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Abstract

We study the problem of exact community recovery in the Geometric Stochastic Block Model (GSBM),
where each vertex has an unknown community label as well as a known position, generated according to
a Poisson point process in R

d. Edges are formed independently conditioned on the community labels and
positions, where vertices may only be connected by an edge if they are within a prescribed distance of each
other. The GSBM thus favors the formation of dense local subgraphs, which commonly occur in real-world
networks, a property that makes the GSBM qualitatively very different from the standard Stochastic Block
Model (SBM). We propose a linear-time algorithm for exact community recovery, which succeeds down to the
information-theoretic threshold, conőrming a conjecture of Abbe, Baccelli, and Sankararaman. The algorithm
involves two phases. The őrst phase exploits the density of local subgraphs to propagate estimated community
labels among sufficiently occupied subregions, and produces an almost-exact vertex labeling. The second
phase then reőnes the initial labels using a Poisson testing procedure. Thus, the GSBM enjoys local to global
amplification just as the SBM, with the advantage of admitting an information-theoretically optimal, linear-time
algorithm.

1 Introduction

Community detection is the problem of identifying latent community structure in a network. In 1983, Holland,
Laskey, and Leinhardt [20] introduced the Stochastic Block Model (SBM), a probabilistic model which generates
graphs with community structure, where edges are generated independently conditioned on community labels.
Since then, the SBM has been intensively studied in the probability, statistics, machine learning, and information
theory communities. Many community recovery problems are now well-understood; for example, the fundamental
limits of the exact recovery problem are known, and there is a corresponding efficient algorithm that achieves
those limits [5]. For an overview of theoretical developments and open questions, please see the survey of Abbe [1].

While the SBM is a powerful model, its simplicity fails to capture certain properties that occur in real-world
networks. In particular, social networks typically contain many triangles; a given pair of people are more likely
to be friends if they already have a friend in common [27]. The SBM by its very nature does not capture this
transitive behavior, since edges are formed independently, conditioned on the community assignments. To address
this shortcoming, Baccelli and Sankararaman [29] introduced a spatial random graph model, which we refer to
as the Geometric Stochastic Block Model (GSBM). In the GSBM, vertices are generated according to a Poisson
point process in a bounded region of Rd. Each vertex is randomly assigned one of two community labels, with
equal probability. A given pair of vertices (u, v) is connected by an edge with a probability that depends on both
the community labels of u and v as well as their distance. Edges are formed independently, conditioned on the
community assignments and locations. The geometric embedding thus governs the transitive edge behavior. The
goal is to determine the communities of the vertices, observing the edges and the locations. In a follow-up work,
Abbe, Sankararaman, and Baccelli [2] studied both partial recovery in sparse graphs, as well as exact recovery in
logarithmic-degree graphs. Their work established a phase transition for both partial and exact recovery, in terms
of the Poisson intensity parameter λ. The critical value of λ was identiőed in some special cases of the sparse
model, but a precise characterization of the information-theoretic threshold for exact recovery in the logarithmic
regime was left open.

Our work resolves this gap, by identifying the information-theoretic threshold for exact recovery in the
logarithmic degree regime (and conőrming a conjecture of Abbe et al [2]). Additionally, we propose a polynomial-
time algorithm achieving the information-theoretic threshold. The algorithm consists of two phases: the őrst
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phase produces a preliminary almost-exact labeling through a local label propagation scheme, while the second
phase reőnes the initial labels to achieve exact recovery. At a high level, the algorithm bears some similarity to
prior works on the SBM using a two-phase approach [5, 25]. Our work therefore shows that just like the SBM,
the GSBM exhibits the so-called local to global ampliőcation phenomenon [1], meaning that exact recovery is
achievable whenever the probability of misclassifying an individual vertex, given the labels of the remaining n− 1
vertices, is o(1/n). However, the GSBM is qualitatively very different from the SBM, and it is not apparent at
the outset that it should exhibit local to global ampliőcation. In particular, the GSBM is not a low-rank model,
suggesting that approaches such as spectral methods [2] and semideőnite programming [17], which exploit the
low-rank structure of the SBM, may fail in the GSBM. In order to achieve almost exact recovery in the GSBM,
we instead use the density of local subgraphs to propagate labels. Our propagation scheme allows us to achieve
almost exact recovery, and also ensures that no local region has too many misclassiőed vertices. The dispersion of
errors is crucial to showing that labels can be correctly reőned in the second phase.

Notably, our algorithm runs in linear time (where the input size is the number of edges). This is in contrast
with the SBM, for which no statistically optimal linear-time algorithm for exact recovery has been proposed. To
our knowledge, the best-known runtime for the SBM in the logarithmic degree regime is achieved by the spectral
algorithm of Abbe et al [4], which runs in O(n log2 n) time, while the number of edges is Θ(n log n). More recent
work of CohenśAddad et al [11] proposed a linear-time algorithm for the SBM, but the algorithm was not shown
to achieve the information-theoretic threshold for exact recovery. Intuitively, the strong local interactions in the
GSBM enable more efficient algorithms than what seems to be possible in the SBM.

Notation and organization. We write [n] = {1, · · · , n}. We use BachmannśLandau notation with respect
to the parameter n; i.e. o(1) means on(1). Bin denotes the binomial distribution. For µ ∈ R

m, Poisson(µ) denotes
the m-type Poisson distribution.

The rest of the paper is organized as follows. Section 2 describes the exact recovery problem as well as our
main result (Theorem 2.2). The exact recovery algorithm is given in Section 3, along with an outline of the proof
of exact recovery. Sections 4 and 5 include the proofs of the two phases of the algorithm. Section 6 contains the
proof of impossibility (Theorem 2.3) (a slight generalization of [2, Theorem 3.7] to cover the disassortative case).
Section 7 includes additional related work. We conclude with future directions in Section 8.

2 Model and main results

We now describe the GSBM in the logarithmic degree regime, where edges are formed only between sufficiently
close vertices, as proposed in [2, 29].

Definition 2.1. Let λ > 0, a, b ∈ [0, 1], and a ≠ b be constants, and let d ∈ N. A graph G is sampled from
GSBM(λ, n, a, b, d) according to the following steps:

1. The locations of vertices are determined according to a homogeneous Poisson point process1 with intensity λ
in the region Sd,n := [−n1/d/2, n1/d/2]d ⊂ R

d. Let V ⊂ Sd,n denote the vertex set.

2. Community labels are generated independently. The ground truth label of vertex u ∈ V is given by
σ0(u) ∈ {−1, 1}, with P(σ0(u) = 1) = P(σ0(u) = −1) = 1/2.

3. Conditioned on the locations and community labels, edges are formed independently. Letting E denote the
edge set, for u, v ∈ V and u ̸= v, we have

P({u, v} ∈ E) =





a if σ0(u) = σ0(v), ∥u− v∥ ≤ (log n)1/d

b if σ0(u) ̸= σ0(v), ∥u− v∥ ≤ (log n)1/d

0 if ∥u− v∥ > (log n)1/d.

The graph does not contain self-loops. Here ∥u− v∥ denotes the toroidal metric:

∥u− v∥ =
∥∥min

{
|ui − vi|, n1/d − |ui − vi|

}
, . . . ,min

{
|ud − vd|, n1/d − |ud − vd|

}∥∥
2
,

where ∥ · ∥2 is the standard Euclidean metric.

1The deőnition and construction of a homogeneous Poisson point process are provided in Deőnition 4.1.
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In other words, a given pair of vertices can only be connected by an edge if they are within a distance of (log n)1/d;
in that case, we say they are mutually visible. When a pair of vertices are mutually visible, the probability of
being connected by an edge depends on their community labels, as in the standard SBM. Observe that any unit
volume region has Poisson(λ) vertices (and hence λ vertices in expectation). In particular, the expected number of
vertices in the region Sd,n is λn.

Given an estimator σ̃ = σ̃n, we deőne A(σ̃, σ0) = maxs∈{±1}(
∑

u∈V 1σ̃(u)=sσ0(u))/|V | as the agreement of σ̃
and σ0. We deőne some recovery requirements including exact recovery as follows.

• Exact recovery: lim
n→∞

P(A(σ̃, σ0) = 1) = 1,

• Almost exact recovery: lim
n→∞

P(A(σ̃, σ0) ≥ 1− ϵ) = 1, for all ϵ > 0,

• Partial recovery: lim
n→∞

P(A(σ̃, σ0) ≥ α) = 1, for some α > 1/2.

In other words, an exact recovery estimator must recover all labels (up to a global sign ŕip), with probability
tending to 1 as the graph size goes to inőnity. Abbe et al [2] identiőed an impossibility regime for the exact
recovery problem. Here, νd is the volume of a unit Euclidean ball in d dimensions.

Theorem 2.1. (Theorem 3.7 in [2]) Let λ > 0, d ∈ N, and 0 ≤ b < a ≤ 1 satisfy

(2.1) λνd(1−
√
ab−

√
(1− a)(1− b)) < 1,

and let G ∼ GSBM(λ, n, a, b, d). Then any estimator σ̃ fails to achieve exact recovery.

Abbe et al [2] conjectured that the above result is tight, but only established that exact recovery is achievable for
λ > λ(a, b, d) sufficiently large [2, Theorem 3.9]. In this regime, [2] provided a polynomial-time algorithm based on
the observation that the relative community labels of two nearby vertices can be determined with high accuracy
by counting their common neighbors. By taking λ > 0 large enough to drive up the density of points, the failure
probability of pairwise classiőcation can be taken to be an arbitrarily small inverse polynomial in n.

Our main result is a positive resolution to [2, Conjecture 3.8] (with a slight modiőcation for the case d = 1,
noting that ν1 = 2).

Theorem 2.2. (Achievability) There exists a polynomial-time algorithm achieving exact recovery in G ∼
GSBM(λ, n, a, b, d) whenever

1. d = 1, λ > 1, a, b ∈ [0, 1], and 2λ(1−
√
ab−

√
(1− a)(1− b)) > 1; or

2. d ≥ 2, a, b ∈ [0, 1], and λνd(1−
√
ab−

√
(1− a)(1− b)) > 1.

We drop the requirement that a > b in Theorem 2.1, thus covering the disassortative case. We additionally expand
the impossible regime for d = 1, compared to Theorem 2.1.

Theorem 2.3. (Impossibility) Let λ > 0, d ∈ N, and a, b ∈ [0, 1] satisfy (2.1) and let G ∼ GSBM(λ, n, a, b, d).
Then any estimator σ̃ fails to achieve exact recovery. Additionally, if d = 1 and λ < 1, then any estimator σ̃ fails
to achieve exact recovery.

Putting Theorems 2.2 and 2.3 together establishes the information-theoretic threshold for exact recovery in the
GSBM, and shows that recovery is efficiently achievable above the threshold. We remark that the condition
λνd(1−

√
ab−

√
(1− a)(1− b)) > 1 in Theorem 2.2 is equivalent to D+(x∥y) > 1, where D+(x∥y) is the Chernoffś

Hellinger (CH) divergence [5] between the vectors x = λνd[a, 1− a, b, 1− b]/2 and y = λνd[b, 1− b, a, 1− a]/2. As
we will show, the exact recovery problem can be reduced to a multitype Poisson hypothesis testing problem; the
CH-divergence condition characterizes the parameters for which the hypothesis test is successful.

Abbe et al [2] suggested that the threshold given by Theorem 2.1 might be achieved by a two-round procedure
reminiscent of the exact recovery algorithm for the SBM developed by Abbe and Sandon [5]. Indeed, our algorithm
is a two-round procedure, but the details of the őrst phase (achieving almost exact recovery) are qualitatively very
different from the strategy employed in the standard SBM. At a high level, our algorithm spreads vertex label
information locally by exploiting the density of local subgraphs. The information is spread by iteratively labeling
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łblocksž, labeling a given block by using a previously labeled block as a reference. To ensure that the algorithm
spreads label information to all (sufficiently dense) blocks, we establish a connectivity property of the dense blocks
that holds with high probability whenever λνd > 1 (λ > 1 if d = 1). This is in contrast to the Sphere Comparison
algorithm [5] for the SBM, where the relative labels of a pair of vertices u, v are determined by comparing their
neighborhoods.

The algorithm in Phase I in fact achieves almost exact recovery for a wider range of parameters than what is
required to achieve exact recovery.

