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Abstract

For training an encoder network to perform
amortized variational inference, the Kullback-
Leibler (KL) divergence from the exact poste-
rior to its approximation, known as the inclu-
sive or forward KL, is an increasingly popular
choice of variational objective due to the mass-
covering property of its minimizer. However,
minimizing this objective is challenging. A
popular existing approach, Reweighted Wake-
Sleep (RWS), suffers from heavily biased gra-
dients and a circular pathology that results in
highly concentrated variational distributions.
As an alternative, we propose SMC-Wake, a
procedure for fitting an amortized variational
approximation that uses likelihood-tempered
sequential Monte Carlo samplers to estimate
the gradient of the inclusive KL divergence.
We propose three gradient estimators, all of
which are asymptotically unbiased in the num-
ber of iterations and two of which are strongly
consistent. Our method interleaves stochas-
tic gradient updates, SMC samplers, and it-
erative improvement to an estimate of the
normalizing constant to reduce bias from self-
normalization. In experiments with both sim-
ulated and real datasets, SMC-Wake fits vari-
ational distributions that approximate the
posterior more accurately than existing meth-
ods.

1 INTRODUCTION

Amortized variational inference (VI) fits an encoder
q�(z | x) to approximate the posterior for each x in a
dataset D = {x1, . . . , xn}. The encoder parameters �
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are selected to minimize some divergence between the
variational posteriors q�(z | x) and the exact posteri-
ors p(z | x), averaged over observations x 2 D. The
forward KL divergence (Equation 1), also known as
the inclusive KL divergence, is an increasingly popular
variational objective because minimizers q� tend to be
mass covering (overdispersed) with respect to the true
posterior (Gu, Ghahramani, and Turner, 2015); this
property is desirable for applications benefiting from
conservative uncertainty quantification. In contrast,
reverse KL minimizers tend to be mode-seeking and to
underestimate uncertainty (Domke and Sheldon, 2018).

Reweighted Wake-Sleep (RWS) is a popular method
for performing amortized variational inference that at-
tempts to minimize the forward KL divergence, but,
surprisingly, in practice wake-phase training can re-
sult in variational posteriors that are severely under-
dispersed (Le et al., 2019). We conjecture that this
behavior results from a “circular pathology” that arises
from fitting q� with particles proposed from q� itself
(Section 3).

To address these limitations of RWS, we propose SMC-
Wake, a method to fit an amortized encoder by minimiz-
ing the average forward KL divergence via stochastic
gradient descent (SGD) with gradients estimated using
sequential Monte Carlo (SMC) samplers (Section 2).
We propose three new estimators of the gradient of the
forward KL that combine SMC samplers in different
ways (Section 4), and we prove that each is asymptoti-
cally unbiased and that two are also strongly consistent
(Section 4.3). Our method compares favorably to those
in related work (Section 5), and we demonstrate these
advantages empirically in a variety of experimental
settings (Section 6). Compared to other forward KL
minimization methods based on importance sampling,
SMC-Wake leverages higher-fidelity particle approx-
imations with lower-variance weights, resulting in a
stable training regime that avoids weight degeneracy
and the circular pathology we identify in RWS.
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2 BACKGROUND

2.1 Reweighted Wake-Sleep

Given a dataset D = {x1, . . . , xn}, the wake-phase
update to the variational parameters in reweighted
wake-sleep (RWS) (Bornschein and Bengio, 2015) aims
to minimize the average forward KL divergence:

1

n

nX

j=1

KL(p(z | xj) || q�(z | xj)). (1)

The gradient of this objective, however, is generally
intractable; even a Monte Carlo estimate of it requires
sampling from the exact posteriors p(z | xj) for each
xj 2 D. Instead, RWS approximates the gradient of
each term of Equation 1 using self-normalized impor-
tance sampling, with the current iterate of q�(z | x)
serving as the proposal. With K particles, the resulting
gradient estimator is

�
KX

i=1

w
ir� log q�(zi | x), where w

i
=

w̃
i

P
j w̃

j
, (2)

w̃
i
=

p(zi,x)
q�(zi|x) are unnormalized importance weights,

and z
1
, . . . , z

K iid⇠ q�(z | x) for a given x. Although
biased, this estimator converges almost surely to the
gradient of the forward KL divergence as K !1, un-
der mild conditions (Owen, 2013). RWS also includes a
sleep phase that averages exact gradients of simulated
(“dreamt”) data in a likelihood-free approach to infer-
ence. However, this approach has its own limitations
and has been shown to underperform the wake-phase
update in some cases (Le et al., 2019).

2.2 Sequential Monte Carlo samplers

Sequential Monte Carlo (SMC) samplers (Del Moral,
Doucet, and Jasra, 2006) compute estimates of µ =

E�(z)f(z) for an integrable test function f and a tar-
get distribution �. SMC samplers generalize self-
normalized importance sampling (SNIS) (Owen, 2013):
instead of a single target �, a sequence of targets
�1, . . . , �T is approximated. Even if only a single target
� is of interest, SMC samplers can improve estima-
tion through annealing. One selects a sequence of
distributions such that �1 is tractable and �T = �,
with intermediate distributions that facilitate moves
between these (Chopin and Papaspiliopoulos, 2020).

In a Bayesian setting, where approximations of the
posterior are of interest, typically the final target is
�

d
= p(z | x) for some observation x. A particular

sequence of targets is given by likelihood-tempered
sequential Monte Carlo (LT-SMC) (Chopin and Pa-

paspiliopoulos, 2020). LT-SMC runs SMC samplers
using a base distribution, typically the prior p(z), as
the initial target �1, and then anneals toward p(z | x)
through the intermediate targets �t(z) / p(z)p(x | z)⌧t
with 0 = ⌧1 < · · · < ⌧T = 1.

SMC samplers form discrete or empirical approxima-
tions to each distribution �t(z). The discrete ap-
proximation to �1 is computed by importance sam-
pling, which produces an initial K-particle approxi-
mation Cat(z1:K1 , w

1:K
1 ) to �1. Then, at each stage

t = 1, . . . , T � 1, three distinct steps are performed:

Resample: Draw z
(i)
t

iid⇠ Cat(z1:Kt , w
1:K
t ), i 2 [K].

Mutate: Propose z
i
t+1 ⇠M(z

(i)
t , dzt+1), i 2 [K].

Update: Recalculate weights w
1:K
t+1 for z

1:K
t+1 .

Above, Cat(·, ·) denotes a categorical distribution and
M(·, dz) denotes a transition kernel. The weight up-
date depends on the transition kernel. Expectations
with respect to the posterior �T = p(z | x) can be
approximated by Monte Carlo integration, that is,
E�T f(z) ⇡

PK
i=1 w

i
T f(z

i
T ). These approximations are

biased but consistent as K !1 with bias and variance
of order O(

1
K ) (Chopin and Papaspiliopoulos, 2020).

The random variables z1:Kt and w
1:K
t for t < T are aux-

iliary: they are not used to approximate Ep(z|x)f(z),
but to guide particles toward areas of high mass in the
target distribution. Resampling eliminates particles
with low weights, while mutation and reweighting pro-
vide a means to produce new particles and to weight
them according to their quality with respect to the
subsequent target �t+1(z).

Like SNIS, SMC only requires the evaluation of an un-
normalized density �̃t(z) of each target distribution, as
is typically required in a Bayesian setting. Compared
to Markov chain Monte Carlo (MCMC) methods, SMC
typically requires many fewer steps (e.g., T < 100)
and is more readily adaptable: for example, the muta-
tion kernel need not satisfy detailed balance conditions
(Naesseth, Lindsten, and Schön, 2019). Although SMC
is more expensive than SNIS due to the T > 1 stages,
parallelization of operations across the K particles can
be highly efficient.

3 MASS CONCENTRATION IN RWS

To fit an amortized encoder network to minimize the
forward KL divergence through iterative optimization,
we repeatedly evaluate its gradient:

1

n

nX

j=1

Ep(z|xj)r� log q�(z | xj). (3)
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Doing so requires us to evaluate expectations with re-
spect to the posteriors p(z | xj). Estimating each term
of Equation 3 using self-normalized importance sam-
pling (SNIS) with q� as the proposal, as in wake-phase
training, can result in degenerate variational distribu-
tions that concentrate mass. Le et al. (2019) first noted
this degeneracy for small K, but our case studies show
that it persists in practice even for large numbers of
particles, such as K = 1000, and, surprisingly, it is not
resolved by taking a defensive approach to importance
sampling (Section 6). We conjecture that this failure
mode is due to a “circular pathology” that arises when
simultaneously proposing from q� to optimize the score
of q� itself. Consider the wake-phase gradient

�
KX

i=1

w
ir� log q�(zi | x)

for fixed x, with w
i denoting the normalized weights.

This gradient can be viewed as a Monte Carlo estimate
of the gradient of the surrogate objective

E
z1,...,zKiid⇠ q�(z|x)

�
KX

i=1

w
i
log q�(z

i | x) (4)

if one places stop gradient operators on the weights and
the law used to generate samples (refer to Appendix B
for more details). We now investigate the properties
of this objective. Note that wake-phase updates do
not directly optimize Equation 4, but the wake-phase
gradient estimator is computed identically to a Monte
Carlo estimator of the gradient of Equation 4 with
stop gradient operations in place. It is illustrative to
consider what might go wrong if one attempted to
minimize this surrogate objective directly, as wake-
phase training dynamics may behave similarly.

