Faster, Simpler Red-Black Trees

Cameron Moy

PLT, Northeastern University, Boston MA 02115, USA
camoy@ccs.neu.edu

Abstract. For more than two decades, functional programmers have
refined the persistent red-black tree—a data structure of unrivaled ele-
gance. This paper presents another step in its evolution. Using a monad
to communicate balancing information yields a fast insertion procedure,
without sacrificing clarity. Employing the same monad plus a new decom-
position yields a simple deletion procedure, without sacrificing efficiency.

Keywords: Algorithms - Data Structures - Trees

1 A Quick Recap

A red-black tree is a self-balancing binary search tree [3, 8]. Insertion and deletion
operations rebalance the tree so it never becomes too lopsided. To do so, every
node carries an extra bit that “colors” it either red or black. In Haskell [12]:

data Color = Red | Black
data Tree a = E | N Color (Tree a) a (Tree a)

For convenience, nodes of each color can be constructed and matched using the
pattern synonym extension of the Glasgow Haskell Compiler:

pattern R a x b = N Red a x b
pattern B a x b = N Black a x b

Insertion and deletion use chromatic information to maintain two invariants:

1. The red-child invariant states that a red node may not have a red child.
2. The black-height invariant states that the number of black nodes along
all paths through the tree (the black height) is the same.

These two properties imply that the tree is roughly balanced. Naively inserting
or deleting nodes from the tree may violate these invariants. Hence, the challenge
of implementing red-black trees is repairing the invariants during a modification.

This paper improves on existing work with four contributions: (1) a faster way
to implement insertion by avoiding redundant pattern matching; (2) a simpler
way to implement deletion by employing two new auxiliary operations; (3) a
monad instance that communicates information across recursive calls; (4) an
evaluation that compares the performance of several red-black tree algorithms.
In monadic style, the code for insertion and deletion remains clutter free by
automatically maintaining balancing information. The algorithms are presented
in Haskell since it provides a convenient notation for monads, but the approach
is not language specific. Appendix A provides a Racket version.

2 Cameron Moy
2 Insertion a la Okasaki

Recall the insertion algorithm of Okasaki [11]. For an ordinary binary search
tree, insertion traverses the tree and replaces a leaf with the desired value. For a
red-black tree, insertion’s first step is the same, with the new node colored red:!

-0,

Doing so does not introduce a black-height violation, but may introduce a
red-child violation if the leaf’s parent happens to be red. A balance function
resolves such red-child violations. A violation can only come in one of four shapes

d d a a
C a d b
a b b c b [c d

and balance transforms each in the same way, locally eliminating the violation:

a b c d

Realizing this diagram as code is a straightforward, if tedious, exercise:

-- Pre: Child may have a red-child violation.
-- Post: Satisfies the red-child invariant;
- BH(out) = BH(in).?

balance :: Tree a -> Tree a

balance (B (R (Raxb) yc) zd) =R Baxb)y (Bczd
balance (B (Rax (Rbyc))zd =R Baxb)y (Bczd
balance (Bax (R Rbyc)zd) =R @Baxb)y (Bczd
balance Bax (Rby (Rczd))) =R Baxb)y (Bczd

balance s = s

Since balance can turn a black node into a red node, this may induce a
red-child violation one level up the tree. Thus, insert must balance at every
level. This process “bubbles” violations up the tree. At the end, insert blackens
the root to resolve the last possible violation:

! The diagrams use the letters x, y, z for values; the letters a, b, ¢, d for subtrees; and
e for the empty tree.
2 Where BH computes the black height of a tree.

Faster, Simpler Red-Black Trees 3

insert :: Ord a => a -> Tree a -> Tree a
insert x s = (blacken . ins) s
where ins E = R E x E
ins (N k a y b)

| x < y = balance (N k (ins a) y b)

| x==y=Nkayh

| x > y = balance (N k a y (ins b))
blacken :: Tree a -> Tree a

blacken (N _ayb) =Bayhb
blacken s = s

3 Insertion, Faster

The balance operation is applied at every level of a tree during insertion. Each
time, balance pattern matches four specific shapes. Often, however, this pattern
matching is unnecessary.