Theorem 2.4. There is a polynomial-time algorithm achieving almost exact recovery in G ∼ GSBM(λ, n, a, b, d)
whenever

1. d = 1, λ > 1, and a, b ∈ [0, 1] with a ̸= b; or

2. d ≥ 2, λνd > 1, and a, b ∈ [0, 1] with a ̸= b.

3 Exact recovery algorithm

This section presents our algorithm, which consists of two phases. In Phase I, our goal is to estimate an almost-exact
labeling σ̂ : V → {−1, 0, 1}, where the label 0 indicates uncertainty. Phase I is based on the following observation:
for any δ > 0, if we know the true labels of some δ log n vertices visible to a given vertex v, then by computing edge
statistics, we can determine the label of v with probability 1− n−c, for some c(δ) > 0. In Phase I, we partition the
region into hypercubes of volume Θ(log n) (called blocks), and show how to produce an almost exact labeling of
all blocks that contain at least δ log n vertices (called occupied blocks), by an iterative label propagation scheme.
Next, Phase II reőnes the labeling σ̂ to σ̃ using Poisson testing. Phase II builds upon a well-established approach
in the SBM literature [5, 25], to reőne an almost-exact labeling with dispersed errors into an exact labeling. The
main novelty of our algorithm therefore lies in Phase I.

Before describing the algorithm, we introduce the notion of a degree proőle.

Definition 3.1. (Degree profile) Given G ∼ GSBM(λ, n, a, b, d), the degree proőle of a vertex u ∈ V with
respect to a reference set S ⊂ V and a labeling σ : S → {−1, 1} is given by the 4-tuple,

d(u, σ, S) =
[
d+1 (u, σ, S), d

−
1 (u, σ, S), d

+
−1(u, σ, S), d

−
−1(u, σ, S)

]
,

where

d+1 (u, σ, S) = |{v ∈ S : σ(v) = 1, (u, v) ∈ E}|,
d−1 (u, σ, S) = |{v ∈ S : σ(v) = 1, (u, v) ̸∈ E, ∥u− v∥ ≤ (log n)1/d}|,
d+−1(u, σ, S) = |{v ∈ S : σ(v) = −1, (u, v) ∈ E}|,
d−−1(u, σ, S) = |{v ∈ S : σ(v) = −1, (u, v) ̸∈ E, ∥u− v∥ ≤ (log n)1/d}|.

Note that we only consider v such that ∥u − v∥ ≤ (log n)1/d, since we only want to count non-edges to vertices
that are visible to u. For convenience, when V serves as the reference set, we write d(u, σ) := d(u, σ, V ) and
d(u, σ) := [d+1 (u, σ), d

−
1 (u, σ), d

+
−1(u, σ), d

−
−1(u, σ)].

3.1 Exact recovery for d = 1. We őrst describe the algorithm specialized to the case d = 1. Several additional
ideas are required to move to the d ≥ 2 case, to ensure uninterrupted propagation of label estimates over all
occupied blocks. We őrst describe the simplest case where d = 1, λ > 2, and a, b ∈ [0, 1] with a ̸= b.

Algorithm for λ > 2. The algorithm is presented in Algorithm 1. In Phase I, we őrst partition the interval
into blocks of length log n/2 and deőne Vi as the set of vertices in the ith block for i ∈ [2n/ log n]. In this way, any
pair of vertices in adjacent blocks are within a distance of log n. The density λ > 2 ensures a high probability that
all blocks have Ω(log n) vertices, as we later show in (4.3). Next, we use the Pairwise Classify subroutine to
label the őrst block (Line 3). Here, we select an arbitrary vertex u0 ∈ V1 and set σ̂(u0) = 1. The labels of other
vertices u ∈ V1 are labeled by counting common neighbors with u0, among the vertices in V1. Next, the labeling of
V1 is propagated to other blocks Vi for i ≥ 2 utilizing the edges between Vi−1 and Vi and the estimated labeling on
Vi−1, by thresholding degree proőles with respect to Vi−1 according to Algorithm 3 (Lines 4-5). The reference set
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S in Algorithm 3 plays the role of Vi−1 and S′ plays the role of Vi. Intuitively, if a > b, a vertex tends to exhibit
more edges and fewer non-edges within its own community while having fewer edges and more non-edges with
the other community. Conversely, if a < b, the opposite observation holds. In order to classify the vertices in Vi,
we use edges from Vi to the larger set of {u ∈ Vi−1 : σ̂(u) = 1} and {u ∈ Vi−1 : σ̂(u) = −1}, rather than using
all edges between Vi and Vi−1, which simpliőes the analysis. In Theorem 4.1, we will demonstrate that Phase I
achieves almost-exact recovery on G under the conditions in Theorem 2.4.

Algorithm 1 Exact recovery for the GSBM (d = 1 and λ > 2)

Input: G ∼ GSBM(λ, n, a, b, 1) where λ > 2.
Output: An estimated community labeling σ̃ : V → {−1, 1}.
1: Phase I:

2: Partition the interval [−n/2, n/2] into 2n/ log n blocks2 of volume log n/2 each. Let Bi be the ith block and
Vi be the set of vertices in Bi for i ∈ [2n/ log n].

3: Apply Pairwise Classify (Algorithm 2) on input G, V1, a, b to obtain a labeling σ̂ of V1.
4: for i = 2, · · · , 2n/ log n do

5: Apply Propagate (Algorithm 3) on input G, Vi−1, Vi to determine the labeling σ̂ on Vi.

6: Phase II:

7: for u ∈ V do

8: Apply Refine (Algorithm 4) on input G, σ̂, u to obtain σ̃(u).

Algorithm 2 Pairwise Classify

Input: Graph G = (V,E), vertex set S ⊂ V , parameters a, b ∈ [0, 1] with a ̸= b.
1: Choose an arbitrary vertex u0 ∈ S, and set σ̂(u0) = 1.
2: for u ∈ S \ {u0} do

3: if |{v ∈ S \ {u, u0} : {u0, v}, {u, v} ∈ E}| > (a+ b)2(|S| − 2)/4 then

4: Set σ̂(u) = 1.
5: else

6: Set σ̂(u) = −1.

Algorithm 3 Propagate

Input: Graph G = (V,E), mutually visible sets of vertices S, S′ ⊂ V with S∩S′ = ∅, where S is labeled according
to σ̂.

1: if |{v ∈ S : σ̂(v) = 1}| ≥ |{v ∈ S : σ̂(v) = −1}| then

2: for u ∈ S′ do

3: if a > b and d+1 (u, σ̂, S) ≥ (a+ b) · |{v ∈ S : σ̂(v) = 1}|/2 then

4: Set σ̂(u) = 1.
5: else if a < b and d+1 (u, σ̂, S) < (a+ b) · |{v ∈ S : σ̂(v) = 1}|/2 then

6: Set σ̂(u) = 1.
7: else

8: Set σ̂(u) = −1.

9: else

10: for u ∈ S′ do

11: if a > b and d+−1(u, σ̂, S) ≥ (a+ b) · |{v ∈ S : σ̂(v) = −1}|/2 then

12: Set σ̂(u) = −1.
13: else if a < b and d+−1(u, σ̂, S) < (a+ b) · |{v ∈ S : σ̂(v) = −1}|/2 then

14: Set σ̂(u) = −1.
15: else

16: Set σ̂(u) = 1.

1The number of blocks is ⌈2n/ logn⌉ if 2n/ logn is not an integer.
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Algorithm 4 Refine

Input: Graph G ∼ GSBM(λ, n, a, b, d), vertex u ∈ V , labeling σ̂ : V → {−1, 0, 1}.
Output: An estimated labeling σ̃(u) ∈ {−1, 1}.
1: Set σ̃(u) = sign

[
log

(a
b

)(
d+1 (u, σ̂)− d+−1(u, σ̂)

)
+ log

(1− a

1− b

)(
d−1 (u, σ̂)− d−−1(u, σ̂)

)]
.

In Phase II, we reőne the almost-exact labeling σ̂ obtained from Phase I. Our reőnement procedure mimics
the so-called genie-aided estimator [1], which labels a vertex u knowing the labels of all other vertices (i.e.,
{σ0(v) : v ∈ V \ {u}}). The degree proőle relative to the ground-truth labeling, d(u, σ0), is random and depends on
realizations of node locations and edges in G and community assignment σ0. We use D ∈ R

4 to denote the vector
representing the four random variables in d(u, σ0). Then D is characterized by a multi-type Poisson distribution
such that conditioned on {σ0(u) = 1}, D ∼ Poisson(λνd log n[a, 1−a, b, 1− b]/2) and conditioned on {σ0(u) = −1},
D ∼ Poisson(λνd log n[b, 1− b, a, 1− a]/2). Given a realization D = d(u, σ0), we pick the most likely hypothesis to
minimize the error probability; that is,

σgenie(u) = argmax
s∈{1,−1}

P(D = d(u, σ0) |σ0(u) = s)

= sign
[
log

(a
b

)(
d+1 (u, σ0)− d+−1(u, σ0)

)
+ log

(1− a

1− b

)(
d−1 (u, σ0)− d−−1(u, σ0)

)]
.(3.1)

For convenience, let

(3.2) τ(u, σ) = log
(a
b

)(
d+1 (u, σ)− d+−1(u, σ)

)
+ log

(1− a

1− b

)(
d−1 (u, σ)− d−−1(u, σ)

)
.

In short, we have σgenie(u) = sign(τ(u, σ0)). The genie-aided estimator motivates the Refine subroutine (Algorithm
4) in Phase II that assigns σ̃(u) = sign(τ(u, σ̂)) for any u ∈ V . Since σ̂ makes few errors compared with σ0, for
any u ∈ V , its degree proőle d(u, σ̂) is close to d(u, σ0). Thus, d(u, σ̂) is well-approximated by the aforementioned
multi-type Poisson distribution.

Modiőed algorithm for general λ > 1. If 1 < λ < 2, partitioning the interval into blocks of length log n/2,
as done in Line 2 of Algorithm 1, fails. This is because each of the 2n/ log n blocks is independently empty with
probability e−λ logn/2 = n−λ/2 and −λ/2 > −1, leading to a high probability of encountering empty blocks, and
thus a failure of the propagation scheme. To address this, we instead adopt smaller blocks of length χ log n, where
χ < (1− 1/λ)/2, for any λ > 1. We only attempt to label blocks with sufficiently many vertices, according to the
following deőnition. For the rest of the paper, let V (B) ⊂ V denote the set of vertices in a subregion B ⊂ Sd,n.

Definition 3.2. (Occupied block) Given any δ > 0, a block B ⊂ Sd,n is δ-occupied if |V (B)| > δ log n.
Otherwise, B is δ-unoccupied.

We will show that for sufficiently small δ > 0, all but a negligible fraction of blocks are δ-occupied. As a
result, achieving almost-exact recovery in Phase I only requires labeling the vertices within the occupied blocks.
To ensure successful propagation, we introduce a notion of visibility. Two blocks Bi, Bj ∈ Sd,n are mutually visible,
deőned as Bi ∼ Bj , if

sup
x∈Bi,y∈Bj

∥x− y∥ ≤ (log n)1/d.

Thus, if Bi ∼ Bj , then any pair of vertices u ∈ Bi and v ∈ Bj are at a distance at most (log n)1/d of each other.
In particular, if Bj is labeled and Bi ∼ Bj , then we can propagate labels to Bi.

Similar to the case of λ > 2, we propagate labels from left to right. Despite the presence of unoccupied blocks,
we establish that if λ > 1 and χ is chosen as above, each block Bi following the initial B1 has a corresponding
block Bj (j < i) to its left that is occupied and satisőes Bi ∼ Bj . We thus modify Lines 4-5 so that a given block
Bi is labeled by one of the visible, occupied blocks to its left (Figure 1). The modiőcation is formalized in the
general algorithm (Algorithm 5) given below.
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3.2 Exact recovery for general d. The propagation scheme becomes more intricate for d ≥ 2. For general
d, we divide the region Sd,n into hypercubes3 with volume parametrized as χ log n. The underlying intuition
for successful propagation stems from the condition λνd > 1. This condition ensures that the graph formed by
connecting all pairs of mutually visible vertices is connected with high probability, a necessary condition for exact
recovery. Moreover, the condition ensures that every vertex has Ω(log n) vertices within its visibility radius of
(log n)1/d. It turns out that the condition λνd > 1 also ensures that blocks of volume χ log n for χ > 0 sufficiently
small satisfy the same connectivity properties.

