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Abstract

We examine the licensing of negative polarity
items (NPIs) in large language models (LLMs)
to enrich the picture of how models acquire
NPIs as linguistic phenomena at the syntax-
semantics interface. NPIs are a class of words
which have a restricted distribution, appearing
only in certain licensing contexts, prototypi-
cally negation. Unlike much of previous work
which assumes NPIs and their licensing envi-
ronments constitute unified classes, we con-
sider NPI distribution in its full complexity: dif-
ferent NPIs are possible in different licensing
environments. By studying this phenomenon
across a broad range of models, we are able
to explore which features of the model archi-
tecture, properties of the training data, and lin-
guistic characteristics of the NPI phenomenon
itself drive performance.’

1 Introduction

Negative polarity items (NPIs) are words or phrases
that must be licensed by another element, often
negation, that occurs in a syntactically appropriate
context (Klima, 1964). Determining the contexts in
which such elements are possible has proven to be a
difficult problem for language models. Marvin and
Linzen (2018) report that LSTM language mod-
els fail to systematically distinguish grammatical
from ungrammatical occurrences of NPIs across
a range of difficult cases. Warstadt et al. (2019)
study BERT’s ability to determine the possibility
of an NPI occuring in a masked position and find
improved performance, though success depends
upon the mode of evaluation. Hu et al. (2020) re-
port even better results with GPT-2 and GPT-2-XL.
Finally, Zhang et al. (2021) show that with suffi-
ciently many parameters and enough training data,
as found in RoBERTa-Large (Zhuang et al., 2021),

*These authors contributed equally to this work
'Our code and dataset are available at github.com/clay-
lab/condgen-evaluation.

a transformer language model can achieve near-
human levels of performance on NPI licensing.

Though this might be thought of as a success
story for LLMs, we may still wonder why this
particular grammatical regularity has posed such
difficulty, as compared to subject-verb agreement,
where smaller LSTMs trained on less data achieved
quite good performance (Marvin and Linzen, 2018).
We suspect that the reasons for this are threefold.
First, unlike grammatical subjects that condition
agreement on their corresponding verbs in reason-
ably predictable ways, the set of contexts that li-
cense NPIs and the range of NPIs are both rather
diverse. Further, while every instance of a finite
clause will include a subject and agreeing verb,
many contexts that could license NPIs do not in-
clude one. Finally, NPI licensing and subject-
verb agreement are both dependencies that are un-
bounded by linear distance; however, the structural
distance between a licensing context and an NPI
can grow without bound (cf. / don’t see anyone and
I don’t want to try to see anyone), unlike the de-
pendency that determines subject-verb agreement.

Previous studies of LLM performance on NPIs,
including Warstadt et al. (2019) and Jumelet et al.
(2021), have examined the first of these factors: the
variability of the licensing environment. Specifi-
cally, these studies explored the degree to which the
licensing properties of distinct environments are en-
coded uniformly, with what look like reasonably
promising results. Such work assumes implicitly
that different environments should be treated iden-
tically (though see Bylinina and Tikhonov (2022)
for work that does not make this assumption). Sim-
ilarly, LLM evaluations on NPIs have assumed that
different NPIs are licensed in identical environ-
ments. However, as we will discuss in Section 2,
these assumptions are false: different environments
license different NPIs. Learning the distribution
of NPIs is thus more complex than previous LLM
evaluations have assumed. We aim to develop an
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approach to evaluate LLMs’ knowledge of NPIs in
a way that is sensitive to their unique distributional
patterns, and to uncover what factors lead to greater
success in a model’s ability to correctly determine
the possibility of an NPI in a given context.

2 Variability in NPI Licensing

As already noted, NPIs are expressions that are
only grammatical in a restricted set of contexts,
prototypically understood to be negative. Canoni-
cal examples of such contexts include the negative
quantifiers no or none of the, or sentential negation
not. As seen in (1), the English NPI ever is possi-
ble when it is in the scope of such an element, and
ungrammatical otherwise.

(1) a. No/None of the packages had ever
arrived at the yellow house.
b. Packages had not ever arrived at the

yellow house.

c. *Packages had ever arrived at the yel-
low house.

As seen in (2), the NPI ever is also licensed by other
contexts, including (indirect) yes/no questions, the
restrictor of superlatives, and under the scope of
only, among many others.

