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The Power of Two Matrices in Spectral
Algorithms for Community Recovery

Souvik Dhara*, Julia Gaudio™, Elchanan Mossel, and Colin Sandon

Abstract— Spectral algorithms are some of the main tools in
optimization and inference problems on graphs. Typically, the
graph is encoded as a matrix and eigenvectors and eigenvalues of
the matrix are then used to solve the given graph problem. Spectral
algorithms have been successfully used for graph partitioning,
hidden clique recovery and graph coloring. In this paper, we study
the power of spectral algorithms using two matrices in a graph
partitioning problem. We use two different matrices resulting
from two different encodings of the same graph and then
combine the spectral information coming from these two matrices.
We analyze a two-matrix spectral algorithm for the problem of
identifying latent community structure in large random graphs.
In particular, we consider the problem of recovering community
assignments exactly in the censored stochastic block model,
where each edge status is revealed independently with some
probability. We show that spectral algorithms based on two
matrices are optimal and succeed in recovering communities
up to the information theoretic threshold. Further, we show
that for most choices of the parameters, any spectral algorithm
based on one matrix is suboptimal. The latter observation is in
contrast to our prior works (2022a, 2022b) which showed that
for the symmetric Stochastic Block Model and the Planted Dense
Subgraph problem, a spectral algorithm based on one matrix
achieves the information theoretic threshold. We additionally
provide more general geometric conditions for the (sub)-optimality
of spectral algorithms.

Index Terms— Stochastic block model, spectral algorithms,
information-theoretic boundary.
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I. INTRODUCTION

PECTRAL algorithms are some of the main tools in graph

algorithms and combinatorial optimization. Some famous
and classical examples include spectral algorithms for the
hidden clique problem [1], graph bisection [2], and graph
coloring [3], [4]. These algorithms encode the graph into a
matrix by recording the status of each present/absent edge
of the graph as an entry of the matrix. The most natural
encoding is the adjacency matrix representation, where edges
are encoded by the value 1 and non-edges are encoded by
the value 0. Given the encoding matrix, a small number of
eigenvectors for this matrix are used to solve the given graph
problem.

Our interest in this work lies in graph problems for
which using multiple matrix representations gives an
advantage over using a single matrix.

In particular, we are interested in the power of spectral
algorithms in such a scenario in the context of finding clusters
in a planted partition model called the Censored Stochastic
Block Model (CSBM). In this model, there are two clusters
of approximate sizes np and n(1 — p), and the edges inside
each of the clusters appear independently with probabilities
D1, p2 respectively, while edges between the two clusters appear
with probability g. Moreover, each edge status is revealed
with probability tlogn/n for some fixed ¢ > 0. Thus the
statuses of most edges are unknown. The censored model was
introduced to model the fact that in many social networks,
not all of the connections between individual nodes are
known.

Given an instance of a censored graph with no vertex labels,
the problem is to recover the partitions exactly with high
probability. This is often referred to as the exact recovery
problem. We note that some applications of spectral algorithms
to the exact recovery problem use an additional combinatorial
clean-up stage (see e.g. [5], [6], [7]), but we follow [8], [9],
and [10] in studying spectral algorithms that do not look at
the graph after the top eigenvectors have been found. This is
partially motivated by the fact that most real applications of
spectral algorithms do not include a combinatorial clean-up
stage.

The classical case in the literature considers exact recovery
in the Stochastic Block Model where there is no censoring and
p1,D2,q9 = ©(logn/n). In order to achieve exact recovery up
to the information theoretic boundary, prior works used some
trimming and post-processing steps together with the spectral
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algorithm [5], [6], [7]. However, the question of whether a
direct spectral algorithm based on the top two eigenvectors
of the of the adjacency matrix would be optimal remained
open until the recent resolution by Abbe et al. [8] for p; = pa.
In the censored SBM, there are three possible observations
(present, absent, or censored), so spectral recovery using a
binary-valued adjacency matrix is suboptimal. Instead, one
can use a ternary-valued encoding matrix. It was recently
shown in [9] and [10] that, for some special cases of the
planted partition model such as the planted dense subgraph
problem (p2 = ¢) and the symmetric stochastic block model
(p1 = p2,p = 1/2), a spectral algorithm based on the top
two eigenvectors of a signed adjacency matrix is optimal. This
raises the question:

Are spectral algorithms based on the top eigenvectors
of a signed adjacency matrix optimal for all censored
stochastic block models?

The main contributions of this article are as follows:

1) In contrast with the success stories in [9] and [10],
whenever p1, p2, g are distinct, a spectral algorithm based
on the top two eigenvectors of a signed adjacency matrix
is always suboptimal (Theorem 7 Part (2)).

2) We propose spectral algorithms with two encoding matri-
ces, where we take an appropriate linear combination
of the corresponding top eigenvectors. We show that
these algorithms are always optimal (Theorem 10). The
optimality of spectral algorithms with two matrices is also
shown in the more general setting with k£ > 2 communities
(Theorem 12).

