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ABSTRACT. A storage code is an assignment of symbols to the vertices of a connected graph
G(V,E) with the property that the value of each vertex is a function of the values of its neighbors,
or more generally, of a certain neighborhood of the vertex in G. In this work we introduce a new
construction method of storage codes, enabling one to construct new codes from known ones via
an interleaving procedure driven by resolvable designs. We also study storage codes on Z and
Z2 (lines and grids), finding closed-form expressions for the capacity of several one and two-
dimensional systems depending on their recovery set, using connections between storage codes,
graphs, anticodes, and difference-avoiding sets.

1. INTRODUCTION

The concept of locality in coding theory has been the subject of extensive research during the
last decade. Codes with local recovery were initially motivated by applications in distributed
storage systems [17], wherein the lost data is recovered by accessing a small subset of the coor-
dinates of the codeword, saving the volume of communication in the system aimed at performing
the data reconstruction. Following their introduction, this class of codes was the subject of a large
number of works which considered it from algebraic, combinatorial, and information-theoretic
perspectives. We refer to a recent comprehensive monograph [24] for an overview of results and
problems concerning these codes.

It was further observed in [21] that distributed storage systems may introduce additional con-
straints on communication performed for data recovery. The topology of the storage network
may suggest that the nodes of the system be treated differently depending on their relative lo-
cation, physical proximity, or network connectivity limitations. A natural way to model these
limitations is to assume that the coordinates of the codeword correspond to the vertices of a graph
that represents the connections in the system, and that the recovery of a coordinate utilizes the
information available to it from its neighbors in the graph.

The main problem concerning storage codes is establishing the largest size of the code that
supports local recovery for a given class of graphs. It was soon realized that this problem can
be equivalently phrased as finding the smallest rate of symmetric index codes [4], or the largest
success probability in (one variant of) guessing games on the graph G [26]; see [2, 7] for a more
detailed discussion. Some high-rate storage codes were recently constructed in [6, 7, 16].

To facilitate the study of large-scale storage systems, two of the present authors suggested
to extend the concept of codes with local recovery to infinite graphs, calling them recoverable
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systems [12]. The simplest model in this class arises when the vertices of the graph are taken to
be all integer numbers Z. To define data encoding on Z, let us first introduce some notation. Let
Q be a finite set (the code alphabet) and let R ⊂ Z be a finite set. Let n+R := {n+ r | r ∈ R}.
For a sequence x ∈ QV and for a set of integers R, denote by xR the restriction of x to the
positions in R. A recoverable system X is formed of bi-infinite sequences x ∈ QZ with the
property that for any i ∈ Z the value xi is found as f(xi+R), R = {j : 0 < |j| < l} (l ≥ 1) and
f : Σ2l → Q is a deterministic function, independent of i. They additionally assumed that the
system X is shift invariant, i.e., if x ∈ X then also a left shift Tx ∈ X (T acts by shifting all
the symbols in x one place to the left). This assumption enabled them to rely on methods from
constrained systems to estimate the growth rate of the set of allowable sequences, or the capacity
of recoverable systems.

The object of this paper is storage capacity of finite graphs, constructions of storage codes,
as well as capacity and constructions of recoverable systems. For finite graphs we present a
construction of codes based on interleaving known codes controlled by resolvable designs to
obtain new codes from known ones. If the seed codes are optimal, then so are the interleaved
ones. For graphs with transitive automorphisms, we phrase the capacity problem in terms of the
code-anticode bound [11, 1].

For the infinite case, using finite subgraphs of Z and Z2, we obtain capacity values for certain
recovery regions R. For instance, for Z2, we find storage capacity for balls in the l1 and l∞
metrics as well as certain cross-shaped regions. These results do not involve the shift invariance
assumption.

Some of the results of this paper were presented at the 2022 IEEE International Symposium
on Information Theory and published as an extended abstract [5]. Here we add new results,
notably Section 3, and also provide complete or corrected proofs of the results announced in [5].

2. PRELIMINARIES

2.1. Storage codes for finite graphs.

Definition 2.1. [21, 28] Let x ∈ Qn be a word over a finite alphabet Q and let G = (V,E) be a
finite graph with |V | = {1, . . . , n} and a fixed ordering of the vertices. We say that x is assigned
to G if there is a bijection {1, . . . , n} → V which places entries of x on the vertices. A storage
code C on G is a collection of assignments of words such that for each v ∈ V and every x ∈ C ,
the value xv is a function of {xu, u ∈ N(v)}, where N(v) := {u : (v, u) ∈ E(G)} is the vertex
neighborhood of v in G.

We briefly mention the known results for storage codes on finite graphs as defined in the
opening paragraph of the paper. Let G be a graph with n vertices and let Rq(C ) := 1

n logq |C | be
the rate of a q-ary code C on G. In this case, the recovery set of a vertex v is N(v), and it depends
on v. We denote the largest attainable rate of a storage code on G by cap(G) := supq Rq(C ).

There are several ways of constructing storage codes with large rate. The most well-known
one is the edge-to-vertex construction: given a (d-regular) graph, place a q-ary symbol on every
edge and assign each vertex a d-vector of symbols written on the edges incident to it (again we
assume an ordering of the edges). The size of the code is (qd)n/2, resulting in the rate value 1/2
irrespective of the value of q. Here is an example with q = d = 2:
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This method extends to the case when every vertex is incident to the same number of cliques.
For instance, if this number is one, then the graph can be partitioned into k-cliques. To construct
a code, we put a single parity symbol on every clique and distribute the symbols of the parity to
the vertices that form it, resulting in rate R = (k − 1)/k. A further extension, known as clique
covering [4], states that

(1) cap(G) ≥ 1− α(G)/n,

where α(G) is the smallest size of a clique covering in G. Among other general constructions,
we mention the matching construction, which yields

cap(G) ≥ M(G)/n,

where M(G) is the size of the largest matching in G.
Turning to upper bounds, we note a result in [4], Theorem 3 (also [21], Lemma 9), which

states that

(2) cap(G) ≤ 1− γ(G)/n,

where γ(G) is the independence number of G, i.e., the size of the largest independent set of
vertices (in other words, the size of the smallest vertex cover of G).

Given a graph G, we may sometimes want to look at neighbors at distance more than one
from the failed vertex to recover its value, such as the set R discussed in Def. 4.1. Effectively,
this changes the connectivity of the graph, so while we keep the same set of vertices V , the edges
are now drawn according to where the failed vertex collects the data for its recovery. Assuming
that the recovery region can be defined consistently for all the vertices, we will use the notation
GR in our discussion of storage codes for this case. This agreement will be used in particular
when we address the two-dimensional grid Z× Z below.

Since R does not have to be symmetric, the graph GR generally is directed (as is often the
case in index coding [4, 3]). In this case, bound (2) affords a generalization, which we proceed
to describe. For a subset of vertices U ⊆ V in a graph G = (V,E), denote by G(U) the induced
subgraph. A directed graph with no directed cycles is called a directed acyclic graph (DAG). It
is known that a graph is a DAG if and only if it can be topologically ordered [19, p. 258], i.e.,
there is a numbering of the vertices such that the tail of every arc is smaller than the head. A
set of vertices S ⊆ V in a graph G is called a DAG set if the subgraph induced by S is a DAG.
With this preparation, the following maximum acyclic induced subgraph (MAIS) bound is true;
see [4], Theorem 3, or [3], Sec. 5.1.

Theorem 2.1. Let G = G(V,E) be a graph and let δ(G) be the size of the largest DAG set in
it. Then,

(3) cap(G) ≤ 1− δ(G)/n.
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Proof. Let S ⊂ V be a DAG set. We argue that the values stored on S are uniquely determined
by the values stored on V \S. First, consider the topological ordering of S, all the outgoing edges
of the last ordered s ∈ S end in V \ S. Therefore, s can be recovered by V \ S. Then we can
recover the second last vertex of S by s and V \ S. Proceeding like this, we are able to recover
all values stored on S. Taking S to be the largest DAG set in G, we have capq(G) ≤ 1−δ(G)/n
for all q ≥ 2. □

The bounds (2) and (3) are tight and can be achieved by clique partition codes. A clique
partition of a graph G is a partition of the graph into subsets such that the induced graph by
every subset is a clique.

Other upper bounds on the rate of storage codes are found in [22] for the symmetric case
and in [3] for the general case. In this paper we will need a linear programming bound for the
capacity of storage codes proved in [22] (its statement is somewhat technical and is given in
Appendix A). We note that the authors of [22] also found some families of codes that achieve it.