2) a. I wonder whether the packages had

ever arrived at the yellow house.

b. These are the greatest packages that
had ever arrived at the yellow house.

c. Only packages had ever arrived at
the yellow house.

A major step forward in our understanding of the
distribution of NPIs came from attempts to char-
acterize these licensing environments in a uniform
fashion (Ladusaw, 1979). However, it was quickly
observed that not all NPIs are licensed by the same
contexts. For example, the English NPI (adverbial)
any is licensed by negation and indirect yes/no
questions but not by superlatives.

3) a. No masons build cathedrals any bet-

ter than that.
b. *These are the greatest masons that
build cathedrals any better than that.
c. I wonder whether the masons have
built a cathedral any better than that.

NPIs like exactly are even more restrictive, occur-
ring only with negation:

None of the students have exactly
been getting good grades.

4 a

b. *These are the smartest students
that have exactly been getting good
grades.

c. * I wonder whether the students have
exactly been getting good grades.

Recent research in formal semantics has aimed
to understand this variation. Under the proposal
of Zwarts (1998), which was further refined in
Giannakidou (1998), licensing contexts are char-
acterized according to their semantic properties.
Zwarts and Giannakidou provide four increasingly
demanding semantic criteria for characterizing con-
texts, each of which entails the previous one. Such
a semantic classification allows us to characterize
the distribution of different NPIs. Each NPI is as-
sociated with a certain minimal requirement on its
licensing context, and will therefore be allowed in
all more restrictive contexts. This creates a hierar-
chy of NPIs, ranging from superweak NPIs, which
require environments satisfying only the weakest
condition, to superstrong NPIs, which are require
environments satisfying the strongest condition.
Elegant as this approach is, Hoeksema (2012)
shows that this classification is not completely ad-
equate, as it does not capture the full complexity
and diversity in the distribution of different NPIs.
Table 1 reports Hoeksema’s characterization of li-
censing contexts for a number of NPIs.?*> Among
other things, this table demonstrates that the rela-
tionship between the set of licensing contexts for
different NPIs does not follow the subset-superset
relationship that would be expected from the pro-
posal just outlined: the set of contexts that license
yet is neither a subset nor a superset of those licens-

The data in this table reflects Hoeksema’s reports from
the NPI literature and his own corpus analysis. The authors,
all native English speakers, have checked and agree with these
judgments. Following Bylinina and Tikhonov (2022), we
believe it would be useful to compare model performance
to experimental measures of NPI acceptability. While there
is a rich body of experimental work on this topic, including
Chemla et al. (2011), Geurts (2003), and Denic¢ et al. (2021),
none of these studies consider the range of contexts and NPIs
explored in the current work, so detailed comparison with
human judgments and behavior will need to wait for future
research.

3We exclude from consideration expressions that are not
uniquely identifiable as NPIs from their position in the sen-
tence, as opposed to their interpretation (e.g., either, can help).
Furthermore, we also exclude NPIs that consist of multiple
words (e.g., at all or in years), since, as an anonymous re-
viewer pointed out, it is a non-trivial matter to assess whether
a language model “accepts” them.
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ever
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Table 1: Licensing contexts for English negative polar-
ity items (modified from Hoeksema 2012). Contexts: 1
= negation, 2 = indirect y/n questions, 3 = matrix y/n
questions, 4 = wh-questions, 5 = conditional clauses, 6
= universal restrictors, 7 = the only restrictor, 8 = su-
perlative restrictors, 9 = scope of only

ing adverbial any. Nonetheless, the distribution of
NPIs instantiated in this table is something that a
language model should master. Further, we may
expect that differences in restrictiveness, both of
NPIs (in terms of the number of contexts in which
they are licensed) and contexts (in terms of the
number of NPIs they license) have an impact on
the feasibility of learning the distributions. We turn
now to exploring these questions.

3 Experiment

3.1 Models

In recent years, LLMs have been developed with
a variety of architectures, model sizes and train-
ing datasets. While smaller models with smaller
datasets are easier to train and work with, larger
models with larger datasets typically perform better
on linguistic tasks. In the current work, we consider
as broad a range of LLMs as was feasible, with the
limitation that many state-of-the-art models are pro-
prietary and do not provide access to the detailed in-
formation our experiments require. Specifically, we
consider three broad classes of transformer archi-
tectures: Encoder-only Masked Language Models
(MLMs), Decoder-only Language Models (LMs),
and Encoder-Decoder Sequence to Sequence Mod-
els (Seq2Seqs). Parameter counts in these models
ranged from 11 million to 175 billion, and training
data ranged from from 6 GB to 4.7 TB. Details of
the models studied are in Table 2.