To propagate the labels, we need a schedule to visit all occupied blocks. However, the existence of unoccupied
blocks precludes the use of a predeőned schedule, such as a lexicographic order scan. Instead, we employ a
data-dependent schedule. The schedule is determined by the set of occupied blocks, which in turn is determined in
Step 1 of Deőnition 2.1. Crucially, the schedule is thus independent of the community labels and edges, conditioned
on the number of vertices in each block. We őrst introduce an auxiliary graph H = (V †, E†), which records the
connectivity relation among occupied blocks.

Definition 3.3. (Visibility graph) Consider a Poisson point process V ⊂ Sd,n, the (χ log n)-block partition of

Sd,n, {Bi}n/(χ logn)
i=1 , corresponding vertex sets {Vi}n/(χ logn)

i=1 , and a constant δ > 0. The (χ, δ)-visibility graph is
denoted by H = (V †, E†), where the vertex set V † = {i ∈ [n/(χ log n)] : |Vi| ≥ δ log n} consists of all δ-occupied
blocks and the edge set is given by E† = {{i, j} : i, j ∈ V †, Bi ∼ Bj}.

We adopt the standard connectivity deőnition on the visibility graph. Lemma 4.2 shows that the visibility graph
of the Poisson point process underlying the GSBM is connected with high probability. Based on this connectivity
property, we establish a propagation schedule as follows. We construct a spanning tree of the visibility graph and
designate a root block as the initial block. We specify an ordering of V † = {i1, i2, . . . } according to a tree traversal
(e.g., breadth-őrst search). Labels are propagated according to this ordering, thus labeling vertex sets Vi1 , Vi2 , · · ·
(see Figure 1). Letting p(i) denote the parent of vertex i ∈ V † according to the rooted tree, we label Vij using
Vp(ij) as reference. Importantly, the visibility graph and thus the propagation schedule is determined only by the
locations of vertices, independent of the labels and edges between mutually visible blocks.

Figure 1: Propagation schedule for d = 1 and d = 2.

Algorithm 5 Exact recovery for the GSBM

Input: G ∼ GSBM(λ, n, a, b, d).
Output: An estimated community labeling σ̃ : V → {−1, 1}.
1: Phase I:

2: Take small enough χ, δ > 0, satisfying the conditions to be speciőed in (4.1) and (4.2) respectively.
3: Partition the region Sd,n into n/(χ log n) blocks of volume χ log n each. Let Bi be the ith block and Vi be the

set of vertices in Bi for i ∈ [n/(χ log n)].
4: Form the associated visibility graph H = (V †, E†).
5: if H is disconnected then

3For d = 1, 2, 3, the hypercubes represent line segments, squares and cubes respectively.
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6: Return FAIL.
7: Find a rooted spanning tree of H, ordering V † = {i1, i2, · · · } in breadth-őrst order.
8: Apply Pairwise Classify (Algorithm 2) on input G, Vi1 , a, b to obtain a labeling σ̂ of Vi1 .
9: for j = 2, · · · , |V †| do

10: Apply Propagate (Algorithm 3) on input G, Vp(ij), Vij to determine the labeling σ̂ on Vi.

11: for u ∈ V \ (∪i∈V †Vi) do

12: Set σ̂(u) = 0.

13: Phase II:

14: for u ∈ V do

15: Apply Refine (Algorithm 4) on input G, σ̂, u to determine σ̃(u).

Algorithm 5 presents our algorithm for the general case. We partition the region Sd,n into blocks with volume
χ log n, for a suitably chosen χ > 0. A threshold level of occupancy δ > 0 is speciőed. The value of χ is carefully
chosen to ensure that the visibility graph H is connected with high probability in Line 5. In Line 8, we label
an initial δ-occupied block, corresponding to the root of H, using the Pairwise Classify subroutine. In Lines
9-10, we label the occupied blocks in the tree order determined in Line 7, using the Propagate subroutine. Those
vertices appearing in unoccupied blocks are assigned a label of 0. At the end of Phase I, we obtain a őrst-stage
labeling σ̂ : V → {−1, 0, 1}, such that with high probability, all occupied blocks are labeled with few mistakes.
Finally, Phase II reőnes the almost-exact labeling σ̂ to an exact one σ̃ according to Algorithm 4.

To analyze the runtime, note that the number of edges (input size) is Θ(n log n) with high probability. The
visibility graph H = (V †, E†) can be formed in O(n/ log n) time, since |V †| = O(n/ log n) and each vertex has at
most Θ(1) possible neighbors. If H is connected, a spanning tree can be found in O(|E†| log(|E†|)) time using
Kruskal’s algorithm, and |E†| = O(n/ log n). The subsequent Pairwise Classify subroutine goes over all edges of
the vertices in V1 to count the common neighbors, with a runtime of O(log2 n). Next, the Propagation subroutine
requires counting edges and non-edges from any given vertex in an occupied block to the vertices in its reference
block, yielding a runtime of O(n log n). Finally, Refine runs in O(n log n) time, since each visible neighborhood
contains O(log n) vertices. We conclude that Algorithm 5 runs in O(n log n) time, which is linear in the number of
edges.

3.3 Proof outline. We outline the analysis of Algorithm 5. We begin with Phase I. Our goal is to show that
in addition to achieving almost exact recovery stated in Theorem 2.4, Phase I also satisőes an error dispersion
property. Let N (u) = {v ∈ V, ∥u− v∥ ≤ (log n)1/d} for a vertex u. Namely, for any η > 0, we can take suitable
χ, δ > 0 so that with high probability, every vertex has at most η log n incorrectly classiőed vertices in its local
neighborhood N (u). Theorem 4.1 will present the formal results.

Phase I: Connectivity of the visibility graph. We őrst establish that the block division speciőed in
Algorithm 5 ensures that the resulting visibility graph H = (V †, E†) is connected. Elementary analysis shows that
any őxed subregion of Rd with volume ν log n contains Ω(log n) vertices with probability 1− o(n−1), whenever
ν > 1/λ. A union bound over all vertices then implies that all vertices’ neighborhoods have Ω(log n) vertices. In
the special case of d = 1, the left neighborhood of a given vertex has volume log n. The observation with ν = 1
implies that when λ > 1, the left neighborhood of every vertex has Ω(log n) points. In fact, we can make a stronger
claim: if the block lengths are chosen to be sufficiently small (according to (4.1)), then we can ensure that for a
given vertex v ∈ Vi, there are Ω(log n) vertices among {Vj : Bj ∼ Bi, j ̸= i}. In turn, by an appropriate choice of
δ (according to (4.2)), for a given block Bi, there is at least one δ-occupied, visible block to its left. Hence, the
visibility graph is connected, as shown in Proposition 4.1.

However, the analysis becomes more intricate when d ≥ 2. In particular, while a lexicographic order propagation
schedule succeeds for d = 1, it fails for d ≥ 2. For example, when d = 2, we cannot say that every vertex has
Ω(log n) vertices in the top left quadrant of its neighborhood, since the volume of the quadrant is only νd log n/4.
We therefore establish connectivity of H using the fact that if H is disconnected, then H must contain an
isolated connected component. The key idea is that if there is an isolated connected component in H, then the
corresponding occupied blocks in R

d must be surrounded by sufficiently many unoccupied blocks. However, as
Lemma 4.6 shows, there cannot be too many adjacent unoccupied blocks, which prevents the existence of isolated
connected components. As a result, the visibility graph is connected, as shown in Lemma 4.2.
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Phase I: Labeling the initial block. We show that the Pairwise Classify (Line 8) subroutine ensures
the successful labeling for Vi1 . Since we only need to determine community labels up to a global ŕip, we are free
to set σ̂(u0) = 1 for an arbitrary u0 ∈ Vi1 . For any u ∈ Vi1 \ {u0}, where |Vi1 | = m1, Lemma 4.7 shows that the
number of common neighbors of u and u0 follows a binomial distribution; in particular, Bin(m1 − 2, (a2 + b2)/2) if
σ0(u) = σ0(u0) and Bin(m1 − 2, ab) otherwise. We thus threshold the number of common neighbors in order to
classify u relative to u0. Lemma 4.8 bounds the probability of misclassifying a given vertex u ∈ Vi1 \ {u0}, using
Hoeffding’s inequality. A union bound then implies that all vertices are correctly classiőed with high probability.

Phase I: Propagating labels among occupied blocks. We show that the Propagate subroutine ensures
that σ̂ makes at most M mistakes in each occupied block, where M is a suitable constant. Our analysis reduces to
bounding the probability that for a given i ∈ V †, the estimator σ̂ makes more than M mistakes on Vi, conditioned
on making no more than M mistakes on Vp(i). In order to analyze the probability that a given vertex v ∈ Vi is
misclassiőed, we condition on the label conőguration of Vp(i), meaning the number of vertices labeled s according
to σ0(·) and t according to σ0(u0)σ̂(·), for s, t ∈ {−1,+1}. We őnd a uniform upper bound on the probability
of misclassifying an individual vertex v ∈ Vi when applying the thresholding test given in Algorithm 3, over all
label conőgurations of Vp(i) with at most M mistakes. To bound the total number of mistakes in Vi, observe that
the labels of all vertices in Vi are decided based on disjoint subsets of edges between Vi and Vp(i). Therefore,
conditioned on the label conőguration of Vp(i), the number of mistakes in Vi can be stochastically dominated by a
binomial random variable. It follows by elementary analysis that the number of mistakes in Vi is at most M with
probability 1− o(n−1), as long as M is a suitably large constant.

Phase II: Reőning the labels. Our őnal step is to reőne the initial labeling σ̂ from Phase I into a őnal
labeling σ̃. Unfortunately, conditioning on a successful labeling σ̂ destroys the independence of edges, making it
difficult to bound the error probability of σ̃. This issue can be remedied using a technique called graph splitting,
used in the two-round procedure of [5]. Graph splitting is a procedure to form two graphs, G1 and G2, from
the original input graph. A given edge in G is independently assigned to G1 with probability p, and G2 with
probability 1− p, for p chosen so that almost exact recovery can be achieved on G1, while exact recovery can be
achieved on G2. Since the two graphs are nearly independent, conditioning on the success of almost exact recovery
in G1 essentially maintains the independence of edges in G2.

While we believe that our Phase I algorithm, along with graph splitting, would achieve the information-theoretic
threshold in the GSBM, we instead directly analyze the robustness of Poisson testing. Speciőcally, we bound the
error probability of labeling a given vertex v ∈ V with respect to the worst-case labeling over all labelings that
differ from σ0 on at most η log n vertices in the neighborhood of v. Since σ̂ makes at most η log n errors with
probability 1− o(1/n) (Theorem 4.1), we immediately obtain a bound on the error probability of σ̃(v).

The proof in Section 5 bounds the worst-case error probability. We deőne x = λνd[a, 1 − a, b, 1 − b]/2 and
y = λνd[b, 1 − b, a, 1 − a]/2, so that D | {σ0(u) = 1} ∼ Poisson(x) and D | {σ0(u) = −1} ∼ Poisson(y). The
condition λνd(1−

√
ab−

√
(1− a)(1− b)) > 1 in Theorem 2.2 is equivalent to D+(x∥y) > 1, where D+(x∥y) is

the ChernoffśHellinger divergence of x and y [5]. To provide intuition for bounding the error probability at a
given vertex u ∈ V , consider the genie-aided estimator σgenie(u), and assume σ0(u) = 1 without loss of generality.
Recalling the deőnition of τ (3.2), the estimator σgenie(u) makes a mistake when τ(u, σ0) ≤ 0. It can be shown
that this occurs with probability at most n−D+(x∥y). Viewing the worst-case labeling σ differing from σ0 on at
most η log n vertices as a perturbation of σ0, we show that τ(u, σ) ≤ 0 implies τ(u, σ0) ≤ ρη log n for a certain
constant ρ. Similarly, the probability of such a mistake is at most n−D+(x∥y)+ρη/2. Thus, for small η > 0, the
condition D+(x∥y) > 1 and a union bound over all vertices yields an error probability of o(1).