2.2. Capacity for finite graphs and the code-anticode bound. Given a finite graph G(V,E),
we define the graphical distance ρ(u, v) as the length of the shortest path in G between u and
v. A code in G is a subset C ⊂ V , and it is said to have minimum distance d if ρ(u, v) ≥ d
for all pairs of distinct vertices u, v ∈ C , or, in other words, if for any two distinct code vertices
u, v ∈ C the balls Br(u) and Br(v) of radius r = ⌊(d − 1)/2⌋ are disjoint. A code C ⊂ V
is called an r-covering code if

⋃
v∈C Br(v) = V. We denote by C(G, r) the smallest size of an

r-covering code in the graph G.
Suppose that we are given a finite set V, |V | = n and a subset R(v) ⊂ V \{v} that serves

the recovery region for the vertex v. In this section the recovery regions will be given by balls
of a given radius r in the metric ρ, the same for every vertex v ∈ V. We construct a graph
Gr = G(V,E) by connecting each vertex v with all the vertices u such that 1 ≤ ρ(v, u) ≤ r.
For instance, in Sec. 5 below, V will be an n × n region of Z2 and R(v) = Br(v)\{v}, where
Br(·) is a ball of radius r in some metric on Z2 (we focus on the l1 and l∞ distances).

Denote by A(G; r+1) the size of the largest code in G with minimum distance at least r+1.
Any such a code is an independent set in Gr, and thus by (2)

(4) cap(Gr) ≤ 1− 1

n
γ(Gr) = 1− 1

n
A(G; r + 1).

This gives an interpretation of the bound (2) in coding-theoretic terms. Furthermore, every ball
of radius ⌊r/2⌋ in G is a clique in the graph Gr, and thus, any ⌊r/2⌋-covering code in G can
form a clique covering of the graph Gr. As above, let α(Gr) be the number of cliques in the
smallest covering. From (1) we obtain that

cap(Gr) ≥ 1− 1

n
α(Gr) ≥ 1− 1

n
C
(
G;

⌊r
2

⌋)
.

Assume the number of vertices in the ball of radius ⌊(r − 1)/2⌋ in G does not depend
on the center, and denote this number by BG(r). There are general conditions for this to
hold, for instance if the graph G is arc-transitive. Then the sphere packing bound implies that
A(G; r + 1) ≤ n

BG(⌊(r−1)/2⌋) . If r is even and there exists a perfect r/2-error-correcting code
then A(G; r + 1) = C(G; r/2) = n

BG(⌊(r−1)/2⌋) and so

cap(Gr) = 1− 1

n
A(G; r + 1) = 1− 1

BG(⌊(r − 1)/2⌋)
.
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These relations can be used to derive capacity bounds for graphs. Below we use an extension
of the sphere-packing bound, known as the code-anticode bound, to derive exact values of ca-
pacity for some recoverable systems in Z2. A subset of vertices in G with diameter D is called
an anticode. For instance, a ball of radius τ is an anticode with diameter 2τ . It is known that
in many cases the largest size of an anticode of even diameter D is achieved by a ball of radius
D/2. For odd values of D the largest anticode is usually constructed by taking a union of two
balls of radius (D − 1)/2 whose centers are adjacent in G.

Delsarte [11, Thm.3.9] proved that if G contains a code C with minimum distance r + 1 and
an anticode D of diameter r, and G is distance-regular, then

(5) |C ||D | ≤ n.

Taking D a ball of radius ⌊(r − 1)/2⌋ recovers the sphere-packing bound. The condition of
distance regularity was relaxed in [1, 13]. In particular, [1, Thm. 1′] implies that (5) holds true as
long as G admits a transitive automorphism group. A code that satisfies the code-anticode bound
with equality is called diameter perfect. The existence of diameter perfect codes is in general
a difficult question; see e.g., [29, 14] for recent references. In our examples, diameter perfect
codes will exist, and they will also generate a tiling of the graph with congruent copies of the
corresponding anticode.

We continue with the following general claim.

Theorem 2.2. Suppose that G has a transitive automorphism group and contains a diameter
perfect code. Then,

(6) cap(Gr) = 1− 1

DG(r)
,

where DG(r) is the largest possible size of an anticode in G of diameter r.

Proof. An anticode D of diameter r forms a clique in the graph Gr because the recovery region
of every vertex in D includes all the other vertices in D . Thus, by assumption, there is a clique
covering of Gr, and if the anticodes are of the largest possible size, this clique covering is a
smallest one. Then from (1) we conclude that cap(Gr) ≥ 1− 1

DG(r) .
Further, from (5) we have A(G; r + 1) ≤ n/DG(r), and since G contains a diameter perfect

code, this is in fact an equality. Then (4) implies that cap(Gr) ≤ 1 − 1
DG(r) , completing the

proof. □

As an example, consider a discrete torus, i.e., a graph Tn on the vertex set V = [n]× [n] with
an edge between (i1, j1) and (i2, j2) whenever (i1−i2, j1−j2) equals one of (1, 0), (0, 1), (−1, 0),
(0,−1) modulo n. Consider storage codes on Tn based on the recovery sets formed by the entire
rows and columns (circles) on the torus. In other words, we take the recovery set in the form
R := (0, ∗) ∪ (∗, 0)\(0, 0) where the unspecified coordinates are allowed to vary over the entire
set Zn. The graph (Tn)R representing the system is obtained from Tn by connecting all pairs of
vertices whose coordinates are identical in either the first or the second position.

Theorem 2.3. For n ≥ 3 the storage capacity of the discrete torus G := (Tn)R is

cap(G) = 1− 1

n
.(7)

Proof. Notice first that for any two vertices (i1, j1), (i2, j2), there is an edge between (i1, j1)
and (i2, j2) if and only if dH ((i1, j1), (i2, j2)) = 1, where dH denotes the Hamming distance.
Placing a parity constraint on every row of Tn yields a code of rate 1 − 1/n, proving a lower
bound in (7). In order to show that it is also an upper bound, first observe that the automorphism
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group of G acts transitively on it. On account of Theorem 2.2, to complete the proof it suffices
to show that DG(1) = n. In words, we want to show that the largest anticode of diameter 1 in
the graph G under the Hamming metric is of size n, which is immediate. □

Remark 1. Using the results of Theorem 5.2, we can also find capacity of the torus with recovery
region defined by the l1 or l∞ distance.

3. INTERLEAVING STRUCTURES

In this section, we introduce a way to construct new storage codes for finite graphs by inter-
leaving existing ones. Let C be a storage code on a finite graph G over the alphabet Q. Let
x1, . . . , xks be arbitrary ks codewords from C , where k, s ∈ N. Roughly speaking, the inter-
leaving operation maps these ks codewords to (Qk)ns, and the set of all interleaved codewords
forms a storage code on a new graph, defined below as a part of the code construction. De-
note by C̄ the interleaved code and Ḡ the corresponding graph. We will define the interleaving
operation such that Rqk(C̄ ) = Rq(C ), thus capqk(Ḡ) ≥ capq(G) holds. Moreover, if Rq(C )
meets the MAIS bounds (3) or the linear programming bound of Mazumadar et al. [22], then we
have Rqk(C̄ ) = cap(Ḡ), enabling one to construct optimal storage codes for a wide range of
parameters.

3.1. Interleaving construction.

Definition 3.1. Let M be a set of k × s matrices (s ≥ k) over N. We say that M forms a family
of orthogonal partitions of the set of integers {1, . . . , ks} if

(1) Every A ∈ M contains every element of {1, . . . , ks} exactly once, thus, the columns of
A form a partition of {1, . . . , ks}.

(2) For every pair of distinct matrices A,B ∈ M, every column of A has common en-
tries with k columns of B, and every such pair of intersecting columns has exactly one
common element.

We call (k, s) the shape and |M| the size of the family of orthogonal partitions, respectively.

Example 1. Let k = 3, s = 5. The following set of matrices forms a family of orthogonal
partitions of the set {1, 2, . . . , 15}: 1 4 5 6 7

2 10 8 9 11
3 14 13 15 12

 ,

 1 2 3 4 6
8 5 13 11 10
9 7 14 15 12

 ,

 1 2 3 4 7
10 13 5 8 9
11 15 6 12 14

 ,

 1 2 3 6 7
4 12 9 11 8
5 14 10 13 15

 ,

 1 2 3 4 5
6 8 12 9 11
7 10 15 13 14

 ,

 1 2 3 5 6
12 9 4 10 8
13 11 7 15 14

 ,

 1 2 3 5 7
14 4 8 9 10
15 6 11 12 13

 .

For instance, the second column of the first matrix interests with columns 3,4, and 5 of the second
matrix, etc.