Let L(q�) denote the value of the surrogate functional
above for any given proposal distribution q�. When
K = 1 we note that this objective can made arbitrarily
low by choosing a value of q that is quite peaked (and
also arbitrarily different from the true posterior). For
any x, a sample z

0 ⇠ q�(z | x) is drawn and the objec-
tive is approximated using the log of its own density, i.e.
log q�(z

0 | x). Thus, a highly peaked q� can trivially
achieve an arbitrarily low value of the objective. This
result should not be so surprising: SNIS fails when ap-
plied with only a single sample. As is well known, SNIS
also fails when the target is not absolutely continuous
with respect to the proposal. As a result, even taking
K to be arbitrarily large, it is possible to find peaked
proposals that are arbitrarily dissimilar from the true
posterior and yet lead to arbitrarily low values of the
surrogate objective.

Proposition 1. Let L(q) denote the surrogate objective

defined above for fixed x and fixed K 2 N. Let p denote

the posterior p(z | x). Then there exists q(z) 6= p(z | x)
such that L(q) < L(p).

Appendix B provides a proof. Proposition 1 implies
that even for arbitrarily large K, there exists a q with a
lower surrogate objective value than the exact posterior
has. Our proof constructs q ⇠ Unif(0, �) for small �.

In practice, the same issue arises even when p(z |
x) is absolutely continuous with respect to q�, as
demonstrated by the following toy example. Take
z ⇠ N (0, 10

2
) and x | z ⇠ N (z, 1

2
). The exact pos-

terior is N (
100
101x,

100
101 ). Using K = 10, 000 importance

samples, we estimate the surrogate objective for each
of the highly peaked Gaussian variational distributions
in Table 1 for a fixed, simulated draw x. The estimated
objective for each peaked Gaussian is lower than the
estimated objective for the exact posterior.

Proposal Distribution Wake Objective

q ⇠ N (0, .0001
2
) -4.690 (1.471)

q ⇠ N (0, .00001
2
) -6.841 (1.947)

q ⇠ N (0, .000001
2
) -9.439 (1.497)

q ⇠ N (0, .0000001
2
) -11.798 (1.585)

q ⇠ N (
100
101x,

100
101 ) 1.415 (0.008)

Table 1: Avg. surrogate objective values for highly-
peaked Gaussian proposals (standard errors in paren-
theses).

Using q� as a proposal for SNIS (as in RWS) is common,
perhaps because there is a known case in which doing so
results in unbiased SNIS estimates: if q�(z | xj) = p(z |
xj) for all xj 2 D, the SNIS estimate of Equation 3
is unbiased. However, this special case is likely to be
irrelevant in real-world settings: firstly, there may be
no parameters for which this equality holds due to the
variational gap and the “amortization gap” (Cremer,
Li, and Duvenaud, 2018), and secondly, the circular
pathology itself may prevent optimization trajectories
from converging to such parameter values. The circular
pathology can be remedied by using an SNIS proposal
that does not depend on q�, such as the prior p(z).
However, the prior is largely uninformative, so most of
the particles sampled from it will be of poor quality.

4 SMC-WAKE

To address the deficiencies of RWS, we propose a
method called SMC-Wake for fitting q�(z | x) to mini-
mize the average forward KL divergence (Equation 1).
Our method is detailed in Algorithm 1. SMC-Wake
generates discrete particle approximations P̂ to the
posterior p(z | xj) for each point xj 2 D, and fits
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the encoder q�(z | x) by using these to estimate the
gradient of the forward KL divergence. The proposed
method uses sequential Monte Carlo samplers to con-
struct discrete particle approximations to the posterior,
rather than importance samplers. SMC-Wake also uses
a gradient estimator that is consistent as the number
of SMC sampler runs tends to infinity (with a fixed
number of SMC particles per sampler).

4.1 Our LT-SMC subroutine

For each point xj 2 D, SMC-Wake constructs discrete
particle approximations P̂ to p(z | xj) using LT-SMC
(sketched in Algorithm 3, Appendix C). We perform
mutation at each stage using a random-walk Metropolis-
Hastings kernel Mt(·, dzt) that is invariant with respect
to �t�1. Our exact implementation (Appendix C) fol-
lows that of Chopin and Papaspiliopoulos (2020) and
uses adaptive temperature selection and optional re-
sampling. Given an observation xj and a number of
particles K, LT-SMC provides a discrete approxima-
tion Cat(z1:KT , w

1:K
T ) to the posterior p(z | xj), which

we use to estimate a term of the gradient of the forward
KL divergence (Equation 3). In our notation, we hence-
forth suppress the dependence on T , as we always use
discrete particle approximations from the final stage T

to compute expectations. Importantly, the entire LT-
SMC procedure does not depend on q�. By using the
prior as the base distribution �1, LT-SMC avoids the
circular pathology that we previously identified (Sec-
tion 3). Although the prior alone is uninformative as a
proposal, annealing along a tempering schedule results
in discrete particle approximations that approximate
the per-observation posteriors p(z | xj) well.

4.2 Consistent gradient estimation

For any fixed number of particles K and observation
xj 2 D, the particle approximations from LT-SMC
yield gradient estimators �

PK
i=1 w

ir� log q�(zi | xj),
which are biased for µj = �Ep(z|xj)r� log q�(z | xj).
This is problematic because stochastic gradient de-
scent based on biased estimators is not guaranteed to
converge. In this section, we propose three gradient
estimators that are asymptotically unbiased, including
two that are consistent. Our estimators accomplish
this by reducing the bias from self-normalization by
averaging the different particle approximations that are
computed across the optimizer iterations. Asymptotic
results are obtained as the number of particle approx-
imations M ! 1, where the number of particles K

remains fixed.

Consider a fixed observation x. The final target
�T (z) / p(z, x) in LT-SMC is known up to a nor-
malization constant C such that p(z, x) = C�T (z), i.e.,

C = p(x). Each individual LT-SMC sampler yields an
estimate

Ĉ =

TY

t=1

✓
1

K

KX

i=1

w̃
i
t

◆
, (5)

where w̃
1:K
t are the unnormalized weights from Algo-

rithm 3. This estimate satisfies EĈ = C, with the ex-
pectation taken over all the random variables generated
by the SMC algorithm (Naesseth, Lindsten, and Schön,
2019). SMC-Wake constructs an estimate of C from
M LT-SMC runs using the estimator 1

M

PM
m=1 Ĉ(m),

where Ĉ(m) is the estimate of the normalization con-
stant from iteration m 2 {1, . . . ,M}. By the strong
law of large numbers, 1

M

PM
m=1 Ĉ(m)

a.s.! C as M !1.

SMC samplers can provide unbiased estimates of
CEp(z|x)f(z) for a test function f . As C = p(x) is
a high-dimensional integral, C is usually unknown and
so one typically divides by the estimate Ĉ, resulting in
bias. Within our iterative fitting procedure for q�, we
instead propose to combine many normalization con-
stant estimates produced by many runs of SMC. These
can be averaged with O(1) memory to iteratively refine
our estimate of C while simultaneously fitting the vari-
ational parameters �. As the number of LT-SMC runs
M increases, 1

M

PM
m=1 Ĉ(m) converges to C, leading to

unbiased estimates of Ep(z|x)f(z) as M !1.

Table 2 provides three different ratio estimators, con-
structed with f(z) = �r� log q�(z | x) as the test
function for estimating the gradient of the forward KL
divergence. In each case, z1:K(m) , w

1:K
(m) , and Ĉ(m) denote

the atom positions, weights, and normalizing constant
estimates returned by the mth run of LT-SMC. For
r̂(b), z̃(m) refers to a single draw from Cat(z

1:K
(m) , w

1:K
(m)).

Each of the numerators in Table 2 is an unbiased estima-
tor of CEp(z|x)f(z). Dividing each by 1

M

PM
m=1 Ĉ(m)

yields an estimator of Ep(z|x)f(z). The different nu-
merators exploit different aggregations of the empirical
distributions Cat(z1:K(m) , w

1:K
(m)) to approximate the poste-

rior p(z | x), each with different memory requirements.

Table 2: Forward KL Gradient Estimators

Label Estimator Memory

r̂(a)
1
M

PM
m=1 Ĉ(m)

�PK
k=1 wk

(m)f(z
k
(m))

�
1
M

PM
m=1 Ĉ(m)

O(MK)

r̂(b)
1
M

PM
m=1 Ĉ(m)f(z̃(m))
1
M

PM
m=1 Ĉ(m)

O(M)

r̂(c) Ĉ(M)

�PK
k=1 wk

(M)f(z
k
(M)

�
1
M

PM
m=1 Ĉ(m)

O(K)

In our amortized setting, because we have a collection
of data points D = {x1, . . . , xn}, our method keeps
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track of the M different LT-SMC runs for each point
xj 2 D. For any point xj 2 D, r̂(a)

j , r̂(b)
j and r̂(c)

j are
the three gradient estimators from Table 2 for a given
iteration of the training procedure. The SMC-Wake
procedure is detailed Algorithm 1, where we use the
generic gradient estimator r̂: any of r̂(a), r̂(b), r̂(c)

can be used. SMC-Wake interleaves stochastic gradient
descent steps that follow the gradient 1

n

Pn
j=1 r̂j with

LT-SMC runs (Algorithm 3). Here we average over
all n training observations, but a mini-batch will also
suffice. Each r̂j itself is an aggregate of M samplers
for each point. Each additional run of LT-SMC com-
putes new particle approximations and normalizing
constant estimates for each point xj 2 D. Each time
new particle approximations are computed for a given
point xj , the estimators r̂(a)

j , r̂(b)
j or r̂(c)

j are recom-
puted and the estimate of the normalizing constant
Cj = p(xj) is refined. Algorithm 1 suggests rerunning
LT-SMC samplers for each point xj 2 D at each itera-
tion, but SMC-Wake can be made less computationally
demanding by distributing LT-SMC runs into batches.
In our experiments (Section 6), for example, we rerun
LT-SMC for only a single observation at each iteration.
It is also possible to decouple the process of running
LT-SMC with the process of optimization: perform
a large number of LT-SMC runs before optimization
begins, and then re-use these particles for every step
of the optimization.