4 Phase I: Proof of almost exact recovery

In this section, we prove Theorem 2.4. We begin by deőning sufficiently small constants χ and δ used in Algorithm
5. We deőne χ to satisfy the following condition, relying on λ and d:

νd
(
1− 3

√
dχ1/d/2

)d ≥ (νd + 1/λ)/2 and 0 < χ < [(1d=1 + νd · 1d≥2)− 1/λ]/2.(4.1)

The őrst condition is satisőable since limχ→0 νd
(
1 − 3

√
dχ1/d/2

)d
= νd and we have νd > (νd + 1/λ)/2 when

λνd > 1. The second one is also satisőable since 1d=1 + νd · 1d≥2 = 1 > 1/λ if d = 1 and otherwise
1d=1 + νd · 1d≥2 = νd > 1/λ, under the conditions of Theorems 2.2 and 2.4. Associated with the choice of
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χ, there is a constant δ′(or δ̃ for d ≥ 2) > 0 such that for any block Bi, its visible blocks
⋃

j∈V {Vj : Bj ∼ Bi}
contain at least δ′ log n (or δ̃ log n) vertices with probability 1− o(n−1). We deőne Rd = 1−

√
dχ1/d/2. The őrst

condition in (4.1) implies that
√
dχ1/d/2 < 1/3 and thus Rd > 0. With speciőc values of δ′ and δ̃ to be determined

in Proposition 4.1 and Lemma 4.5, respectively, we deőne δ such that

0 < δ < (δ′χ) · 1d=1 + [δ̃χ/(νdR
d)] · 1d≥2.(4.2)

Propositions 4.1 and 4.2 will present the connectivity properties of δ-occupied blocks of volume χ log n, for χ and
δ satisfying the conditions in (4.1) and (4.2), respectively.

We now record some preliminaries (see [9]).

Lemma 4.1. (Chernoff bound, Poisson) Let X ∼ Poisson(µ) with µ > 0. For any t > 0,

P(X ≥ µ+ t) ≤ exp
(
− t2

2(µ+ t)

)
.

For any 0 < t < µ, we have

P(X ≤ µ− t) ≤ exp
(
− (µ− t) log

(
1− t

µ

)
− t

)
.

Lemma 4.2. (Hoeffding’s inequality) Let X1, · · · , Xn be independent bounded random variables with values
Xi ∈ [0, 1] for all 1 ≤ i ≤ n. Let X =

∑n
i=1 Xi and µ = E[X]. Then for any t ≥ 0, it holds that

P(X ≥ µ+ t) ≤ exp(−2t2/n), P(X ≤ µ− t) ≤ exp(−2t2/n).

Lemma 4.3. (Chernoff upper bound) Let X1, · · · , Xn be independent Bernoulli random variables. Let
X =

∑n
i=1 Xi and µ = E(X). Then for any t > 0, we have

P(X ≥ (1 + t)µ) ≤
( et

(1 + t)(1+t)

)µ

.

We also deőne a homogeneous Poisson point process used to generate locations as described in Deőnition 2.1.

Definition 4.1. ([23]) A homogeneous Poisson point process with intensity λ on S ⊆ R
d is a random countable

set Φ := {v1, v2, · · · } ⊂ S such that

1. For any bounded Borel set B ⊂ R
d, the count NΦ(B) := |Φ ∩ B| = |{i ∈ N : vi ∈ B}| has a Poisson

distribution with mean λvol(B), where vol(B) is the measure (volume) of B.

2. For any k ∈ N and any disjoint Borel sets B1, · · · , Bk ⊂ R
d, the random variables NΦ(B1), · · · , NΦ(Bk) are

mutually independent.

In the GSBM, the set of locations V = {v1, v2, · · · } are generated by a homogeneous Poisson point process with
intensity λ on Sn,d. The established properties guarantee that |V | follows Poisson(λn). Moreover, conditioned on
|V |, the locations {vi}i∈[|V |] are independently and uniformly distributed in Sn,d. This gives a simple construction
of a Poisson point process as follows:

1. Sample NV ∼ Poisson(λn);

2. Sample v1, · · · , vNV
independently and uniformly in the region Sn,d.

This procedure ensures that the resulting set {v1, · · · , vNV
} constitutes a Poisson point process as desired.

4.1 Connectivity of the visibility graph. In this subsection, we establish the connectivity of the visibility
graph H = (V †, E†) from Line 4 of Algorithm 5. The following lemma shows that regions of appropriate volume
have Ω(log n) vertices with high probability.
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Lemma 4.4. For any őxed subset B ⊂ Sd,n with a volume ν log n such that λν > 1, there exist constants 0 < γ < λν
and ϵ > 0 such that

P(|V (B)| > γ log n) ≥ 1− n−1−ϵ.

Proof. For a subset B with vol(B) = ν log n, we have |V (B)| ∼ Poisson(λν log n). To show the lower bound,
we deőne a function g : (0, λν] → R as g(x) = x(log x − log(λν)) + λν − x. It is easy to check that g is
continuous and decreases on (0, λν] with limx→0 g(x) = λν and g(λν) = 0. When λν > 1, it holds that
limx→0 g(x) = λν > (1 + λν)/2 and thus there exists a constant γ ∈ (0, λν) such that g(γ) > (1 + λν)/2. Thus,
the Chernoff bound in Lemma 4.1 yields that

P(|V (B)| ≤ γ log n) ≤ exp
(
− [γ(log γ − log(λν)) + λν − γ] log n

)
= n−g(γ) ≤ n−(1+λν)/2.

Taking ϵ = (λν − 1)/2 > 0 concludes the proof.

4.1.1 The simple case when d = 1 and λ > 1. We start with the simple case when d = 1.

An example when λ > 2. We őrst study an example when d = 1 and λ > 2. If λ > 2 and vol(Bi) = log n/2,
we have λvol(Bi)/ log n > 1, and thus Lemma 4.4 ensures the existence of positive constants γ and ϵ such that
P(|Vi| > γ log n) ≥ 1− n−1−ϵ for all i ∈ [2n/ log n]. Thus, the union bound gives that

P

( 2n/ logn⋂

i=1

{
|Vi| > γ log n

})
= 1− P

( 2n/ logn⋃

i=1

{
|Vi| ≤ γ log n

})
≥ 1− 2n

log n
· n−1−ϵ = 1− o(1).(4.3)

Since all blocks are γ-occupied, the (1/2, γ)-visibility graph H = (V †, E†) is trivially connected.

General case when λ > 1. For small density λ, we partition the interval into small blocks and establish the
existence of visible occupied blocks on the left side of each block.

Proposition 4.1. If d = 1 and λ > 1, with 0 < χ < (1− 1/λ)/2, we consider the blocks {Bi}n/(χ logn)
i=1 obtained

from Line 3 in Algorithm 5. Then there exists a constant δ′ > 0 such that for any 0 < δ < δ′χ, it holds that

P

( n/(χ logn)⋂

i=1

{
∃j : j < i,Bj ∼ Bi, and Bj is δ-occupied

})
= 1− o(1).

It follows that the (χ, δ)-visibility graph is connected with high probability.

Proof. For any i ∈ [n/(χ log n)], we deőne Ui =
⋃

j : j<i,Bj∼Bi
Bj as the union of visible blocks on the left-hand

side of Bi. We have vol(Ui) = (⌊1/χ⌋ − 1)χ log n ≥ (1 − 2χ) log n and λvol(Ui)/ log n ≥ λ(1 − 2χ) > 1 when
λ > 1 and χ < (1 − 1/λ)/2. Thus, Lemma 4.4 ensures the existence of positive constants δ′ and ϵ such that
P(|⋃j : j<i,Bi∼Bj

Vj | ≤ δ′ log n) ≤ n−1−ϵ. We note that |{j : j < i,Bj ∼ Bi}| ≤ (⌈1/χ⌉ − 1) ≤ 1/χ. Thus, we take

0 < δ < δ′χ and obtain that

P

( ⋂

j : j<i,Bj∼Bi

{
|Vj | ≤ δ log n

})
≤ P

(∣∣ ⋃

j : j<i,Bj∼Bi

Vj

∣∣ ≤ δ log n/χ
)

≤ P

(∣∣ ⋃

j : j<i,Bj∼Bi

Vj

∣∣ ≤ δ′ log n
)
≤ n−1−ϵ.

Therefore, the union bound over all i ∈ [n/(χ log n)] gives

P

( n/(χ logn)⋂

i=1

{
∃j : j < i,Bj ∼ Bi, and Bj is δ-occupied

})

= 1− P

( n/(χ logn)⋃

i=1

⋂

j : j<i,Bj∼Bi

{
|Vj | ≤ δ log n

})
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≥ 1− n

χ log n
· n−1−ϵ = 1− o(1).

4.1.2 General case when d ≥ 2 and λνd > 1. We now study general cases. We őrst show that for any
block B, the set of surrounding visible blocks {B′ : B ∼ B′, B′ ≠ B} contains Ω(log n) vertices. For any block
Bi ⊂ Sd,n with vol(Bi) = χ log n, the length of its longest diagonal is given by

√
d(χ log n)1/d. Recall the deőnition

of Rd = 1−
√
dχ1/d/2, and let Ci be the ball of radius Rd(log n)

1/d centered at the center of Bi. Observe that

sup
x∈Bi,y∈Ci

∥x− y∥ =
1

2

√
d(χ log n)1/d +Rd(log n)

1/d = (log n)1/d.

It follows that if Bj ⊆ Ci, then Bi ∼ Bj . Also, Ci contains all blocks Bj ∼ Bi (see Figure 2). We deőne

Ui =
⋃

j : j ̸=i,Bj∼Bi

Bj =
⋃

j ̸=i : Bj⊂Ci

Bj

as the union of all visible blocks to Bi, excluding Bi itself. Observe that as χ → 0, the volume of the blue region
approaches the volume of Ci. The following lemma quantiőes this observation, showing that our conditions on χ
guarantee that Ui (and any set with the same volume as Ui) will contain sufficiently many vertices.

Figure 2: Geometry around block Bi, showing a portion of the region S2,n. The set Ui

is comprised of dark and light blue blocks.

Lemma 4.5. If χ satisőes the condition in (4.1) and λνd > 1, there exist positive constants δ̃ and ϵ, depending on
λ and d, such that for any subset S ∈ Sd,n with vol(S) = vol(Ui), we have

P
(
|V (S)| > δ̃ log n

)
≥ 1− n−1−ϵ.

Proof. We őrst evaluate the volume of Ui ⊂ Ci.
4 We deőne R′

d = Rd −
√
dχ1/d and C ′

i as the ball centered at the

center of Bi with a radius R′
d(log n)

1/d. The condition in (4.1) implies that 3
√
dχ1/d/2 < 1 and thus R′

d > 0. Based
on geometric observations, we note that C ′

i ⊂ Ui ∪Bi ⊂ Ci. It follows that vol(Ui ∪Bi) ≥ vol(C ′
i) = νd(R

′
d)

d log n,
and thus vol(Ui) ≥ (νd(R

′
d)

d − χ) log n.
We now show that when λνd > 1, the conditions in (4.1) imply λ(νd(R

′
d)

d − χ) > 1 by observing the following
relations:

νd(R
′
d)

d − χ = νd
(
1− 3

√
dχ1/d/2

)d − χ

≥ (νd + 1/λ)/2− χ

≥ 1/λ.

4This is similar to the Gauss circle problem [21].
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In summary, we have shown that vol(S) = vol(Ui) ≥ (νd(R
′
d)

d − χ) log n and λ(νd(R
′
d)

d − χ) > 1. Thus, Lemma

4.4 ensures the existence of positive constants δ̃ and ϵ such that P(|V (S)| > δ̃ log n) > 1− n−1−ϵ.

Henceforth, we use the term łoccupied blockž to refer to δ-occupied blocks, as well as łunoccupied blockž, with
the constant threshold δ = δ(λ, d) deőned in (4.2) in the rest of the section. We deőne K = |{j : Bj ⊂ Ui}| as the

number of blocks in Ui, a constant relying on λ and d. We note that K ≤ νd(Rd)
d/χ− 1 < δ̃/δ since Ui ∪Bi ⊂ Ci.

The key observation in establishing connectivity is that there cannot be a large cluster of unoccupied blocks.

Definition 4.2. (Cluster of blocks) Two blocks are adjacent if they share an edge or a corner. We say that a
set of blocks B is a cluster if for every B,B′ ∈ B, there is a path of blocks of the form (B = Bj1 , Bj2 , . . . , Bjm = B′),
where Bjk ∈ B for k ∈ [m] and Bjk , Bjk+1

are adjacent.

