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Abstract—Software documentation supports a broad set of
software maintenance tasks; however, creating and maintaining
high-quality, multi-level software documentation can be incredi-
bly time-consuming and therefore many code bases suffer from
a lack of adequate documentation. We address this problem
through presenting HGEN, a fully automated pipeline that
leverages LLMs to transform source code through a series of six
stages into a well-organized hierarchy of formatted documents.
We evaluate HGEN both quantitatively and qualitatively. First,
we use it to generate documentation for three diverse projects,
and engage key developers in comparing the quality of the
generated documentation against their own previously produced
manually-crafted documentation. We then pilot HGEN in nine
different industrial projects using diverse datasets provided by
each project. We collect feedback from project stakeholders,
and analyze it using an inductive approach to identify recurring
themes. Results show that HGEN produces artifact hierarchies
similar in quality to manually constructed documentation, with
much higher coverage of the core concepts than the baseline
approach. Stakeholder feedback highlights HGEN’s commercial
impact potential as a tool for accelerating code comprehension
and maintenance tasks. Results and associated supplemental
materials can be found at https://zenodo.org/records/11403244.
Index Terms—Requirements, Hierarchy, Documentation, LLM

I. INTRODUCTION

Software documentation supports a broad set of software
maintenance tasks such as impact analysis, change analysis,
requirements validation, safety assessment, and new developer
onboarding [1], [2], [3], [4], [5], yet, creating and main-
taining consistent multi-level software documentation and its
associated trace links is incredibly time-consuming [6], [7],
[8]. The process of documenting, defining, and maintaining
documentation that describes the implemented system is often
viewed as overly burdensome by developers and stakeholders.
This perception leads to the documentation process being
ignored, delayed, or inadequately sustained [9], [10], [11],
especially in startups and small companies where speed is
often prioritized over comprehensive requirements engineering
processes [12], [13]. Consequently, despite the many benefits
of a systematic software documentation process, many code
bases suffer from a lack of adequate documentation [14].

While there have been advancements in automating certain
types of software documentation, such as API specifications
or the continuous deployment of embedded software doc-
umentation ([15], [16]), efforts to automate the generation

of comprehensive, multi-layered artifacts describing system
features remain underexplored. With the advancements of large
language models (LLMs) and their generative capabilities,
there is now a path towards generating multi-layered, just-
in-time software documentation; however, the challenge is in
ensuring that the documentation correctly represents the under-
lying code base, is readable, understandable, well formatted,
and properly organized so that it is useful to practitioners
maintaining software systems [17], [18]. In pursuit of this
goal, we present HGEN, an automated pipeline that generates
multi-layer hierarchy of documentation, comprised of artifacts
such as low-level design descriptions, as well as sub-system
and system-level requirements formatted according to the
norms of the currently adopted life-cycle process. HGEN
not only constructs these artifacts but also generates trace
links that connect them into a meaningful hierarchy, providing
well organized documentation, designed to effectively support
diverse software maintenance activities. We provide examples
to the generated documentation for two open source datasets1.

This paper first describes the HGEN process, providing a
simple running example taken from the open-source gaming
domain. We then report results from two studies evaluating
HGEN in which we first assessed the quality of the HGEN
generated hierarchy for three different projects, and then
used it to generate documentation for nine industrial pilot
projects using our partners’ project data. In the first study, we
recruited a key developer from each of the three projects to
compare HGEN’s generated documentation against their own
project’s manual documentation and against an off-the-shelf
LLM baseline. For each project, we systematically evaluated
the quality of the documentation by assessing the individual
quality of each generated artifact, the overall coverage of
concepts, and the relationships between layers. In the second
study, we used HGEN to generate documentation for source
code provided by our partners and then performed a think-

1 Example of generated documentation:

Dronology: app.safa.ai/demo?version=a05d072b-163c-4ba5-a248-0683d1e2dda5&
to=/project

JOC: app.safa.ai/demo?version=99965515-cbc1-43e9-b834-4815f22bd2e6&
to=/project.

https://zenodo.org/records/11403244
app.safa.ai/demo?version=a05d072b-163c-4ba5-a248-0683d1e2dda5&to=/project
app.safa.ai/demo?version=a05d072b-163c-4ba5-a248-0683d1e2dda5&to=/project
app.safa.ai/demo?version=99965515-cbc1-43e9-b834-4815f22bd2e6&to=/project
app.safa.ai/demo?version=99965515-cbc1-43e9-b834-4815f22bd2e6&to=/project


Fig. 1. The HGEN Process utilizes a pipeline to produce each layer of the documentation hierarchy. The lowest layer accepts source code as input and
generates a natural language summary (Step 0). Steps 1-5 form a pipeline, which is used to generate each subsequent layer, thereby incrementally constructing
a hierarchy of progressively higher-level artifacts formatted according to the norms of the current software development process. For each step in the pipeline,
we show the underlying AI models used to support the transformation of lower-level to higher-level documentation.

aloud study in which we collected their feedback and analyzed
it using an inductive approach.

The remainder of this paper is laid out as follows. Section
II presents our process for generating the software artifact
hierarchy. Section III describes the design on our experiment
leading Section IV to present our quantitative evaluation of the
HGEN process and Section V to present the qualitative feed-
back. Section VI presents related work on generating software
documentation, code summarization, and code understanding,
while Section VII discuss threats to the validity of our study.
Finally, Section VIII summarizes the overall benefits of our
approach and describes future work.

II. HGEN PROCESS

The HGEN process represents a pipeline for generating
hierarchies of software artifacts. As depicted in Figure 1, it
includes five stages where Stage 1 accepts a set of lower-level
artifacts as inputs, Stages 2-4 perform internal processing, and
Stage 5 produces the higher-level artifacts that constitute a new
layer of documentation. This new layer is then passed as inputs
into Stage 1 to restart the process for creating the next layer.
The stages for generating a single layer of documentation are
therefore as follows:
Stage 1. Accept a set of lower-level natural language artifacts

and perform clustering on them to identify related
features and/or functionality. In the special case of the
lowest-level, where the inputs are source code artifacts,
perform an additional pre-processing stage (Stage 0) to
generate a natural language summarization of the code.
This summary serves as a proxy for the source code
throughout the remaining steps. Upon the conclusion
of this stage, a set of clusters of lower-level artifacts
is generated as output.