3.2 Materials and Methods

‘We construct a test dataset that includes each of
the 8 NPIs and 9 contexts listed in Table 1. To

Task Architecture # Models # Params. (M) Dataset Size (GB)

MLM AIBERT 8 11-206 6
MLM BERT 6 66 - 335 49
MLM MultiBERTs 25 110 49
MLM RoBERTa 4 82-355 16
MLM Electra 3 14-51 14
LM LLaMA 4 6738 - 65286 4700
LM OPT 9 125 - 174604 800
LM GPT2 4 124 - 1558 55
Seq2Seq TS5 Efficient 26 16 - 11307 305

Table 2: LLMs used in current experiment.

these contexts, we add an additional Null context
that does not license any NPIs. For each NPI, we
create 6 distinct sentence templates each of which
can be prefixed by a carrier of the licensing context.
Some contexts support more than one carrier prefix,
which yielded at total of 12 distinct instantiations
per sentence template. An example of how this
works is shown in Table 3. In total, there are 576
sentences in the test dataset.

3.3 Testing Procedure

Testing of the different model types proceeds in
slightly differently fashions. For MLMs, we re-
place the NPIs in the test examples with mask to-
kens, feeding the resulting string to the model. We
then extract the log probability of the NPI at the
position of the mask token. For the Seq2Seq mod-
els, which were trained on span-mask denoising,
we used a similar procedure, giving the appropriate
masked sequence to the model, and then extracting
the log probability of the NPI given by the decoder
as the filler for the mask. Autoregressive LMs are
tested by truncating the sentence to the position
immediately before the NPI. We then feed this se-
quence to the model, using teacher, and then obtain
the log probability for the NPI at the following to-
ken position. In all cases, we ensure that the NPIs
under study constitute single tokens in the model
vocabulary.*

It is immediately clear that there is an asymmetry
between the MLMs and Seq2Seq models on the one
hand and the LMs on the other: the former models
see both the left and right context in assessing the
likelihood of the NPI, while the LMs only see left
context. We have done our best to construct stimuli
in which the right context provides no information
about the possible presence of an NPI (the right
context is fully acceptable in the Null context in
the absence of an NPI), as this would penalize the

*Cases where NPIs were more than one token and thus
excluded were the following: DistilBERT Base Cased, BERT
Base Cased, and BERT Large Cased lacked squat; all LLaMA
models lacked squat and remotely; and all Seq2Seq models
(which were all T5 models) lacked squat.
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Licensing Context  Carrier prefix(es)

any Example

*Null
Negation
Indirect y/n question
Matrix y/n question
Indirect wh-question
Conditional clauses
Universal restrictor
The only restrictor
Superlative restrictor
Scope of only

0, The

No, None of the

I wonder whether the

Is it likely that

I wonder which

They will notify everyone if the
These are all of the <that>
These are the only <that>
These are the greatest <that>
Only

*Laws have done any harm.

No laws have done any harm.

I wonder whether the laws have done any harm.

Is it likely that laws have done any harm.

I wonder which laws have done any harm.

They will notify everyone if the laws have done any harm.
These are all of the laws that have done any harm.

These are the only laws that have done any harm.

These are the greatest laws that have done any harm.
Only laws have done any harm.

Table 3: Test examples created from the template laws have done any harm with the italicized NPI any. For each
licensing context, this template is prefixed by one or more of the carriers in bold to produce the test.

LMs.

3.4 Analysis via Point-Biserial Correlations

There is no absolute probability that can tell us
whether a model licenses an NPI in a particular
context. Instead, we must compare relative proba-
bilities: how much more (or less) likely is an NPI in
a particular licensing context compared to a context
that does not license any NPIs? For this reason, we
“adjust” the probability by subtracting from it the
probability of the Null context, which we know is
not a licensing context for any NPI.> The resulting
value tells us whether an NPI in a particular context
is more or less probable compared to a minimally
different context that does not license any NPIs: a
positive value indicates that an NPI is predicted to
be more likely than in the baseline context (i.e., the
model “licenses” it in that context to some degree),
while a 0 or negative value indicates the opposite
(i.e., the model does not license it in that context).