The following lemma shows that all clusters of unoccupied blocks have fewer than K blocks, with high
probability. This also implies that Ui contains at least one occupied block for each i.

Lemma 4.6. Suppose d ≥ 2 and λνd > 1. Let Y be the size of the largest cluster of unoccupied blocks produced in
Line 3 in Algorithm 5. Then P(Y < K) = 1− o(1).

Proof. We őrst bound the probability that all K blocks in any given set are unoccupied. For any set of K blocks
{Bjk}Kk=1, we have

P

( K⋂

k=1

{
|Vjk | ≤ δ log n

})
≤ P

(∣∣
K⋃

k=1

Vjk

∣∣ ≤ δK log n
)

≤ P

(∣∣
K⋃

k=1

Vjk

∣∣ < δ̃ log n
)

≤ n−1−ϵ,(4.4)

where the second inequality holds due to K < δ̃/δ and the last inequality follows from Lemma 4.5 and the fact

that vol(
⋃K

k=1 Bjk) = vol(Ui).
Let Z be the number of unoccupied block clusters with a size of K. Then we have P(Y ≥ K) = P(Z ≥ 1).

Let S be the set of all possible shapes of clusters of blocks with a size of K. Clearly, |S| is a constant depending
on K and d. For any s ∈ S, i ∈ [n/(χ log n)], and j ∈ [K], we deőne Zs,i,j as the event that there is a cluster
of unoccupied blocks, characterized by shape s with block Bi occupying the jth position. Due to (4.4), we have
P(Zs,i,j) ≤ n−1−ϵ. Thus, the union bound gives

P(Y ≥ K) = P(Z ≥ 1) = P

( ⋃

s∈S,i∈[n/(χ logn)],j∈[K]

Zs,i,j

)

≤ |S| · n

χ log n
·K · n−1−ϵ = o(1).

Finally, we establish the connectivity of the visibility graph.

Proposition 4.2. Suppose that d ≥ 2 and λνd > 1. Let V ⊂ Sd,n be a Poisson point process on Sd,n with
intensity λ. Then for χ and δ given in (4.1) and (4.2), respectively, the (χ, δ)-visibility graph H on V is connected
with probability 1− o(1).

Proof. For a visibility graph H = (V †, E†), we say that S ⊂ V † is a connected component if the subgraph of H
induced on S is connected. Let E be the event that H contains an isolated connected component. Formally, E is
the event that there exists S ⊂ V † 5 such that (1) S ̸= ∅ and S ̸= V †; (2) S is a connected component; (3) for all
i ∈ S, j ̸∈ S we have {i, j} ̸∈ E†. Observe that {H is disconnected} = E .

5The notation ⊂ denotes a strict subset.
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For any S ̸= ∅ and S ⊂ V † to be an isolated connected component, it must be completely surrounded by a
cluster of unoccupied blocks. In other words, all blocks in the cluster (

⋃
i∈S Ui) \ (

⋃
i∈S Bi) must be unoccupied.

We next show that for any isolated, connected component S, we have |{j : Bj ⊂ (
⋃

i∈S Ui) \ (
⋃

i∈S Bi)}| ≥ K; that
is, the number of unoccupied blocks visible to an isolated connected component is at least K.

We prove the claim by induction on |S|. In fact, we prove it for S that is isolated, but not necessarily connected.
The claim holds true whenever |S| = 1 by the deőnition of K. Suppose that the claim holds for every isolated
component with k blocks. Consider an isolated component S, with |S| = k + 1. Let F = (

⋃
i∈S Bi)

⋃
(
⋃

i∈S Ui) be
the collective łfootprintž of all elements of S along with the surrounding unoccupied blocks. For each j ∈ S, let
Fj = (

⋃
i∈S,i ̸=j Bi)

⋃
(
⋃

i∈S,i ̸=j Ui) be the footprint of all blocks in S excluding j. Let Gj be the graph formed
from G by removing all vertices from Vj , thus rendering Vj unoccupied. Observe that there must exist some j⋆ ∈ S
such that Fj⋆ ≠ F and Fj⋆ ⊂ F , as the regions {Bi ∪ Ui}i∈S are translations of each other. Since S \ {j⋆} is an
isolated component in Gj⋆ , the inductive hypothesis implies that S \ {j⋆} has at least K surrounding unoccupied
blocks in Gj⋆ . Comparing Gj⋆ to G, there are two cases (see Figure 3 for examples in S2,n). Case I. In the őrst
case, F \ Fj⋆ contains at least one unoccupied block. In that case, the inclusion of Vj⋆ changes one block from
unoccupied to occupied, and increases the number of surrounding unoccupied blocks by at least one. Thus, S
contains at least K surrounding unoccupied blocks. Case II. In the second case, F \ Fj⋆ contains only occupied
blocks. Since there are k + 1 total occupied blocks in F and k of them are in Fj⋆ , we have F \ Fj⋆ = Bj⋆ , so that
Bj⋆ ∩ Fj⋆ = ∅. In this case, the set of K surrounding unoccupied blocks in Fj⋆ remains unoccupied in F .

Figure 3: Possible isolated components in S2,n for Proposition 4.2.

Thus, E implies {Y ≥ K}. The result follows from Lemma 4.6.

In summary, Propositions 4.1 and 4.2 establish the connectivity of visibility graphs for cases when d = 1
and λ > 1, or d ≥ 2 and λνd > 1, ensuring successful label propagation in the algorithm. For convenience, let
H = {H is connected}. We conclude that P(H) = 1− o(1).

4.2 Labeling the initial block. We now prove that the Pairwise Classify subroutine (Line 8 of Algorithm
5) ensures, with high probability, the correct labeling of all vertices in the initial block Vi1 . Let Nu0,u = |{v ∈
Vi1 : {v, u0} ∈ E, {v, u} ∈ E}| be the number of common neighbors of u0 and u within Vi1 .

Lemma 4.7. For any vertex u ∈ Vi1 \ {u0}, it holds that

1. Conditioned on σ0(u) = σ0(u0) and |Vi1 | = mi1 , we have Nu0,u ∼ Bin(mi1 − 2, (a2 + b2)/2).

2. Conditioned on σ0(u) ̸= σ0(u0) and |Vi1 | = mi1 , we have Nu0,u ∼ Bin(mi1 − 2, ab).
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Proof. We őrst consider the case when σ0(u) = σ0(u0). For any vertex v ∈ Vi1 \ {u, u0}, we have

P
(
(v, u) ∈ E, (v, u0) ∈ E |σ0(u) = σ0(u0)

)

= P
(
(v, u) ∈ E, (v, u0) ∈ E |σ0(v) = σ0(u), σ0(u) = σ0(u0)

)
P
(
σ0(v) = σ0(u)

)

+ P
(
(v, u) ∈ E, (v, u0) ∈ E |σ0(v) ̸= σ0(u), σ0(u) = σ0(u0)

)
P
(
σ0(v) ̸= σ0(u)

)

= (a2 + b2)/2.

The őrst statement follows from mutual independence of the events {(v, u), (v, u0) ∈ E} over v ∈ Vi1 \ {u, u0},
conditioned on |Vi1 | = mi1 .

Similarly, if σ0(u) ̸= σ0(u0), for any v ∈ Vi1 \ {u, u0}, we have

P
(
(v, u) ∈ E, (v, u0) ∈ E |σ0(u) ̸= σ0(u0)

)

= P
(
(v, u) ∈ E, (v, u0) ∈ E |σ0(v) = σ0(u), σ0(u) ̸= σ0(u0)

)
P
(
σ0(v) = σ0(u)

)

+ P
(
(v, u) ∈ E, (v, u0) ∈ E |σ0(v) ̸= σ0(u), σ0(u) ̸= σ0(u0)

)
P
(
σ0(v) ̸= σ0(u)

)

= ab,

implying the second statement.

The following lemma will be used to bound the misclassiőcation probability of u ∈ Vi1 \ {u0} using the
thresholding rule given in Algorithm 2, Line 3. Let Tu0,u = {Nu0,u > (a+ b)2(|Vi1 | − 2)/4}. We deőne constants
η1 = exp[(a− b)4/4] and c1 = δ(a− b)4/8.

Lemma 4.8. For any vertex u ∈ Vi1 \ {u0} and any mi1 ≥ δ log n, we have

max
{
P
(
T c
u0,u

∣∣σ0(u) = σ0(u0), |Vi1 | = mi1

)
, P

(
Tu0,u

∣∣σ0(u) ̸= σ0(u0), |Vi1 | = mi1

)}
≤ η1n

−c1 .

Proof. Fix mi1 ≥ δ log n. Lemma 4.7 along with Hoeffding’s inequality (Lemma 4.2) gives that

P
(
T c
u0,u

∣∣σ0(u) = σ0(u0), |Vi1 | = mi1

)

= P
(
Nu0,u − (a2 + b2)(mi1 − 2)/2 ≤ −(a− b)2(mi1 − 2)/4

∣∣σ0(u) = σ0(u0), |Vi1 | = mi1

)

≤ exp
(
− (a− b)4(mi1 − 2)/8

)

≤ exp(−(a− b)4(δ log n− 2)/8) = η1n
−c1 .

Similarly,

P
(
Tu0,u

∣∣σ0(u) ̸= σ0(u0), |Vi1 | = mi1

)

= P
(
Nu0,u − ab(mi1 − 2) > (a− b)2(mi1 − 2)/4

∣∣σ0(u) ̸= σ0(u0), |Vi1 | = mi1

)

≤ exp
(
− (a− b)4(mi1 − 2)/8

)
≤ η1n

−c1 .

The following proposition ensures the high probability of correct labeling for all vertices in Vi1 .

Proposition 4.3. Suppose that a, b ∈ [0, 1] with a ̸= b. Then Line 8 of Algorithm 5 ensures that for any ∆ > δ,

P

( ⋂

u∈Vi1

{
σ̂(u) = σ0(u0)σ0(u)

} ∣∣ δ log n ≤ |Vi1 | ≤ ∆ log n
)
≥ 1− η1∆n−c1 log n.

Proof. For any u ∈ Vi1 \ {u0}, when mi1 ≥ δ log n, Lemma 4.8 implies

P
(
σ̂(u) ̸= σ0(u0)σ0(u)

∣∣ |Vi1 | = mi1

)

= P
(
σ̂(u) = −1

∣∣σ0(u) = σ0(u0), |Vi1 | = mi1

)
P
(
σ0(u) = σ0(u0)

)
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+ P
(
σ̂(u) = 1

∣∣σ0(u0) ̸= σ0(u), |Vi1 | = mi1

)
P
(
σ0(u0) ̸= σ0(u)

)

= P
(
T c
u,u0

∣∣σ0(u) = σ0(u0), |Vi1 | = mi1

)
/2 + P

(
Tu,u0

∣∣σ0(u) ̸= σ0(v), |Vi1 | = mi1

)
/2

≤ η1n
−c1 .

Thus, for any δ log n ≤ mi1 ≤ ∆ log n, the union bound yields that

P

( ⋂

u∈V1

{
σ̂(u) = σ0(u0)σ0(u)

} ∣∣ |Vi1 | = mi1

)
= 1− P

( ⋃

u∈B1

{
σ̂(u) ̸= σ0(u0)σ0(u)

} ∣∣ |Vi1 | = mi1

)

≥ 1−mi1η1n
−c1 ≥ 1− η1∆n−c1 log n.

It follows that

P

( ⋂

u∈Vi1

{
σ̂(u) = σ0(u0)σ0(u)

} ∣∣ δ log n ≤ |Vi1 | ≤ ∆ log n
)
≥ 1− η1∆n−c1 log n.

4.3 Propagating labels among occupied blocks. We now demonstrate that the Propagate subroutine
(Lines 9-10 of Algorithm 5) ensures that all occupied blocks are classiőed with at most M mistakes, for a suitable
constant M .

We introduce a vector m = (m1, · · · ,m(n/(χ logn))) ∈ Z
(n/(χ logn))
+ and deőne the event

V(m) = {|Vi| = mi for i ∈ [n/(χ log n)]}.

Each V(m) corresponds to a speciőc (χ, δ)-visibility graph H. Thus, conditioned on an event V(m) that ensures
the connectivity of H, the occupied block set V † and the propagation ordering over V † are uniquely determined.
To simplify the analysis, we őx the vector m in what follows, and condition on some event V(m) ⊂ H, recalling
that H = {H is connected}. We write Pm(·) = P (· | V(m)) as a reminder. Note that conditioned on V(m), the
labels of vertices are independent, and the edges are independent conditioned on the vertex labels.