Stage 2. For each cluster identified in Stage 1, generate a
natural language description using the targeted artifact
format (e.g., user story, feature description etc). This
serves as the body of the new layer of documentation.

Stage 3. Refine the content of any artifacts that contain overlap-
ping information to improve clarity, conciseness, and
ensure each artifact focuses distinctly on one specific
feature or functionality.

Stage 4. Connect these refined artifacts to the lower-level input
artifacts by dynamically generating trace links.

Stage 5. Leverage the overall perspective provided by the rela-
tionships established in Stage 4 to detect and remedy
redundant artifacts, and to produce the final set of
output artifacts for the current layer.

Stage 6. If a higher-layer of artifacts is desired, pass these out-
put artifacts as inputs to the next layer. Continue this
process until all targeted layers have been generated.

The end result is a hierarchy of software artifacts, referred to
as an artifact tree. Given the transformation that occurs during
the generation of a single layer, we made numerous design de-
cisions concerning the stages of the pipeline, the tasks assigned
to each stage, and the algorithmic solutions for accomplishing
each task. Each stage, and the overall sequence of stages, was
designed as the result of trial-and-error in which we evaluated
various techniques and their combinations. We followed a
robust process based on the Design Science methodology, in
which each design iteration included problem investigation,
design and validation, and implementation and evaluation [19].
In earlier iterations, validation was performed internally by
the researchers, while in later iterations it was performed by
external Software Practitioners. The final outcomes of their
evaluation are reported in Section III of this paper.

To support our description of the HGEN process, we’ve
chosen a small, straightforward code repository from a
CS101 project as a running example. We refer to this as
HERO throughout the remainder of this paper. HERO is
not associated with the paper’s authors and is openly acces-
sible at https://github.com/gbaman/QUB-CSC1011-Module-
Hero-Game. Due to space constraints, we do not detail the
intermediate stages of the design that led to the finalized
process, and focus instead on describing the end result in
the following sections. Overall, our process is designed to
be model-agnostic and therefore we do not present a detailed
empirical comparison of results based on different LLM model
types in this paper, and discuss this decision further in Section
VII. We now outline each stage in our HGEN pipeline.



Hero.java: This code provides the framework for a user to
take control of a hero character within a digital game. Upon
initialization, the hero is placed in a starting location on a virtual
map. Lists of crimes for the hero to address and playable characters
they can select are automatically generated. The user is then able
to view the hero’s character details and current status. As the user
navigates the hero through the game world and engages in activities
to resolve crimes, their total action value increases. Periodically
checking this action value triggers different game states - once a
threshold is reached, the user achieves victory and the gameplay
loop restarts from the main menu. The user can also adjust their
hero’s action directly to progress the story at will. Throughout, the
code integrates the hero character with the overall game system to
immerse the user in an interactive experience where they guide the
actions and challenges of their virtual protagonist.

Fig. 2. As part of our running example, HGEN summarizes the HERO source
code in the preprocessing Stage 0.

A. Stage 0: Code Summarization

The lowest level of the documentation hierarchy starts with
source-code, and therefore a pre-processing step is applied to
summarize the code into natural language. This step serves
two key purposes. First, it allows us to transform source
code into natural language comparable to the input artifacts
of all other documentation layers. Second, the summary has
higher information density and less redundancy than raw code.
This enables a larger amount of information to be conveyed
within a single context window of the LLM, thereby enhancing
its capacity to comprehend a broader scope of the system.
Summarization tasks are best performed using generative
models; therefore, we opted to use Anthropic’s Claude 2.0
model, which returns similar results to OpenAI’s GPT-4 [20]
and has a large context window of 100-k tokens [21]. We
prompted Claude to summarize the source code by (i) initially
outlining the functionality provided to the user by the code,
and (ii) then creating a polished summary that explains how
the code supports the described user behavior. The resulting
summarized output becomes the starting input for HGEN,
representing the initial tier in the documentation hierarchy. The
summary dynamically generated by HGEN for Hero.java in
the HERO code-base is depicted in Figure 2.

B. Stage 1: Form clusters from Lower-level Artifacts

We adopted a multi-technique clustering approach with the
following internal steps, labeled C1-C8.
C1. Preprocessing: We start by converting the natural language

artifacts into embeddings using the Sentence-BERT trans-
former. This choice is driven by the model’s capacity to
encode entire sentences rather than relying on word-level
encoding, as well as its consistent performance across
a diverse range of tasks. As a result, Sentence-BERT is
used for all transformations to embeddings throughout the
remainder of this paper.

C2. Multi-Technique Clustering: Early experimentation
showed various unsupervised clustering algorithms each
had their own unique strengths and limitations. We there-
fore ultimately adopted a consensus-based approach and
included five different techniques to achieve diversity of

Fig. 3. In Stage 1, HGEN uses multiple clustering algorithms to produce and
initial set of clusters from the source code summaries, and then performs a
series of filtering, ranking, and cleansing steps on the clusters.

cluster size, outlier detection, and geometric considera-
tions [22]. These techniques were OPTICS [23], Spectral
[24], Agglomerative [25], Affinity Propagation [26] and
K-means [27]. In this step, each technique was used to
individually cluster the vector representations of the input
artifacts, producing a diverse set of candidate clusters.

C3. Filter by Size The set of generated clusters were highly
diverse but included overlapping and redundant clusters.
We therefore applied the following filtering steps, starting
by eliminating two types of clusters:
- Singletons: Temporarily set aside singleton clusters con-

taining only one artifact.
- Large Clusters: Discard large clusters containing five or

more artifacts, as these tend to inhibit the LLM’s ability
to identify and extract finer details. While the decision to
remove large clusters limits the potential for constructing
higher-level abstractions across larger artifact groups, we
partially address this later in Step 3, by allowing clusters
to re-form.