Algorithm 1: SMC-Wake

Inputs: Data x1, . . . , xn, encoder q�, likelihood
p(x | z), prior p(z), SGD step size ⌘,
number of particles K, temperatures ⌧ .

Initialize SMCj = ;, j = 1, . . . , n

Repeat

for j = 1, . . . , n /* (for each datapoint */
do

z
1:K

, w
1:K

, Ĉ  LT-SMC(xj , p(x |
z), p(z), ⌧)

SMCj = SMCj [ {[z1:K , w
1:K

, Ĉ]}
Compute r̂j /* (See Table 2) */

end

� �� ⌘ 1
n

Pn
j=1 r̂j

Until Convergence

Return q�.

4.3 Asymptotic analysis

We show that r̂(a)
, r̂(b) and r̂(c) are asymptotically

unbiased and that the former two estimators are
strongly consistent. We begin with a well-known result:
the LT-SMC approximations to the posterior become

arbitrarily accurate as the number of particles K !1.
The following proposition formalizes this result.
Proposition 2. For an observation x and a joint

model with prior p(z) and bounded likelihood density

p(x|z), let 0 = ⌧1 < · · · < ⌧T = 1 denote a tem-

pering schedule. Let �t(z) / p(z)p(x | z)
⌧t denote

intermediate targets, and let Mt(·, dzt) be a sequence

of Markov transition kernels that leaves �t�1 invariant.

Let P̂ ⇠ Cat(w
1:K
T , z

1:K
T ) be the particle distribution

produced by LT-SMC using {⌧t, �t,Mt}Tt=1. Then, for

any measurable and bounded test function f ,

lim
K!1

E
h�
EP̂ [f(z)]� Ep(z|x))[f(z)]

�2i
= 0.

A proof follows by applying Proposition 11.3 of Chopin
and Papaspiliopoulos (2020) with Gt(zt�1, zt) =

p(zt)p(x|zt)⌧t�⌧t�1 . Above, the outer expectation is
taken with respect to all variables generated by the
SMC algorithm. In our case, we are interested in the
test function f(z) = �r� log q�(z | x). Proposition 2
implies that gradient estimators based on a single LT-
SMC run are asymptotically consistent as K !1. In
practice, however, finite K must be used, resulting in
biased gradient estimators.

The estimators r̂(a)
j , r̂(b)

j and r̂(c)
j (Table 2) resolve

this bias. These estimators with fixed K are asymptoti-
cally unbiased as the number of LT-SMC runs M !1
and the former two are strongly consistent.
Proposition 3. For an observation xj, suppose that

f(z) = �r� log q�(z | xj) is a bounded and measurable

function for any � 2 �. For m = 1, . . . ,M , let the

random variables Ĉ(m), w
1:K
(m), and z

1:K
(m) result from an

independent run of LT-SMC (Algorithm 3) with a fixed

temperature schedule. Then, the gradient estimators

r̂(a)
j and r̂(b)

j are strongly consistent for Ep(z|xj)f(z)

in M and the estimator r̂(c)
j is asymptotically unbiased

in M .

Appendix D provides a proof. Strongly consistent esti-
mators may be preferred, but are more costly: comput-
ing r̂(a)

j and r̂(b)
j require O(MK) and O(M) memory,

respectively, for each data point xj . However, in our
experiments (Section 6), we find that SMC-Wake out-
performs wake-phase training even for relatively small
M , for which memory usage is not a limiting factor,
for example M = 100. Moreover, for any fixed number
of particles K, the estimator r̂(c)

j is asymptotically
unbiased yet requires just O(K) memory (regardless
of M). This is advantageous compared to wake-phase
training, which uses biased gradient estimators and also
requires O(K) memory. We further discuss these three
estimators and their memory usage in Appendix D.
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4.4 Extension to particle MCMC

Just as Markov chain Monte Carlo methodology can be
incorporated into SMC algorithms (e.g., the mutation
kernels in Algorithm 3), SMC samplers can be nested
within MCMC frameworks. Particle-Independent
Metropolis-Hastings (PIMH) (Andrieu, Doucet, and
Holenstein, 2010) is one method of constructing a
Markov chain that samples the posterior using multiple
runs of LT-SMC. Given a state z and a normalizing
constant estimate Ĉ, a proposed draw znew ⇠ P̂new

is accepted with probability ↵ = min(1, Ĉnew
Ĉ

), where
P̂new, Ĉnew are quantities from a new LT-SMC run.

For situations where memory is limiting, we propose
adding a PIMH outer loop to SMC-Wake to yield a
new algorithm: SMC-PIMH-Wake (Algorithm 2). Ac-
cepting or rejecting new particles within Metropolis-
Hastings steps takes the place of iterative aggregation.
For any data point xj , this procedure results in a conver-
gent Markov chain with p(z | xj) as its stationary distri-
bution under mild conditions. SMC-PIMH-Wake yields
asymptotically unbiased estimates of the gradient of
the forward KL divergence as the number of Metropolis-
Hastings steps tends to infinity with O(K) memory,
similar to SMC-Wake with the gradient estimator r̂(c).
As the test function f(z) = �r� log q�(z | xj) changes
with every gradient step, consistent estimates cannot
be obtained with finite memory. In situations where
the variance of the gradient estimators computed by
LT-SMC is large, SMC-PIMH-Wake may provide lower-
variance gradient updates, e.g. by using the same SMC
sampler to estimate gradients for multiple gradient
steps consecutively.

Algorithm 2: SMC-PIMH-Wake

Initialize P̂j = Cat(z1:K , w
1:K

), Ĉj = Ĉ with
z
1:K

, w
1:K

, Ĉ  LT-SMC(xj , p(x | z), p(z), ⌧)
Repeat

for j = 1, . . . , n do

z
1:K
new, w

1:K
new, Ĉnew  LT-SMC(xj , p(x |

z), p(z), ⌧)

Compute ↵ = min
✓
1,

Ĉnew
Ĉj

◆

Set P̂j = Cat(z1:Knew, w
1:K
new), Ĉj = Ĉnew w.p.

↵

end

� �� ⌘ 1
n

Pn
j=1

⇣
�EP̂j

r� log q�(z | xj)

⌘

Until Convergence

5 RELATED WORK

Variational Sequential Monte Carlo (VSMC) (Naesseth
et al., 2018), Filtering Variational Objectives (FIVO)
(Maddison et al., 2017), and Auto-Encoding Sequential
Monte Carlo (AESMC) (Le et al., 2018) are closely
related to each other; all use SMC to facilitate optimiza-
tion of bounds on the marginal evidence. In contrast
to SMC-Wake, these methods are tailored to sequential
data and optimize the reverse KL divergence. Optimiz-
ing the reverse KL divergence is particularly difficult
within an SMC framework as computing gradients of
the reverse KL often relies on the reparameterization
trick; however, the resampling step of SMC is not easily
reparameterized. By minimizing the forward KL diver-
gence, we eliminate the need for reparameterization.

Markovian Score Climbing (MSC) (Naesseth, Lindsten,
and Blei, 2020) is also a method for optimizing the
forward KL. It uses an MCMC outer loop to achieve
asymptotic guarantees. In this way, MSC differs from
SMC-Wake (Algorithm 1), but is similar to SMC-PIMH-
Wake. MSC uses a conditional importance sampling
(CIS) transition kernel with q� as the proposal distri-
bution, rather than a Metropolis-Hastings kernel as
is used in SMC-PIMH-Wake. We show in Section 6.3
that our PIMH variant outperforms MSC, which mixes
slowly because initially q� is a poor proposal compared
to the particles generated by LT-SMC.

Neural Adaptive Sequential Monte Carlo (NASMC)
(Gu, Ghahramani, and Turner, 2015) is a non-
amortized method for sequential data (e.g., state-space
models) that adapts SMC mutation kernels to mini-
mize the forward KL divergence to the intermediate
targets. SMC-Wake differs from NASMC in its use
of Metropolis-Hastings kernels that do not depend
on q�, and in its gradient calculations that only use
particle approximations to the final target �T . Like
RWS, NASMC gradient estimators are also biased for
finite K. Three related methods, namely, Annealed
Flow Transport (AFT) (Arbel, Matthews, and Doucet,
2021), Continual Repeated Annealed Flow Transport
(Matthews et al., 2022), and Nested Variational Infer-
ence (NVI) (Zimmermann et al., 2021), also sample
from a target distribution by fitting proposals to mini-
mize a sequence of divergences to intermediate targets.
These sampling methods can be incorporated into the
SMC-Wake framework: while we propose using LT-
SMC samplers, any SMC-based algorithm can be used.
The circular pathology is avoided as long as the param-
eters of the proposals are not shared with the amortized
encoder q�. Using methods such as these in place of
the LT-SMC subroutine in Algorithm 1 is a potential
direction for future research.
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6 EXPERIMENTS

6.1 Two moons

The “two moons” model has been extensively used in
the simulation-based inference literature to benchmark
existing algorithms (Greenberg, Nonnenmacher, and
Macke, 2019; Lueckmann et al., 2021). The generative
process for latent z 2 R2 and observed x 2 R2 first
draws z1, z2

iid⇠ U(�1, 1), and then draws two auxil-
iary variables a ⇠ U

�
�⇡2 ,

⇡
2

�
and r ⇠ N

�
0.1, 0.01

2
�
.