We denote the conőguration of a block as a vector z = (z(1, 1), z(1,−1), z(−1,−1), z(−1, 1)) ∈ Z4
+, where each

entry represents the count of vertices labeled as +1 or −1 by σ0 and σ̂. For i ∈ V †, the event Ci(z) signiőes that
the occupied block Vi possesses a conőguration z such that

|{u ∈ Vi, σ0(u) = σ0(u0), σ̂(u) = 1}| = z(1, 1)

|{u ∈ Vi, σ0(u) = σ0(u0), σ̂(u) = −1}| = z(1,−1)

|{u ∈ Vi, σ0(u) ̸= σ0(u0), σ̂(u) = −1}| = z(−1,−1)

|{u ∈ Vi, σ0(u) ̸= σ0(u0), σ̂(u) = 1}| = z(−1, 1).

Consider i ∈ V † \ {i1} and a conőguration z ∈ Z
4
+. The key observation is that because the labels {σ̂(u) : u ∈ Vi}

are determined using disjoint sets of edges, the labels {σ̂(u) : u ∈ Vi} are independent conditioned on Cp(i). Thus,
the number of mistakes on Vi can be dominated by a binomial random variable. To formalize this observation,
we deőne constants M = 5/[(a− b)2δ], c2 = (a− b)2δ/4, and η2 = exp(2(a− b)2M). Let Ai be the event that σ̂
makes at most M mistakes on Vi:

Ai =
{
|{u ∈ Vi : σ̂(u) ̸= σ0(u0)σ0(u)}| ≤ M

}
.

The following lemma bounds the probability of misclassifying a given vertex using Algorithm 3.

Lemma 4.9. Suppose that a, b ∈ [0, 1] and a ≠ b, and őx i ∈ V † \ {i1}. Fix z ∈ Z
4
+ such that

z(1, 1) + z(1,−1) + z(−1,−1) + z(−1, 1) = mp(i) and z(1,−1) + z(−1, 1) ≤ M (so that Cp(i)(z) ⊂ Ap(i)).
Then for any u ∈ Vi, we have

Pm

(
σ̂(u) ̸= σ0(u0)σ0(u)

∣∣ Cp(i)(z)
)
≤ η2n

−c2 .
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Proof. We consider the case a > b. Let J+ = {|{v ∈ Vp(i) : σ̂(v) = 1}| ≥ |{v ∈ Vp(i) : σ̂(v) = −1}|}. We őrst study
the case when J+ holds. In this context, Lines 1-8 of Algorithm 3 are executed. Conditioned on any Cp(i)(z), we
have |{v ∈ Vp(i) : σ̂(v) = 1}| = z(1, 1) + z(−1, 1). Among these vertices v ∈ Vp(i) with σ̂(v) = 1, z(1, 1) vertices
have ground truth label σ0(u0) and z(−1, 1) of them have label −σ0(u0). We now bound the probability of making
a mistake, meaning that σ̂(u) ̸= σ0(u0)σ0(u).

If σ0(u) = σ0(u0), let {Xi}z(1,1)i=1 and {Yi}z(−1,1)
i=1 be independent random variables with Xi ∼ Bernoulli(a)

and Yi ∼ Bernoulli(b), and Z =
∑z(1,1)

i=1 Xi +
∑z(−1,1)

i=1 Yi with mean µZ = z(1, 1)a + z(−1, 1)b. For any
u ∈ Vi, we recall that d+1 (u, σ̂, Vp(i)) = |{v ∈ Vp(i) : σ̂(v) = 1, {u, v} ∈ E}| and observe that conditioned on

{σ0(u) = σ0(u0), Cp(i)(z)
}
, the degree proőle d+1 (u, σ̂, Vp(i)) has the same distribution as Z. Thus, Hoeffding’s

inequality yields

Pm

(
σ̂(u) ̸= 1

∣∣σ0(u) = σ0(u0), Cp(i)(z)
)

= Pm

(
d+1 (u, σ̂, Vp(i)) < (a+ b)|{v ∈ Vp(i) : σ̂(v) = 1}|/2

∣∣∣σ0(v) = σ0(u0), Cp(i)(z)
)

= Pm

(
Z < (a+ b)(z(1, 1) + z(−1, 1))/2

)

= Pm

(
Z − µZ < −(a− b)(z(1, 1)− z(−1, 1))/2

)

≤ exp
(
− (a− b)2(z(1, 1)− z(−1, 1))2

2(z(1, 1) + z(−1, 1))

)
.

We recall that J+ implies |{v ∈ Vp(i) : σ̂(v) = 1}| ≥ |Vp(i)|/2 ≥ δ log n/2, and z(1,−1) + z(−1, 1) ≤ M . It follows
that z(1, 1) + z(−1, 1) ≥ δ log n/2 and z(1, 1) ≥ δ log n/2−M . Thus,

Pm

(
σ̂(u) ̸= 1

∣∣σ0(u) = σ0(u0), Cp(i)(z)
)
≤ exp

(
− (a− b)2(z(1, 1)−M)2

2(z(1, 1) +M)

)

≤ exp
(
− (a− b)2(z(1, 1)− 3M)/2

)
≤ η2 exp

(
− (a− b)2δ log n/4

)
= η2n

−c2 ,(4.5)

where the last two inequalities hold since (z(1, 1)−M)2/(z(1, 1) +M) ≥ z(1, 1)− 3M and z(1, 1) ≥ δ log n/2−M .

Similarly, when σ0(u) ̸= σ0(u0), let {Xi}z(−1,1)
i=1 and {Yi}z(1,1)i=1 be independent random variables with

Xi ∼ Bernoulli(a) and Yi ∼ Bernoulli(b), and Z̃ =
∑z(1,1)

i=1 Yi+
∑z(−1,1)

i=1 Xi with mean µZ̃ = z(1, 1)b+z(−1, 1)a. For

any u ∈ Vi, we observe that d+1 (u, σ̂, Vp(i)) has the same distribution as Z̃, conditioned on
{
σ0(u) ̸= σ0(u0), Cp(i)(z)

}
.

By similar steps as the case σ0(u) = σ0(u0), we obtain

Pm

(
σ̂(u) ̸= −1

∣∣σ0(v) ̸= σ0(u0), Cp(i)(z)
)

= Pm

(
d+1 (u, σ̂, Vp(i)) ≥ (a+ b)|{v ∈ Vp(i) : σ̂(v) = 1}|/2

∣∣∣σ0(v) ̸= σ0(u0), Cp(i)(z)
)

= P
(
Z̃ ≥ (a+ b)(z(1, 1) + z(−1, 1))/2

)

= P
(
Z̃ − µZ̃ ≥ (a− b)(z(1, 1)− z(−1, 1))/2

)

≤ exp
(
− (a− b)2(z(1, 1)− z(−1, 1))2

2(z(1, 1) + z(−1, 1))

)

≤ η2n
−c2 .(4.6)

The bounds (4.5) and (4.6) together imply

Pm

(
σ̂(u) ̸= σ0(u0)σ0(u)

∣∣ Cp(i)(z)
)
≤ η2n

−c2 .

We can derive symmetric analysis for z such that J c
+ holds, in which case Algorithm 3 executes Lines 9-16.

The proof is complete for the case a > b. The analysis for the case b > a is similar.

Before proceeding further and showing the success of the propagation, we state a lemma that, with high
probability, all blocks contain O(log n) vertices.
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Lemma 4.10. For the blocks obtained from Line 3 in Algorithm 5, there exists a constant ∆ > 0 such that

P
( n/(χ logn)⋂

i=1

{
|Vi| < ∆ log n

})
= 1− o(1).

Proof. For a block Bi with vol(Bi) = χ log n, we have |Vi| ∼ Poisson(λχ log n). Thus, the Chernoff bound in
Lemma 4.1 implies that, for ∆ > (λχ+ 1 +

√
2λχ+ 1), we have

P(|Vi| ≥ ∆ log n) ≤ exp
(
− (∆− λχ)2 log n

2∆

)
= n− (∆−λχ)2

2∆ < n−1,

where the last inequality holds by straightforward calculation. Thus, the union bound gives that

P

( n/(χ logn)⋂

i=1

{
|Vi| < ∆ log n

})
= 1− P

( n/(χ logn)⋃

i=1

{
|Vi| ≥ ∆ log n

})
> 1− n

χ log n
· n−1 = 1− o(1).

For ∆ > 0 given by Lemma 4.10, we deőne I as follows and have P(I) = 1− o(1).

I =

n/(χ logn)⋂

i=1

{|Vi| < ∆ log n}.

The following lemma concludes that Phase I makes few mistakes on occupied blocks during the propagation.

Lemma 4.11. Let G ∼ GSBM(λ, n, a, b, d) with λνd > 1, a, b ∈ [0, 1], and a ̸= b, and σ̂ : V → {−1, 0, 1} be the
output of Phase I in Algorithm 5 on input G. Suppose m is such that V(m) ⊂ I ∩H. Lines 9-10 of Algorithm 5
ensure that

Pm

( ⋂

i∈V †

Ai

)
≥

(
1− η1∆n−c1 log n

)(
1− η3n

− 1
8

χ log n

)
.

Proof. Consider ij ∈ V † for 2 ≤ j ≤ |V †|, and őx z ∈ Z
4
+ such that

(4.7) z(1, 1) + z(1,−1) + z(−1,−1) + z(−1, 1) = mp(ij) and z(1,−1) + z(−1, 1) ≤ M.

Observe that the events that u ∈ Vij is mislabeled by σ̂ are mutually independent conditioned on Cp(ij)(z). Lemma
4.9 shows that each individual vertex in Vij is misclassiőed with probability at most η2n

−c2 , conditioned on
Cp(ij)(z). It follows that conditioned on Cp(ij)(z),

|{u ∈ Vij : σ̂(u) ̸= σ0(u0)σ0(u)}|
st
⪯ Bin

(
∆ log n, η2n

−c2
)
=: ξ.

Let µξ = E[ξ] = η2∆n−c2 log n. Using the Chernoff bound (Lemma 4.3), we obtain

Pm

(
Ac

ij

∣∣ Cp(ij)(z)
)
= Pm

(
|{u ∈ Vij : σ̂(u) ̸= σ0(u0)σ0(u)}| > M

∣∣ Cp(ij)(z)
)

≤ P(ξ > M)

= P
(
ξ − µξ > (M/µξ − 1)µξ

)

≤ eM−µξ(µξ/M)M

≤ (eη2∆/M)M (log n)Mn−c2M

≤ η3n
−9/8.(4.8)
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The last inequality holds since c2M = 5/4 by deőnition and (log n)M ≤ n1/8 for large enough n. Since Aij is
independent of {Aik : k < j, k ̸= p(ij)} conditioned on Cp(ij), (4.8) implies

Pm

(
Ac

ij

∣∣ Cp(ij)(z),
⋂

k<j:ik ̸=p(ij)

Aik

)
≤ η3n

−9/8.

Furthermore, since (4.8) is a uniform bound over all z satisfying (4.7), it follows that

Pm

(
Ac

ij

∣∣ ⋂

k<j

Aik

)
≤ η3n

−9/8.

Thus, combining Proposition 4.3 with the preceding bound, we have

Pm

( ⋂

i∈V †

Ai

)
= Pm

(
Ai1

)
·
|V †|∏

j=2

Pm

(
Aij

∣∣Aij−1
, · · · ,Ai1

)

≥
(
1− η1∆n−c1 log n

)(
1− η3n

− 9
8

)|V †|−1

≥
(
1− η1∆n−c1 log n

)(
1− η3n

− 9
8

) n
χ log n

≥
(
1− η1∆n−c1 log n

)(
1− η3n

− 1
8

χ log n

)
,

where we use the fact that there are n/χ log n blocks in total along with Bernoulli’s inequality.

Combining the aforementioned results, we now prove the success of Phase I in Theorem 4.1. We highlight that
since η > 0 is arbitrary, the following equation (4.10) implies Theorem 2.4.