C4. Cluster Scoring: We assign an importance value to each
remaining cluster as follows:

importance = (α · log(s) + h) · v (1)



where:
• h is the cohesion score for the cluster,
• v is the voting score from the five clustering techniques,
• s represents the cluster size,
• α is the weight applied to the cluster size.
The voting score (v) is computed by counting the number
of times the exact cluster, with the same input artifacts,
appears in the candidate pool.
Cohesion (c) is computed by averaging the cosine similar-
ity of each artifact’s embedding to all its neighbors within
a cluster as follows:

cohesion =
2

N(N − 1)

N∑
i=1

N∑
j=1,j ̸=i

cos(θij) (2)

Finally, the size (s) metric is used to compensate for the
tendency for smaller clusters to have higher cohesion. It
is computed as the log of the number of input artifacts,
weighted by a small constant (alpha). The use of log-
arithm moderates the impact of larger clusters, ensuring
that their contribution to the importance score grows at a
decreasing rate and prevents them from disproportionately
dominating the score due to their size alone.

C5. Cluster Ranking: Clusters are then ranked in descending
order by importance score. Fig. 3, depicts several clusters
generated from the code base arranged by their respective
importance scores. While clusters 1 and 2 have lower
cohesion scores than cluster 3, their overall score places
them higher in the ranking.

C6. Cluster Cleansing: Artifact outliers that deviate by 1.5
standard deviations or more from the average similarity
to their neighbors are removed from their clusters to
eliminate dissimilar artifacts from the cluster. For example,
Crime.java is removed from cluster 5 in Fig.3.

C7. Cluster Selection: Next, we iterate through the clus-
ters in order of their importance to determine whether
to select them for the final set. At each iteration, we
consider the cluster possessing the next highest impor-
tance score (termed the FocusCluster), alongside the
set of clusters already chosen for inclusion (referred to
as the InclusionSet). Given the initial prevalence of
overlapping or redundant clusters in our consensus-based
approach, we first assess whether the FocusCluster con-
tains artifacts not already present in the InclusionSet.
After removing any artifacts shared with clusters in the
InclusionSet, we admit the FocusCluster only if it
maintains a size of two or more artifacts and has a
cohesion score greater than or equal to the top 75% of
clusters. This process is exemplified in Cluster 4 from Fig.
3. This cluster contains four artifacts already included in
Cluster 3, so each of these artifacts are removed, leaving
the cluster with only one unique artifact. As a result, it
fails to meet the size threshold and is therefore excluded
from the final cluster set.

C8. Handle Orphans Finally, we check for artifacts not as-
signed to a cluster. For each orphaned artifact, we identify

its most similar cluster by computing the average cosine
similarity between the orphan and all members of each
cluster. If the similarity is close to the cluster’s overall
cohesion score (within 0.1), it indicates that the orphan
can be added without reducing the overall cohesion of
the cluster. As a result, the orphan is incorporated into
that cluster. Finally, any unplaced orphans are retained as
singleton clusters.

C. Stage 2: Generate Documentation Content

Prior studies have shown the importance of well-formatted
documentation [17]; therefore this stage focuses on formatting
the generated artifacts according to the stakeholder’s needs.
For example, a user might wish to generate an agile documen-
tation hierarchy composed of source code (lowest layer), user
stories (middle layer), and epics (top layer); or they might wish
to generate a traditional hierarchy composed of source code,
design specifications, and multiple layers of requirements. In
this stage we prompt the LLM to format the output of the
desired artifacts by specifying (i) the output artifact type, (ii)
the desired format of the artifact, and (iii) the targeted number
of document artifacts to be generated from the current cluster.

The artifact type is specified by the user, while the format
can either be predefined by the user or generated by the LLM
in a separate context window. In this study, we used the latter
approach to increase the degree of automation. Given that most
LLM’s pre-training data contains examples of diverse common
artifact types, we can simply prompt Claude to generate a
standardized format for the artifact type. For instance, Claude
generated the following user story template: “As a [type of
user], I want to [action or goal] so that [reason or benefit]”.

Finally, we define the number of high-level artifacts
(n_targets) to be generated for each cluster by considering
two factors. First, cohesion measures the extent to which an
artifact focuses on a single topic. Seemingly, clusters with
low cohesion typically encapsulate more topics and require
more higher-level elements. We therefore compute “concept
diversity” as the inverse of the cohesion score (cf Eq. 2),
normalized so that the maximum “concept diversity’ for the
project equals 1. Second, the amount of information within a
cluster’s artifacts plays a key role in determining the number
of higher-level artifacts required. We estimate the information
density of the cluster by comparing the size of its artifacts to
the average size of all artifacts of the same type. Finally, we
calculate the number of targeted artifacts (i.e., n_targets) as
the product of “concept diversity” and “information density”.
To promote the emergence of a tree-like documentation struc-
ture, we impose a constraint that n_targets must be greater
than 50% and less than 100% of the current cluster’s artifact
count.

Returning to the HERO example, we determine that Cluster
5 (see Figure 3) requires three higher level artifacts. The four
code files have a total of 730 LOC (lines of code), while the
average file in this layer has 109 LOC. We estimate infor-
mation density to be approximately 6.7 (730/109), reflecting
the complex game logic contained within these core character-



related classes. Normalized concept diversity is computed as
0.56, leading to n_targets being three artifacts i.e., by
computing and truncating 0.56× 6.7. Figure 4 shows the three
subsequent user stories generated for Cluster 5 in our example.

[US1] Customize Character Name and Image: As a player, I
want to be able to customize my character’s name and image so
that I can personalize my gameplay experience.

[US2] View Character Inventory and Money: As a player, I
want to be able to view my character’s inventory and money so
that I can make informed decisions when interacting with the game
world.

[US3] Progress Character Through Story: As a player, I want to
be able to commit crimes and take heroic actions that will progress
my character through the game’s story and scenarios.

Fig. 4. User stories generated from HERO source code during Stage 2. All
3 user stories were produced from the same cluster of source artifacts (see
Cluster 5 from Figure 3).