Suppose balance returns a black node. No more red-child violations can
occur further up the tree, since the rest of the tree satisfies the red-child invariant.
In other words, when balance produces a black node, the “bubbling” stops. No
more work needs to be done and every subsequent balance is redundant.

For a mutable data structure, a break statement could eliminate the ex-
tra work. For an immutable data structure, a different solution is needed. An
additional data type® makes short circuiting future operations possible:

data Result ab=Da | Thb

A Result contains a tree where either the work is done, constructed with D, or
there is more to do, constructed with T. Trees marked with D do not violate the
red-child invariant, while trees marked with T may. Trees marked with D can pass
forward unaffected, while trees marked with T must be fixed by calling balance.

A Monad instance for Result makes this use case easier to express. A tree
where more work needs to be done will be given to a function £, while a tree
that is done will propagate:

instance Monad (Result a) where
return x = T x
(Dx) >=f =D x
(Tx) >=f =1fx

Two functions on Result values will also prove useful. The fromResult func-
tion extracts trees from a Result

fromResult (D x)
fromResult (T x)

X

X

3 This type is the same as Either, but with more convenient constructors.

4 Cameron Moy

and <$$> applies a function to the contents of both T and D values?

f <$$> (D x) D (f x)
f<$$> (Tx) =T (f x)

Equipped with Result, suspended calls to balance further up the tree can
be bypassed by wrapping a subtree in D. As mentioned before, it is safe to do so
whenever balance produces a black node. Here is the new balance function:

balance :: Tree a -> Result (Tree a)
balance (B (R (Raxb) yc) z d)
balance (B (Rax (Rbyc)) zd)
balance (Bax (R Rbyc)zd)
balance (Bax (Rby (Rcz d)))
balance (B axb) =D (B azxhb)

balance (R axb) =T (R a x b)

TR Baxb)y (Bczd)
TR Baxb)y (Bczd)
TR Baxb)y (Bczd)
TR Baxb)y (Bczd)

Il

Now that balance returns a Result value, insert must handle it. The
essence of the function, however, remains the same:

insert :: Ord a => a -> Tree a -> Tree a
insert x s = (blacken . fromResult . ins) s
where ins E=T (R E x E)
ins (N k a y b)
| x < y = balance =<< (\a -> N k a y b) <$$> ins a
| x ==y =D (Nkayhb)
| x > y = balance =<< (\b -> N k a y b) <$$> ins b

Using this approach, insertion can be up to 1.56x faster than the original one.

4 Deletion, Simpler

As with insert, the delete function is similar to ordinary deletion on a binary
search tree. For an internal node, delete replaces the target node with its in-
order successor. Only the base cases, where no in-order successor exists, are
interesting. The following diagram shows all three:

0~ o2-08 O-

Deleting a red node does not introduce a black-height violation, but deleting
a black node might if its left child is empty; an empty left child provides no
opportunity to maintain the black height. In other words, the subtree becomes
short with respect to black height.

4 Note that <$$> is not fmap. The functor instance implied by the monad applies a
function only to T values.

Faster, Simpler Red-Black Trees 5

Two auxiliary functions are needed to repair short subtrees: balance' and
eq. Like balance, the balance' function resolves red-child violations. Unlike
balance, it simultaneously increases a tree’s black height. The eq function takes
a tree where one child is short and equalizes the children’s black heights. Both
auxiliary functions use Result to communicate shortness information. Here,
Result has a slightly different interpretation than Result for insert.

Recall that insert always adds a red node, possibly causing a red-child vi-
olation. Subtrees are wrapped in T if there might be a violation and D if there
is not. In contrast, the final base case for delete always causes a black-height
violation. Thus, a subtree is wrapped in T if it is definitely short and D otherwise.