Finally, the observation

x
>
= p+


� |z1 + z2|p

2
,
�z1 + z2p

2

�
,

where p = [r cos(a) + 0.25, r sin(a)]. The posterior dis-
tribution on z given x takes the shape of two crescent
moons facing each other. Because these regions are
disconnected, separated by a zero density region of the
posterior, exploring the latent space is potentially diffi-
cult and a highly flexible variational family is required
to approximate the posterior well. We use the neural
spline flow (NSF) as the variational family, conditional
on a given observation x (Durkan et al., 2019).

Given 100 points x1, . . . , x100 generated independently
from the two-moons model, we compare SMC-Wake
with estimator r̂(a), RWS (wake-phase training only),
and a defensive variant of RWS that performs impor-
tance sampling using the mixture 1

2p(z)+
1
2q�(z | x) as

a proposal. Defensive importance sampling has been
found to ameliorate the mass concentration problem
that can occur in wake-phase training when q� is used
as the proposal (Le et al., 2019). Additionally, this
choice of proposal avoids a divide-by-zero error that
arises when the proposed particles all have zero as their
posterior densities.

Additional details of the training procedure and results
for r̂(b) and r̂(c) are in Appendix E. Figure 1 shows
the amortized variational posteriors q�(z | x16) as an
example. SMC-Wake is the only method that cap-
tures the shape of the posterior. Wake-phase training
severely concentrates mass into a single point-like re-
gion, exhibiting the degeneracy described in Section 3.
Appendix E shows that problematic mass concentra-
tion for RWS occurs quickly, within 1000 gradient steps.
While the defensive variant of RWS does better, it is
still far worse than the quality of the SMC-Wake ap-
proximations. Variational approximations for several
additional data points are shown in Appendix E.

6.2 Avoiding mode collapse in MNIST

We consider learning a model of MNIST digits to il-
lustrate that SMC-Wake, though an inference method,

Figure 1: Posterior approximations given x16 by SMC-
Wake, Wake, and Defensive Wake. The bottom right
panel depicts the exact posterior distribution.

can nonetheless aid in model learning. Given 1000
normalized MNIST digits and labels {xi, `i}1000i=1 , we
fit a conditional model p(x | `, z) to maximize the
importance-weighted bound (IWBO) (Appendix A)
while simultaneously fitting the encoder q�. This fol-
lows the reweighted wake-sleep (RWS) framework of
Bornschein and Bengio (2015). The model is based on
a sigmoid belief network (Saul, Jaakkola, and Jordan,
1996) and is given by

p (x | `, z) ⇠ N (�
�
W`z + b`

�
, ⌧

2
Id), (6)

where �(·) denotes the sigmoid function, ` 2 {0, . . . , 9}
denotes the label, and  = {W0, . . . ,W9, b0, . . . , b9}
denotes model parameters to be learned. The hyperpa-
rameter ⌧ = 0.01 results in a highly peaked likelihood.
As the labels ` are fixed, this model fitting task is
equivalent to fitting a separate model for each digit
class. The amortized encoder q�(z | x, `) is fit jointly
with the model using both SMC-Wake and wake-phase
training, with alternating gradient updates for � and
 , respectively. We use the gradient estimator r̂(b) in
this example.

Additional details of the implementation are given in
Appendix F. Wake-phase gradient updates fit an en-
coder network that severely concentrates mass, learning
similar latent representations z for all digits in a given
class `. This results in mode collapse in the generative
model, visible by visualizing reconstructions (Figure 2).
Given different instances of the zero digit class, for
example, the wake-phase reconstructions (middle) look
nearly identical. This occurs due to the pathological
concentration of q�(z | x, `) described in Section 3,
resulting in nearly identical latent representations for
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all instances of a digit `. Appendix F shows similar
behavior for the other digit classes as well. SMC-Wake
avoids this degeneracy; its reconstructions (bottom)
closely match the true images (top).

Figure 2: Illustration of mass concentration in wake-
phase training. Wake-phase reconstructions (middle) of
real MNIST digits (top) with label zero all look nearly
identical, unlike SMC-Wake reconstructions (bottom).

6.3 Transformed Gaussian

6.3.1 Nested MCMC approaches

We consider a Gaussian-Gaussian hierarchical model
with latent variable z ⇠ N (0,�

2
Ip) and data x | z ⇠

N (Az, ⌧
2
Id) to compare two methods that make use of

an MCMC outer loop: SMC-PIMH-Wake (Section 4.4)
and Markovian Score Climbing (MSC) (Naesseth, Lind-
sten, and Blei, 2020). MSC proposes particles for the
next step of the Markov chain using q�. If this proposal
is poor, then the Markov chain mixes slowly, and thus
may concentrate mass. We study a high-dimensional
case with p = 50 and d = 100, and take standard
deviations � = ⌧ = 1. The design matrix A 2 Rd⇥p is
full-rank and fixed.

Both methods fit a variational family q�(z | x) ⇠
N (µ,LL

>
+ ✏I) with a lower-triangular matrix L 2

Rp⇥p. This family is flexible enough to approximate
the posterior almost exactly. (The addition of ✏I with
✏ = 0.0001 provides numerical stability.) The varia-
tional posterior amortizes over n = 50 points {xj}50j=1

generated from the above model. The exact posterior
distribution can be written in closed form by complet-
ing the square (see Appendix G); this enables analytical
computation of the forward, reverse, and symmetric
KL divergences for comparison. All divergences are
averaged over the n = 50 observations.

We used K = 100 particles for importance sampling
in MSC and K = 100 particles for LT-SMC in SMC-
PIMH-Wake. We find that MSC mixes slowly, and
thus performs poorly compared to SMC-PIMH-Wake.
Table 3 presents results after 500,000 gradient steps
for MSC, corresponding to at least 250,000 MCMC
steps for each point xj 2 D with mini-batching. In

contrast, the results for SMC-PIMH-Wake are com-
puted after only 40,000 gradient steps. As LT-SMC is
more expensive than importance sampling, we perform
fewer MCMC steps, only 800 MCMC steps for each
xj . (Appendix G provides additional details about
our implementation.) SMC-PIMH-Wake leads to lower
average forward KL divergence than MSC. The mixing
time for MSC is large because initially q� is a poor
proposal, whereas from the first iteration SMC-PIMH-
Wake proposes from a high-quality approximation to
the posterior computed by LT-SMC.

Table 3: Gaussian Hierarchical Model Learning Results
(Lower is better.)

MSC SMC-PIMH-Wake

Forward KL 2339 1387

Reverse KL 1762 1287

Symmetric KL 4102 2674

6.3.2 The importance of averaging

We now illustrate that for a fixed computational budget,
the approach used in SMC-Wake of taking a small K
and using many different samplers outperforms the
naive approach of taking large K and using a single
sampler. We use a similar setting as above. (For
implementation details, see Appendix G.) For each
observation, we run LT-SMC with K = 10, 000 particles
and also perform M = 100 runs each using K = 100

particles. Gradient estimators are constructed from
each of these two settings and used to fit q�. We use
a naive estimator for the M = 100 case that does not
weight according to Ĉ(m) values. Both settings require
a similar number of likelihood evaluations. Figure 3
demonstrates that fitting the encoder with M = 100

samplers results in a q� with significantly lower average
forward KL divergence to the posterior.

Figure 3: Average forward KL divergence during train-
ing for an encoder q� fit using one K = 10, 000 sampler
per-point (blue) and M = 100 different K = 100 sam-
plers (green).
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The larger K counterintuitively performs worse be-
cause it suffers from a lack of sample replenishment
(Matthews et al., 2022). If the K = 10, 000 SMC sam-
pler has a low effective sample size (ESS), as occurs in
this case due to the large dimension p = 50 of the latent
space, the encoder q� is significantly overfit to only a
few particles. Although these particles may be located
at a peak of the posterior density, the lack of diversity
among them hinders the fitting process. In contrast,
even if all M = 100 samplers of K = 100 have low ESS,
the diversity of samples is richer and averaging over
many independent samplers reduces variance (at the
cost of increased bias due to smaller K).

6.4 Galaxy spectra emulator

The Probabilistic Value-Added Bright Galaxy Survey
(PROVABGS) simulator is a state-of-the-art simula-
tor of astronomical spectra (Hahn et al., 2022) that
maps parameters ✓ to spectra x. Each spectrum is a
high-dimensional vector of flux measurements for an
astronomical object: at each wavelength � in a grid be-
tween 3000 and 10,000 angstroms, the spectrum records
the flux, typically measured in units erg · cm�2s�1Å�1

(Donald G. York, J. Adelman et al., 2000; DESI Col-
laboration, B. Abareshi et al., 2022). We consider
the problem of predicting parameters from observed
spectra: given noisy samples of the spectra x, we will
learn to reconstruct the astronomical parameters ✓.