D. Stage 3: Refine Content & Clusters

Because automatic clustering may not always match human
judgment, some level of conceptual overlap across clusters
is inevitable, resulting in duplicated content in the generated
artifacts. Stage 3 addresses this issue by reducing duplicated
content and refining the artifact clusters through three steps,
labeled D1-D3.
D1. Duplicate Identification: To identify potential duplicates,

we cluster the generated artifacts using the algorithm
described in Section II-B. This creates groups of similar
artifacts that are currently spread across different clus-
ters. The most cohesive clusters are those most likely
to contain duplicated content and thus are identified as
duplicate clusters. For example, in HERO, US1 (Fig. 4)
is a generated artifact which is detected as similar to other
character-related user stories from different clusters (US4,
US5) (see Figure 5).

[US1] Customize Character Name and Image

[US4] Customize Character Identity: As a player who wants
an immersive role playing experience, I want to be able to
customize a character with a name and choose to be a hero or
villain so that I can define my virtual identity in the world

[US5] Character Entity Templates for Game Testing: As a game
developer, I want the system to allow defining character entities via
reusable templates and validated testing so that playable characters
can be reliably generated with consistent expected behaviors for
use in game scenarios.

Fig. 5. Generated user stories for HERO that were clustered together in Stage
3. Although each user story originated from a different cluster in Stage 2,
they were clustered together in Stage 3 due to their shared focus on character
customizations.

D2. Duplicate Content Identification: In this step, our aim is
to determine what source artifacts led to the overlapping
content so they can be re-clustered together. We identify

the source artifacts contributing to the overlap by selecting
those with the highest semantic similarity to the parent.
Then, a new cluster is formed containing the selected
source artifacts for each generated artifact in the duplicate
cluster.

D3. Re-generation: At this stage, each duplicate cluster has
identified the source artifacts containing the overlapping
content. Now, our goal is to give the LLM a chance to
regenerate new artifacts based on this focused context.
Given the set of source artifacts, we repeat Stage 2 in order
to generate a fresh set of artifacts centered around the core
theme. These new artifacts replace those in the duplicate
clusters. In our example, the overlapping artifacts were
re-generated as shown in 6, where each artifact is now
focused on a more distinct topic.

[US1*] Character Customization: As a player, I want to name
and customize the appearance of my character so that I can roleplay
a unique persona in the game world.

[US4*] Play as Hero or Villian: As a player, I want the option
to play as either a hero or villain so that I can experience different
perspectives when interacting with the game systems.

Fig. 6. Refined User Stories for HERO during Stage 3

E. Stage 4: Generate Intra-cluster Trace Links

Once the new artifacts have been generated, we need to
connect them via trace links to the current layer. Given that a
single cluster can produce multiple higher-level artifacts, we
cannot assume every lower-level artifact in a cluster should
link to each of the resulting higher-level ones. Consequently,
we create trace links only between artifacts that demonstrate
strong semantic similarity using standard automated tracing
techniques. First, we generate embeddings for the higher-
level artifacts and use these to calculate their cosine similarity
with each low-level artifact from their originating clusters. We
scale each cluster’s scores using min-max scaling so that the
highest score is adjusted to 1. We consider the variability in
scores across different clusters, and only generate links where
the similarity score is within two standard deviations of the
maximum normalized score. Typically, this results in a cutoff
of approximately 0.8. However, if no links are generated for
a lower-level artifact, we establish a link with the higher-level
artifact that has the greatest similarity.

Fig. 7. Example of trace link generations for US4 from the HERO example.



For example, the trace links established for US4 (Fig-
ure 6) are depicted in Figure 7. Following scaling, both
Hero.java and V illain.java attain high similarity scores
and are consequently linked to the user story. Although
SuperheroGameController.java receives a considerably
lower score, its similarity to US2 exceeds its scores with all
other user stories, allowing it to trace to US2 as well.

F. Step 5: Generate Inter-cluster Trace Links between Dupli-
cates

In this step, we identify any remaining artifacts with over-
lapping content, which also aids in detecting potential trace
links between clusters. First, we compute the cosine similarity
between each pair of generated artifacts, marking pairs with
similarity scores more than two standard deviations above
the mean as potential duplicates. For each duplicate pair,
designated as A and B, we consider whether any of B’s trace
links should also trace to A and vice verse. Trace links are
formed if the similarity score between B and the child is
of a similar strength between A and the child (i.e., within
a difference of 0.1).

If two pairs of highly similar artifacts result in trace links
with identical child artifacts, it signifies that the pair are likely
duplicates. In such cases, we remove one of the duplicates, as
the risk of losing crucial information is significantly reduced.

An illustration of this re-tracing process can be seen in
Figure 8. Artifacts that were originally traced to each user
story are shown in blue. After re-tracing, each user story gains
an additional trace link, represented in white. Notably, US3
possesses one trace link (Crime.java) not linked to US4;
however, in this example, both US3 and US4 are retained after
this stage, as US3 is linked to Crime.java, while US4 is not.

III. EXPERIMENT DESIGN

Evaluating the effectiveness of documentation hierarchies is
complex because there is no single ground-truth solution [28],
[29], [30]. While it is tempting to use automated assessment
techniques such as BLEU, METEOR, ROUGE, CIDEr, and
SPICE, to detect overlapping terms across documents, Hu
et al., showed that the metrics do not align with human

Fig. 8. Trace links selected for US3 and US4 after they were flagged
containing overlapping content in Stage 5. Both user stories gain 1 additional
trace link from the other (shown in white).

TABLE I
THE FIRST STUDY EVALUATED THE QUALITY OF MANUALLY

CONSTRUCTED DOCUMENTATION, HGEN, AND A BASELINE APPROACH.
TYPES AND NUMBERS OF ARTIFACTS ARE DEPICTED FOR EACH PROJECT.

OPEN-SOURCE DATASETS ARE ANNOTATED WITH AN ASTERISK (*).

Dronology * [32]
Dronology is an Open-Source small
Unmanned Aerial System (sUAS) writ-
ten in Java. It provides a platform
for controlling and coordinating multi-
ple sUAS to support search-and-rescue,
surveillance, and scientific data collec-
tion missions.