4.1 balance'

The purpose of balance' is to resolve red-child violations and, if possible, in-
crease the black height by one. To accomplish this, the function acts like balance,
except the root color is preserved. So the following four shapes®

d d a a
c a d b
a b b c b c c d

are transformed into

a b c d

Whether the root is black or red, all red-child violations are resolved and the
black height is increased by one. If none of the four shapes match, then the tree
is blackened. Differences compared to balance are highlighted:

-- Pre: Root or child may have a red-child violation.
-- Post: Satisfies the red-child invariant;

-- BH(out) = BH(in) + 1 or BH(out) = BH(in).
balance' :: Tree a -> Result (Tree a)

balance' (Nk (R (Raxb) yc) zd) =D (Nk (Baxb)y (Bczd))
balance' (Nk (Rax (Rbyc)) zd) =D Nk (Baxb)y (Bczd)
balance' (Nk ax (R Rbyc)zd))=D Wk (Baxb)y (Bczd))
balance' (Nkax (Rby (Rczd)) =D (Wk (Baxb)y (Bczd))

balance' s = blacken' s

blacken' :: Tree a -> Tree a
blacken' (Rayb) =D (B ayhb)
blacken' s =T s

5 The half-colored nodes indicate that the color could be either red or black.

6 Cameron Moy

Three facts are worth noting. First, not only can balance' resolve trees with
two red nodes in a row, but also trees where there are three red nodes in a row.
Second, balance' never induces a red-child violation further up the tree since
it never turns a black node into a red node. Finally, when provided a red node,
balance' always returns a D result.

4.2 eq

Just as insert needs balance, delete needs a function that can repair the
black-height invariant at every level of the tree. That is the job of eq. While it is
possible to define a single function to get the job done, it will be more convenient
to split the function in two: eqL and eqR.%

Given a short left (right) child, eql. (eqR) returns a tree where the black
heights of the children are equal. If the function can raise the black height of the
left (right) child, it does so. If it cannot, it lowers the black height of the sibling
and bubbles the violation up.

Consider eqL, where the left child, labeled a, is short. There are two cases
to consider: when its sibling is black and when its sibling is red. Here is the first
case, where the sibling is black and the root is any color:”

balance'

a —_—
. a
b c

To equalize the black heights, eqL reduces the black height of the right child
by reddening it. Now the whole tree is short. Not only that, but this can introduce
red-child violations. If b is red, there may even be three red nodes in a row. The
balance' function is designed to handle all of these issues simultaneously:

-- Pre: BH(left) = BH(right) - 1.

-- Post: BH(left) = BH(right).

eqL :: Tree a -> Result (Tree a)

eqgL Wk ay (Bcz d) = balance' (Nkay (Rczd)

-- Pre: BH(right) = BH(left) - 1.

-- Post: BH(left) BH(right) .

eqR :: Tree a -> Result (Tree a)

eqR (Nk (B axb)yc)=Dbalance' (Nk (Rax b) y c)

Next, consider the case where the sibling is red. Here, eqL applies a rotation
that does not affect any black heights and then calls itself recursively on the left
child:

5 Frequently, balance is also split into balancel and balanceR. For balance, splitting
is done for performance rather than convenience.
" The dotted triangle encloses the tree that balance' is applied to.

Faster, Simpler Red-Black Trees 7

b c

After the rotation, a is still short and the other subtrees are unchanged. However,
as noted before, balance' resolves a black-height violation when called on a red
node. Thus, it is guaranteed that the recursive call to eqL successfully increases
the black height of a, yielding a valid red-black tree:

eqgL Wkay (Rczd)
eqR (Nk (Raxb)yc)

(\a ->B azd) <$$> eqL (R a y c)
(\b -> B axb) <$$> eqk (R b y ¢c)