Families of orthogonal partitions can be constructed relying on resolvable designs [10], which
we define next. Let B be a collection of k-subsets of a finite set V . We call the elements of V
and B points and blocks, respectively. The pair (V,B) is called an r-(v, k, λ) block design if
every r-subset of V is contained in exactly λ blocks. A set of blocks is called a parallel class if
they form a partition of V . Finally, a block design is called resolvable if its set of blocks B can
be partitioned into parallel classes.

Proposition 3.1. A 2-(v, k, 1) resolvable design defines a family of orthogonal partitions of
shape (k, s) and size (v − 1)/(k − 1), where s = v/k.
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Proof. Given a 2-(v, k, 1) resolvable design, each parallel class yields a matrix in the family
of orthogonal partitions, whose columns are the blocks in the class1. Therefore, every matrix
contains all the points exactly once, and two columns from different matrices are either disjoint
or intersect on one point. Indeed, if two columns intersect on two points, this would imply that
a 2-subset is contained in two blocks, which is a contradiction. □

By Proposition 3.1, the existence of 2-(v, k, 1) resolvable design implies the existence of
orthogonal partition families. The necessary conditions for the existence of 2-(v, k, 1) resolvable
designs are k|v and (k − 1)|(v − 1). If v and k are both powers of the same prime, then
the necessary conditions are also sufficient [10, Theorem 7.10]. In particular, for every v ≡
3 mod 6 there exists a family of 2-(v, 3, 1) resolvable designs called Kirkman triple systems
(Example 1 is obtained from a Kirkman triple system with v = 15). Therefore, resolvable
designs give us a rich collection of orthogonal families2.

Now we will present a way of obtaining new storage codes from known codes. Given a code
C on a graph G = (V,E) and a family M of orthogonal partitions of shape (k, s), we will first
construct a new graph Ḡ = (V̄ , Ē). Fix a coloring of G in c colors such that adjacent vertices are
assigned different colors. Pick c matrices from M and label them with colors M1, . . . ,Mc. Let
V̄ = {1, . . . , n} × {1, . . . , s}, and ((t, µ), (t′, µ′)) ∈ Ē if and only if (t, t′) ∈ E, and column
µ of Mc(t) intersects column µ′ of Mc(t′), where c(·) denotes the color of the vertex. Note that
each vertex t ∈ V corresponds to an independent set t̄ = {(t, 1), . . . , (t, s)} ∈ V̄ , and there are
edges between vertices in t̄ and t̄′ only if (t, t′) ∈ E. This construction works for both undirected
and directed graphs G.

Next, given a storage code C on a finite graph G = (V,E) over the alphabet Q, |Q| = q, and
V = {1, . . . , n}, we define an interleaving procedure that produces a storage code C̄ on Ḡ over
(Qk)ns.

(1) Choose codewords x1, x2, . . . , xks from C (not necessarily distinct). For each xλ ∈ C ,
λ = 1, . . . , ks, denote by xλ

v the symbol stored on the vertex v ∈ V .
(2) For each vertex t ∈ V , denote by r = c(t) its color, and form a k × s matrix such that

entry (i, j) is x
Mr(i,j)
t . In other words, we arrange x1

t , . . . , x
ks
t in a k × s matrix Xt

according to Mr ∈ M, namely, the i, j-th entry is xMr(i,j)
t .

(3) A codeword x̄ ∈ (Qk)ns is obtained by concatenating the columns of the matrices
X1, X2, . . . , Xn in some fixed order. Specifically, for µ ∈ {1, . . . , s} and t ∈ {1, . . . , n}
we assign column µ of Xt to the vertex (t, µ).

(4) The collection of codewords x̄ constructed in the previous steps forms the code C̄ .

Proposition 3.2. The interleaved code C̄ is a storage code on Ḡ.

Proof. Suppose that node (t, µ) is erased, and denote by (xλ1
t , . . . , xλk

t )T the column stored on
it, where xλ1 , . . . , xλk ∈ C are the codewords that were interleaved to define the codeword x̄.
Note that xλj

t is a function of {xλj

t′ , t
′ ∈ N(t)}, and x

λj

t′ is stored on exactly one of the nodes t̄′,
and by definition of orthogonal partitions, xλj

t′ , x
λj′

t′ are stored on different vertices if j ̸= j′. In
a nutshell, (t, µ) can be recovered from the values

⋃k
j=1{x

λj

t′ , t
′ ∈ N(t)}, which are stored on

exactly k|N(t)| vertices of Ḡ. □

1We only require each column to contain all the elements from the block and do not impose any ordering.
2Every 2-(v, k, 1) resolvable design yields (k!)

v(v−1)
k(k−1) (s!)

v−1
k−1 orthogonal families. To see this, note that there are

v(v − 1)/k(k − 1) blocks and (v − 1)/(k − 1) parallel classes, and we can rearrange elements in each column and
permute the columns of each matrix.
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Remark 2. It is straightforward to check that the described method enables us to interleave
codewords from different storage codes on G by the same method. Namely, let C1, . . . ,Cks

be ks storage codes on G, and choose codewords xi ∈ Ci for each i = 1, 2, . . . , ks. They
can be used in the above procedure to define a new code. At the same time, if our goal is to
construct large-size codes, then the construction should rely on codes of the largest known size,
for instance, copies of the same code.

Example 2 (Example of interleaving). Let G be a triangle and C be a linear parity-check storage
code over F3.

(1) Color G by 3 colors and let

M =

{
M1 =

[
1 3 5
2 4 6

]
,M2 =

[
1 2 6
5 3 4

]
,M3 =

[
1 5 6
4 2 3

]}
.

(2) Pick 6 codewords from C , denote them by x1, . . . , x6, and arrange them into matrices
X1, X2, X3 relying on the orthogonal partitions given by M1,M2,M3. We obtain

X1 =

[
x1
1 x3

1 x5
1

x2
1 x4

1 x6
1

]
, X2 =

[
x1
2 x2

2 x6
2

x5
2 x3

2 x4
2

]
X3 =

[
x1
3 x5

3 x6
3

x4
3 x2

3 x3
3

]
,

and

x̄ =

(
x1
1 x3

1 x5
1 x1

2 x2
2 x6

2 x1
3 x5

3 x6
3

x2
1 x4

1 x6
1 x5

2 x3
2 x4

2 x4
3 x2

3 x3
3

)
.

For instance, choosing {x1 = 111, x2 = 222, x3 = 000, x4 = 120, x5 = 012, x6 = 102} ⊂ C ,
we obtain

x̄ =

(
1 0 0 1 2 0 1 2 2
2 1 1 1 2 2 0 0 0

)
.

The corresponding graph Ḡ defined on [3]× [3] is shown in the figure.

3.2. The rate of interleaved codes. An immediate observation is as follows.

Proposition 3.3. We have Rqk(C̄ ) = Rq(C ), and thus capqk(Ḡ) ≥ capq(G).

Proof. The rate of C̄ satisfies

Rqk(C̄ ) =
1

ns
logqk |C |ks = 1

n
logq |C | = Rq(C ).

The second claim is obvious. □

Remark 3. Let G̃ = (Ṽ , Ẽ) be a graph such that Ṽ = {1, . . . , n}×{1, . . . , s} and ((t, µ), (t′, µ′)) ∈
Ē if and only if (t, t′) ∈ E. Then storage codes on G̃ over Q are essentially the same as storage
codes on G over Qs, and thus, capq(G̃) = capqs(G). Since Ḡ = G̃ if k = s, we focus on the
case k < s.

Recall that δ(G) denotes the size of the largest DAG in G.

Proposition 3.4. Let C be a storage code on G with Rq(C ) = capq(G). If capq(G) = 1 −
δ(G)/n, then the interleaved code C̄ achieves the maximum rate on the corresponding graph Ḡ,
and capqk(Ḡ) = cap(G).

Proof. We first show that δ(Ḡ) ≥ sδ(G). Let S ⊂ V be the largest DAG set of G, and S̄ :=⋃
v∈S v̄ (recall that v̄ = (v, σ), where σ runs over {1, . . . , s}). It is straightforward to check

that S̄ is also a DAG in V̄ of size sδ(G). Indeed, if (t1, µ1), . . . , (tm, µm), (t1, µ1) is a directed
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(1,3)(1,2)(1,1)

𝑥!"𝑥!#𝑥!!

𝑥!$𝑥!%𝑥!&

𝑥&$𝑥&&𝑥&!

𝑥&%𝑥&#𝑥&"

(2,3)(2,2)(2,1)

𝑥#$𝑥#"𝑥#!