SAFA [33], [34]
SAFA is a software documentation
management platform that leverages
live traceability to build a knowledge
graph and support change impact anal-
ysis. Our industry collaborators pro-
vided access to closed-source client-
side source code.

Jack of Clubs *
Jack of Clubs is a re-creation of Ace
of Spades, a voxel-based first-person
shooter game. The creator gave us ac-
cess to the manually created user stories
and epics, and we are releasing them to
the public as part of this paper.

judgment about the quality of documentation [31]. Therefore,
our evaluation primarily leveraged human judgment. In our
first study, we recruited a knowledgeable project stakeholder
to systematically compare HGEN’s performance against their
own project documentation in three different projects. While
in the second study, we conducted nine industry pilot studies
using HGEN and elicited general feedback on its performance.
In this section we describe the first study.

A. Projects

The three projects are summarized in Table I. Our three
projects represent diverse domains and cover both traditional
and agile development processes. Each project included source
code and at least two types of natural language artifacts,
organized into layers, and connected by trace links. The
Dronology is a UAV project that includes 423 Java files, 211
Design Definitions, and 99 Requirements respectively. SAFA
is a software safety tool and includes 242 Vue source-code
files, 262 functional requirements, and 101 features. Finally,
Jack of Clubs is a first-person shooter game and includes 36
C++ files, 7 user stories, and 3 epics. Each project had an
available Senior Developer with prior experience in developing
documentation, to serve as the project expert.

B. Techniques under Comparison

Our study involved three different treatments including (i)
the HGEN generated documentation, (ii) a baseline LLM
approach, and (iii) the project documentation previously de-
veloped manually by project personnel. The HGEN documen-
tation was generated for the three projects following the steps



TABLE II
EVALUATION GUIDELINES FOR ASSESSING DOCUMENTATION QUALITY.

Group Metric Metric Description
Language Readability How easily a user can understand the

information provided.
Appropriate-
ness

Language appropriateness with respect
to the artifact’s technical level.

Content Conciseness How brief, yet clear the system is
described.

Importance Considers the importance of the
information provided.

Effective-
ness

Usefulness Considers how useful this
documentation is to the project expert.

Helpfulness Consider how helpful the documentation
is for understanding its children.

outlined in Section II of this paper, while the manually con-
structed project documentation was provided by the original
project stakeholders as referenced in Table I.

We also created a baseline LLM approach for comparison
purposes. We started with the identical set of summarized code
as the HGEN processs and used the same LLM (Claude 2.0) to
generate comprehensive documentation for each artifact type
used in HGEN. As with HGEN, we repeat the process for
each layer, and connect artifacts across layers by generating
embeddings (using Sentence-BERT) for both the lower and
higher-level artifacts. Trace links are established between ar-
tifact across the two layers if the normalized cosine similarity
score is greater than 0.7. The major difference between the
BASELINE and HGEN is the use of clustering techniques in
HGEN as well as the later refinement steps.

Due to the size of Dronology and SAFA, we extracted a
subset of source-code files and their generated documentation
so that the project experts could conduct a more in-depth
analysis of each artifact. In each case, the project expert
identified the most critical source files, and the study included
those files and their linked documentation.

IV. QUANTITATIVE COMPARISON OF THE
DOCUMENTATION QUALITY

To evaluate the quality of the generated documentation we
addressed the following research questions.
• RQ1. Artifact Quality: How does the quality of indi-

vidual machine-generated artifacts compare to that of
expert-made artifacts? We addressed this RQ by asking
our project experts to evaluate the language, content, and
effectiveness of each artifact as proposed by Hu et al.,
[31]. Language included readability and appropriateness,
content included conciseness and importance, and effective-
ness included usefulness and helpfulness. The definitions
provided to our human assessors are summarized in Table
and provided in our supplemental material.

• RQ2. Coverage: To what extent are concepts that appear
in the original documentation covered by the generated
documentation? To answer this RQ we measured concept
coverage [35], [36] and evaluated the extent to which
concepts appearing in the original documentation appeared

in the generated documentation. Examples of concepts in
HERO might be the ability to select different characters or
purchase specific items at the shop.

• RQ3. Relationships: How effectively does the machine-
generated documentation build appropriate parent-child
relationships inherent in multi-layer data structures?
Relationships are represented by trace links, and we there-
fore evaluated them using standard traceability metrics of
recall and precision for the generated artifact tree [6]

A. RQ1. Artifact Quality

Project experts comparatively evaluated artifacts in their
own project for (a) the manually constructed documentation,
(b) HGEN, and (c) the baseline approach using a qualitative
rubric associated with each quality in Table IV. Evaluations
were performed against a Likert scale ranging from 1-5, where
1 signified low quality and 5 represented high quality. They
were allowed to move freely between the different types of
artifacts during this process.
Analysis of results: Due to non-normal score distributions,
we employed the Mann–Whitney U test, which is non-
parametric, to test if there was a notable difference in score
distributions between each of the three treatments. Further,
to account for multiple comparisons in our study—18 tests
across six metrics and three documentation groups (Human-
made, Baseline, HGEN)—we use the Holm-Šidák method
to adjust our p-values to control for error rates, ensuring
a reliable statistical analysis when comparing documentation
quality across groups. Table III reports the mean scores for the
six quality attributes assigned by the project experts across all
three projects, as well as the adjusted p-values. It highlights
instances where the null hypothesis is rejected (p < 0.05),
suggesting that scores from one distribution tend to have
higher scores than the other.
Discussion of results: The comparison between the human
constructed documentation and the baseline approach returned
comparable scores on all metrics except Readability, which
was higher for the baseline approach. The same comparison
between human and HGEN documentation showed that HGEN
returned higher quality scores across four of the six metrics:
Readability, Appropriateness, Usefulness, and Helpfulness. On
the other hand in a direct comparison of HGEN versus the
Baseline method, the only significant difference observed was
for Usefulness, with HGEN’s higher score indicating that
project experts thought its documentation was more useful
than the baselines. These results confirm the findings of
previous studies that LLMs are able to produce software
documentation of comparable quality to humans [37]. Notably,
the main difference between HGEN and baseline is in the way
HGEN constructs the hierarchy and not in the way it generates
individual documents.

