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Abstract—Circadian rhythms are endogenous 24-hour
oscillations that are vital for maintaining our overall well-being.
They are driven at a high level by a core circadian clock
located in the brain, making their dynamics difficult to track.
Various modeling approaches exist to predict the dynamics,
but as the models are typically designed on population-level
data, their performance is diminished on the individual level.
This paper proposes a method for learning personalized latent
state models, i.e., dynamical models that explicitly use latent
state variables, that relate circadian input(s) to observable
biometric signals. Our models combine an autoencoder with a
recurrent neural network and use the pair to model the salient
dynamics present in the data. We validate our method using
experimental data, where the circadian input is light and the
biometric data are actigraphy signals. We demonstrate that our
method results in models with low-dimensional latent state that
can accurately reconstruct and predict the observable biometric
signals. Further, we show that the oscillation of the learned
latent state agrees with the subjects’ circadian clock oscillation
as estimated with melatonin measurements.

Clinical relevance — This proposes a technique for personal-
ized modeling of the circadian system with potential applications
in feedback control and individualized circadian studies.

I. INTRODUCTION

Circadian (~24-hour) rhythms are an ever-present phe-
nomenon across biological organisms, and they play a vital
role in the overall well-being of those organisms. In humans,
these rhythms include the sleep-wake cycle, core body temper-
ature (CBT), and the production cycles of a host of hormones.
They are regulated by the core circadian clock in the brain,
which is strongly driven by light exposure. When the circadian
system is in sync with the environmental day-night cycle,
the biological processes that depend on this synchrony run
optimally. However, desynchrony or disruption of the cycle has
been linked with multiple issues including reduced cognitive
ability, cardiovascular disease, and various cancers [1], [2].

Circadian control refers to the process of manipulating or
optimizing the circadian rhythms, for example, to mitigate
circadian disruption. This is done by appropriate scheduling
of circadian inputs, such as light, sleep, or pharmaceuticals.
Models of human circadian thythms have been used as tools
for circadian control. These models typically describe the

circadian clock as a dynamical system whose internal states
are driven by the circadian inputs. Circadian control is then
performed in two steps that form a feedback loop. First, the
state of the system is estimated based on some measurable
signals. This step is called state estimation. Second, the models
are used in the optimization process to find the best circadian
input schedule for the control purpose, e.g., to eliminate
jetlag. For a comprehensive review of modeling paradigms
in circadian research, we refer the reader to [3].

Many dynamical models for circadian rhythms have been
developed and used. Among them, the standout Kronauer
model [4] and its variants were designed based on the circadian
dynamics present in CBT. While these models have been
used extensively with appreciable success, they were designed
based on population-level data. As such, they often struggle
to predict the full range of variations seen on the individual
level [5], [6], [7]. Moreover, attempts to fine-tune the model
parameters on an individual basis have been stifled by the fact
that CBT is a signal that is measurable only with invasive
techniques. Furthermore, state estimation typically relies on a
model that relates the state of the system to the observables.
Therefore, there is a need for dynamical models that are based
on more easily obtainable biometric signals. We note that there
are also statistical models that relate the phase of circadian
rhythms with such signals, for example, in [8], [9], [10], [11].
However, these models do not contain the internal dynamics of
the circadian clock and cannot be used to predict the impacts
of the inputs (e.g., lighting) on the dynamics.

The main contribution of this paper is a method for learning
latent state models, i.e., dynamical models that explicitly use
latent state variables, that relate circadian input(s) to observ-
able biometric signals. Our method can, therefore, construct
personalized data-driven models. We validate our method
using experimental data, where the circadian input is light and
the biometric data are actigraphy signals. We have shown in
our earlier publications that phase shifts in actigraphy signals
can be used to estimate phase shifts in the circadian clock
[12], [13], [14]. Our models combine an autoencoder with a
recurrent neural network (RNN) and use the pair to model
the salient dynamics present in the data. The encoder takes



a windowed history of past measurements of actigraphy and
light and brings it to a two-dimensional space, while the RNN
serves as a state space model within that latent space. We
impose structure on the latent space by adding a contrastive
component to the loss function used in the model training.
This component uses circadian phase estimates obtained from
our previously proposed filter [14].