To explore to what degree LLMs are sensitive to
the contours of NPI distributions in the same way
that humans are, we compute the point-biserial cor-
relation between the (adjusted) model log probabil-
ities extracted during testing and the dichotomous
human judgments given in Table 1. The analysis
from here on is bifurcated into evaluation by NPI
and by licensing context. For each analysis, the log
probabilities obtained in Section 3.3 are grouped
by model instance and NPI or context. The point-
biserial correlation is performed separately for each
probability group with a binary encoding of the hu-
man judgments from Table 1 using the following
equation:

T — X ny - ng
7": .

Sq n2

SWe then exclude the adjusted probability of the NPI in
the baseline context from further analysis, as it is always 0
following this procedure.

For both analyses (NPI and context), n and s, have
the same interpretation:

n = # of test items
Sz = s.d. of human binary judgments

For analysis by an NPI N, the interpretation of these
variables is as follows:

Z1 = mean adj. log prob of N in items that license it

Zo = mean adj. log prob of N in items that do not license it
n1 = # of items in which N is licensed

no = # of items in which N is not licensed

We can take n1 to be a rough proxy for strength
of the NPI: a weak NPI will have a higher value,
while a strong NPI will have a lower one. °

For analysis by a licensing context C, the inter-
pretation is:

Z1 = mean adj. log prob across NPIs licensed by C

T mean adj. log prob across NPIs not licensed by C
# of C items with licensed NPI

no = # of C items with unlicensed NPI

Zo

ni

Note that in the analysis by licensing context,
the negation context is excluded as there is no vari-
ance in its associated human licensing judgments;
it licenses all of the NPIs.

3.5 Beta Regressions

In order to understand what factors are responsible
for the variation in correlations across different
NPIs and contexts, as well as across models, we
perform a number of beta regressions. Because
beta regressions require a dependent variable in the
range [0, 1] and our values are correlations with
a possible range of [—1, 1], we scale them to the
appropriate range by adding 1 and dividing by 2.

We recognize that this quantification of NPI strength flat-
tens distinctions among NPIs that are not characterized in
terms of a subset-superset relationship among licensing en-

vironments, as seen in “bagel" environments, though such
elements do not exist in English.
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Context Occurrences
Indirect y/n question 266
Matrix y/n question 358
Indirect wh-question 866
Conditional clauses 1960
Universal restrictor 755
The only restrictor 187
Superlative restrictor 807
Scope of only 142

Table 4: Frequency of licensing contexts predictions in
the parsed Penn Treebank datasets Brown and WSJ.

For each of the correlation data sets (by NPI
and by context), we run two types of regressions.
In the first, we regress the scaled correlations on
the log of the number of parameters in a given
model and a linguistic quantity we call licensing
number. We define the licensing number of an
NPI as the number of distinct environments that
license it according to Table 1. For instance, the
licensing number of any is 9, while the licensing
number of exactly is 1. Similarly, we define the
licensing number of a context as the number of
NPIs it licenses; for example, the licensing number
of negation is 8, while the licensing number of
superlative restrictors in 3. Because some of the
LLMs we evaluate do not include particular NPIs
as single tokens, we convert the licensing number
of contexts to a ratio by dividing it by the number
of NPIs that occur in the model’s vocabulary as a
single token. This gives us the proportion of the
available NPIs that a model licenses in a context.
As a second type of regression, we use as predictor
variables the individual NPIs or contexts for the
analysis by NPI or context, respectively. NPIs and
contexts are converted to one-hot encodings, and
the resulting vectors are used as predictors.

3.6 Context Frequencies

We also considered as an additional predictor of
model correlations the frequencies of the different
licensing contexts. To do this, we used the Brown
and WSJ parsed datasets from the Penn Treebank
(Marcus et al., 1999) to estimate the frequency of
our licensing contexts in natural text, which we
expect to be indicative of the frequency of the li-
censing contexts in the models’ training corpora.
We searched the datasets using Tregex (Levy and
Andrew, 2006). Due to inconsistencies in assigned
structures in the corpus, the frequencies reported
in Table 4 are imprecise, but we believe that they

are reasonably representative.

Ideally, one would determine the frequencies
of NPIs in natural text as well. However, such a
pursuit is difficult, since many NPIs have non-NPI
uses that may occur in non-licensing environments.
For example, any lives a double life as an NPI and
as a word indicating “free-choice”:

5 a (NPI)

b. Pick a card, any card! (free-choice)

Nobody had any questions.