4.3 Putting it Together

Here is the rest of the code, which composes the presented functions into a
complete algorithm:

delete :: Ord a => a -> Tree a -> Tree a
delete x s = (fromResult . del) s
where del E =D E

del (N k a y b)
| x < y=-eqlh =<< (\a > Nk a y b) <$$> del a
| x ==y = delCur (N k a y b)
| x> y=eqRk =<< (\b -> Nk ayb) <$$> del b

delCur :: Tree a -> Result (Tree a)
delCur (Ray E) =Da

delCur (B a y E) blacken' a

delCur (N k a y b) = eqR =<< (\b -> N k a min b) <$$> b'

where (b', min) = delMin b
delMin :: Tree a -> (Result (Tree a), a)
delMin (REyb) = (Db, y)
delMin (B E y b) = (blacken' b, y)

delMin (N k a y b) (eqL =<< (\a -> Nk a y b) <$$> a', min)
where (a', min) = delMin a

|

5 Performance Evaluation

Using monads to communicate balancing information yields a unified and elegant
presentation of both insertion and deletion; critically though, these variants per-
form as well as or better than existing algorithms. The next two pages summarize
a performance evaluation for several functional red-black tree algorithms. Fig-
ure 1 and Figure 2 present the data for insertion. Figure 3 and Figure 4 present
the data for deletion.

8 Cameron Moy

These measurements were collected on a Linux machine running an Intel
Xeon E3 processor at 3.10 GHz with 32 GB of RAM. Since the different algo-
rithms were originally implemented in different languages, they were all ported
to Racket [5] and run with Racket 8.7 CS. Racket was used since it is a strict lan-
guage, so the performance characteristics should generalize better than that of
a lazy language like Haskell. Every sample ran the entire sequence of operations
5 times and 100 such samples were collected for each configuration.

A configuration consists of a specific choice for input size, input order, and
algorithm. For a given size n, the input values are the first n natural numbers.
Two input orders were tested: ascending and random. The random order is a
random permutation of the input data.

To test insertion and deletion, each red-black tree algorithm was used to
implement sets. Insertion was tested by adding all the input values to an empty
set. Deletion was tested by removing all the input values from a set containing
them already.

As an additional benchmark for insertion, the SUFFIXTREE program from the
gradual typing benchmark suite [7] was adapted to use red-black trees instead of
hash tables. This program uses Ukkonen’s algorithm to calculate the suffix tree
of a text—in this case T.S. Eliot’s “Prufrock.”

Line plots show mean execution time, both total execution time including
garbage collection (GC) and just GC time, across several tree sizes. Note that
the plot is log scale. Dot plots show the median execution time and cumulative
memory consumption for 22° elements; whiskers span the range of the data.

Monadic insertion is about 1.14x faster than Okasaki’s original [11] when
inserting 220 elements in a random order. When the input sequence is in ascend-
ing order, this improvement increases to about 1.56 x faster. On the SUFFIXTREE
benchmark it is 1.07x faster, demonstrating that the optimization has a mea-
surable impact on the end-to-end performance of a real-world program.

Monadic deletion performs the same, or a tad better, than the best exist-
ing algorithm of Filliatre and Letouzey [4]. On a randomly distributed deletion
sequence, their performance exactly coincides. The monadic approach is signif-
icantly faster than that of Kahrs [10] and Germane and Might [6]. This evalu-
ation demonstrates that the simplicity of the monadic deletion algorithm does
not come at the cost of performance.

6 Related Work

Okasaki [11] gave a beautiful account of insertion, but omitted any discussion of
deletion. Deletion is more difficult than insertion because black-height invariance
is a global property; whether a subtree violates the black-height invariant can be
determined only through inspection of the entire tree. To avoid this, a subtree
must somehow indicate that its black height is too small—that it is short. Every
paper on red-black trees does this differently.