Notable features of our models are:
(1) Accuracy: accurate reconstruction and prediction of bio-
metric signals,
(2) Simplicity: low-dimensional latent state variable that is
suitable for circadian control applications,
(3) Consistency with circadian clock: the phase shifts of
the latent state variables agree with the phase shifts of the
circadian clocks as measured using Dim Light Melatonin
Onset (DLMO) protocol.

II. METHOD
A. Dataset

We used a dataset containing the actigraphy, light exposure,
and melatonin concentrations collected from a group of eight
healthy young adults (5 female and 3 male) aged between
18 and 34 y (25.8 & 6.6 y) in a clinical study conducted at
the University of New Mexico (UNM). We have previously
used this dataset in [12], [13], [14]. All participants gave
their informed written consent, and the experiments followed
the principles in the Declaration of Helsinki from the World
Medical Association. The experiments were monitored by the
UNM Health Sciences Center Human Research Protections
office and approved by the UNM Institutional Review Board
(IRB). The study’s IRB number is 14-002.

The actigraphy and light data were collected at 1-minute
intervals using an ActiGraph GT3X+ Monitor (Pensacola, FL)
worn on each subject’s non-dominant wrist over approximately
14 days, yielding ~20,160 entries. Melatonin samples were
taken at 30-minute intervals on the 7th and 14th days with
Salimetrics SalivaBio Oral Swabs (State College, PA) starting
5 hours before and ending 30 minutes after the average
bedtime.

To pre-process, we first took the 3-hour moving average of
the measured light, then further downsampled the actigraphy
and light data by taking the average of each 5-minute interval.
Finally, the series were transformed using z-score normaliza-
tion to a mean of zero and variance of one. Figure 1 shows
samples of the pre-processed data.

B. Model Architecture

We are concerned with learning a model of an unknown
system using a training dataset of input-output samples D =
{u1,y1, ..., ur, yr} collected from the system where u; € R™»
is a measurable exogenous input, and y; € R™v is a measurable
output of the system, both taken at time ¢. We take light as
the system input, in line with pre-existing knowledge of the
circadian system, and actigraphy as the output.

This learning process amounts to fitting a parameterized
model, expressed as a group of neural networks, to the
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Fig. 1. Sample actigraphy, input light intensity, and circadian phase trajec-
tories. Circadian phase is obtained by running a tuned Kalman filter [14] on
the raw actigraphy data.

available data using the loss function detailed in Subsection
C. The network architecture is shown in Figure 2 and detailed
below, where 6 is the model parameters:

Transition model:  x;41 = fo(xs, gr, ut), (D
Encoder model: st = €0 (Yt—h-t, Ut—_hit), ()
Predictor model: po(xt), 3)
Decoder model: Uy = de( St,up), 4
Update gate: gt = L(ye)se + (1 = L(ye))3s,  (S)
where x; € R"= is the latent state, s;, 5 € R" are
the encoded and predicted features, respectively, y; € R"v

is the predicted output, and 1(-) is the indicator function
where 1(y;) = 1 if the external observation y, is available.
(Yt—h:t, ut—p:t) is the windowed history of outputs and inputs
from some time ¢ — h up to ¢ that is passed to the encoder.

The components fy, eg, pg, and dy are the neural networks
that make up the model. The encoder, decoder, and predictor
are all multilayer perceptrons with ReLU activations, while
the transition model is a gated recurrent unit (GRU) [15]. The
overall structure is analogous to the Recurrent State-Space
Model (RSSM) [16], but we remove the stochasticity in s
to improve the model’s potential ease of use in down-stream
control tasks.
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Fig. 2. Architecture of the State Space Model. Arrows illustrate the flow of
information through the model.




The dimensions of the variables are n, = 1, n, = 1,
ns = 16, and n, = 2, with an input window of 10 samples (50
minutes). The choice for a 2-dimensional latent space is based
on its relative simplicity for control tasks and for visualization.
Moreover, it has been shown in previous literature that high-
dimensional circadian clock models can be reduced to 2-
dimensional manifolds while still maintaining the overt 24-
hour periodicity and input response characteristics [17], [18].