What’s more, a possible NPI appearing in the scope
of a licensor is insufficient to ensure it is interpreted
as an NPI:

(6) John isn’t remotely working.

Here, remotely can be read as an NPI, with the
resulting interpretation that John isn’t even close
to doing anything that could be considered work-
ing. However, it could also be interpreted literally,
as saying that John is working in-person. To our
knowledge, all (English) NPIs suffer from one type
of ambiguity or another in a similar way. Searching
for NPIs in corpora is thus not as straightforward
as one might hope because it involves not only
the relatively simple task of finding specific words,
but also the more complicated task of determining
how those words are meant to be interpreted in a
particular context.

4 Results
41 ByNPI

Figure 1 shows the result of the correlations by NPI,
with parameter count as the independent variable.
Here we see considerable variation in performance
across NPIs, particularly in the LMs and Seq2Seq
models, where ever has a relatively high correlation
across model sizes, while yet has a much lower
correlation.

A beta regression on the licensing number and
parameter count, shows a significant positive effect
of licensing number (8 = 0.196,p < 0.001), as
well as a significant positive effect of the number
of parameters (8 = 0.230,p < 0.001). When we
investigate our results by model type (LM, MLM,
Seq2Seq) separately, we find that the relationships
hold only for Seq2Seq models, but not for MLM
and LM models, with a positive relationship for
licensing number (8 = 0.190,p < 0.05) and
a positive relationship for number of parameters
(8 =0.226,p < 0.05).
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Figure 1: Relationship between the number of model parameters and the correlation between model predictions and
human judgments for NPIs. NPIs are presented from most to least licensed, from left to right.

We also run a series of beta regressions to evalu-
ate the relative performance of different NPIs. To
do this, we code the NPIs as separate one-hot pre-
dictors, and regress on all but one of the one-hot
vectors in turn. The omitted vector can be inter-
preted as the regression model’s “baseline,” with
effects associated with the other predictors reveal-
ing how model performance on the associated NPIs
compare to this baseline. By leaving out each NPI,
we obtain a partial ordering that describes the rela-
tive degree to which the models’ predictions accord
with human judgments.

Figure 2 shows the partial orderings obtained for
each model type, represented as Hasse diagrams.
The sequence from left to right represents MLMs,
LMs, and Seq2Seqs. The visual ranking of one NPI
over another indicates that the models’ judgments
for the higher ranked NPI more closely match hu-
man judgments than the lower ranked NPI. Our re-
gression results for the whole dataset are reflected
in the MLM Hasse diagram as NPIs with higher
licensing numbers (ever, remotely, and any (adv.))
generally appear nearer to the top, while NPIs with
lower licensing numbers (squat and anymore) ap-
pear toward the bottom. An interesting exception
is that exactly has the lowest licensing number, be-
ing licensed by only 1 context, yet it is one of the
highest ranked NPIs.

For LMs, we similarly see many NPIs in a po-
sition in the Hasse diagram consistent with the
regression results. For example, ever and exactly
appear again at the top. Additionally, we see that
any (adv.) is in the middle of the LM Hasse dia-

gram, just as it is in the other two diagrams.

For Seq2Seqs, we see ever and remotely at the
top, in a similar position as in the MLM and LM
Hasse diagrams. We also see that yet, anymore,
exactly, and any (det.) have many of the same or
similar relative orderings as in the MLM Hasse
diagram.

4.2 By Context

The correlation results broken down by model type
and context are illustrated in Figure 3. We see that
there is considerable variability across contexts,
particularly in the LM results, with Indirect Wh-Qs
having a correlation near 0, and Indirect Y/N-Qs
and Conditionals having a correlation generally
above 0.5.

A beta regression on the results by context with
the licensing number, parameter count, and their
interaction as independent variables found signifi-
cant effects of licensing number (8 = —3.286, p <
0.001) and number of parameters (3 = —0.175,
p < 0.05). These effects were qualified by a signif-
icant interaction of licensing number and number of
parameters (8 = 0.302, p < 0.01). The direction-
ality of these effects indicates that while smaller
models tend to display behavior less correlated with
human judgments for contexts that license more
NPIs, this penalty decreases for larger models ’.
Additionally, a regression on context frequency