Filliatre and Letouzey [4] develop an implementation where shortness is han-
dled in an ad-hoc way using a threaded Boolean. Germane and Might [6] use a

Faster, Simpler Red-Black Trees
Ascending Random
% % 101 Monadi'c —
£ £ Okasaki s
= =
g 275+
O o
o c
3 3
S2T = 51
1T 254
t } } }
217 218 219 220 217 218 219 220
Tree Size Tree Size
Ascending Random
&F 50
O Monadic ——— @ || Monadic
E Okasaki E 4 Okasaki
F .6+ [
[} Q
Q o
c < 3
3 3
= AT =
24
21 1
= t t t t
217 218 219 220 217 215 219 220
Tree Size Tree Size
Fig. 1. Red-black tree insertion line plots.
Ascending (Tree Size 22°) Random (Tree Size 22°) Suffixtree (Prufrock)
Okasaki—+ L Okasaki—+ —e—i Okasaki—+ o—i
Monadic— = Monadic—+ +e— Monadic—+ +e—
} } } } } } } } } }
3 35 4 10 105 11 115 5 52 54
CPU Time (s) CPU Time (s) CPU Time (s)
Ascending (Tree Size 22°) Random (Tree Size 22°) Suffixtree (Prufrock)
Okasaki—+ L] Okasaki- —e— Okasaki—+ el
Monadic+ o Monadic- —e—i Monadic+ L]
t t t t t t f t t t t
7806 7808 7810 5600 5620 5640 5660 2718.5 2719 2719.5 2720

Memory (MB)

Memory (MB)

Fig. 2. Red-black tree insertion dot plots.

Memory (MB)

10 Cameron Moy
Ascending

O Monadic

E 27| Kahrs

; Germane-Might

Q1 54 Filliatre-Letouzey

51

c

3

=

Random

)

-
N
&

10

Mean CPU Time (s

7.5+

Monadic
Kahrs

I Germane-Might
Filliatre-Letouzey

220 220
Tree Size Tree Size
Ascending Random
o 14 Monadic o Monadic
2 " || Kahrs E5” Kahrs
= Germane-Might = Germane-Might ~ —------
3 081 Filliatre-Letouzey 84” Fillidtre-Letouzey —--—--—-—----
c c
3 33
= .06 =
ot
.04+
1+
} } t
218 219 220 217 218 219 220
Tree Size Tree Size
Fig. 3. Red-black tree deletion line plots.
Ascending (Tree Size 22°) Random (Tree Size 22°)
Kahrs— gl Kahrs—+ —e—i
Germane-Might—+ et Germane-Might+ —e—i
Filliatre-Letouzey+ +e Fillidtre-Letouzey+ +~e—
Monadic re Monadic+ ~e—
t t t t t t t t t
1.25 15 1.75 2 2.25 10 11 12 13
CPU Time (s) CPU Time (s)
Ascending (Tree Size 22°) Random (Tree Size 22°)
Kahrs— e Kahrs—+ .
Germane-Might—+ —e—i Germane-Mightte
Filliatre-Letouzey+ ‘o Fillidtre-Letouzey+®
Monadic e+ Monadic— ®
t t t t t t
5000 6000 7000 6000 7000 8000
Memory (MB) Memory (MB)

Fig. 4. Red-black tree deletion dot plots.

Faster, Simpler Red-Black Trees 11

“double-black” color to serve the same function. The Result monad serves the
same purpose, but eliminates the manual bookkeeping necessary in both other
solutions. Kahrs [10] describes a significantly different approach, which main-
tains an additional invariant during the deletion process: black nodes are always
short and red nodes are never short. Thus, the information is communicated
implicitly rather than explicitly.

The deletion algorithm presented here is substantially simpler to understand
than prior work for two reasons. First, all prior algorithms have three cases for
eq instead of just two. By factoring out balance', two special cases collapse into
one. Second, all prior algorithms require contortions to deal with the red sibling
case. Specifically, each uses a three-level pattern match combined with a nested
balance operation. The eq presented here uses recursion and nothing more.