Thus, these results exhibit a strict separation between spectral
algorithm classes with one versus multiple encoding matrices,
and this separation can be realized for even elementary planted
partition models. To our knowledge, this general phenomenon
was not observed in the substantial prior literature for recovery
problems in the planted partition problems.

A. Model and Objective

We start by defining the Censored Stochastic Block Model.
Definition 1 (Censored Stochastic Block Model (CSBM)):
Let p € (0,1)F be such that % p; = 1 and let
P € (0,1)k** be a symmetric matrix. Suppose we have n
vertices and each vertex v € [n] is assigned a community
assignment og(v) € [k] according to the distribution p

independently, i.e., P(oo(v) =) = p; for i € [k].
> For u,v € [n] and v # v, the edge {u,v} exists
independently with probability P ()5 (v)- Self-loops do
not occur.
> For every pair of vertices {u, v}, its connectivity status
is revealed independently with probability “‘;g”, and is
censored otherwise for some fixed ¢ > 0.

The output is a random graph with edge statuses given by
{present,absent,censored}. The distribution of this
random graph is called the Censored Stochastic Block Model.
We write G ~ CSBM¥ (p, P, t) to denote a graph generated
from the above model, with vertex labels removed (i.e., o is
unknown).
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Definition 2 (Exact Recovery): Consider the n x k mem-
bership matrix So, where (Sp)u; = L{oo(u) = i}, i.e., the
u-th row indicates the community membership of u. Given
an estimator &, construct S similarly as S,; = 1{6(u) = i}.
We say that an estimator achieves exact recovery if there exists
a k x k permutation matrix .J such that 5.J = Sj.

B. Information Theoretic Boundary

We start by discussing the information theoretic threshold.
The result will be stated in terms of a Chernoff-Hellinger
divergence, introduced by Abbe and Sandon [11].

Definition 3 (Chernoff-Hellinger Divergence): Given two
vectors j,v € (Ry \ {0}), define

CHe(p,v) = > [§pi + (1 = Ovi — v %]
i€[l]

for £ € [0, 1]. The Chernoff-Hellinger divergence of p and v
is defined as

AL (p,v) = CHe(p, v). L1
+(u,v) Jnax ¢, v) (LD
Define
—1
te = (Iggh(@iﬁj))
where 0; = (p, Pri, pr(1 — Pri))repr) € R*. (12)

Theorem 4 (Information Theoretic Threshold): Let G~
CSBMF (p, P,t). If t < t., then for any estimator &,

lim P(6 achieves exact recovery) = 0.

n—oo

C. Spectral Algorithms

For comparing the performance of spectral algorithms with
one matrix versus spectral algorithms with more than one
matrix, we first specialize to the case of two communities.

To define spectral algorithms formally, we first define the
threshold procedures we allow to apply on vectors. These are
the procedures that will be applied to the leading eigenvectors
of the encoding matrices.

Algorithm 1 CLASSIFY

Input: Censored graph G on n vertices, vectors (u;), C R,
and scalars, aq,...,a,,T € R.
Output: Community classification.

1: Compute possible score vectors

U= {Zsiaiui for all sq,..

i=1

. Sm € {il}}.

2: Compute possible assignments S(U) = {6 = sign(u —
T) :u € U} and output a community assignment 1+ (1 +
&)/2 that maximizes the posterior probability P(G | &)
over 6 € S(U).

Since eigenvectors are determined up to a sign flip,
Step 2 above is required in order to resolve this sign ambiguity.
This will be explained in more detail in Remark 13.
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Definition 5 (Signed Adjacency Matrix): Given y > 0 and
a graph G with edge statuses {present, absent,
censored}, define the signed adjacency matrix A(G,y) as
the 7 X n matrix with

1 if {4,j} is present
-y
0  if {4,j} is censored.

Aij = if {4,} is absent

Let us define the class of algorithms SPECTRAL-ONE that
use a single encoding matrix.

Definition 6 (SPECTRAL-ONE): An algorithm A(G,y, a1,
az,T) in the SPECTRAL-ONE class takes a censored graph
G as input, an encoding parameter y € R,, and scalars
ai,az, T € R. The algorithm then computes the top two
eigenvectors ui,us of A = A(G,y), and gives the output
of CLASSIFY((u;)?_,,(a;)?_;,T). We denote the output of
algorithm A in this class as & 4.

For the two community case, we will always consider the
parameters:

q D2

Theorem 7 (Failure of SPECTRAL-ONE in Most Cases):
Let G ~ CSBM?L(,E, P,t) with p, P given by (L.3).

(1) Suppose that py,ps, q are not distinct. If p; = py = p,
then assume p+q # 1.! There exist explicitly computable
constants y € Ry and ~1,v2 € R such that the algorithm
A = A(G,y,71,72,0) from the class SPECTRAL-ONE
satisfies

P= <p1 q) 7ﬁ:(p71_p)7 and pP,P1,P2,9 € (051) (13)

lim P(5, achieves exact recovery) = 1,

n—oo

for any ¢t > t.. In particular, Algorithm 3 produces such
an estimator.