𝑥##𝑥#&𝑥#%

(3,3)(3,2)(3,1)

FIGURE 1. The figure shows the graph Ḡ in the example. We have n = 3, k = 2, s = 3, and
c = 3. The graph has 9 vertices connected as shown. Next to each vertex we show the pair of
letters stored in it.

cycle in S̄, then t1, . . . , tm, t1 is a directed cycle in S. Therefore, δ(Ḡ) ≥ |S̄| = s|S| = sδ(G).
Now by the MAIS bound (3),

capqk(Ḡ) ≤ 1− δ(Ḡ)

ns
≤ 1− |S̄|

ns
= 1− δ(G)

n
= capq(G) = cap(G).

On the other hand, by Proposition 3.3, we have capqk(Ḡ) ≥ capq(G) = cap(G). □

We remark that given a largest DAG set in G, we can easily identify a largest DAG in Ḡ.

Corollary 3.5. Let G = (V,E) be a graph with a storage code C that satisfies Rq(C ) =
1−δ(G)/n. We have δ(Ḡ) = sδ(Ḡ), where Ḡ is the graph defined by the interleaving procedure.
In addition, if S ⊂ V is a largest DAG of G, then the set S̄ =

⋃
v∈S v̄ is a largest DAG in Ḡ.

Proof. From the proof of Proposition 3.4, we know that S̄ is a DAG in Ḡ and δ(Ḡ) ≥ sδ(G).
On the other hand, by Propositions 3.3 and 3.4, we have

1− δ(G)

n
= capq(G) = Rq(C) = Rqk(C̄ ) = capqk(Ḡ) ≤ 1− δ(Ḡ)

ns
,

which implies that δ(Ḡ) ≤ sδ(G). Hence, δ(Ḡ) = sδ(G), and S̄ is a largest DAG set. □

In particular, this claim is true if S is an independent set in G.

Corollary 3.6. Let C be a storage code on G with Rq(C ) = capq(G). If capq(G) = 1 −
γ(G)/n, then the interleaved code C̄ achieves the maximum rate on the corresponding graph
Ḡ, and capqk(Ḡ) = cap(G). Further, if S ⊂ G is the largest independent set of G, then
S̄ =

⋃
v∈S v̄ is the largest independent set of Ḡ.
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A similar claim holds for the codes that achieve the linear programming bound of [22].

Proposition 3.7. Let C be a storage code on G = (V,E) with Rq(C ) = capq(G). If capq(G)

achieves the LP bound of Theorem A.1, then the interleaving code C̄ has the maximum possible
rate on the corresponding graph Ḡ = (V̄ , Ē), and capqk(Ḡ) = cap(G), where Ḡ is defined by
the interleaving structure.

The proof is given in Appendix A.
Note that generally, for any subgraph G′ ⊂ G̃ defined on the vertex set Ṽ , there is an obvious

relation between the capacities, cap(G′) ≤ cap(G). Of course, for most subgraphs we do not
have a means of constructing good codes; however, for subgraphs of the form Ḡ derived from the
interleaving construction, we have a way of obtaining optimally sized codes as described above.

3.3. Some optimal storage codes. The interleaving construction relies on a good seed code. In
this section we list some known code families that can be used to obtain new optimal storage
codes by interleaving, and working out the details of the construction for one of them. Below we
use the notation [n] = {0, 1, . . . , n− 1}.

Example 3. Let l, r be positive integers, and R = {1+[r]}∪{−1− [l]}, and let m = min{l, r}.
In Proposition 4.2 below we find the capacity of a recoverable system XR defined on the (infinite)
graph ZR. Taking a finite subgraph G = ZR∩[n], where (m+1)|n, we obtain an optimal storage
code with R(C ) = m/(m+1). The code can be obtained from the clique partition construction
described above (1), and since {i(m+1) : 0 ≤ i < n/(m+1)} is the largest DAG set in G, we
obtain that cap(G) = 1− n/(m+1)

n = m/(m+ 1).

Let us apply the interleaving construction for this code. First, we color G with colors {0, . . . , l+
r} such that vertex t is colored with color τ := tmod (l + r + 1). Next, we choose a family
of orthogonal partitions M = {M0, . . . ,Mr+l} of shape (k, s) and define Ḡ = (V̄ , Ē) such
that V̄ = {1, . . . , n} × {1, . . . , s} and ((t, µ), (t′, µ′)) ∈ Ē if (t, t′) ∈ E, and column µ of Mτ

intersects column µ′ of Mτ ′ . Finally, the interleaved code is obtained by the procedure defined
before Proposition 3.2, where C is the optimal clique partition code described in the previous
paragraph.

Example 4 (Cycles). Let Cn be an undirected cycle of length n. If n is even, then the largest
independent set of Cn has size n/2, so cap(Cn) ≤ 1/2 by (2). At the same time, the edge-to-
vertex construction yields a storage code C of rate 1/2 over an alphabet Q. If n is odd, then by
the LP bound it can be shown that cap(Cn) ≤ 1/2. A code of rate 1/2 can be obtained from the
fractional matching construction [22].

Example 5. ([22, Theorem 10]) Let Ck be a cycle of length k > 3 and let B be a bipartite graph.
Then cap(Ck ⊠ B) = 1

2 , where ⊠ is the Cartesian product of graphs3. The fractional matching
construction gives optimal codes.

Example 6. ([22, Theorem 11]) Let G be a cycle with chords whose endpoints are at least dis-
tance 4 apart on the cycle. We have cap(G) = 1

2 , and again, the fractional matching construction
gives optimal codes.

In the last two examples, optimality is proved by relying on the linear programming bound.

3The Cartesian product of two graphs G1 = (V1, E1) and G2 = (V2, E2) is defined by G = (V,E), where
V = V1 × V2; ((u, u′), (v, v′)) ∈ E if and only if u = v and (u′, v′) ∈ E2 or u′ = v′ and (u, v) ∈ E1.
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3.4. Codes with partial recovery. We say that a storage code C over alphabet Qk has m levels
of recovery if for every vertex v, by visiting a 1/m proportion vertices in N(v), we can recover
a 1/m fraction of the symbols in v. Sometimes it may be desirable to have codes with multiple
levels of recovery, since we do not need to visit all neighbors to recover only a part of the node.
Consider the interleaved code, for any vertex (t, µ) ∈ V̄ , let (xλ1

t , . . . , xλk
t )T be the vector

stored on it. Suppose that, to recover a subset of the coordinates of this vector, it suffices to
download information from a part of the neighbors of (t, µ), and denote by N(x

λj

t ) the neighbors
that determine the values x

λj

t , j = 1, . . . , k. The interleaved construction relies on families of
orthogonal partitions, and this ensures that the sets N(x

λj

t ), j = 1, . . . , k are disjoint and are
of the same size. Therefore, our interleaving structure yields a storage code with k levels of
recovery, and the rate is optimal if the seed code is optimal with respect to the MAIS bound or
the LP bound.

3.5. High-rate storage codes on triangle-free graphs. It is easy to construct high-rate storage
codes on graphs with many cliques, but constructing codes of rate > 1/2 on triangle-free graphs
is a more difficult problem. Recently, [7] constructed infinite families of binary linear storage
codes of rate approaching 3/4. Following up on this research, two concurrent papers, [6] and
[18], constructed families of binary linear storage codes of rate asymptotically approaching one.
These constructions are based on Cayley graphs obtained as coset graphs of binary linear codes,
and they are restricted to the binary alphabet. Here we wish to remark that the code families can
be extended to alphabets of size 2k by interleaving.

Let C be a binary linear storage code on a graph G, and let C̄ be the interleaved code on
the corresponding graph Ḡ. It is easy to see that if G is triangle-free then so is Ḡ, and by
Proposition 3.3, we have R2k(C̄ ) = R2(C ). Therefore, interleaving the codes from [6] or [18]
we obtain new families of storage codes with asymptotically unit rate over the alphabet Zk

2 .

4. RECOVERABLE SYSTEMS

4.1. Recoverable systems: Definitions. The following definition formalizes the concept of
storage codes discussed above for the case of V = Zd, d ≥ 1.

Definition 4.1. (RECOVERABLE SYSTEMS) Let R ⊂ Z\{0} be a finite subset of integers ordered
in a natural way. An R-recoverable system X = XR on Z is a set of bi-infinite sequences x ∈ QZ

such that for any i ∈ Z there is a function fi : Q
|R| → Q such that xi = fi(xi+R) for any x ∈ X.