B. RQ2: Coverage

We asked each expert to evaluate concept coverage by
identifying concepts in the manual documentation and check-
ing whether they were adequately reflected in the generated



TABLE III
RESULTS OF MANN–WHITNEY U TESTS. CASES IN WHICH THE NULL

HYPOTHESIS IS REJECTED (I.E., WHERE (p < 0.05)) ARE HIGHLIGHTED
AND DEPICT CASES WHERE ONE TREATMENT OUTPERFORMED THE OTHER

WITH RESPECT TO THE QUALITY ATTRIBUTE.

Human vs. Baseline
Metric Human Mean Baseline Mean Corrected P-value
Readability 3.90 4.44 0.002445
Appropriateness 3.70 4.00 0.214476
Conciseness 4.30 4.44 0.596927
Importance 4.10 4.35 0.191984
Usefulness 3.51 3.67 0.794294
Helpfulness 3.82 3.88 0.990378

Human vs. HGEN
Metric Human Mean HGEN Mean Corrected P-value
Readability 3.90 4.38 0.000104
Appropriateness 3.70 4.16 0.001493
Conciseness 4.30 4.32 0.618787
Importance 4.10 4.33 0.095525
Usefulness 3.51 4.14 7.09e-06
Helpfulness 3.82 4.21 0.002445

Baseline vs. HGEN
Metric Baseline Mean HGEN Mean Corrected P-value
Readability 4.44 4.38 0.990378
Appropriateness 4.00 4.16 0.462604
Conciseness 4.44 4.32 0.990378
Importance 4.35 4.33 0.990378
Usefulness 3.67 4.14 0.020646
Helpfulness 3.88 4.21 0.172422

TABLE IV
PERCENTAGE OF CONCEPTS FROM ORIGINAL DOCUMENTATION

CAPTURED PER HGEN VERSION, AS DETERMINED BY THE PROJECT
EXPERTS (E1-E3).

Project ID Baseline HGEN
% Covered Covered by % Covered Covered by

Dronology E1 6.3% 9.1% 87.5% 28.9%
SAFA E2 37.8% 38.9% 84.4% 43.1%
JOC E3 50.0% 35.7% 100% 38.5%

documentation. We then computed the proportion of concepts
from the original documentation that were addressed in each
of the generated documentations.
Analysis of results: Results are reported in Table IV in the
column labeled (% Covered). We also report the percentage
of artifacts in the generated documentation that included these
concepts (Covered by). The “Covered by” percentages for both
the Baseline and HGEN documentation suggest that many
artifacts focus on concepts that were not highlighted in the
manual version.
Discussion of results: HGEN demonstrates a notable increase
in concept coverage compared to the baseline approach across
all three projects, capturing twice as many concepts in both
JOC and SAFA, and an impressive 80% increase in the case
of Dronology. Additionally, a larger portion of the HGEN-
generated documentation, as indicated by the “Covered by”
metric, centers on core concepts from the manual documen-
tation, particularly in the case of Dronology. Given that the
experts did not identify duplicate artifacts, it appears that
both the Baseline and HGEN uncovered project aspects not
emphasized in the manual documentation. Matched with the
increase in ‘helpfulness’ returned by experiments for RQ1,

TABLE V
TRACEABILITY ACCURACY METRICS FOR GENERATIVE APPROACHES

Project Approach mAP Precision Recall # Orphans

Dronology Baseline 84.5% 47.2% 89.5% 17
HGEN 94.0% 56.3% 93.4% 0

SAFA Baseline 91.9% 49.2% 100% 28
HGEN 94.5% 54.3% 98.4% 9

JOC Baseline 95.5% 67.3% 74.5% 11
HGEN 96.7% 81.4% 80.2% 1

it appears that the additional information could be helpful to
project stakeholders.

C. RQ3: Relationships

To evaluate the quality of relationships within each gener-
ated hierarchy, we developed a basic tracing tool which visu-
alized the generated documentation tree and allowed project
experts to approve or decline existing links, adding new links
if needed. Each expert performed this task twice -- once for
HGEN and once for the Baseline approach, resulting in their
version of a ground truth solution for each generative tech-
nique. We then evaluated the generated trees for HGEN and
Baseline against the modified ground truth version for each
one and computed mean average precision (mAP), precision,
and recall for each project using standard formulas [6]. To
compute mAP, which assesses the extent to which correct
links appear at the top of a ranked list, we ordered the links
according to their original cosine similarity scores. In addition,
we assessed the number of orphan artifacts generated by each
approach, as this aspect had emerged as a key distinguishing
factor through discussions with the three experts. Table IV-C
presents these results.
Discussion of results: The relatively high mAP scores (80%
to 95.5%) and recall scores (47.2% - 81.4%) indicate that
Sentence-BERT was able to capture a range of semantic
similarities between artifacts. This is likely attributable to
the LLM’s use of lower-level artifacts for generating higher-
level ones, thereby creating a shared vocabulary. However, we
also observed a significantly higher number of orphans in the
Baseline approach versus HGEN, which could have lowered
recall whilst increasing precision. HGEN’s lower orphan count
suggests that it’s enhanced clustering techniques enabled it to
capture the concepts in the low-level artifacts at higher levels
of abstraction, identifying concepts that might otherwise have
been overlooked.

D. Qualitative Feedback

We also asked each expert a number of open-ended ques-
tions including having them describe the most and least
valuable characteristics of the documentation. A full list of
these questions can be found in the paper’s supplemental
section. We briefly summarize their feedback.

The experts acknowledged the quality of the baseline’s
individual artifacts, which, in the case of E3, was identified as
more readable than the project expert’s own documentation.
However, both E1 and E2 identified that the baseline version



lacked comprehensiveness, clarity, and accurate prioritization
of information compared to the manual documentation. Fur-
thermore, its sparse generations resulted in the creation of
“redundant” parents highlighting the Baseline’s tendency to
establish 1-1 relationships between its initial and final layer
generations.

All experts preferred the HGEN version over the baseline
method. E2 and E3 stated that HGEN tended to produce
more detailed and comprehensive information that provided
“helpful” relationships and dependencies, with links generally
“making sense.”