We train a neural network emulator of the PROVABGS
simulator for fast likelihood evaluation and work with
normalized spectra for ease. Details are given in Ap-
pendix H. Our emulator takes 11 scientific input pa-
rameters ✓ of interest as inputs and produces spectra
as outputs. (Examples are given in Appendix H.) We
use the priors for the 11 parameters suggested by Hahn
et al. (2022). As the simulator’s output is noiseless, we
add Gaussian noise proportional to the signal strength
in each dimension to simulate typical measurement
error, with signal-to-noise ratio (SNR) set to 1/� with
� = 0.1. The likelihood function is thus multivariate
Gaussian and can be evaluated efficiently.

Given 100 spectra from the forward model, we fit an
amortized neural spline flow q�(✓ | x) using SMC-Wake
with estimator r̂(a) and K = 100 particles. Addi-
tional implementation details are given in Appendix H.
To assess the quality of the amortized encoder, as a
surrogate for the ground truth we run MCMC using
Metropolis-Hastings random walks with 100 walkers
for 10,000 steps each following 10,000 burn-in steps.
We plot several kernel-smoothed marginal density esti-
mates from both MCMC and SMC-Wake in Figure 4.
SMC-Wake generally captures the shape of the poste-
rior well, assigning high density to the ground truth,

while being somewhat overdispersed as a consequence
of minimizing the forward KL divergence. This com-
pares favorably to wake-phase training, which exhibits
numerical instability on this problem (Appendix H).

Figure 4: Posterior estimation for one example spec-
trum x from the training set. We used MCMC (green)
and SMC-Wake (blue) to estimate the posterior on ✓.
Smoothed (marginal) estimates of the posterior for 4
of the 11 parameters ✓i are plotted, with the true value
of the parameter indicated with a red vertical line.

7 DISCUSSION

SMC-Wake is a method for minimizing the forward
KL divergence in amortized variational inference using
likelihood-tempered SMC. SMC-Wake generalizes wake-
phase training from Reweighted Wake-Sleep (RWS) and
improves on it by providing consistent or asymptoti-
cally unbiased gradient estimates for the forward KL
divergence. Wake-phase updates have a troublesome
circular property: q� is used to make proposals that
are themselves used to update �. Empirical results
demonstrate that this entanglement can lead to a de-
generate concentration of mass. SMC-Wake avoids this
degeneracy by proposing from the prior. Exploring
ways to safely incorporate q�(z | x) into the proposal
step is an interesting direction for future research.

SMC-Wake may not be appropriate in all settings. Each
run of SMC is more expensive than the lightweight im-
portance sampling used by wake-phase updates. How-
ever, in practice, we find that SMC yields more ac-
curate answers. With further research, we speculate
that incorporating proposal kernels based on likelihood
gradients, such Metropolis-Adjusted Langevin kernels
(Roberts and Rosenthal, 1998) into SMC-Wake may
lead to even better performance.
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A OBJECTIVES FOR AMORTIZED INFERENCE

Given a data point x, variational inference seeks to approximate the intractable posterior p(z | x) with a tractable
distribution q(z) (Blei, Kucukelbir, and McAuliffe, 2017; Wainwright and Jordan, 2008). Learning a different q

for every x of interest can be computationally expensive. Amortized variational inference (AVI) leverages deep
learning for this task, learning parameters � of a neural network that transforms data x to the distributional
parameters of a posterior approximation. AVI thus allows us to create the conditional distribution q�(z | x) for
any x using a forward pass through this neural network (Ranganath, Gerrish, and Blei, 2014; Ambrogioni et al.,
2019; Kingma and Welling, 2019). In many settings, the decoder p (x | z) is also learned along with the inference
network, with both fit to an observed dataset D = {x1, . . . , xn}.

To learn the model parameters  and the variational parameters �, variational autoencoders (VAEs) (Kingma
and Welling, 2019) target the reverse KL divergence KL(q�(z | x) || p (z | x)) via maximization of

ELBO( ,�) = Ez⇠q�(z|x) log
p (x, z)

q�(z | x) . (7)

The importance-weighted autoencoder (IWAE) targets a similar but tighter lower bound on the evidence, a
multi-sample generalization of the ELBO called the importance-weighted bound (IWBO):

IWBO( ,�) = E
z1,...,zK

iid⇠ q�(z|x)
log

KX

i=1

1

K

p (x, zi)

q�(zi | x)
. (8)

Both ELBO and IWBO maximization can be viewed as the minimization of a reverse KL divergence. In the case
of the ELBO, maximization is equivalent to minimization of KL(q�(z | x) || p (z | x)), while for the IWBO, the
divergence is between two distributions on an extended sampling space (Kingma and Welling, 2019; Le et al.,
2018).

To achieve lower variance gradients with respect to �, implementations of both the IWBO and ELBO objectives
often rely on the “reparameterization trick”, writing a draw z ⇠ q�(z | x) as a deterministic function of an auxiliary
random variable that is independent of � (Kingma and Welling, 2019; Burda, Grosse, and Salakhutdinov, 2016).
This reliance on reparameterization stems from the fact that expectations are computed with respect to draws
from q, which themselves depend on �. On the contrary, Reweighted Wake-Sleep and any other method targeting
the forward KL divergence need not use reparameterization, as expectations in the loss function are computed
with respect to p (which is constant with respect to �) rather than q�.

B THE CIRCULAR PATHOLOGY

We provide more detail on the surrogate objective (Equation 4). Let ? denote a stop gradient operator (Ścibior
and Wood, 2021). Note that ? does not affect evaluation whatsoever; f(x) = f(?x) always. However, the ?
notation does alter gradient calculation, i.e. ?x is always considered as a constant with respect to any gradient
operation. Stop gradients are necessary when considering the surrogate objective for wake-phase training because
they accurately describe the procedure for implementation of wake-phase training in practice. More precisely, to
compute

�
KX

i=1

w
ir� log q�(zi | x) (9)

one first a) draws z
1:K iid⇠ q� and disables gradient tracking with respect to � (e.g., by calling .sample() instead

of .rsample() in PyTorch), and secondly b) ensures the normalized weights do not track gradients either by
calling weights.detach() or similar. In this fashion, automatic differentiation and back propagation operations
function as required, and track correct gradients for wake-phase training. Symbolically, the surrogate objective
achieves this same behavior with appropriate stop-gradients, as given below:

E
z1,...,zKiid⇠ q?�(z|x)

�
KX

i=1

(?wi
) log q�(z

i | x).
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We can verify that the Monte Carlo gradient of surrogate objective explicitly matches the Monte Carlo gradient
estimator used by wake-phase training. We have

r�Ez1:Kiid⇠ q?�(z|x)

KX

i=1

(?wi
) log q�(z

i | x) = r�
Z  

KX

i=1

(?wi
) log q�(z

i | x)
!
q?�(z

1:K | x)dz1:K (10)

=

Z  
KX

i=1

(?wi
)r� log q�(zi | x)

!
q?�(z

1:K | x)dz1:K (11)

= E
z1:Kiid⇠ q?�(z|x)

KX

i=1

(?wi
)r� log q�(zi | x) (12)

where we just used the basic properties of ? in the derivation above, namely quantities with ? are constant with
respect to the gradient operator r�. A Monte Carlo draw of the final line is equivalent to the wake-phase SNIS
gradient estimator with K particles. Accordingly, wake-phase dynamics in � follow the gradient of this surrogate
objective (with the appropriate stop gradient operations in place).

We next prove Proposition 1, reproduced below.
Proposition 1. Let L(q) denote the surrogate objective defined above for fixed x and fixed K 2 N. Let p denote

the posterior p(z | x). Then there exists q(z) 6= p(z | x) such that L(q) < L(p).

Proof. Fix c 2 R. For any � > 0, consider L(q�) where q� ⇠ Unif(0, �). Then, there exists � > 0 such that
L(q�) < c. Because the density of q is given by 1

� , we must have L(q�) = � log(1/�) because the normalized
weights sum to one. For any choice of c 2 R, provided � < exp(c), we have L(q�) < c as desired. Clearly, then,
for sufficiently small � we have L(q�) < L(p).

C SMC-WAKE IMPLEMENTATION

Algorithm 3 below sketches LT-SMC with a fixed temperature schedule. Fixed temperature scheduling is necessary
technically for our proofs of asymptotic results to hold. However, either adaptive or non-adapative selection
can be used in practice generally: one practical way of exploiting adaptive selection in the fixed temperature
framework is to perform exploratory runs to determine a suitable temperature schedule prior to fitting of the
encoder network, and thereafter using this fixed schedule throughout.

Algorithm 3: LT-SMC

Inputs: Data point x, likelihood function p(x | z), prior p(z), temperatures ⌧ .
Initialize particles z

1:K
1

iid⇠ p(z), unnormalized weights w̃
1:K
1 = 1, and normalized weights w

1:K
1 =

1
K .

for t = 1 to T � 1 do

Resample z
(i)
t ⇠

iid⇠ Cat(z1:Kt , w
1:K
t ), i 2 [K]

Mutate z
i
t+1 ⇠M(z

(i)
t , dzt+1), i 2 [K]

Update w̃
i
t+1 = p(x | zit+1)

⌧t+1�⌧t , i 2 [K]

Normalize w
i
t+1 =

w̃i
t+1PK

j=1 w̃j
t+1

, i 2 [K]

end

Return z
1:K
T , w

1:K
T .