C. Training
The loss function used to train the model is given by

L= )\recﬁrec + /\fealLfeat + )\contrastﬁcomrasla (6)

where the \’s are the weights of the components described
below.

e Reconstruction loss to penalize inaccurate predicted obser-
vations:

T
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e Feature alignment loss to minimize the difference between
features from the encoder and features from the predictor:
1 Z
a L a2
Leear = T ;(St St) . (8)
e Contrastive loss [19] to shape the state trajectory:
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In Equation 9, myes and mpe, are hyper-parameters that define
the positive and negative margins, and [-]4 is a function that
clips the value to be positive. Le., [z]; = max(z,0). ¢ is the
circadian phase estimated with a Kalman filter optimized for
each individual using the procedure in [14].

With this loss function, we train a separate model for each
subject using only their own data. We set the hyperparameters
Arec = 1, Apear = 1.5, Acontrast = 2, Mpos = 0.1, and mpeg = 0.2.
These values were chosen heuristically, since there is no
quantitative metric to measure the quality of a given state
trajectory, making it infeasible to perform automatic tuning.

The model was implemented and trained end-to-end in Py-
Torch [20]. Optimization was done with the Adam algorithm
[21] and a cosine annealing with warm restart learning rate
schedule [22] with an initial learning rate of 1073,

III. RESULTS

In our experiments, we dropped the initial three days of data
for each subject due to the Kalman filter transients present in
the estimated phase ¢ [14]. In practice, the removal is only
necessary the first time the filter is started on an individual’s
data. After dropping the transient days, we used the data from
day 4 to 12 for training, and the 48 hours of data after day 12
for evaluation.

A. Contrastive Loss for Structuring the State Space

In an initial, completely unsupervised, training run without
the contrastive loss component, the model struggled to produce
an orbit in the latent space that is typical of periodic systems.
Instead, the phase portrait often collapsed into a line or an
irregular set of points as can be seen in Figure 4 even with low
output prediction error as seen in Figure 3. To rectify this, we
employed the filter developed in our previous work [14]. The
filter tracks the phase of a selected harmonic component in an
input signal - the 24-hour harmonic in this case. Running the
filter on the actigraphy produces a continuous phase estimate
¢, which we use as the similarity label in the contrastive loss
detailed above to improve the overall structure of the latent
trajectory. The added loss component resulted in the more
structured orbit shown in Figure 6, allowing us to conclude
that the contrastive loss is effective in shaping the states into
a distinct periodic orbit.
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Fig. 3. Real and predicted actigraphy for subject 3 using a model trained
without the contrastive loss component.
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Fig. 4. Latent state trajectory for subject 3 using a model trained without the
contrastive loss component. The figure contains the two latent state variables
z1 and x2, the input trajectory u, and the phase portrait.

B. Output Prediction

Table I presents the mean squared error of predicting the
actigraphy in the test set using different prediction horizons,
where prediction horizon is the frequency of reading external
actigraphy and encoding it into s;. Within the horizon, the
model estimates §; and decodes it into predicted actigraphy.

Figures 5 and 6 compare the actigraphy prediction and state-
space trajectory under different prediction horizons. We can
summarize that the 15-minute horizon may have relatively
low prediction error compared to longer horizons, but is
less stationary in states since actigraphy measurements are
noisy. Other prediction horizons result in mostly identical
performance and state trajectories.



TABLE I
MEAN SQUARED ERROR IN PREDICTED ACTIGRAPHY FOR EACH SUBJECT
ACROSS MULTIPLE HORIZONS.

Horizon Subject
(hour) 3 4 6 7 8 10
0.25 0.678 0.858 0.773 0.855 0.580 0.777
1 0.687 0.876  0.760 0.700 0.626  0.829
2 0.693 0.883 0.749 0.692 0.629 0.843
3 0.697 0.848 0.747 0.691 0.628 0.925
4 0.697 0.858 0.736 0.688 0.637 0.867
5 0.711 0.845 0.740 0.687 0.632 0.884
6 0.700 0.853 0.737 0.689 0.631 0.861
7 0.691 0.863 0.743 0.687 0.630 0.894
8 0.701  0.860 0.739 0.685 0.637 0.901
24 0.702 0.869 0.738 0.684 0.634 0.893
48 0.703 0.870 0.738 0.684 0.634 0.898
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Fig. 5. Real vs predicted actigraphy for subject 3 across 4 prediction horizons.