Germane and Might report that their double-black algorithm has poor per-
formance—substantially worse than the one given by Kahrs. However, their eval-
uation is fatally flawed; it measures a version of the double-black algorithm with
a suboptimal order of conditional branches. Reordering these branches improves
performance. Figure 3 and Figure 4 show data for a corrected variant of Germane
and Might’s code. See Appendix B for an explanation of this modification.

A related line of work focuses on proving the correctness of red-black tree
algorithms using various techniques: proof assistants [1, 4], higher-order nested
types [9], phantom types [10], GADTs [13]. These techniques should easily be
applicable to this paper, and doing so is left as an exercise to the reader.

7 Conclusion

Given the beauty of red-black tree insertion, the absence of a deletion algo-
rithm that is simultaneously efficient and simple has been unfortunate. Using the
Result monad yields an algorithm that, along with eq and balance', achieves
both goals. The same monadic style can be applied to insertion, yielding a faster
algorithm, without compromising simplicity.

Acknowledgements. Thanks to Matthias Felleisen for his feedback and en-
couragement. Also, thanks to Ben Lerner, Jason Hemann, Leif Andersen, Michael
Ballantyne, Mitch Gamburg, Sam Caldwell, audience members at TFP, and
anonymous TFP reviewers for providing valuable comments that significantly
improved the exposition.

Much of the code in this paper was directly adapted or at least heavily
influenced by the code of Okasaki [11] (for insertion) and Germane and Might [6]
(for deletion). They deserve a great deal of credit for the final product.

This work was partially supported by NSF grant SHF 2116372.

1
2]

3]
[4]

[5]
6]

(7]

8]

9]
[10]

[11]

[12]

[13]

Bibliography

Appel, A.: Efficient verified red-black trees. https://www.cs.princeton.
edu/~appel/papers/redblack.pdf (2011)

Ashley, J.M., Dybvig, R.K.: An efficient implementation of multiple return
values in scheme. LISP and Functional Programming (LFP) (1994). https:
//doi.org/10.1145/182590.156784

Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms.
MIT Press (2009)

Filliatre, J.C., Letouzey, P.: Functors for proofs and programs. In: European
Symposium on Programming (ESOP) (2004). https://doi.org/10.1007/
978-3-540-24725-8_26

Flatt, M., PLT: Reference: Racket. Tech. Rep. PLT-TR-2010-1, PLT Design
Inc. (2010), https://racket-lang.org/trl/

Germane, K., Might, M.: Deletion: The curse of the red-black tree. Jour-
nal of Functional Programming (JFP) (2014). https://doi.org/10.1017/
S0956796814000227

Greenman, B., Takikawa, A., New, M.S., Feltey, D., Findler, R.B., Vitek, J.,
Felleisen, M.: How to evaluate the performance of gradual typing systems.
Journal of Functional Programming (JFP) (2019). https://doi.org/10.
1017/80956796818000217

Guibas, L., Sedgewick, R.: A dichromatic framework for balanced trees.
In: TEEE Symposium on Foundations of Computer Science (1978). https:
//doi.org/10.1109/SFCS.1978.3

Hinze, R.: Manufacturing datatypes. Journal of Functional Programming
(JFP) (2001). https://doi.org/10.1017/S095679680100404X

Kahrs, S.: Red-black trees with types. Journal of Functional Programming
(JFP) (2001). https://doi.org/10.1017/S0956796801004026

Okasaki, C.: Red-black trees in a functional setting. Journal of
Functional Programming (JFP) (1999). https://doi.org/10.1017/
S0956796899003494

Peyton Jones, S.: Haskell 98 Language and Libraries: The Revised Report.
Cambridge University Press (2003)

Weirich, S.: Red black trees (redux). https://www.seas.upenn.edu/
~cisbb520/21fa/lectures/stub/06-GADTs/RedBlackGADTO.html (2021)

Faster, Simpler Red-Black Trees 13

A Racket Implementation

This section shows a Racket port of the Haskell code. Monads can be imple-
mented in many ways, but here we use macros and multiple returns values [2]
to do so. This choice yields excellent performance.

