbon atoms across the vacuum
gap versus the gap size, d .

235411-6



PHONON THERMAL TRANSPORT BETWEEN TWO … PHYSICAL REVIEW B 109, 235411 (2024)

FIG. 6. The spectral phonon conductance, σω, of a vacuum gap with size d between two graphene nanoribbons with a width of W =
10.08 nm and a temperature of T = 300 K. (a) d = 0.2 Å, (b) d = 2.5 Å, and (c) d = 10 Å.

potential between the two nearest silicon atoms across the
gap versus the gap size is shown in Fig. 8(b). Since the

FIG. 7. The phonon conductance of a vacuum gap of size d =
0.2 Å between two graphene nanoribbons with a width of W and a
temperature of T = 300 K. The inset shows the phonon conductance
multiplied by the surface area of the gap, σA.

bond length of the silicon atoms in silicene (2.15 Å) is much
greater than the carbon atoms in graphene (1.42 Å), the re-
pulsive forces between the silicon atoms do not dominate
the Lennard-Jones potential even for a gap size as small as
d = 0.2 Å. Indeed, the attractive term in the Lennard-Jones
potential is 1.7 times greater than the repulsive term when
d = 0.2 Å. When d < 2.5 Å, the Lennard-Jones potential has
contributions from both repulsive and attractive forces. In this
regime, the conductance of the gap reduces with the gap size
as e−2.5d , which is approximately the same as that found for
graphene nanoribbons in the regime where both attractive
and repulsive forces drive the gap conductance (σ ∝ e−2.0d ).
When d > 2.5 Å, the attractive forces dominate the Lennard-
Jones potential between silicon atoms. In this regime, the gap
conductance follows an exponential decay as e−1.3d , which is
the same as the one found for graphene in the attractive-force
regime. Additionally, when d > 5 Å, σ for silicene nanorib-
bons follows a power law as σ ∝ d−9.6, which is consistent
with that found for a gap between graphene nanoribbons and
the one reported in the literature [20].

Figure 8(a) also compares the phonon conductance of the
gap between two silicene nanoribbons with that between two
graphene nanoribbons with approximately the same width
(W = 10.56 and 10.08 nm for silicene and graphene nanorib-
bons, respectively). A temperature of T = 300 K is assumed
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FIG. 8. (a) The total phonon conductance of a gap between two silicene nanoribbons with a width ofW = 10.56 nm versus the one between
two graphene nanoribbons with a width of W = 10.08 nm as a function of the gap size d . A temperature of T = 300 K is assumed. (b) The
Lennard-Jones potential function, Vi j , between two closest silicon atoms across the vacuum gap between silicene nanoribbons versus the gap
size, d . (c), (d) The spectral phonon conductance of vacuum gaps with sizes of (c) d = 0.2 Å and (d) d = 5 Å between two silicene nanoribbons
with a width of W = 10.56 nm and a temperature of T = 300 K. The dispersion relation of a silicene sheet [51] is shown in the inset of
Pabel (c).

for the nanoribbons. When d = 0.2 Å, the phonon conduc-
tance of the gap between silicene nanoribbons is more than
two orders of magnitude smaller than that between graphene
nanoribbons. As d increases, the gap conductance for both
graphene and silicene nanoribbons decreases exponentially.
However, the rate of reduction for the gap between graphene
nanoribbons (e−10.0d ) is much greater than silicene nanorib-
bons (e−2.5d ), such that the gap conductance for silicene
overtakes that for graphene when d > 0.8 Å. The phonon con-
ductance of the gap depends on the Lennard-Jones potential
between atoms across the gap as well as the Tersoff potential
between atoms in each nanoribbon. The Tersoff potential be-
tween carbon atoms in graphene is significantly greater than
that between silicon atoms in silicene. The Lennard-Jones
potential, however, depends on the size of the vacuum gap
as shown in Fig. 8(b). When d = 0.2 Å, the Lennard-Jones
potential for graphene is significantly greater than for sil-
icene, and so is the gap conductance. As the gap increases,
the Lennard-Jones potential between carbon atoms decreases

very rapidly, and it falls below the one for silicon atoms at a
gap size of d = 0.5 Å. Since the Lennard-Jones potential for
graphene decreases more rapidly with increasing d than for
silicene, σ for graphene nanoribbons falls below σ for silicene
nanoribbons when d exceeds 0.8 Å.

The spectral conductance of a gap between two silicene
nanoribbons at a temperature of T = 300 K is shown in
Figs. 8(c) and 8(d) for gap sizes of d = 0.2 and 5 Å, re-
spectively. The conductance of the gap between silicene
nanoribbons is driven by both repulsive and attractive forces
when d = 0.2 Å, while the attractive forces have the dom-
inant contribution to the conductance when d = 5 Å. The
dispersion relation of phonons for a silicene sheet [51] is
also shown in the inset of Fig. 8(c). Figures 8(b) and 8(c)
show that, similar to the case of graphene nanoribbons, the
phonon conductance in the repulsive-attractive and attrac-
tive regimes is dominated by the contribution from acoustic
phonons, which are located at frequencies smaller than
4 THz.
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V. CONCLUSIONS

The phonon conductance in the extreme near-field regime
was theoretically studied for a vacuum gap between two
semi-infinite, in-plane nanoribbons of two-dimensional ma-
terials (graphene and silicene). The conductance of the gap
was modeled using the atomistic Green’s function approach
and by employing the Tersoff and Lennard-Jones interatomic
potentials. It was found that even a small gap of size d =
0.2 Å between the two nanoribbons can significantly impede
phonon transfer and causes a more than one order of mag-
nitude drop in phonon conductance compared to the case of
connected nanoribbons (d = 0). It was shown that for both
silicene and graphene, the phonon conductance follows ex-
ponential decays with increasing the size of the gap. The
conductance of the gap between graphene nanoribbons de-
creases with increasing the gap size, d , as e−10.0d , e−2.0d , and
e−1.3d in the regimes where the repulsive forces, the com-
bined repulsive and attractive forces, and the attractive forces
drive the interatomic potential across the gap, respectively.
Due to a large bond length for silicon atoms, the repulsive
forces between silicon atoms across the gap are weak, and the
conductance of the gap between silicene nanoribbons follows

mild exponential decay with the gap size as e−2.5d and e−1.3d

when d > 2.5 Å (repulsive-attractive regime) and d > 2.5 Å
(attractive regime), respectively. The phonon conductance of
the gap is mostly mediated by acoustic phonons, except for
the case of small gap sizes between graphene nanoribbons,
where the repulsive forces are dominant. In this case, there
is a non-negligible contribution from optical phonons to the
total conductance. It was also found that the contribution from
low-frequency acoustic phonons to the conductance of the
gap between graphene nanoribbons dominates at larger gap
sizes as these phonons have a larger wavelength compared
to high-frequency acoustic phonons. Lastly, it was found that
the phonon conductance of the gap does not vary strongly
with the width of the nanoribbons, such that the conductance
for the total cross-sectional area of the gap increases linearly
with the width.
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