C. Phase Shift of the Latent State Variables

To assess the structural quality of the learned state space,
we measure the level of agreement between the phase shifts in
the latent state variables with those of the subjects’ circadian
clocks. Phase is the most studied parameter of the circadian
system, and as such, it provides a standardized metric of
comparison to existing techniques.

The clinical standard for estimating the circadian phase is
dim light melatonin onset (DLMO), which is the clock time
at which melatonin concentrations in the body rise above a
calculated threshold in low light conditions [23]. This DLMO
time serves as a phase marker on any given day, and to estimate
the phase shift between two days, we take the difference
between the DLMO times on those days. DLMO calculations
for subjects 5 and 9 did not yield valid estimates, so we
exclude these subjects in the presented results.
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Fig. 6. Latent state trajectories for subject 3 across 4 prediction horizons.
Each subfigure contains the two latent state variables x1 and 2, the input
trajectory u, and the phase portrait.

To calculate the phase shift of the latent state variables,
we first use the trained encoder to project every data point
into the latent space, producing a 14-day 2-dimensional state
trajectory for each individual. We then compare the trajectories
from the days DLMO was estimated - days 7 and 14. To do
so, we stack the x1 and x2 time series to form a wide matrix,
then take the 2-dimensional cross-correlation between the 24-
hour window representing day 14 and that representing day 7.
Lastly, we take the phase shift to be the lag value where the
cross-correlation between the days is maximized.

The phase shift comparison is shown in Table II. We see
that in 4 of the 6 subjects with valid DLMO readings, the
model predicts the phase shift to within ~30 minutes of the
DLMO estimate. Subjects 3 and 7 have errors of 75.75 and
66 minutes, respectively. The performance on subject 7’s data
can be attributed to the large amount of dropped data (~60
hours) toward the end of the clinical study, but we do not have
a clear reasoning for the performance on subject 3. However,
the overall performance achieved on the dataset suggests that
the learned latent space has a structure that preserves the phase
shifts present in the actigraphy signal.

Note that the phase shift comparison was used in assessing
the structural quality of the latent space. The true utility of
the proposed framework is in its input-state modeling. The
Kalman filter from [14] provides accurate phase shifts with
significantly less complexity and would thus be more appro-
priate in situations where only phase estimation is required.
However, the filter does not model the relationship between
circadian inputs and state, and is thus not as useful for control
applications. The proposed framework provides such a model
that can then be used more readily in control system design.

IV. CONCLUSION

In this work, we proposed a framework that is capable
of learning a 2-dimensional dynamical representation of the
circadian variation present in a measured biometric signal,
along with the transformations from the measurement space
to the latent space. When tested on real actigraphy and light
data, the system performed well in predicting the cyclic nature
of actigraphy readings, a common measurement in circadian



TABLE II
ESTIMATED PHASE SHIFTS PRESENT IN THE ENCODED LATENT STATE FOR
EACH SUBJECT COMPARED WITH THE MEAN DLMO-ESTIMATED SHIFT.

Subject | Mean DLMO (mins) | Predicted Shift (mins) | Abs Error

3 70.75 -5 75.75

4 4.29 0 4.29

6 14 0 14

7 -66 0 66
8 85.25 55 30.25
10 -52.2 -40 12.2
Mean Absolute Error (mins) 33.75

% within 30 min 50

% within 60 min 67

rhythm research. Moreover, the phase shift in the learned
latent space showed agreement with DLMO-estimated shifts,
serving as confirmation of the structure in the space. The mean
absolute error of ~34 minutes across 6 subjects was well in
line with the state of the art for predicting circadian phase
shifts.

While the focus on personalization in this paper stemmed
from previous studies linking poor generalization with
population-level model development [5], [6], [7], [9], further
work needs to be done to train and evaluate a subject-
independent model for comparison to the work done here. It
might be possible to borrow from the field of transfer learning
by training a base model on a large population and then fine-
tuning on an individual basis. Future work is also necessary
to evaluate the framework’s ability to learn the dynamics of a
known system, and to test how control policies designed with
it perform when deployed on such a system.
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