9939339333353 33533933933333533333333333)

;3 delete

(define (delete t x)
(define (del t)
(match-define (N k a y b) t)
(cond
[(< x y) (5<< del-left (<$$> (A (a) (N k a y b)) (del a)))]
[(> x y) (=<< del-right (<$$> (A (b) (N k a y b)) (del b)))]
[else (del-root t)1))
(from-result (del t)))

(define (del-root t)
(match t
[(Bay (E)) (blacken* a)]
[(R ay (E)) (done a)]
[Wk ayDb
(define m (box false))
(=<< del-right (<$$> (A (b) (N k a (unbox m) b)) (del-min b m)))]1))

(define (del-min t m)
(match t
[(B (E) y b) (set-box! m y) (blacken* b)]
[(R (E) y b) (set-box! m y) (done b)]
[(Nk ayhb)
(=<< del-left (<$$> (A (@) (Wk a y b)) (del-min a m)))]1))

(define (del-left t)
(match t
[Wkay (Rczd))
(<$$> (A (a) (B a z d)) (del-left (R ay c)))]
[(Wkay (Bczd)
(balancex (Nk ay (R cz d)))]))

(define (del-right t)
(match t
[Nk (Raxb)yc)
(<$$> (A (b) (B a x b)) (del-right (R b y c)))]
[(Nk (BaxDb)yc)
(balancex (Nk (R a x b) y c))1))

14 Cameron Moy

(define (balancex t)
(match t

[(or Wk (Rax Rbyc))zd
Nk R ®Baxb) yc)zd
(Wkax (R @®byc) zd)
Wkax Bby (Rczd)))

(done (Nk (Baxb)y (Bczd)l

[_ (blacken* t)]1))

(define (blacken* t)

(match t
[(R axb) (done (B ax b))l
[(todo t)1))
;35 monad

(define-syntax-rule (todo x)
(values true x))

(define-syntax-rule (done x)
(values false x))

(define-syntax-rule (from-result x)
(let-values ([(_ y) x])
)

(define-syntax-rule (<$$> f x)
(let-values ([(a d) x])
(values a (f d))))

(define-syntax-rule (=<< f x)
(let-values ([(ax dx) x])
(if ax (f dx) (values ax dx))))

5935359353593 3339333339333333333333339353)

;3 data

(struct E ()
(struct N (color left value right))

(define-syntax-rule (define-color name)
(begin
(define-for-syntax (transf stx)
(syntax-case stx ()
[(_ axb) # (N ’name a x b)1))
(define-match-expander name transf transf)))

(define-color R)
(define-color B)

Faster, Simpler Red-Black Trees 15

B Performance Evaluation Correction

Germane and Might [6] incorrectly conclude that their algorithm is always sig-
nificantly slower than other approaches. This conclusion is due to a subtle con-
founding factor that put their algorithm at an unfair disadvantage.

To understand the flaw, consider this skeleton of their delete function:

delete :: Ord a => a -> Tree a -> Tree a
delete x s = del (redden s)
where del E = E
del (R E y E)
| x ==y = ...
| x /=y = ...
del (B E y E)
| x ==y = ...
lx/=y= ...
del (B (REyE) zE)
| x <z = ...

"
\
N

]

b

Q.
®
'_l
~
=
~
V)

Il <

o]
;|

<

I

It highlights the two most common cases during deletion, when the current node
does not match the target and the function recurs on either the left or right side.
However, the structure of the code forces each of the base cases to be checked
first—before the most common cases.

To favor the common cases, the skeleton should look as follows:

delete :: Ord a => a -> Tree a -> Tree a
delete x s = del (redden s)
where del E = E
del (N k ayb)

lx<y = ...

| x ==y =
case s of
REyE-> ...
BEyE-> ...
B(REyYE) zE -> ...

x>y = ...

The base cases are only checked at the target node. This simple modification
improves the performance of the double-black algorithm by 2x.

	Faster, Simpler Red-Black Trees