Despite their preference for HGEN, the experts noted some
shortcomings. E2 mentioned that HGEN missed some obvious
links between clusters and did not reflect the same organiza-
tional structure for conceptualizing code as they had used.
This difference in structure lead both E1 and E2 to favor their
own documentation over HGEN’s, although E2 acknowledged
HGEN’s was “more useful for teaching someone about my
system,” suggesting that preference depended on the docu-
mentation’s intended use. Meanwhile, E3 appreciated HGEN’s
detailed information and preferred it over their own.

V. INDUSTRIAL PILOT STUDIES

We now present the results of our industrial pilot studies
which focused purely on the HGEN solution.

A. Study Method

The nine pilots were conducted in seven different companies
on eight unique projects as depicted in Table VI. Seven of
them used data provided by the company, and two (marked
with an asterisk) used open-source project data [38]. For each
project we applied HGEN to the source code to generate
documentation.

To assess the effectiveness of the documentation, we con-
ducted interviews with nine industrial partners. During these
interviews, partners were prompted to share their candid
thoughts on the documentation’s quality, usefulness, and sug-
gestions for potential improvements. After obtaining permis-
sion, we recorded the sessions and utilized an AI tool to
automatically transcribe the recordings. Two of the paper’s
authors independently extracted all relevant quotes, used an
inductive approach to encode each quote, and then worked
together to discuss the code and to sort them into categories.
We did not assess inter-rater agreement as this activity was
performed collaboratively.

B. Analysis of Feedback

Our analysis identified three clear themes and six sub-
categories associated with documentation quality, prospective
use cases, and recommendations for improvements.

1) Documentation Quality: Two sub-themes emerged for
documentation quality. The first addressed information accu-
racy and coverage and focused on whether the generated docu-
mentation conveyed crucial information about the source code
without errors. Feedback was generally positive. Participant P9
expressed strong satisfaction, stating, “everything I can read

corresponds exactly to the reality,” while P1 remarked, “I feel
like they are a good representation of what we are doing.”
However, one participant, P2, noted a discrepancy where an
external tool was mentioned despite not being implemented in
the code. On the other hand they pointed out that the tool was
referenced in the code as a prerequisite, which likely misled
the LLM. P4 stated that they couldn’t find any errors at all,
and confirmed that it captured all essential information, stating
that “I couldn’t identify any aspect missing from it.”

The second theme focused on clarity and structure, in-
cluding readability and understandably of the documentation.
P4 observed that the documentation was well written, and
was “probably better than I could do.” P8 specifically praised
the hierarchical organization of the documentation, expressing
appreciation for the fact that it provided “a summary at every
level of depth...[and] every level of extraction.”

2) Prospective Use cases: Participants also focused on how
HGEN could benefit their respective companies, with three
specific use cases emerging, all of which are highly pertinent
to software maintenance.

Five participants (P2, P6, P7, P8, P11) highlighted HGEN’s
potential for comprehending complex systems lacking suffi-
cient documentation, especially in scenarios where the original
authors are unavailable. Of these, P7 underscored its use when
“nobody knows anything about [the code]” stating that “you
run it through your system, and then it’s a lot more potentially
clear, and people can understand what was going on.” P11 felt
that it would be particularly advantageous for “tackling some
pretty legacy stuff.” Participants P6 and P7 enthusiastic about
HGEN’s time-saving capabilities, with P6 stating that without
documentation, understanding a system might take a month,
whereas with the HGEN documentation “I have an idea maybe
within days. So it’s definitely a big help on that one.”

Four participants (P1, P2, P3, P6) highlighted the value of
HGEN for expediting the onboarding of new developers. P2
stated that they would no longer need “to spend tons of time
giving the engineer an overview of the code base”, and P3
echoed this sentiment, stating that it was “a whole lot better
than me setting an intern down with some piece of code that
I got and telling him. ’Hey do your best buddy. We’ll talk to
you in four months’”.

Finally, two participants (P7, P11) discussed the use of
HGEN for regulatory compliance. P7 observed that generating
documentation would simplify the process, stating, “instead of
going to the code and trying to figure out what to provide to
them” (i.e., regulators), “[HGEN] would be somewhat easier.”
P11 said that HGEN would have assisted them in a previous
government project, in which they were required to maintain
an “enormous” and comprehensive list of requirements, which
was challenging to maintain. They believed that utilizing
HGEN might have made the task more manageable.

3) Potential Improvements: Two participants (P1, P3) rec-
ommended new features aimed at enhancing HGEN’s utility.
P1 noted that the generated documentation failed to include
details from external libraries, suggesting that relevant parts
of these libraries would provide context for the LLM. P3



TABLE VI
HGEN WAS USED IN NINE INDUSTRIAL PILOT PROJECTS FROM MULTIPLE

DOMAINS WITH THE SOURCE CODE LAYER WRITTEN IN DIVERSE
PROGRAMMING LANGUAGES.

ID Category Use Case ID Lang. Input FilesRE. LG OB

C1 Enterprise
  P1 C# 1,049
  P2 C++ 181

C2 Automotive* P3 C++ * 242 *
C3 SAAS  P4 TS / JS 264
C4 IT Services  P5 Java 197
C5 Aerospace  P6 C 345
C6 Education  P7 Java 643
C7 Automotive* P8 * *
C8 IT Services  P9 Go / TS 65

*Pilot conducted using Open-Source Systems
RE=Reverse Engineering, LG=Legacy Documentation, OB=Onboarding

JS= Java Script, TS = Type Script

proposed adapting HGEN for instances where high-level doc-
umentation already exists, suggesting that generated documen-
tation could bridge the gap between this high-level overview
and the code. Finally, P1 was intrigued by the potential for
extending HGEN to provide incremental support for documen-
tation alongside code development.

C. Discussion of Results

The feedback provided by project stakeholders highlighted
several benefits and potential applications of HGEN as well
as some places for improvement. Most importantly, it demon-
strated that HGEN was capable of generating high quality
documentation hierarchies for an extremely wide range of
software projects. However, these results are based on a
pilot study, and therefore feedback is based on stakeholders
perspectives of HGEN’s utility rather than on its adoption
in practice. Nevertheless, this is an important first step in
validating HGEN for deployment on industrial projects.