Theorem 4.1. Given GSBM(λ, n, a, b, d) with a, b ∈ [0, 1], a ≠ b, and d = 1 and λ > 1, or d ≥ 2 and λνd > 1.
Fix any η > 0. Let κ = νd(1 +

√
dχ1/d)d/χ. Let σ̂ be the labeling obtained from Phase I with χ > 0 satisfying (4.1)

and δ > 0 satisfying (4.2) and δ < η/κ, respectively. Then there exists a constant M such that σ̂ makes at most
M mistakes on every occupied block, with high probability,

(4.9) P

( ⋂

i∈V †

{
|{v ∈ Vi : σ̂(v) ̸= σ0(u0)σ0(v)}| ≤ M

})
= 1− o(1).

Moreover, it follows that

(4.10) P
(
|{v ∈ V : σ̂(v) ̸= σ0(u0)σ0(v)}| ≤ ηn/(χκ)

)
= 1− o(1)

and

(4.11) P

( ⋂

u∈V

{
|v ∈ N (u) : σ̂(v) ̸= σ0(u0)σ0(v)| ≤ η log n

})
= 1− o(1).

Proof. Fixing any η > 0, we consider χ > 0 satisfying (4.1) and δ > 0 satisfying (4.2) and δ < η/κ, respectively.
Given any m such that V(m) ⊂ I ∩ H, for occupied blocks, Proposition 4.11 yields the existence of a constant
M > 0 such that

Pm

( ⋂

i∈V †

{|{v ∈ Vi : σ̂(v) ̸= σ0(u0)σ0(v)}| ≤ M}
)
≥

(
1− η1∆n−c1 log n

)(
1− η3n

− 1
8

χ log n

)
.

Since the above bound is uniform over all m such that V(m) ⊂ I ∩H, we have

P

( ⋂

i∈V †

{
|v ∈ Vi : σ̂(v) ̸= σ0(u0)σ0(v)| ≤ δ log n

})
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≥
∑

m : V(m)⊂I∩H
Pm

( ⋂

i∈V †

{
|v ∈ Vi : σ̂(v) ̸= σ0(u0)σ0(v)| ≤ δ log n

})
· P

(
V(m)

)

≥
(
1− η1∆n−c1 log n

)(
1− η3n

− 1
8

χ log n

)
· P

(
I ∩ H

)
= 1− o(1),

where the last step holds by Propositions 4.1 and 4.2, and Lemma 4.10. Thus, we have proven (4.9).
Since δ log n > M for n large enough, it follows that

(4.12) P

( ⋂

i∈[n/χ logn]

{|{v ∈ Vi : σ̂(v) ̸= σ0(u0)σ0(v)}| ≤ δ log n}
)
= 1− o(1).

On the one hand, if σ̂ makes fewer than δ log n mistakes on Vi for all i ∈ [n/(χ log n)], then σ̂ makes fewer
than δn/χ ≤ ηn/(χκ) mistakes in Sd,n. Thus, (4.10) follows from (4.12). On the other hand, if σ̂ makes fewer
than δ log n mistakes on Vi for all i ∈ [n/(χ log n)], then there will be fewer than δκ log n ≤ η log n mistakes in all
vertices’ neighborhood since each neighborhood N (u) intersects at most κ blocks. Thus, (4.11) also follows from
(4.12).

5 Phase II: Proof of exact recovery

Before proving Theorem 2.2, we őrst show a concentration bound. We deőne vectors in R
4,

x = λνd log n[a, 1− a, b, 1− b]/2, y = λνd log n[b, 1− b, a, 1− a]/2,(5.1)

and random variables D̃ = [D+
1 , D

−
1 , D

+
−1, D

−
−1] ∼ Poisson(x), and X as a linear function of D̃,

X = − log
(a
b

)(
D+

1 −D+
−1

)
− log

(1− a

1− b

)(
D−

1 −D−
−1

)
.(5.2)

For any t ∈ [0, 1], let Dt(x∥y) =
∑

i∈[4](txi + (1 − t)yi − xt
iy

1−t
i ) be an f -divergence. Let D+(x∥y) =

maxt∈[0,1] Dt(x∥y) = maxt∈[0,1] Dt(y∥x) be the Chernoff-Hellinger divergence, as introduced by [5]. In particular,

when x and y are deőned in (5.1), the maximum is achieved at t = 1/2 and we have D+(x∥y) = λνd(1−
√
ab−√

(1− a)(1− b)) log n.

Lemma 5.1. For any constants ρ > 0 and η > 0, it holds for X deőned in (5.2) that

P
(
X ≥ −ρη log n

)
≤ n−λνd(1−

√
ab−

√
(1−a)(1−b))+ρη/2.

Proof. We will apply the Chernoff bound on X. First, we compute its moment-generating function. For
D̃ = [D+

1 , D
−
1 , D

+
−1, D

−
−1] = (Di)

4
i=1 ∼ Poisson(x), the deőnition of X in (5.2) can be written as

X = −
4∑

i=1

[Di log(xi/yi)− (xi − yi)].

We recall that for ξ ∼ Poisson(µ) and s ∈ R, we have E[exp(sξ)] = exp[µ(es − 1)]. Thus, we have

E(etX) = E

[
exp

(
− t

4∑

i=1

[Di log(xi/yi)− (xi − yi)]
)]

=
4∏

i=1

exp(t(xi − yi)) · E[exp(t log(yi/xi)Di)]

=

4∏

i=1

exp(t(xi − yi) + xi(e
t log(yi/xi) − 1))

=

4∏

i=1

exp((t− 1)xi − tyi + x1−t
i yti)
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= exp(−
4∑

i=1

((1− t)xi + tyi − x1−t
i yti)) = exp(−Dt(y∥x)).

Therefore, the Chernoff bound ensures that for any t > 0, we have

P
(
X ≥ −ρη log n

)
≤ E(etX)

e−tρη logn
= ntρη · exp(−Dt(y∥x)).

It follows that

P
(
X ≥ −ρη log n

)
≤ inf

t>0

{
ntρη · exp(−Dt(y∥x))

}

≤ nρη/2 · exp(−D+(x∥y))
= n−λνd(1−

√
ab−

√
(1−a)(1−b))+ρη/2.

Now we present the proof of Theorem 2.2, which ensures that Algorithm 5 achieves exact recovery.

Proof. [Proof of Theorem 2.2] We őrst őx a constant c > λ and let E0 = {|V | < cn}. Since |V | ∼ Poisson(λn), the
Chernoff bound in Lemma 4.1 gives that

P(Ec
0) = P(|V | > cn) ≤ exp

(
− (c− λ)2n

2c

)
= o(1).

For η > 0 to be determined, let E1 be the event that σ̂ makes at most η log n mistakes in the neighborhood for all
vertices (Phase I succeeds); that is,

E1 =
⋂

u∈V

{
|v ∈ N (u) : σ̂(v) ̸= σ0(u0)σ0(v)| ≤ η log n

}
.

Theorem 4.1 ensures that P(E1) = 1− o(1). Let E ′
2 be the event that Algorithm 5 achieves exact recovery and E2

be the event that all vertices are labeled correctly relative to σ0(u0); that is,

E ′
2 =

{ ⋂

u∈V

{σ̃(u) = σ0(u)}
}⋃{ ⋂

u∈V

{σ̃(u) = −σ0(u)}
}
, E2 =

⋂

u∈V

{σ̃(u) = σ0(u0)σ0(u)}.

Then we have P(E ′
2) ≥ P(E2). Since P(E0),P(E1) = 1− o(1), it follows that

(5.3) P(Ec
2) ≤ P(Ec

2 ∩ E1 ∩ E0) + P(Ec
1) + P(Ec

0) = P(Ec
2 ∩ E1 ∩ E0) + o(1).

Note that we analyze P(Ec
2 ∩E1∩E0) rather than P(Ec

2 | E1, E0), in order to preserve the data distribution. Next,
we would like to show that the probability of misclassifying a vertex v is o(1/n), and conclude that the probability
of misclassifying any vertex is o(1). To formalize such an argument, sample N ∼ Poisson(λn), and generate
max{N, cn} points in the region Sd,n uniformly at random. Note that on the event E0, we have max{N, cn} = cn.
Label the points in order, and set σ̂(u0) = 1. In this way, the őrst N points form a Poisson point process with
intensity λ. We can simulate Algorithm 5 on the őrst N points. To bound the failure probability of Phase II, we
can assume that any v ∈ {N + 1, . . . , cn} must also be classiőed (by thresholding τ(v, σ), computed only using
edge/non-edge observations between v and u ∈ [N ])). For v ∈ [cn], let

E2(v) = {σ̃(v) = σ0(u0)σ0(v)}.

Then

Ec
2 ∩ E1 ∩ E0 ⊆

cn⋃

v=1

{E2(v)c ∩ E1 ∩ E0} ⊆
cn⋃

v=1

{E2(v)c ∩ E1},
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so that a union bound yields

(5.4) P (Ec
2 ∩ E1 ∩ E0) ≤

cn∑

v=1

P (E2(v)c ∩ E1) .

Fix v ∈ [cn]. In order to bound P (E2(v)c ∩ E1), we classify v according to running the Refine algorithm with
respect to edge/non-edge observations between v and u ∈ [N ]. Analyzing E2(v)c ∩ E1 now reduces to analyzing
robust Poisson testing. Let W (v) = {σ : N (v) → {−1, 0, 1}} and dH be the Hamming distance. We deőne the set
of all estimators that differ from σ0 on at most η log n vertices in N (v), relative to σ0(u0), as

W ′(v; η) = {σ ∈ W (v) : dH(σ(·), σ0(u0)σ0(·)) ≤ η log n}
= {σ ∈ W (v) : dH(σ0(u0)σ(·), σ0(·)) ≤ η log n}.

Let Ev be the event that there exists σ ∈ W ′(v; η) such that Poisson testing with respect to σ fails on vertex v
when E2 holds; that is,

Ev =
[{

σ0(v) = 1
}⋂( ⋃

σ∈W ′(v;η)

{
τ(v, σ0(u0)σ) ≤ 0

})]

⋃[{
σ0(v) = −1

}⋂( ⋃

σ∈W ′(v;η)

{
τ(v, σ0(u0)σ) ≥ 0

})]
.(5.5)

We provide some insights into the deőnition of Ev. Recall that σgenie(v) = sign(τ(v, σ0)) deőned in (3.1) picks the
event with the larger likelihood between {σ0(v) = 1} and {σ0(v) = −1}. Thus, for example, suppose that σ0(v) = 1,
then σgenie(v) makes a mistake when τ(v, σ0) ≤ 0. We consider any σ ∈ W ′(v; η). Since σ0(u0)σ(u) = σ0(u) for
most u ∈ N (v), d(v, σ0(u0)σ) and d(v, σ0) and thus τ(v, σ0(u0)σ) and τ(v, σ0) are close. Formalizing the intuition,
suppose that σ0(v) = 1. If σ0(u0) = 1, then for E2 to hold, we must classify v as +1 to be correct relative to
σ0(u0). Thus, v is misclassiőed relative to σ whenever τ(v, σ) ≤ 0. If σ0(v) = 1 and σ0(u0) = −1, then we must
classify v as −1. Then v is misclassiőed relative to σ whenever τ(v, σ) ≥ 0. As a summary, failure in the case
σ0(v) = 1 means τ(v, σ0(u0)σ) ≤ 0.

It follows that

(5.6) P (E2(v)c ∩ E1) ≤ P(Ev).

We aim to show that for η > 0 sufficiently small, P(Ev) = n−(1+Ω(1)). Due to the uniform prior on σ0(v), we have

P(Ev) =
1

2

[
P(Ev | σ0(v) = 1) + P(Ev | σ0(v) = −1)

]
.(5.7)

We now bound the őrst term in (5.7). Let D ∈ Z
4
+ represent the ground-truth degree proőle of vertex v. We

consider a realization D = d(v, σ0) and the induced τ(v, σ0). Next, we bound the distance |τ(v, σ0(u0)σ)− τ(v, σ0)|
for any σ ∈ W ′(v; η). We note that the edges and non-edges are őxed in a given graph G; that is, for any σ ∈ W (v),
we have

d+1 (u, σ0(u0)σ) + d+−1(u, σ0(u0)σ) = d+1 (u, σ0) + d+−1(u, σ0),

d−1 (u, σ0(u0)σ) + d−−1(u, σ0(u0)σ) = d−1 (u, σ0) + d−−1(u, σ0).