In Algorithm 4, we present the likelihood-tempered SMC procedure that is used in our implementations of
SMC-Wake for Section 61. The algorithm is based on Algorithms 17.1 and 17.3 of (Chopin and Papaspiliopoulos,
2020). The algorithm takes a data point x along with a prior density p(z) and a conditional likelihood p(x | z)
as input. The transition kernel M(·, dz) at stage t leaves invariant the marginal distribution on z with density
proportional to p(z)p(x | z)⌧t by constructing a Metropolis-Hastings random-walk kernel. Temperatures are
chosen adaptively via Algorithm 5, as discussed below. The primary differences between the implementation

1Code to reproduce experimental results is publicly available at https://github.com/declanmcnamara/smc-wake
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and the abbreviated Algorithm 3 are the use of adaptive temperature selection and the optional resampling step,
which can reduce variance.

Algorithm 4: LikelihoodTemperedSMC (Chopin and Papaspiliopoulos, 2020)
Inputs: Data point x, likelihood function p(x | z), prior p(z), invariant kernel M(·, dz), number of particles

K, minimum effective sample size ESSmin.
Initialize stage counter t = 1, particles z

1:K
1

iid⇠ p(z), unnormalized weights w̃
1:K
1 = 1, normalized weights

w
1:K
1 =

1
K , and ⌧1 = 0

for t = 1 to T � 1 do

�  AdaptiveTempering(⌧, p(z), p(x | z), {z1:Kt , w
1:K
t })

⌧t+1  ⌧t + �

if ESS < ESSmin then

Resample z
(i)
t

iid⇠ Cat(z1:Kt , w
1:K
t ), i 2 [K]

ŵ
1:K
t  1

else

z
(i)
t = z

i
t, i 2 [K]

ŵ
1:K
t  w

1:K
t

Mutate z
i
t+1 ⇠M(z

(i)
t , dzt+1), i 2 [K]

Update w̃
i
t+1 = ŵ

i
t · p(x | zit+1)

⌧t+1�⌧t , i 2 [K]

Normalize w
i
t+1 =

w̃i
t+1PK

j=1 w̃j
t+1

, i 2 [K]

end

Return P̂ = Cat(z1:KT , w
1:K
T ).

Algorithm 5 presents the adaptive tempering algorithm featured in Algorithm 4, reproduced from Chopin and
Papaspiliopoulos (2020) §17.2.3. The notation featured in the algorithm comes from writing the target distribution
in energy form (Murphy, 2023), i.e. �(z) / 1

Lp(z) exp(�V (z)), which can be easily achieved, for example with
the posterior, by taking V (z) = � log p(x | z).

Algorithm 5: AdaptiveTempering (Chopin and Papaspiliopoulos, 2020)
Inputs: Current temperature ⌧ , likelihood function p(x | z), current particle set {z1:K , w

1:K}, minimum
effective sample size ESSmin.

Find � that solves nPK
i=1 exp

�
��V

�
z
i
� o2

PK
i=1 exp {�2�V (zi)}

= ESSmin,

where V (zi) = � log p(x | zi).
Return �.

In practice, we find it unnecessary and computationally expensive to increment the number of SMC sampler
runs M for every xj 2 D each time a gradient step is taken, as is suggested by Algorithm 1. This would require
n different LT-SMC runs for every gradient step. As elaborated below in our experimental details, we find it
sufficient to increment M for only a single xj 2 D every gradient step, or perhaps even less often, e.g. every ten
gradient steps.

One consequence of this computation-saving scheme is that the number of LT-SMC runs Mj is different for each
observation xj . This complicates vectorized operations when averaging over mini-batches of xj 2 D. To resolve
this, our implementation of the gradient estimators r̂(a) and r̂(b) uses a slight alteration of the estimators in
Table 2. From the equalities

r̂(a)
=

MX

m=1

Ĉ(m)
PM

m=1 Ĉ(m)

� KX

k=1

w
k
(m)f(z

k
(m))

�
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and

r̂(b)
=

MX

m=1

Ĉ(m)
PM

m=1 Ĉ(m)

f(z(m)), where z(m) ⇠ Cat(w1:K
(m) , z

1:K
(m)),

we see that these resemble importance sampling estimators, with normalized weights Ĉ(m)PM
m=1 Ĉ(m)

, m = 1, . . . ,M .
To perform vectorized operations, we thus pick a value M

⇤ and for each observation xj in a minibatch, we sample
(with replacement) M⇤ samplers from the Mj available, each with probability Ĉ(m)PM

m=1 Ĉ(m)
. The resulting M

⇤ SMC
samplers are then used to construct each of these two gradient estimators. This results in consistent dimensions
for vectorizing minibatch computations of gradients. Of course, if LT-SMC runs are cheap, the procedure can be
performed naively as in Algorithm 1 where n LT-SMC runs are performed at every gradient step. One additional
alternative that also saves computation is to increment M less frequently, e.g., running LT-SMC for all n points
but only every 10 gradient steps.

In practice, the estimates Ĉ(m) of the normalization constant may have large variance, especially in high-
dimensional problems. This can introduce sample deficiency into the SMC-Wake algorithm, as all weight may
concentrate on one Ĉ(m), and thus effectively particles from a single sampler are used. In implementation, this
difficulty can be alleviated by considering only a random subset of SMC samplers (and their estimates of the
normalizing constants) of size M

0 at each gradient step, with M
0
< M . This ensures that samples from many

different samplers are used to estimate gradients and retains asymptotic guarantees as long as the size of M 0 is
iteratively increased throughout the procedure.

D ASYMPTOTIC ANALYSIS

In this section, we prove asymptotic properties of the gradient estimators r̂(a)
, r̂(b), and r̂(c) and also discuss

the memory requirements of each.

Following Naesseth, Lindsten, and Schön (2019), we let u denote all random variables generated by a run of
likelihood-tempered SMC (Algorithm 4) with a fixed temperature schedule ⌧1, . . . , ⌧T . We have the following
result from Proposition 7.4.1 of Del Moral (2004), also given in Theorem 2.1 of Naesseth, Lindsten, and Schön
(2019), whose notation we follow more closely.
Proposition. For any integrable test function f and any run of Algorithm 4, we have

Eu

 TY

s=1

✓
1

K

KX

k=1

w̃
k
s

◆ KX

k=1

w
k
T f(z

k
T )

�
= CEp(z|x)f(z) (13)

with C = p(x), where w̃s denotes unnormalized weights and ws denotes normalized weights at any stage s of the

SMC sampler.

The above result The result holds for a general sequence of unnormalized target distributions �̃1, . . . �̃T and any
general SMC sampling algorithm, but we have specialized to the likelihood-tempered case in the above where these
unnormalized targets are given by p(z)p(x | z)⌧1 , . . . , p(z)p(x | z)⌧T for 0 = ⌧1 < · · · < ⌧T = 1. The unbiasedness
of the estimator Ĉ (Equation 5) for C results from the above proposition with the special case f(z) = 1. We now
wish to show the consistency or asymptotic unbiasedness of the estimators below, reproduced from Table 2.
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r̂(a)
=

1
M

PM
m=1 Ĉ(m)

�PK
k=1 w

k
(m)f(z

k
(m))

�

1
M

PM
m=1 Ĉ(m)

r̂(b)
=

1
M

PM
m=1 Ĉ(m)f(z(m))

1
M

PM
m=1 Ĉ(m)

, where z(m) ⇠ Cat(w1:K
(m) , z

1:K
(m))

r̂(c)
=

Ĉ(M)

�PK
k=1 w

k
(M)f(z

k
(M))

1
M

PM
m=1 Ĉ(m)

We can now consider each of the three estimators in turn, as we prove Proposition 3, reproduced below.
Proposition 3. For an observation xj, suppose that f(z) = �r� log q�(z | xj) is a bounded and measurable

function for any � 2 �. For m = 1, . . . ,M , let the random variables Ĉ(m), w
1:K
(m), and z

1:K
(m) result from an

independent run of LT-SMC (Algorithm 3) with a fixed temperature schedule. Then, the gradient estimators r̂(a)
j

and r̂(b)
j are strongly consistent for Ep(z|xj)f(z) as M !1 and the estimator r̂(c)

j is asymptotically unbiased as

M !1.

Proof. We first note that by the strong law of large numbers, the denominator 1
M

PM
m=1 Ĉ(m)

a.s.! C. This holds
immediately because each SMC sampler is generated independently; therefore, the random variables u generated
by each run are independent. In particular, the random variables Ĉ(m) are independent for all m, which implies
the result. Below, we discuss each gradient estimator in turn.

(a) By Equation (13) and the definition of Ĉ(m) (cf. Equation (5)), the numerator converges almost surely to
CEp(z|x)f(z) by the strong law of large numbers by similar logic to the above. Accordingly, by the continuous
mapping theorem the quotient

r̂(a)
=

1
M

PM
m=1 Ĉ(m)

�PK
k=1 w

k
(m)f(z

k
(m))

�

1
M

PM
m=1 Ĉ(m)

converges almost surely to Ep(z|x)f(z) and is therefore strongly consistent. An important detail that allows
application of the continuous mapping theorem is that the random variables Ĉ(m) are strictly positive, i.e.,
Ĉ(m) > 0, avoiding division by zero issues.