"It is worth noting that the licensing contexts in our study
exhibit limited variability, typically licensing 4 to 5 NPIs.
Notable exceptions in our study are The Only Restrictor and
Superlative Restrictor, which license 7 and 3 out of 8 NPIs,

respectively. As such, our results are sensitive to the choice of
the set of NPIs to a good degree.
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ever ever

ezactly ever

ezactly remotely any (adv.) anymore remotely
squat any (adv.) remotely ezactly any (adv.) any (det.)
squat yet any (det.)
yet
anymore yet any (det.)

anymore

Figure 2: The diagrams are presented in the following sequence, from left to right: MLM, LM, and Seq2Seq.
These Hasse diagrams depict the partial ordering of NPIs based on the results of the beta regressions performed
on the one-hot encodings. The orderings are derived from correlations between the NPIs and human licensing
judgments, with certain NPIs demonstrating notably higher correlations. These diagrams utilize vertical positioning
to visually represent the relative ordering: an NPI positioned higher in the diagram indicates a stronger correlation
with human judgments compared to any NPI reachable by following a downward line. As an illustration, in the
Seq2Seq diagram, ever occupies the topmost position. Every other NPI can be reached by tracing a line downward
from ever, signifying its comparatively greater correlation with the human judgments. NPIs that are not connected
in this manner did not exhibit any statistically significant relative relationships in the regression results.

found significant positive effects (5 = 0.210,
p < 0.001).

As with the NPIs, we perform beta regressions
on the licensing contexts encoded as one-hot vec-
tors, excluding each licensing context in turn as
a “baseline.” We thus obtain a partial ordering of
model performance on particular contexts across
all NPIs that a context licenses.

Figure 4 shows the partial orderings of the licens-
ing contexts obtained for each model type. The
sequence from left to right represents MLMs, LMs,
and Seq2Seqs. MLMs’ predictions most closely
correlate with human judgments for Conditionals,
with the least similarity found for the licensor The
Only Restrictor. Figure 4 also demonstrates that
LMs’ performance most closely accords with hu-
man preferences in the Conditional and Indirect
Y/N-Q contexts and least so in the Indirect Wh-Q
context. For the Seq2Seq model, performance is
best for the Conditional, Superlative Restrictor,
and Indirect Wh-Q contexts.

Across all models, Conditional licensing envi-
ronments are associated with the highest model
performance. Indirect Y/N-Q and Universal Re-
strictor contexts tend to be associated with an up-
per middling performance across the model tasks.
Other licensing environments, namely Superlative
Restrictor and Indirect Wh-Q, are associated with
all levels of performance, appearing toward the
top, middle, and bottom of the different model dia-
grams.

5 Discussion

Our results paint a complex picture, where both
model size and the number of licensing contexts of
a given NPI contribute to higher correlations with
human judgments. Nevertheless, we observe sub-
stantial variation in the correlations between model
and human preferences across NPIs and contexts.

For the results by NPI, we see relatively con-
sistent positions of NPIs across different model
architectures when considering their relative rela-
tionships with the correlations, indicating that in-
teresting structural patterns exist within the class of
NPIs. While some aspects of traditional NPI theory
are reflected, namely the number of licensing con-
texts for a given NPI (which is informative about
its relationship to other NPIs), there is still much
complexity that does not fit in with the specifics of
NPI theory. For example, exactly is consistently
among the NPIs on which the models perform best,
despite being licensed in only one of the contexts
we consider. This indicates that the behavior of the
LLMs we considered does not fully capture the dis-
tinctions relevant to the licensing of NPIs proposed
in traditional linguistic theories. It is also possible
that because exactly is not licensed by any contexts
other than negation, its licensing conditions are
easier to learn. In other words, exactly is such a
strong NPI in a prototypical sense that models may
find it easier to distinguish the context that licenses
it from the contexts that do not in comparison to
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Figure 3: Relationship between the number of model parameters and the correlation between model predictions and
human judgments for the licensing contexts. Contexts are presented from least to most licensing, from left to right.

NPIs that are subject to greater complexity.

Although much contemporary research has
shown that larger LLMs trained on larger datasets
tend to exhibit better performance compared to
smaller models trained on smaller datasets, our find-
ings make us less sanguine about the prospect of
big models and big data leading to fully human-like
linguistic behavior. While the models do acquire
a degree of knowledge pertaining to NPI licensing
contexts, many of the subtleties are lost. It is plau-
sible that within this domain, the notion that larger
LLMs are inherently superior may not hold true at
the level of detail we investigate. Additionally, it is
worth noting that the context frequency in natural
text seems to be related to model performance in
some way, though a more extensive investigation
may better distinguish its effects from the effects
of licensing number and model features.