More generally, let R ⊂ Zd\{0} be a finite subset together with some ordering. An R-
recoverable system X = XR on Zd is a set of letter assignments (d-dimensional words) x such
that for any vertex v ∈ Zd there is a function fv : Q|R| → Q such that xv = fv(xv+R) for any
x ∈ X. Here v + R = {v + z : z ∈ R} is a translation of v by the recovery neighborhood (set)
R.

This definition is close to the definition of storage codes [21] which also allows the depen-
dency of the recovery function on v ∈ V and also (implicitly) assumes an ordering of the vertices
in V . Here we wish to note an important point: by defining the recovery set R we effectively
introduce an edge (possibly, a directed one) between v and every vertex in v+R. Thus, we speak
of R-recoverable systems on Zd with edges defined by R, and denote the graphs that emerge in
this way by Zd

R. If d = 1, we omit it from the notation.

Example 7. Take V = Z and R = {−1, 1}. Assume that x2i+1 = x2i for all i. Then we have
fi(xi−1, xi+1) = xi+(−1)i , that is, fi(xi−1, xi+1) = xi−1 or xi+1 depending on whether i is
odd or even.
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Definition 4.2. (CAPACITY, ONE-DIMENSIONAL) Let X = XR be a one-dimensional R-recoverable
system. For n ≥ 0, denote by Bn(X) the restriction of the words in X to the set [n] :=
{0, 1, . . . , n− 1}, i.e., Bn(X) = {x[n] : x ∈ X}. The rate of X is defined as

(8) R(X) = Rq(X) := lim sup
n→∞

1

n
logq |Bn(X)|.

The dependence on q will be omitted when it plays no role.

Given a recovery set R ⊂ Z\{0}, we are interested in its largest attainable rate

(9) cap(ZR) := sup
XR⊆QZ

R(XR)

of R-recoverable systems on Z, calling it the capacity of the graph ZR.

Example 8. Consider the R-recoverable system from Example 7. Since every odd symbol is
uniquely determined by the two adjacent symbols in even positions, we have Bn(X) ≤ q⌈n/2⌉,
and since every symbol can occur in the even positions, we have Bn(X) ≥ q⌊n/2⌋. Thus,
R(X) = 1

2 .

Similarly, we define the capacity of multidimensional systems.

Definition 4.3. (CAPACITY, d DIMENSIONS) Let R ⊂ Zd \ {0} be a finite set (the recovery
set) and let B[n]d(X) = [n]d be the d-dimensional cube. Given a recoverable system X = XR,
define its rate as

Rq(X) = lim sup
n→∞

1

nd
logq |B[n]d(X)|,

and let cap(Zd
R) = supXR⊆QZd R(XR) be the largest rate associated with the set R.

At this point one may wonder if the capacity value depends on our choice of cubes in this
definition. For the invariant case we prove that the answer is no, although a rigorous treatment is
somewhat technical, and we postpone it till Sec.4.3.

4.2. Recoverable systems on Z. Bounds and constructions for finite graphs can be extended to
infinite graphs such as Zd. In this section, we state a few easy results that exemplify the above
methods for the case of d = 1. Analogous claims in higher dimensions are discussed in the next
subsection.

Let R ⊂ Z \ {0} be a finite set and consider R-recoverable systems on the infinite graph
ZR. For all n > 0 let us consider the subgraph ZR,n := ZR ∩ [n]. To bound above the capacity
cap(ZR) we first find cap(ZR,n) and argue that these quantities are related. This follows from the
observation that we can disregard the boundary effects because the proportion of points whose
recovery regions do not fit in [n] vanishes as n increases. Thus, we can place constant values on
these points with a negligible effect on the rate of the code.

Lemma 4.1. Let R ⊂ Z \ {0} be a finite set and (cn)
∞
n=1 an infinite sequence of real numbers

such that cap(ZR,n) ≤ cn for all n ≥ 1. Then, cap(ZR) ≤ lim supn→∞ cn.

Proof. For a given n ≥ 1, let An be the set of vertices in ZR,n in which their neighborhood in
the graph ZR does not fully belong to the graph ZR,n, i.e., An = {m ∈ [n] : m + R ⊈ [n]}.
Since |R| is a constant independent of n, starting from some value of n we have |An| ≤ a for
some absolute constant a.

Let X be an R-recoverable system and recall that Bn(X) is its restriction to [n]. For a given
vector z = (xi)i∈An ∈ Q|An|, let Bz

n(X) be the set of words in Bn(X) which match the values
of z over the positions in An. The code Bz

n(X) is a storage code over the graph ZR,n and hence

n−1 · logq |Bz
n(X)| ≤ cap(ZR,n) ≤ cn.
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Since the inequality holds for all z ∈ Q|An| and |An| ≤ a, we conclude that

n−1 · logq |Bn(X)| ≤ cn + a/n,

which verifies the statement of the lemma. □

According to Lemma 4.1, it is possible to calculate the capacity of several recovery sets R.

Proposition 4.2. Let l, r be positive integers, let R = {1 + [r]} ∪ {−1 − [l]}, and let m =
min {l, r}. Then,

cap(ZR) =
m

m+ 1
.

Proof. Assume without loss of generality that r ≤ l, so m = r, and let ZR be the graph
describing the R-recoverable system. The upper bound follows by noting that for all n > 1 the
set of vertices {k(r + 1) : k ∈ Z} ∩ [n] is a DAG set in the graph ZR,n and thus

cap(ZR,n) ≤ 1− δ(ZR,n)

n
≤ 1−

⌈ n
r+1⌉
n

≤ r

r + 1
.

Together with Lemma 4.1 this implies that cap(ZR) ≤ r/(r + 1).
To show the reverse inequality we use the clique partition construction (1). Start with parti-

tioning Z into segments of length r + 1, setting Z =
⋃

k∈Z k · [r + 1]. We aim to construct a
code in which every vertex in the segment can be recovered from the other vertices in it. In other
words, ZR is a disjoint union of (r+1)-cliques, and the construction described above before (1)
yields a code of rate r/(r + 1). □

In the case of shift invariant recoverable systems the upper bound of this proposition was
derived in [12]; however, the authors of [12] stopped short of finding a matching construction
under this assumption. The challenge in the shift invariant case is to find a recoverable system
with the same recovery function for all symbols.

The next claim concerns recoverable systems in which the recovery functions use only two
symbols for the recovery process, but those symbols are not necessarily adjacent to the symbol
to be recovered.

Proposition 4.3. Let l, r be positive integers and let R = {−l, r}. Then for any q ≥ 2

cap(ZR) =
gcd(l, r)

l + r
.

Proof. We use a similar technique to the one used in the previous proof. First, we present an
upper bound on the capacity. Denote by d := gcd(l, r), m = l + r, and assume without loss of
generality that l ≤ r. For a sequence x ∈ Bn(X) for n large enough, we show how we can leave
only the symbols in positions i ∈ A := {km+ j : k ∈ N, j ∈ [d]} since all the other symbols
can be uniquely determined by the symbols in the positions of A. Notice that xl, . . . , xl+d−1 can
be recovered at first since x[d], xm+[d] ∈ A. As a matter of fact, this can be done for every m-
block in x, i.e., xkm+l+[d] can be recovered for every k ∈ [n/m]. At the next step, it is possible
to recover all the symbols x2l+[d] since during the previous step we recovered the symbols in
positions xl+[d] and in x2l+r+[d]. Again, this can be done in every m-block so it is possible to
recover the symbols xi for i ∈ {km+ 2l + [d] : k ∈ N}. We continue in the same way such
that at the t-th step, we recover the set xkm+tl+[d] for k ∈ N. We are only left to show that
the symbols in xd, xd+1, . . . , xl−1 are recovered. Since d = gcd(l, r), there exists t1 such that
t1l = k1m+ d for some k1 which implies that xkm+d+[l] are recovered.
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The lower bound is given by the following encoding process. The information symbols are
stored in positions i ∈ {km+ [d] : k ∈ N}. Then the parity symbols are added in the same
order as above. □

Example 9. We demonstrate the encoding process for a recoverable system XR with R =
{−l, r} over a three-letter alphabet. Take l = 6, r = 4, then gcd(4, 6) = 2. We show the
encoding process for positions 10, 11, . . . , 19, and note that similar steps are made for every
other (l + r)-block. First, we put data symbols in positions 10k, 11k for all k ∈ Z. The other
symbols are chosen so as to satisfy the parity xi + xi−l + xi+r = 0. To illustrate this, find
x14 = −(x10 + x20) and x15 = −(x11 + x21), then find (x18, x19) from (x14, x15;x24, x25),
etc.