(b) First formally define the random variables conditional on u(m) for the mth sampler by

Ĉ(m) | u(m) = �(Ĉ(m)) (14)

z(m) | u(m) ⇠ Cat(w1:K
(m) , z

1:K
(m)). (15)

In other words, conditional on u(m), the random variable Ĉ(m) is a point mass at the quantity defined in Equation 5
and the random variable z(m) is a draw from the final particle distribution at stage T for the mth sampler. Then
we have by the law of iterated expectation for any m

E
⇥
Ĉ(m)f(z(m))

⇤
= Eu(m)


E
⇥
Ĉ(m)f(z(m)) | u(m)

⇤�

= Eu(m)


Ĉ(m)E

⇥
f(z(m)) | u(m)

⇤�

= Eu(m)


Ĉ(m)

KX

k=1

w
k
(m)f(z

k
(m))

�

= CEp(z|x)f(z)
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by Equation (13), and so again by the strong law of large numbers, the numerator of (b) converges almost surely
to CEp(z|x)f(z). By the same reasoning as above, the quotient that defines the ratio estimator r̂(b) converges
almost surely to Ep(z|x)f(z), and so is strongly consistent for Ep(z|x)f(z).

(c) The estimator r̂(c) is asymptotically unbiased, but not consistent because the variance does not tend to zero.
Using the fact that 1

M

PM
m=1 Ĉ(m)

a.s.! C and hence 1
M

PM
m=1 Ĉ(m)

p! C, an application of Slutsky’s theorem

yields that the distribution of this estimator tends to that of the random variable Ĉ(m)

C

PK
k=1 w

k
(m)f(z

k
(m)) which

clearly has expectation Ep(z|x)f(z) by Equation (13). This suffices to show asymptotic unbiasedness (cf. Lehmann
and Casella (1998) pg. 438, Definition 2.1).

The gradient estimators r̂(a) and r̂(b) may be viewed as performing a form of “meta importance sampling” or
“distributed importance sampling” (Naesseth, Lindsten, and Schön, 2019), where the “weights” are the evidence
estimates Ĉ(m) across M different samplers, properly normalized to sum to unity by the denominator. Keeping in
mind that Ĉ(m) estimates the evidence p(x) for a given observation x, higher weights thus correspond to particle
sets for which the estimator of the evidence is higher—this provides an intuitive understanding of which SMC
samplers receive higher weight. The unnormalized weights are computed based on p(z, x), so higher weights
indicate particles that better explain the observed data.

The numerator of the gradient estimator r̂(c) has variance that does not tend to zero, and therefore this cannot
result in a consistent estimator. However, the variance of this estimator can be reduced at the standard Monte
Carlo rate by averaging over some finite number of SMC sampler runs L < M using a rolling window approach,
e.g., averaging over the most recent 10 SMC sampler runs.

We conclude with a brief discussion of the memory requirements of the gradient estimators. First, observe that
the quantity

1

M

MX

m=1

Ĉ(m) =
M � 1

M

 
1

M � 1

M�1X

m=1

Ĉ(m)

!
+

1

M

⇣
Ĉ(M)

⌘

and so this average can be maintained with only O(1) memory as M ! 1. Considering the three estimators
in turn, for each data point x we thus immediately have that r̂(a) requires O(MK) memory by maintaining a
K-particle set for each of the M sampler runs. By resampling a single particle and applying the law of iterated
expectation, the estimator r̂(b) just requires O(M) memory for M sampler runs. The estimator r̂(c) is the
cheapest—it only uses the K-particle set from the most recent sampler, i.e. the Mth, to compute the numerator,
and so thus requires O(K) memory. Of course, to repeatedly construct the samplers for increasing M , the
SMC-Wake procedure also requires sufficient memory to run LT-SMC itself which is O(K) for every run.

E TWO MOONS

We generate 100 points x1, . . . , x100 independently from the generative model in Section 6.1. The encoder
architecture is a neural spline flow (NSF) (Durkan et al., 2019), adapted from the sbi Python library (Tejero-
Cantero et al., 2020). We use the default NSF settings as the problem is low-dimensional enough to avoid
embedding nets, etc. For all experiments, some tensor operations in PyTorch were performed using NVIDIA
GeForce RTX 2080 Ti graphical processing units (GPUs).

All methods were trained using a batch size of 16, with a learning rate of 0.0001 for 50,000 gradient steps. We
use a large set of K = 1000 particles for all the methods. SMC-Wake reruns one SMC sampler (corresponding to
one observation) at random every 10 gradient steps, corresponding to about M = 50 runs of the SMC sampler
per point throughout the fitting procedure. Even relatively small values for M such as those used here yield
a significant improvement over wake-phase training. For all SMC runs, the proposal distribution was a 5-step
Metropolis-Hastings random-walk kernel with Gaussian steps and �

2
= 0.1

2 as its variance. For wake-phase
updates, instances where the self-normalized importance sampling estimate of the gradient was undefined were
ignored and re-tried.

In the same manner as in Figure 1, we plot the variational approximations for several other points in the training
set in Figure 5, Figure 6, and Figure 7. We show results based on training via the three gradient estimators
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r̂(a)
, r̂(b), and r̂(c), denoted as SMC-Wake(a)-(c), respectively.

Figure 5: Comparison of two-moons variational posteriors.

Figure 6: Comparison of two-moons variational posteriors.

Clearly, wake-phase training concentrates mass. We show that this concentration of mass occurs very rapidly, in
this case within one thousand gradient steps, in Figure 8.

F MNIST

Amortized inference is often used to simultaneously train a model (decoder) and a posterior approximator
(encoder). In this setting, latent representations can be considered as compressed versions of data, from which
reconstructions should nevertheless be accurate (Kingma and Welling, 2019; Burda, Grosse, and Salakhutdinov,
2016). Given 1000 MNIST digits x and labels ` denoted by {xi, `i}1000i=1 , we simultaneously fit an encoder q�(z | x, `)
and a decoder p (x | `, z).

Each class ` is modeled by a sigmoidal belief network (SBN) (Saul, Jaakkola, and Jordan, 1996), and thus the
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Figure 7: Comparison of two-moons variational posteriors.

Figure 8: Visualizations of the importance sampling particle approximations with K = 1000 for wake-phase
training. The nine panels are sampled from the inference network at every hundred gradient steps, so at step
100, 200, . . . , 900. We see that even within the first one thousand gradient steps, mass is concentrated.

model is given by
p (x | `, z) ⇠ N (�

�
W`z + b`

�
, ⌧

2
Id) (16)

where �(·) denotes the sigmoid function. The observations x are normalized to have intensities in [0, 1], and
therefore the sigmoidal transformation describes the data well. Setting ⌧ = 0.01 results in a highly peaked
likelihood.

We take p = 16 as the latent dimension, and thus W` 2 Rp⇥784 and b` 2 R784 for all `. For the inference network,
we use a simple amortized diagonal Gaussian distribution q�(z | x) = N (µ(x), diag(�(x))) whose parameters are
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the output of a three-layer dense network with ReLU activation and hidden dimension of 64. We use logarithmic
scales for numerical stability. The prior p(z) is given by a standard multivariate Gaussian distribution. We used
a learning rate of 0.0005 to fit both the decoder and encoder. All methods alternated an update to the model
parameters followed by an update to the encoder parameters, with 50,000 steps each.

The model parameters � are fit to maximize the IWBO while the encoder is fit by wake-phase training and
SMC-Wake, using the gradient estimator r̂(b). In addition to Figure 2, below we plot several similar plots for
other digits in Figure 9, Figure 10, and Figure 11.

The procedure is implemented by alternating gradient updates to ✓ and to �, respectively. This can be done
safely without losing the asymptotic guarantees of the estimators r̂(a)

, r̂(b), and r̂(c) provided that the model
parameters ✓ converge (stop changing) to some ✓⇤ by some finite M

⇤
<1. In this case, as M !1 the average

of normalization constant estimates still tends to the normalization constant for the correct model (i.e. with
parameters ✓⇤). This follows directly from Kolmogorov’s generalized LLN for independent (but not identically
distributed) r.v.’s: (

1
M

PM
m=1 Ĉ(m)) � (

1
M

PM
m=1 µ(m))

a.s.! 0, where µ(m) = EĈ(m). If ✓ = ✓
⇤ for all M > M

⇤,
then 1

M

PM
m=1 µ(m) ! C, the normalization constant for the final model with parameters ✓⇤. This is true even

without discarding early normalization constant estimates, although discarding may be desirable in practice in
some applications. Intuitively, the effect of finitely many normalization constant estimates for “wrong” models
diminishes as we aggregate infinitely many estimates for the “correct” model.

Figure 9

Figure 10
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Figure 11

G GAUSSIAN LINEAR MODEL
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by a completing the square argument. Therefore, the posterior distribution is N (M
�1

b,M
�1

) where

M =
Id

�2
+

A
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A

⌧2
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and

b =
A

>
x

⌧2
2 Rd

.