The elevated performance observed in Condi-
tional contexts across all three model types may
be plausibly attributed to the syntactic character-
istics of this licensing environment. Specifically,
the use of the word if serves as a distinguishing
marker for a Conditional, while other contexts may
be identified only by more abstract structural prop-
erties. This easy-to-identify distinguishing feature
may render proficiency in this licensing construc-
tion relatively more obtainable. In future research,
more robust NPI theory could provide additional
explanatory power for understanding the relation-
ship that LLMs learn about NPIs and their licensing
environments.

6 Conclusion

We investigated NPI licensing in LLMs by ana-
lyzing the similarities between model and human
judgments and their relationship with certain lin-
guistic and model features. Analysis by NPI re-
veals a significant positive relationship between
both model size and model performance, as well as
between licensing number and model performance.
However, analysis by licensing context reveals that
larger LLMs may not be inherently better than
smaller LLMs at particular levels of granularity
and that model performance may not be influenced
by all of the anticipated factors in the most intuitive
way. Additionally, we have determined hierarchies
among NPIs and licensing contexts, which pro-
vide a broader perspective on NPI licensing across
model tasks. Several patterns emerged: while tra-
ditional semantic classifications of NPIs were not
reflected, a key feature, namely the number of con-
texts that license a given NPI, does appear to have
an impact on the hierarchies, though with some
clear exceptions. Similarly, hierarchies among li-
censing contexts may be influenced by the syntactic
characteristics of the environments. This complex
situation seems to reflect the complexity of NPIs,
which are linguistically heterogeneous.

Limitations

Many prominent LLMs today are proprietary and
restrict the ability to collect the probability the
model gives to an arbitrary token at an arbitrary
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Figure 4: The diagrams are presented in the following sequence, from left to right: MLM, LM, and Seq2Seq.
These Hasse diagrams depict the partial ordering of licensing contexts based on the results of the beta regressions
performed on the one-hot encodings. The orderings are derived from correlations between the contexts and human
licensing judgments, with certain contexts demonstrating notably higher correlations. These diagrams utilize
vertical positioning to visually represent the relative ordering: a context positioned higher in the diagram indicates
a stronger correlation with human judgments compared to any context reachable by following a downward line.
As an illustration, in the LM diagram, Conditional occupies one of the topmost positions. Every context other
than Indirect Y/N-Q can be reached by tracing a line downward from Conditional, signifying its comparatively
greater correlation with the human judgments. Contexts that are not connected in this manner did not exhibit any
statistically significant relative relationships in the regression results.

position. As a result, our approach does not allow
us to evaluate such models.

Additionally, the incorporation of training
dataset size as predictor of performance is com-
plicated due to a lack of consistent documentation
of this potentially crucial part of the pre-training
regimen. Many papers that present new LLMs
either omit information regarding the size of the
training dataset, or else present it in units that are
difficult to convert to a standardized measure, in-
cluding compressed disk size, uncompressed disk
size, token count, and word count. While it seems
clear that larger datasets should lead to increased
performance, it is difficult to determine precisely
what the relationship between dataset size and per-
formance on various tasks is for this reason.

Moreover, the nature of progress in terms of
available computational resources naturally leads
to a confound between model size and dataset size.
As more computational resources become more
available over time, models and datasets tend to
grow in tandem. Furthermore, the fact of when
MLMs, Seq2Seqs, or LMs happen to be en vogue,
and the particular computing resources available at
that time, leads to a confound between a model’s
pretraining task, its size, and the size of the dataset
used to (pre-)train it. Training and making available
a more systematically varied set of LLMs, where
task, model size, and dataset size are intentionally
varied independently, could help alleviate our cur-
rent inability to distinguish the effect of such differ-

ences on various tasks. Such an undertaking would
be, however, out of reach for all but those with
the most computational resources at hand, given
the current size of state-of-the-art LLMs and the
datasets they are pre-trained on.

Finally, the available data on the assessment of
NPI licensing is not entirely comprehensive, as we
find the subtleties of NPI/context combinations fit
for our purposes represented by binary judgments.
A more detailed empirical investigation could well
reveal more gradient human judgments, which may
alter future analysis of LLM knowledge of NPI
licensing.
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