Example 10. For the same set R = {−6, 4}, put a codeword of the length-5 repetition code
on each of the mutually disjoint sets of consecutive symbols in the even positions and in the
odd positions. For instance, we can take those sets to be {10k + 2j} and {10k + 2j + 1} with
0 ≤ j ≤ 4, k ∈ Z. Then clearly for every i ∈ Z, the symbol xi is a part of the codeword of the
repetition code that includes either position i − 6 or position i + 4, and we can recover xi by
accessing one of those positions as appropriate.

Let B ⊂ Z+ be a finite or infinite set. We call a set A ∈ Z B-avoiding if its difference set
|A−A| is disjoint from B, i.e., |b1 − b2| /∈ B for all b1, b2 ∈ A. Let an be the size of the largest
set An ⊆ [n] that is B-avoiding and define R(B) = lim supn→∞ an/n. This quantity has been
extensively studied in the literature, initially with B being the set of all whole squares [27] and
later values of other polynomials; see, e.g., [25].

Proposition 4.4. Let 0 < r1 < r2 < · · · < rs and 0 < l1 < l2 < · · · < lt be positive integers
and R = {−lt, . . . ,−l2,−l1, r1, r2, . . . , rs}. Then,

cap(ZR) ≤ 1−max{R({l1, . . . , lt}),R({r1, . . . , rs})}.

Proof. Assume without loss of generality that R({l1, . . . , lt}) ≤ R({r1, . . . , rs}) and let An be
the largest subset of [n] that is {r1, r2, . . . , rs}-avoiding. Then, An is a DAG set in the graph
ZR,n and thus cap(ZR,n) ≤ 1 − |An|/n. Indeed, all edges in An are going left. The statement
follows from Lemma 4.1. □

Consider for example the set Bm = {1, 2, 4, . . . , 2m} for m ≥ 1. Then, R(Bm) = 1/3
(achieved by the Bm-avoiding set {3j : j ≥ 0} ∩ [n] for all n). Then, according to Proposi-
tion 4.4, it is possible to derive that for all t, s ≥ 1, and R = {−2t, . . . ,−4,−2,−1, 1, 2, 4,
. . . , 2s}, cap(ZR) ≤ 1 − 1/3. Equality holds in this case since by Proposition 4.2, cap(ZR) ≥
cap({−2,−1, 1, 2}) = 2/3.

4.2.1. Interleaving and recoverable systems. The interleaving construction can also be applied
to recoverable systems, and sometimes it yields optimal-rate storage codes on infinite graphs.
For instance, let XR be a one-dimensional recoverable system defined in Proposition 4.2, and let
ZR be its corresponding (infinite) graph. As in Example 3, we first color ZR with {0, . . . , (r+l)}
such that vertex t ∈ ZR is colored with tmod (r+ l+1), and then we find a family of orthogonal
partitions M = {M0, . . . ,Ml+r} of shape (k, s). Now define the infinite graph Z̄R on the
vertices Z× {1, . . . , s} such that there is an edge from (t, µ) to (t′, µ′) if and only if

• there is an edge from t to t′ in ZR, and
• column µ of Mt mod (r+l+1) intersects column µ′ of Mt′ mod (r+l+1).
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The interleaved codewords are obtained by placing (xλ1
t , . . . , xλk

t )T on vertex (t, µ), where
λi = Mc(t)(i, µ), i = 1, . . . , k. Letting x1, . . . , xks ∈ XR run over all the possible choices
in XR, we obtain the interleaved code X̄R. In general, the interleaving construction works for
every recoverable system XR, and yields recoverable systems X̄R on an infinite graph defined
by the interleaving. To define the rate, let Y be a recoverable system defined on Z̄R and set

Rq(Y ) := lim
n→∞

1

ns
logq B[n]×{1,...,s}(Y ),

and finally let capq(Z̄R) = supY Rq(Y ). We observe that Lemma 4.1 can be generalized to
bound capqk(Z̄R), namely, capqk(Z̄R) ≤ lim supn→∞ cap(Z̄R∩ [n]×{1, . . . , s}) 4. Therefore,
if capq(XR) is bounded above by the DAG bound (as it happens, for instance, for recoverable
systems defined in Propositions 4.2, 4.3, and 4.4), then the interleaving construction yields a
capacity-achieving recoverable system X̄R on Z̄R.

4.3. Recoverable systems on Zd. In this section, we present results concerning the capacity
of multidimensional systems and their relationship with one-dimensional capacity. As in the
one-dimensional case, we derive results for the d-dimensional grid relying on capacity estimates
for storage codes in its finite subgraphs, arguing that the boundary effects can be disregarded in
the limit of large n. Let Zd

R,n := Zd
R ∩ [n]d and observe that Lemma 4.1 affords the following

generalization.

Lemma 4.5. Let R ⊂ Zd \ {0d} be a finite set and let (cn)n be a sequence of real numbers such
that cap(Zd

R,n) ≤ cn for all n ≥ 1. Then, cap(Zd
R) ≤ lim supn→∞ cn.

Proof. Again let Ad
n := {m ∈ [n]d : m + R ⊊ [n]d}. Since R is a finite region whose size is

independent of n, and since the number of (d− 1)-dimensional faces of the cube [n]d is 2d, we
have |Ad

n| = Od(n
d−1).

Arguing as in Lemma 4.1, let X be an R-recoverable system, let z ∈ Q|Ad
n| be a fixed word,

and let Bz
[n]d be the restriction of X to [n]d that matches z on Ad

n. The set Bz
[n]d forms a storage

code for Zd
R,n, and this holds for every choice of z. Since there are q|A

d
n| = O(qn

d−1

) such
choices, using the assumption of the lemma, we obtain

1

nd
logq(O(qn

d−1

)|Bz
[n]d |) ≤ O

( 1

n

)
+ cn.

Since this is true for every system X , in the limit of n → ∞ we obtain the claim of the lemma.
□

This lemma is used in Section 5 below to derive some capacity results for Z2. In this section
we show that in some cases capacity of graphs over Zd is tightly related to capacity of one-
dimensional graphs. For the remainder of this section, we assume an additional property, which
we call invariance. Recall that if R is a recovery region for Zd, then it defines a modified graph
Zd
R obtained by adding edges from every vertex v ∈ Zd to the vertices in its recovery region.

We say that R is invariant if for any DAG S in Zd
R, the shifted set a+ S := {a+ s, s ∈ S} also

forms a DAG set. By extension, an R-recoverable system X on Zd is called invariant if so is R.
While in general the recovery function depends on the vertex to be recovered, in shift invariant
systems, it does not depend on the vertex, and has a fixed shape up to translation.

4The proof follows the proof of Lemma 4.1, with the only difference that we take An = {(m,µ) ∈ [n] ×
{1, . . . , s} : m+R /∈ [n]}.
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We begin by demonstrating that there is no loss of generality in limiting oneself to n-cubes
in the capacity definition, Definition 4.3. Consider an R-recoverable system X with a finite
recovery region R ⊆ Zd \ {0}, d ≥ 2.

For any set S ⊆ Zd denote by BS(X) the restriction of the words in X to the set S. Now
assume X is an invariant system, let S1, S2 ⊂ Zd, and notice that |BS1∪S2(X)| ≤ |BS1(X)| ·
|BS2(X)|, or

logq |BS1∪S2(X)| ≤ logq |BS1(X)|+ logq |BS2(X)|.
Moreover, by the definition of an R-recoverable system, for any finite set S ⊆ Zd and any

a ∈ Zd we have |BS(X)| = |Ba+S(X)|. Our arguments will use the Ornstein-Weiss Theorem
(see [23] and a detailed proof in [20]), which we cite in the form adjusted to our needs.

Theorem 4.6. [Ornstein-Weiss] Let f be a function from the set of finite subsets of Zd to R,
satisfying the following:

• f is sub-additive, i.e., for every finite subsets S1, S2, f(S1 ∪ S2) ≤ f(S1) + f(S2).
• f is translation invariant, i.e., for any a ∈ Zd and S ⊆ Zd, f(a+ S) = f(S).

Then for every sequence (Si)i ⊆ Zd such that limi→∞
|(a+Si)△Si|

|Si| = 0 for every a ∈ Zd, the

limit limi→∞
f(Si)
|Si| exists, is finite, and it does not depend on the choice of the sequence (Si)i.

A sequence (Si)i for which limi→∞
|(a+Si)△Si|

|Si| = 0 for every a ∈ Zd, is called a Følner
sequence, and it can be thought of as a sequence of shapes whose boundary becomes negligible.
Theorem 4.6 implies that for invariant systems, for every Følner sequence (Si)i we have

R(X) = lim
n→∞

logq |B[n]d(X)|
nd

= lim
i→∞

logq |XSi |
|Si|

.