The experimental details for the nested MCMC examples are as follows: as stated, we use dimensions p = 50 and
d = 100, as well as � = ⌧ = 1, and the design matrix A 2 Rd⇥p is fixed. The encoder parameterizes a multivariate
Gaussian distribution in p dimensions. The variational family q�(z | x) ⇠ N (µ,LL

>
+ ✏I) is flexible enough to

approximate the exact posterior. We add the additional ✏I term with ✏ = 0.0001 for numerical stability, but this
does not overly constrain the variational family in this case, as the true posterior covariance has eigenvalues at
least this large. The variational parameters given any observation are the outputs of a dense neural network with
4 dense layers each of dimension 64, with ReLU activation. For each run of LT-SMC, each stage t performs the
mutation step using 100 steps of a Metropolis-Hastings random-walk kernel with � = 0.01, each kernel leaving
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Figure 12: The forward KL divergence averaged across all n observations, plotted throughout the 500,000 gradient
steps of fitting by Markovian score climbing (MSC). At convergence, the minimal average forward KL achieved
seems to be approximately 5000 or so.

the stage t target �t invariant.

We fit the encoder using the SMC-PIMH-Wake objective using a batch size of 32 data points per gradient step
(out of n = 50 possible in the given dataset), with learning rate 0.0001 for 40,000 gradient steps. The number of
particles used is K = 100. After each gradient step, we randomly pick just one xj 2 D, rerun LT-SMC for it,
and take a Metropolis-Hastings step within the outer PIMH loop for that particular xj . SMC samplers are more
expensive to run than SNIS, and we found that rerunning the SMC samplers for each point in D at each gradient
step was unnecessary to achieve good results. Across 40,000 gradient steps, this averages to about 800 MCMC
steps for each xj 2 D.

We compare to Markovian Score Climbing (MSC), using q� as the proposal distribution within a CIS kernel for
MCMC. As IS is more lightweight than SMC, we perform an MCMC step for each of the n = 50 Markov chains
(one for each datapoint) every time its corresponding observation xj is in a minibatch for a gradient step. As the
batch size is 32 in our implementation, this corresponds to over 250,000 MCMC steps for each of the 50 chains
over a total of 500,000 gradient steps. All other hyperparameters for the fitting procedure are the same as those
for SMC-PIMH-Wake, including the number of particles K and the learning rate.

In addition to the results of Table 3, in Figure 12 we plot the average forward KL divergence (recorded every
5,000 gradient steps) throughout the MSC fitting procedure. These results suggest that the fitting procedure for
q� is near convergence after 500,000 steps and has converged to an encoder network with an average forward KL
of around 2,000 (the red horizontal line in Figure 12 is at 2,000). SMC-PIMH-Wake, on the other hand, fits an
encoder with a significantly lower forward KL.

For the example comparing many samplers and a single large sampler, we have the same setup and architectures
as above, except we only use 10 data points for ease, as computing the K = 10, 000 particle sampler for each
is computationally expensive. To make the problem more challenging, we also use a different fixed matrix B

instead of A that results in a more poorly conditioned posterior, i.e. one that cannot be described exactly by the
variational family, and we use a Metropolis-Hastings random-walk kernel with only 10 steps and with a larger �
(0.1) to ensure adequate exploration of the space. For each point, a single SMC sampler is run with K = 10, 000

particles, along with 100 different runs with K = 100 particles. All runs use a 10-step MHRW transition kernel at
each stage similar to that described above.

We fit the encoder network using a naive form of the SMC-Wake gradient estimator for this setting, as the
K = 10, 000 case only has M = 1 sampler to work with. For the case of K = 10, 000 particles, the gradient is
thus estimated at every step using the same sets of particles z

1:K 2 R10,000 and weights w
1:K 2 R10,000, as the

sampler is run only once. For the K = 100 case, at each gradient step we select one of the M = 100 samplers
at random, and use the vectors z

1:K
, w

1:K 2 R100 to estimate the gradient. This can be thought of as the most
naive form of SMC-Wake, as the samplers have even weight and evidence estimates Ĉ

(m) are not used to weight
the samplers. Alternatively, this can be considered as the lightweight form of SMC-Wake with estimator r̂(a)
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focused on sample replenishment with trivial M 0
= 1 (see Appendix C). As Figure 3 illustrates, the K = 10, 000

sampler is inefficient: because the LT-SMC procedure is difficult to tune in this large dimension, this sampler has
ESS ⇡ 1, so the larger particle budget does not help much compared to a larger number of SMC samplers.

H GALAXY SED EMULATOR

The Probabilistic Value-Added Bright Galaxy Survey simulates synthetic spectra for the Dark Energy Spectroscopic
Instrument (DESI) Bright Galaxy Survey. Its code is freely available at https://github.com/changhoonhahn/
provabgs (Hahn et al., 2022; DESI Collaboration, B. Abareshi et al., 2022), and used with permission of the
MIT License.

The simulator uses 12 parameters to produce synthetic spectra. We describe these below, reproduced from Hahn
et al. (2022).

Name Description Prior
logM⇤ log galaxy stellar mass uniform over [7, 12.5]

�1,�2,�3,�4 NMF basis coefficients for SFH Dirichlet prior
fburst fraction of total stellar mass formed in starburst event uniform over [0, 1]

tburst time of starburst event uniform over [10Myr, 13.2Gyr]

�1, �2 NMF basis coefficients for ZH log uniform over
⇥
4.5⇥ 10

�5
, 1.5⇥ 10

�2
⇤

⌧BC Birth cloud optical depth uniform over [0, 3]

⌧ISM diffuse-dust optical depth uniform over [0, 3]

ndust Calretti (2001) dust index uniform over [�2, 1]

The simulator is computationally expensive, even using the authors’ emulated version; we train our own lightweight
neural network emulator of PROVABGS. Because the spectra simulated by PROVABGS are of vastly different
magnitudes, we work on the modified problem of normalized spectra, which can be emulated more easily. To train
the emulator, we generate batches of synthetic spectra using the prescribed priors, but with fixed logM⇤ = 10.5,
and normalize each to integrate to one. We also resample onto a grid of wavelengths between 3000 and 10,000
Angstrom, with width 5 Angstrom. The emulator is trained with 2000 batches, each consisting of 1000 simulated
(✓, x) pairs. The criterion optimized is the mean-squared error (MSE) with learning rate 0.001. After training,
the emulator produces draws (Figure 13) that look similar to the (normalized) PROVABGS outputs. Because we
fix the stellar mass parameter, our emulator uses 11 input parameters.

The uniform and Dirichlet priors present problems for our likelihood-tempered SMC procedure (Algorithm 4).
As we use Metropolis-Hastings random-walk transition kernels, the boundaries of the support complicate using
symmetric Gaussian proposals; random-walks on the simplex are similarly challenging. To resolve this issue, we
operate on a transformed space of unconstrained random variables ✓̃ that are bijective transformations of the
random variables ✓ of interest. Bijections from any uniform range (a, b) to R can be constructed using scaled logit
transformations, and the inverses computed by scaled sigmoidal transforms. Care must be taken with the Dirichlet
parameters; these 4 random variables are first transformed into a 3-dimensional space using the warped manifold
transformation of (Betancourt, 2012). The resulting random variables reside in (0, 1); we can apply a subsequent
logit transform from here as above. We perform SMC-Wake to learn distributions on the unconstrained space
before applying the transformations to the constrained space for evaluation in Figure 4. Overall, SMC thus
samples on a 10-dimensional unconstrained space before transforming back into an 11-dimensional unconstrained
space.

The data in this example are very high-dimensional; even with resampling onto a coarser wavelength grid, spectra
are still 1400-dimensional. Adaptive tempering provides one way of efficiently dealing with the likelihood function
of such data in a principled way. Most data choose a low initial temperature (on the order of 10�5 or so) to slowly
introduce the likelihood function and prevent overpowering of the prior; manual selection of suitable temperatures
in this case may prove more difficult.

We generate 100 observations from our emulator and priors described above and add noise proportional to the
signal in each wavelength bin. A neural spline flow (NSF) is used as the amortized variational posterior (Durkan
et al., 2019) on ✓̃. For all methods, we perform 25,000 gradient steps with learning rate 0.0001 using a mini-batch
size of 32.

We fit the encoder using SMC-Wake with gradient estimator r̂(a), taking K = 100 for all LT-SMC runs. The

https://github.com/changhoonhahn/provabgs
https://github.com/changhoonhahn/provabgs
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Figure 13: Two examples of draws from our neural network emulator of PROVABGS.

mutation kernel in LT-SMC is a 50-step Metropolis-Hastings kernel with noise parameter �2
= 0.1

2. SMC-Wake
performs well with a minimal number of LT-SMC runs—we only rerun LT-SMC for a single point (chosen at
random) every 50 gradient steps. Across the 25,000 gradient steps, this averages to only about M = 5 LT-SMC
runs for each of the n = 100 observations. In Figure 4 we only showed posteriors for 4 out of 11 parameters for
one of the one hundred observations due to space constraints; here we show all 11 in Figure 14 for this same
point. We also performed training by wake-phase updates for this example, but wake-phase training exhibits a
troubling numerical stability issue that impairs training, whereby some parameter values sampled from q�(✓ | x)
produce spectra with NaN values when fed through the emulator. If this is the case for all K particles sampled
from q� in importance sampling, then the wake-phase gradient is undefined. SMC-Wake does not suffer from this
issue due to its use of LT-SMC.



Declan McNamara, Jackson Loper, Jeffrey Regier

Figure 14: Comparison of SMC-Wake posteriors (blue) to those obtained by MCMC (orange) for a single
observation.
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