Let α = d+1 (u, σ0(u0)σ) − d+1 (u, σ0) = −(d+−1(u, σ0(u0)σ) − d+−1(u, σ0)) and β = d−1 (u, σ0(u0)σ) − d−1 (u, σ0) =

−(d−−1(u, σ0(u0)σ)− d−−1(u, σ0)). It follows that

τ(v, σ0(u0)σ)− τ(v, σ0) = log
(1− a

1− b

)
[d−1 (u, σ0(u0)σ)− d−1 (u, σ0)− (d−−1(u, σ0(u0)σ)− d−−1(u, σ0))]

+ log
(a
b

)
[d+1 (u, σ0(u0)σ)− d+1 (u, σ0)− (d+−1(u, σ0(u0)σ)− d+−1(u, σ0))]

= 2
[
α · log

(a
b

)
+ β · log

(1− a

1− b

)]
.
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For any σ ∈ W ′(v; η), recalling that dH(σ0(u0)σ(·), σ0(·)) ≤ η log n, we have |α| ≤ η log n and |β| ≤ η log n. Thus,
we deőne ρ = 2 · [| log(a/b)|+ | log((1− a)/(1− b))|] and have

∣∣τ(v, σ0(u0)σ)− τ(v, σ0)
∣∣ ≤ 2

[
|α| ·

∣∣ log
(a
b

)∣∣+
∣∣β
∣∣ ·

∣∣ log
(1− a

1− b

)∣∣
]
≤ ρη log n.

We deőne a set Y ⊂ Z
4
+ as follows:

Y =
{
d = (d+1 , d

−
1 , d

+
−1, d

−
−1) ∈ Z

4
+ : log

(a
b

)(
d+1 − d+−1

)
+ log

(1− a

1− b

)(
d−1 − d−−1

)
≤ ρη log n

}
.

Conditioned on {σ0(v) = 1}, Poisson testing fails relative to σ when τ(v, σ0(u0)σ) ≤ 0. Thus,

P
(
Ev

∣∣σ0(v) = 1
)

=
∑

d∈Z
4
+

P

(
{D = d}

⋂{
min

σ∈W ′(v;η)
τ(v, σ0(u0)σ) ≤ 0

} ∣∣σ0(v) = 1
)

≤
∑

d∈Z
4
+

P

(
{D = d}

⋂{
τ(v, σ0) ≤ ρη log n

} ∣∣σ0(v) = 1
)

=
∑

d∈Y

P(D = d | σ0(v) = 1).

To bound the above summation, we consider random variables D̃ ∼ Poisson(x) with x deőned in (5.1) and X

deőned in (5.2). Recalling that D ∼ D̃ conditioned on σ0(v) = 1, Lemma 5.1 gives that

P
(
Ev

∣∣σ0(v) = 1
)
≤

∑

d∈Y

P
(
D = d

∣∣σ0(v) = 1
)

= P
(
D̃ ∈ Y

)

= P
(
X ≥ −ρη log n

)

≤ n−λνd(1−
√
ab−

√
(1−a)(1−b))+ρη/2.

Since λνd(1−
√
ab−

√
(1− a)(1− b)) > 1, we take η = (λνd(1−

√
ab−

√
(1− a)(1− b))− 1)/ρ > 0 and conclude

that

P
(
Ev

∣∣σ0(v) = 1
)
≤ n− 1

2 (λνd(1−
√
ab−

√
(1−a)(1−b))+1) = o(1/n).

Similarly, we study the case conditioned on {σ0(v) = −1}. Let Y ′ = {d = (d+1 , d
−
1 , d

+
−1, d

−
−1) ∈ Z

4
+ :

log(a/b)(d+1 − d+−1) + log((1− a)/(1− b))(d−1 − d−−1) ≥ −ρη log n}. The deőnition of Ev in (5.5) gives that

P
(
Ev

∣∣σ0(v) = −1
)

=
∑

d∈Z
4
+

P

(
{D = d}

⋂{
max

σ∈W ′(v;η)
τ(v, σ0(u0)σ) ≥ 0

} ∣∣σ0(v) = −1
)

≤
∑

d∈Z
4
+

P

(
{D = d}

⋂{
τ(v, σ0) ≥ −ρη log n

} ∣∣σ0(v) = −1
)

=
∑

d∈Y ′

P(D = d | σ0(v) = −1).

For the same D̃ = [D+
1 , D

−
1 , D

+
−1, D

−
−1] ∼ Poisson(λνd log n[a, 1−a, b, 1− b]/2), note that condition on σ0(v) = −1,

we have D ∼ [D+
−1, D

−
−1, D

+
1 , D

−
1 ]. Thus, with the same X deőned in (5.2), we have

∑

d∈Y ′

P(D = d | σ0(v) = −1) = P
(
[D+

−1, D
−
−1, D

+
1 , D

−
1 ] ∈ Y ′)
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= P

(
log

(a
b

)(
D+

−1 −D+
1

)
+ log

(1− a

1− b

)(
D−

−1 −D−
1

)
≥ −ρη log n

)

= P(X ≥ −ρη log n).

Thus, similarly, Lemma 5.1 gives that P(Ev |σ0(v) = −1) ≤ n− 1
2 (λνd(1−

√
ab−

√
(1−a)(1−b))+1). Therefore, the above

bound together with (5.4), (5.6), and (5.7) implies P(Ec
2 ∩E1 ∩E0) = o(1). Finally, we have P((E ′

2)
c) ≤ P(Ec

2) = o(1)
due to (5.3).

6 Impossibility: Proof of Theorem 2.3

In this section, we prove the impossibility of exact recovery under the given conditions and complete the proof of
Theorem 2.3. Recalling that Theorem 2.1 (Theorem 3.7 in [2]) has already established the impossibility when λ > 0,
d ∈ N, and 0 ≤ b < a ≤ 1 satisfying (2.1). Here, we extend the same result to the case where the requirement
a > b is dropped.

Proposition 6.1. Let λ > 0, d ∈ N, and a, b ∈ [0, 1] satisfy (2.1) and let Gn ∼ GSBM(λ, n, a, b, d). Then any
estimator σ̃ fails to achieve exact recovery.

Proof. We note that the analysis of Theorem 2.1 builds upon Lemma 8.2 in [2], which itself relies on Lemma 11
from [5]. Lemma 11 provides the error exponent for hypothesis testing between Poisson random vectors, forming the
basis for the impossibility result. Notably, only the CH-divergence criterion λνd(1−

√
ab−

√
(1− a)(1− b)) < 1 is

needed to ensure the indistinguishability of the two Poisson distributions. Therefore, the impossibility in Theorem
2.1 can be readily extended to the case where the condition a > b is dropped.

Moreover, we show the impossibility of exact recovery for d = 1 and λ < 1.

Proposition 6.2. When d = 1, let 0 < λ < 1 and a, b ∈ [0, 1] and let Gn ∼ GSBM(λ, n, a, b, d). Then any
estimator σ̃ fails to achieve exact recovery.

Proof. When d = 1, we partition the interval [−n/2, n/2] into n/ log n blocks of length log n each. Notably, if
there are k ≥ 2 mutually non-adjacent empty blocks, the interval gets divided into k ≥ 2 disjoint segments that
lack mutual visibility. In such scenarios, achieving exact recovery becomes impossible as we can randomly ŕip
the signs of one segment. Formally, suppose that there are k segments, where the ith segment contains blocks
{Bj : j ∈ seg(i)} for seg(i) ⊂ [n/ log n]. Then for any s ∈ {±1}k, the labeling σ0 has the same posterior probability
as σ(·; s), deőned as

σ(v; s) = σ0(v)
∑

i∈[k]

si
∑

j∈seg(i)

1{v∈Bj}.

It follows that the error probability of the genie-aided estimator is at least 1− 2/2k = 1− 1/2k−1, conditioned
on there being k segments. Let X be the event of having at least two non-adjacent empty blocks (and thus two
segments). The aforementioned observation means that if X holds, the error probability is at least 1/2, and thus
the exact recovery is unachievable.

We now prove that P(X ) = 1− o(1) if λ < 1. Let Yk be the event of having exactly k empty blocks, among
which at least two of them are non-adjacent. Recalling that each block is independently empty with probability
exp(−λ log n) = n−λ, we have

P(X ) =

n/ logn∑

k=2

P(Yk) =

n/ logn−1∑

k=2

((n/log n
k

)
− n/log n

)(
n−λ

)k(
1− n−λ

)n/ logn−k

≥
n/ logn∑

k=1

(
n/log n

k

)
(n−λ)k(1− n−λ)n/ logn−k − n

log n
(1− n−λ)n/ logn

n/ logn∑

k=1

[
n−λ/(1− n−λ)

]k

≥ 1−
(
1− n−λ

)n/ logn −
(
1− n−λ

)n/ logn · n

log n
· n−λ

1− 2n−λ

≥ 1−
(
1− n−λ

)n/ logn ·
(
1 + 2n1−λ/ log n

)
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= 1−
[
(1− n−λ)n

λ]n1−λ/ logn ·
(
1 + 2n1−λ/ log n

)

= 1−O
(
exp(−n1−λ/ log n) · (1 + 2n1−λ/ log n)

)
= 1− o(1),

where the second inequality follows by calculating the Binomial series and the geometric series, and the last
inequality holds since 1− 2n−λ ≥ 1/2 for large enough n.

In summary, by combining Propositions 6.1 and 6.2, we complete the proof of Theorem 2.3.

7 Further related work

Our work contributes to the growing literature on community recovery in random geometric graphs, beginning
with latent space models proposed in the network science and sociology literature (see for example [18, 19]). There
have been several models for community detection in geometric graphs. The most similar to the one we study is
the Soft Geometric Block Model (Soft GBM), proposed by Avrachenkov et al [7]. The main difference between
their model and the GSBM is that the positions of the vertices are unknown. Avrachenkov et al [7] proposed
a spectral algorithm for almost exact recovery, clustering communities using a higher-order eigenvector of the
adjacency matrix. Using a reőnement procedure similar to ours, [7] also achieved exact recovery, though only in
the denser linear average degree regime.

A special case of the Soft GBM is the Geometric Block Model (GBM), proposed by Galhotra et al [14]
with follow-up work including [10, 15]. In the GBM, community assignments are generated independently,
and latent vertex positions are generated uniformly at random on the unit sphere. Edges are then formed
according to parameters {βi,j}, where pair of vertices u, v in communities i, j with locations Zu, Zv are connected
if ⟨Zu, Zv⟩ ≤ βi,j .

In the previously mentioned models, the vertex positions do not depend on the community assignments. In
contrast, Abbe et al [3] proposed the Gaussian-Mixture Block Model (GMBM), where (latent) vertex positions are
determined according to a mixture of Gaussians, one for each community. Edges are formed between all pairs of
vertices whose distance falls below a threshold. A similar model was recently studied by Li and Schramm [24] in
the high-dimensional setting. Additionally, Péché and Perchet [26] studied a geometric perturbation of the SBM,
where vertices are generated according to a mixture of Gaussians, and the probability of connecting a pair of
vertices is given by the sum of the SBM parameter and a function of the latent positions.

In addition, some works [6, 13] consider the task of recovering the geometric representation (locations) of the
vertices in random geometric graphs as a form of community detection. Their setting differs signiőcantly from ours.
We refer to the survey [12] for an overview of the recent developments in non-parametric inference in random
geometric graphs.

8 Conclusions and future directions

Our work identiőes the information-theoretic threshold for exact recovery in the two-community, balanced,
symmetric GSBM. A natural direction for future work is to consider the case of multiple communities, with general
community membership probabilities and general edge probabilities. We believe that the information-theoretic
threshold will again be given by a CH-divergence criterion, and a variant of our two-phase approach will achieve
the threshold.

It would also be interesting to study other spatial network inference problems. For example, consider Z2-
synchronization [4, 8, 22], a signal recovery problem motivated by applications to clock synchronization [16],
robotics [28], and cryogenic electron microscopy [30]. In the standard version of the problem, each vertex is
assigned an unknown label x(v) ∈ {±1}. For each pair (u, v), we observe x(u)x(v) + σWuv, where σ > 0 and
Wuv ∼ N (0, 1). Now suppose that the vertices are generated according to a Poisson point process, and we observe
x(u)x(v) + σWuv only for mutually visible vertices, which models a signal recovery problem with spatially limited
observations. An open question is then whether our two-phase approach can be adapted to this synchronization
problem.

Acknowledgements. J.G. was supported in part by NSF CCF-2154100. X.N. and E.W. were supported in
part by NSF ECCS-2030251 and CMMI-2024774.
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