In particular, since the sequence ([n]d)(n≥1) is a Følner sequence, the rate R(X) is well
defined. The capacity of a recovery region R (or of the graph Zd

R) is defined as the largest
attainable rate of R-recoverable systems. In this section we limit ourselves to invariant systems,
and we denote their capacity by capr(R) (instead of capr(Zd

R)), where the subscript r refers
to invariance. Thus, capr(R) = supR(XR), where the supremum is taken over all invariant
systems in QZd

. Notice that all the definitions given so far are valid when restricting ourselves
to the set of invariant recoverable systems.

We will now establish a connection between the capacity of invariant recoverable systems in
one dimension and their higher-dimensional counterparts. To do so, we introduce the following
definition. Let n = (n1, . . . , nd) ∈ Nd be a d-dimensional vector. As above, B[n](X) denotes
the set of words in X that are restricted to the coordinates [n] = [n1] × · · · × [nd]. Given a
sequence of vectors (ni)i, we say that ni → ∞ as i → ∞ if the sequence

minni := min {(n1)i, . . . , (nd)i} → ∞
as i → ∞. It is straightforward to show that if a sequence (ni)i ⊂ Zd satisfying limi→∞ ni =

∞, then limi→∞
|(a+[ni])△[ni]|

|[ni]| = 0 for every a ∈ Zd, i.e., (ni)i is a Følner sequence (here
|[n]| =

∏n
j=1 nj).

Let

(10) Rd =
d⋃

i=1

({0}i−1 ×R× {0}d−i)

(below we call such regions axial products; see Thm. 5.4). It is intuitively clear that capr(R) ≤
capr(R

d). Below we formally prove this claim together with an upper bound on capr(R
d). We
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will use a multivariate generalization of the well-known Fekete lemma, which extends the origi-
nal claim to subadditive functions on d-dimensional lattices. A general version of this statement
appears, for instance, in [15, Lemma 15.11], although apparently it has been known for a long
while. We will use a version adjusted to our needs, considering sequences indexed by integer
vectors and subadditive along each of the coordinates.

For a vector n = (n1, . . . , nd) ∈ Nd and c ∈ N, let n(i,+c) be the vector obtained from n by
replacing ni with ni + c, and let n(i,c) be obtained upon replacing ni with c.

Theorem 4.7. [8, Th. 1], [9] Let ξ : Nd → [0,∞) be a sequence that satisfies

ξ(n(i,+ci)) ≤ ξ(n) + ξ(n(i,ci))

for all ci ∈ N, i = 1, . . . , d. Then, the limit limn→∞
ξ(n)∏
j nj

exists and is equal to infS⊆Nd
ξ(S)
|S| .

Proposition 4.8. Let R ⊂ Z \ {0} be a finite set and for every n, let Sn be an invariant DAG set
in ZR,n. Then

capr(R) ≤ capr(R
d) ≤ lim sup

n→∞
(1− |Sn|/n).

Proof. It will suffice to limit ourselves to considering restrictions of XR,n to cubes, so below
B[n] denotes a cube [n]d. The first inequality is obvious by stacking one-dimensional words from
XR,n to form a word in XRd . Namely, fix any (i1, . . . , id−1) ∈ [n]d−1 and place a word of XR,n

in the n positions given by varying the last coordinate id inside B[n]; repeat for all the choices
of (i1, . . . , id−1). Since every symbol can be recovered from its one-dimensional neighborhood
along the varying coordinate, it can also be recovered from its Rd-neighborhood.

Let us prove the second inequality. For a ∈ N we have

|B[n(i,+a)](XRd)| ≤ |B[n](XRd)| · |B[n(i,a)](XRd)|,
or

log |B[n(i,+a)](XRd)| ≤ log |B[n](XRd)|+ log |B[n(i,a)](XRd)|.
Thus, the log-volume sequence is subadditive coordinate-wise, so Theorem 4.7 applies, yielding
that the limit in (8) exists, i.e.,

R(XR) = lim
n→∞

log |B[n](XRd)|
nd

.

Moreover, this limit equals the infimum on the choice of the shape, so taking ni = (i, 0, 0, . . . , 0)
for the upper bound on capacity we obtain that

R(XRd) ≤
logB[ni](XRd)

i
.

Since B[ni](XRd) is the restriction of X to [ni], and since Rd is constructed as an axial product,

we obtain that Sn is a DAG set in ZRd,n. Thus,
logB[ni]

(X
Rd )

i ≤ 1− |Sn|/n which implies that

capr(R
d) ≤ lim sup

n→∞

(
1− |Sn|

n

)
.

□

As an immediate corollary of this proposition, we obtain the following.

Corollary 4.9. Let R ⊆ Z \ {0} be a finite set and let X be an invariant R-recoverable system
that attains the MAIS bound (3). Let Rd be given by (10), then cap(Rd) = cap(R).



18 STORAGE CODES AND RECOVERABLE SYSTEMS ON LINES AND GRIDS

5. CAPACITY OF Z2 WITH l1 AND l∞ RECOVERY REGIONS

The results in the previous sections enable us to study the capacity of graphs that represent a
storage network over the two-dimensional grid. We start with recovery sets formed by radius-r
balls under the l1 and l∞ metrics. For v = (i1, j1), u = (i2, j2) ∈ Z2,

d1
(
(i1, j1), (i2, j2)

)
= |i1 − i2|+ |j1 − j2|,

d∞
(
(i1, j1), (i2, j2)

)
= max{|i1 − i2|, |j1 − j2|}.

The l1 metric on Z2 is sometimes called the Manhattan distance (or even Lee distance [13],
although this usage is not fully accurate). A sphere in this metric is a rhombic pattern whose
exact shape depends on the parity of the radius (see below). A sphere in the metric d∞ is a
(2r + 1) × (2r + 1) square. In both cases to argue about recovery, we add to Z2 the edges
that connect every vertex with its neighbors in the sphere of radius r about it, and denote the
resulting graph by Gα

r , for α = 1,∞. To find the capacity of these graphs, we rely on Theorem
2.2 applied to their finite subgraphs. These subgraphs do not have transitive automorphisms, but
finding the capacity of the system essentially amounts to constructing a perfect covering of the
graph by anticodes. This claim is proved in the following general statement.

Proposition 5.1. Let DG(r) be the largest size of an anticode of diameter r in Z2 in the dα
metric, α = 1,∞, and suppose that Z2 admits a tiling with anticodes of size DG(r). Then

cap(Gα
r ) = 1− 1

DG(r)
.

Proof. Suppose that there is a perfect covering of Z2 with largest-size anticodes of diameter r.
Then the graph G := Z2

n contains a perfect covering, except for the subset formed of the points
at distance r or less from one of the boundaries. As a result, cap(Gr) ≤ 1 − 1

DG(r) , and also
cap((Z2)r) ≤ 1 − 1

DG(r) on account of Lemma 4.5. At the same time, since the anticodes
provide a perfect covering of Z2, we have that cap(Gr) ≥ 1− 1

DG(r) . □

This enables us to find the capacity values of the graphs Gα
r .

Theorem 5.2. For all r ≥ 1 it holds that

cap(G1
r) = 1− 1

D1(r)
,

cap(G∞
r ) = 1− 1

(r + 1)2
,

where D1(r) is the size of a maximum anticode of diameter r in the l1 sphere, and

D1(r) =

{
(r+1)2

2 r odd,
r2

2 + r + 1 r even.

Proof. For the graph G∞
r , anticodes of diameter r are simply squares of size (r + 1)× (r + 1),

so DG∞
r
(r) = (r + 1)2. The squares tile the graph, giving a perfect covering, and thus

cap(G∞
r ) = 1− 1

(r + 1)2
.

The result for the G1
r metric is obtained from perfect tiling which exists for maximal anticodes in

the l1 metric (see e.g. [13]). In detail, for r = 2k, the largest anticode with diameter r is an l1 ball
of radius k, which forms a tiling in Z2. Its size is easily found by induction to be r2/2 + r + 1.
For r = 2k+1, the largest anticode Dk can be defined recursively as follows. Let D0 be a shape
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formed by two adjacent (with l1 distance one) points of Z2, and let Dm,m = 1, . . . , k be formed
of Dm−1 and all the points that are adjacent to at least one of points in Dm−1. Note that Dk also
generates a tiling, and |Dk| = (r + 1)2/2. □

Remark 4. Note that this theorem relies on a stronger assumption that Theorem 2.2, namely that
the there is a tiling of the graph with translations of a largest-size anticode. The existence of
tilings and more generally, diameter perfect codes in Zd, is an active research topic, see [30, 31]
for recent additions to the literature.