VI. RELATED WORK

Our work is informed by the groundwork laid by prior
research in the areas of automated document generation [18].
We discuss most closely related work in three specific areas.

First, there is a large body of work in automating code-level
documentation and API specifications for various frameworks
[16], [15], [39], [40], [41], [42], [43], [44], [45]. Our research
focuses on generating hierarchical, multi-level documentation
for higher-level system abstraction. We build on the emerging
results showing that LLMs can generate a variety of soft-
ware requirements and documentation. Dvivedi et al. showed
that LLM-based models often surpass human documentation
in inline, function, and file level code documentation [46].
Likewise, Bencheikh and Höglund’s demonstrated that LLMs
can generate software requirements [37], while Xie et al. use
it to generate code specifications [47]. Our work aims to
enhance the existing capabilities of LLMs to create diverse
documentation types at multiple abstraction levels. In the
private sector, companies like swimm.io have investigated
documentation automation, but claim that full automation is
infeasible due to the difficulty of integrating business logic,
design decisions, and other external elements [48]. While this

is important, our work demonstrates the benefits of automation
as a component of the documentation process.

Research in source code understanding has predominantly
focused on generating detailed, low-level explanations. No-
table works include Srihara et al.’s file-level code summariza-
tions using natural language generators [49], and methods by
Robillard, Burden, Moreno, among others, for creating concise
method and class summaries [14], [50], [51], [52]. Others
have explored parameter-level comments [53] and context-
enhanced summaries [54], [55], including method functional-
ity, purpose, and usage [54]. HGEN, in contrast, targets higher-
level, language-agnostic documentation, leveraging LLMs to
summarize code across most major programming languages.

The pursuit of ubiquitous software traceability serves as a
foundational inspiration, drawing from extensive prior research
dedicated to the development and refinement of automatic
trace link generation across various software domains [56],
[57], [7], [8], [58]. Despite substantial progress in software
traceability [59], [60], challenges in achieving high accuracy
remain, especially in data-scarce areas [6], [61]. Recently,
LLMs like GPT3, GPT4, and Claude have demonstrated
potential in improving trace link accuracy in such scenarios
[62], [20], [21], [63]. Our approach integrates advances from
BERT-based models for trace link generation and LLMs for
documentation generation, with a novel clustering strategy to
increase trace accuracy.

VII. THREATS TO VALIDITY

Our work includes several important threats to validity.
With respect to construct validity, our first study focused
on three projects only. However, we partially mitigated the
threat to generalizability by selecting projects from diverse
domains, which encompassed both open-source and closed-
source code for different sized project. We then applied HGEN
to industrial project data, and the feedback from project experts
indicated that it was effective across all domains. However,
our pilot studies were based on feedback elicited from an
interactive demonstration, and while this provides valuable
insights, an additional study is needed of its use over time
in industrial projects. In a threat to external validity, the
HGEN pipeline is quite complex, developed following much
trial and error and its replication is complex. To mitigate
this, we ensured repeatability in the hierarchy generation
process by minimizing randomness and maintaining a closely-
deterministic approach in our pipeline. Multiple runs were
conducted to confirm consistent results. Further, we have
prepared a fully functioning system that is accessible via a
web application.1 We also provide all study materials in the
supplemental materials.

VIII. CONCLUSION

This paper proposes HGEN, an LLM-based approach to
automatically generate hierarchies of requirements documen-
tation from source code. HGEN builds upon the recent suc-
cesses of LLMs by engineering a process that addresses
some of the deficiencies identified with the unaided models.



Our evaluation, designed to target three critical aspects of
the documentation, supports existing literature that LLM-
generated documentation can match or exceed the quality of
that written by humans. We also show that HGEN is able to
capture meaningful relationships across varied artifact levels
and can identify nearly all of the core concepts found in expert-
produced documentation, showing a considerable enhance-
ment over the baseline LLM. These results indicate that HGEN
could substantially reduce the time and effort needed for com-
prehensive documentation creation, thereby aiding in software
maintenance tasks. Moreover, HGEN presents potential for
automating additional aspects of requirements engineering,
paving the way forward towards ubiquitous documentation and
traceability.
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and N. Niu, Eds. IEEE / ACM, 2019, p. 12. [Online]. Available:
https://doi.org/10.1109/SST.2019.00012

[59] J. Lin, Y. Liu, Q. Zeng, M. Jiang, and J. Cleland-Huang, “Traceability
transformed: Generating more accurate links with pre-trained bert
models,” arXiv:2102.04411 [cs], Feb 2021, arXiv: 2102.04411.
[Online]. Available: http://arxiv.org/abs/2102.04411

[60] J. Lin, A. Poudel, W. Yu, Q. Zeng, M. Jiang, and J. Cleland-Huang,
“Enhancing automated software traceability by transfer learning from
open-world data,” no. arXiv:2207.01084, Jul 2022, arXiv:2207.01084
[cs]. [Online]. Available: http://arxiv.org/abs/2207.01084

[61] J. Guo, J. Cheng, and J. Cleland-Huang, “Semantically enhanced
software traceability using deep learning techniques,” in 2017
IEEE/ACM 39th International Conference on Software Engineering
(ICSE). Buenos Aires: IEEE, May 2017, p. 3–14. [Online]. Available:
http://ieeexplore.ieee.org/document/7985645/

[62] A. D. Rodriguez, K. R. Dearstyne, and J. Cleland-Huang,
“Understanding the Challenges of Deploying Live-Traceability
Solutions,” Jun. 2023, arXiv:2306.10972 [cs]. [Online]. Available:
http://arxiv.org/abs/2306.10972

[63] A. Rodriguez, K. Dearstyne, and J. Cleland-Huang, “Prompts matter:
Insights and strategies for prompt engineering in automated software
traceability,” in Proceedings of the 11th International Workshop on
Software and Systems Traceability, SST@RE 2023, Hanover, Germany,
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