Now suppose that the recovery set is not symmetric, for instance, a direct product of two
non-symmetric segments. We have the following result.

Theorem 5.3. Let l, r, b, a be positive integers and consider the recovery set R = [−l, r] ×
[−b, a] where 0 ≤ r < l and 0 ≤ b < a. Let XR be a two-dimensional R-recoverable system on
Z2. Then

(11) cap(GR) = 1− 1

(r + 1)(b+ 1)
.

Proof. To show that cap(GR) is less than the right-hand side of (11) we observe that

S = {(i(r + 1), j(b+ 1)) : i, j ≥ 0}
is a DAG set in the graph GR. Indeed, there is an edge from v1 = (i1(r + 1), j1(b+ 1))
to v2 = (i2(r + 1), j2(b+ 1)) only if i1 ≤ i2 and j1 ≤ j2. Through this, we can define a
topological order of all vertices in S and the claim follows from Theorem 2.1.

For the lower bound, let

S1 =
{
(i, j) ∈ Z2 : i ∈ [r], j ∈ −[b]

}
.

For x, y ≥ 0, the subset of nodes (x(r + 1), y(b+ 1)) + S1 forms a clique. Since |S| = |S1|,
the proof is concluded by (1). □

As already noted (10), one way to construct two-dimensional systems is to form an axial
product of two one-dimensional systems. As before, for positive integers l, r, b, a let R1 =
[−l, r] and R2 = [−b, a]. Fix a finite alphabet Q and consider one-dimensional recoverable
systems Y1 = YR1

and Y2 = YR2
. The axial product of Y1 and Y2 is a two-dimensional system

X = Y1 × Y2 over Q with the recovery set (R1 ×{0})∪ ({0}×R2). In words, in the system X
the symbol xi is a function of the l symbols to its left, r symbols to its right, a symbols above,
and b symbols below it. The axial product construction is different from the direct product
[−l, r]× [−b, a] in that it results in a cross-shaped rather than a rectangular recovery region.

Theorem 5.4. For given positive integers l, r, b, a, let R1 = [−l, r] and R2 = [−b, a], and let
X = Y1 × Y2 be the axial product of the one-dimensional systems Y1 = YR1

and Y2 = YR2
.

Denote the recovery set (R1 × {0}) ∪ ({0} ×R2) by R2. Then the capacity is

cap(Z2
R2) =

t

t+ 1
,

where t = max {min {l, r} ,min {a, b}}. Moreover, a system X that attains this value can be
obtained from the one dimensional R-recoverable system with R = {j : 0 < |j| < t}.

Proof. We first observe that cap(Z2
R2) ≥ max {cap(ZR1

), cap(ZR2
)} by stacking words from

YR1
or YR2

on top of each other to generate a recoverable system. The recovery set is {R1 ×
{0}} ⊂ R2 or {{0} ×R2} ⊂ R2. Then by Proposition 4.2 we have

cap(Z2
R2) ≥ max

{
lim
n→∞

|ZR1 |n
n2

, lim
n→∞

|ZR2 |n
n2

}
= max {cap(ZR1

), cap(ZR2
)} =

t

t+ 1
.



20 STORAGE CODES AND RECOVERABLE SYSTEMS ON LINES AND GRIDS

To show the other direction, note that the set of vertices

S := [n]2 ∩ {(k(t+ 1), 0) + (i, i), (0, k(t+ 1)) + (i, i), k, i ∈ Z}

is a DAG set in Z2
R2,n (as before, Z2

R2,n := Z2
R2 ∩ [n]2). It remains to calculate the cardinality

of S. Assume without loss of generality that n = m(t+ 1) for some m ∈ N, then we have

|S| = 2(1 + (t+ 1) + 2(t+ 1) + · · ·+m(t+ 1))− n

= 2 + nm

= 2 +
n2

t+ 1
.

Thus,

cap(Z2
R2) ≤ lim sup

n→∞

(
1− |S|

n2

)
=

t

t+ 1
.

□

This theorem shows that for some recoverable systems, the two-dimensional capacity is not
increased from the one-dimensional one: the maximally sized system is obtained by stacking
independent one-dimensional systems in the rows (or the columns). While the one-dimensional
components in the axial product provide an obvious lower bound on the capacity of the two-
dimensional system, it is not clear whether the equality holds in all cases. We could not find
examples of axial products with higher capacity by relying on both dimensions, and we leave
this question as an open problem.

6. CONCLUSION

In this paper, we studied storage codes on finite graphs and their extensions to Z and Z2,
which we call recoverable systems. Earlier results for recoverable systems [12] relied on the
assumption of shift invariance. Lifting this restriction enables one to connect it to the line of
research on storage codes for finite graphs. Relying on resolvable designs, we proposed a new
way of propagating storage codes by interleaving, which yields many new families from the
known ones. Using bounds and constructions for finite storage codes, we found capacity of
several recovery sets, such as l1 or l∞ balls or cross-shaped regions. Finally, we established a
link of the capacity problem to questions in additive combinatorics related to difference-avoiding
sets, and found capacity values for some special recovery sets.

There are numerous open problems that we leave for future research. To point out some
of them, one may ask what is the maximum capacity of a two-dimensional system when only
a subset of neighbors can be used for recovery. Next, it appears that the capacity of an axial
product is always attained by stacking one-dimensional systems, although proving this has been
elusive. If not true, then what are the conditions under which it is the case? Among other
questions: How does the fact that the order of the neighbors is known affect the capacity of the
system? And finally, is it possible to characterize the number of recovery functions needed to
obtain the maximum capacity?

APPENDIX A. LINEAR PROGRAMMING BOUND

To describe the linear programming bound of Mazumdar et al. [22], let us first define a τ -
cover by gadgets on a graph G = (V,E). For a subset of vertices A ⊂ G, let cl(A) := {v :
N(v) ⊆ A} be the closure of A which contains all vertices in A and their neighbors. A tuple
g = (S1, S2, c1, c2) is called a gadget if
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(1) There exist two sets of vertices A,B ⊆ V such that S1 = cl(A) ∪ cl(B) and S2 =
cl(A) ∩ cl(B). We call S1 the outside and S2 the inside of the gadget.

(2) Colors c1 and c2 are picked from a fixed set of size τ , and they are assigned to all the
vertices in S1, S2 respectively. Note that each vertex can have multiple assigned colors.

We call ({v}, ∅, c1, c2) a trivial gadget, and w(g) = |A|+|B| the weight of gadget g. A collection
of gadgets forms a τ -cover if, for every color c, all the vertices with color c form a vertex cover.
It was shown in [22, Theorem 8] that the total weight of the gadgets that form a τ -cover provides
an upper bound on cap(G). More formally, we have the following theorem.

Theorem A.1 (Linear programming (LP) bound [22]). Let τ > 0 be a fixed integer. For each
gadget that contains S ⊆ V , define χg,S = 1{g is involved in the cover}, where S is a part of
g. Thus, each gadget g corresponds to two variables χg,S1 and χg,S2 , where S1 and S2 are the
outside and the inside of g, respectively. Denote by cg(S) the color of the vertex set S in gadget
g.

The capacity cap(G) is bounded above by the solution to the following linear program:

minimize
1

nτ

∑
g,S

χg,S
w(g)

2

s.t.,
1

τ

∑
g,S

χg,S
w(g)

2
∈ N

∑
g,S:u∈S
Cg(S)=c

χg,S +
∑

g′,S′:v∈S′

Cg′ (S
′)=c

χg′,S′ ≥ 1, ∀(u, v) ∈ E, ∀c(12)

χg,S1
= χg,S2

, ∀g with outside S1 and inside S2.(13)

Note that conditions (12) guarantee that the sets form a vertex cover, and (13) states that the
inside is involved in the gadget cover if and only if the outside is also involved.

Proof of Proposition 3.7: Let g = (S1, S2, c1, c2) be a gadget on G and define ḡ = (S̄1, S̄2, c1, c2),
where S1 :=

⋃
v∈S1

v̄ and S2 :=
⋃

v∈S2
v̄. If g1, . . . , gm forms a τ -cover of G, then it is

straightforward to check that ḡ1, . . . , ḡm forms a τ -cover of Ḡ. Note that w(ḡ) = sw(g),
thus 1

nτw(g) = 1
nsτw(ḡ), and ḡ1, . . . , ḡm induce an upper bound that equals to the bound by

g1, . . . , gm, which is cap(G) by our assumption. In other words, we have capqk(Ḡ) ≤ cap(G).
The matching lower bound follows by Proposition 3.3.
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