(2) Suppose that pj,p2,q are distinct. There exists
do > 0 such that, if ¢ < . + Jg, then for any A €
SPECTRAL-ONE,

lim (6., achieves exact recovery) = 0.
n—oo

For the case p; = p2, Theorem 7 Part (1) generalizes the
result of [9, Theorem 2.2] to the case p # 1/2. Part (2) of
the result is in sharp contrast with the results in [9] and [10];
together, these results essentially say that the censored planted
dense subgraph problem (py = ¢) and the symmetric censored
stochastic block models (p1 = p2) are remarkably the only
cases where an algorithm from SPECTRAL-ONE is successful®.
The possible limitation of SPECTRAL-ONE was shown
in [10, Theorem 2.6] for the special case of ¢ = 1/2,
p1=1—po and p=1/2.

Remark 8: It is worthwhile to note that the choice of
encoding parameters {1, —y,0} is completely general and
one does not get a more powerful class of algorithms by
allowing an arbitrary ternary encoding. In fact, as our proof

IThe case p1 = p2 =p, p = % is covered in [9] without the assumption
p+ g # 1. In this case, spectral algorithms succeed for ¢ > tc.

2For the edge-case p1 = p2 = p and p + ¢ = 1, the rank of E[A] is 1 for
the value of y that we would want to use. This is why it is ruled out in
Theorem 7 Part (1).
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shows, if p1, ps, q are distinct, then even if one allows arbitrary
encodings, the SPECTRAL-ONE algorithms still fail sufficiently
near the threshold (see Remark 42).

Next, we will show that spectral algorithms with two matrices
are always optimal for the recovery of two communities. Let
us define the class of algorithms SPECTRAL-TWO that uses
two encoding matrices instead of one.

Definition 9 (SPECTRAL-TWO): An algorithm A(G, y1, yo,
(a;)}_;,T) in the SPECTRAL-TWO class takes as input a
censored graph G, two encoding parameter y1,y2 € Ry with
y1 # y2 and (a;)i_, C R, T € R. The algorithm considers two
signed adjacency matrices A; = A(G,y1) and Ay = A(G, y2),
and computes their top two eigenvectors uf, us, for r =1,2.
Then the algorithm outputs CLASSIFY ((ul); =12, (a;)i_;,T).
As before, we denote the output of algorithm A from this class
as g,.

Theorem 10: (SPECTRAL-TWO Always Succeeds in Recov-
ering Two Communities): Let G ~ CSBMZ (p, P,t) with p, P
given by (1.3). There exists a set ) C R4 with |Y| < 3 such
that for any 41 # y2 and y1,y2 ¢ ), there exist explicit
(a;)?_; C R* such that the algorithm A(G,y1, Y2, (a;)3;,0)
from the class SPECTRAL-TWO satisfies

lim P(6., achieves exact recovery) = 1,

n—0o0

for any ¢ > ¢.. In particular, Algorithm 5 produces such an
estimator.

Theorem 10 not only shows that SPECTRAL-TWO algorithms
are always successful, but also shows that the choice of the
encoding parameters y, y2 does not matter too much as long
as y1 # yo and they both lie outside a finite exception set. For
example, we can choose 1, y2 ~ Uniform|0, 1] independently.
Avoiding the finite exception set helps us ensure that A; and
A, both have two eigenvectors with large, distinct eigenvalues.
In contrast, the choice of the encoding is quite important for
SPECTRAL-ONE algorithms in Theorem 7 (1). In fact, for p; =
p2 = p or p; = p and ps = ¢, the only choice of y that yields
an optimal algorithm is log(%)/logs. Thus, SPECTRAL-
Two algorithms leads to a much broader and flexible class of
algorithms as compared to SPECTRAL-ONE.

Finally, we show that SPECTRAL-TWO succeeds for the
recovery of k > 3 communities, as long as the parameters P, p
satisfy certain conditions. To this end, let us define SPECTRAL-
Two for general k.

Algorithm 2 CLASSIFY-MULTIPLE

Input: Censored graph G on n vertices, vectors (u;)",; C R™,
and weight vectors (a;)¥_, C R™.
Output: Community classification.

1: Let U be the n x m matrix whose ¢-th column is ;.

2: For s € {£1}™, let D := diag(s). Compute the set
of possible assignments S consisting of &(-;s) with s €
{£1}™ such that

G(v;s) = argmax{(UD‘s)ai)v} for each v € [n].
i€ [k]

3: Output &(+;s) that maximizes the posterior probability
over P(G | &) over 6 € S.

Authorized licensed use limited to: Northwestern University. Downloaded on August 31,2024 at 19:47:30 UTC from IEEE Xplore. Restrictions apply.



3602

We will use this algorithm with m = 2k, and the top k
eigenvectors from each of two signed adjacency matrices.

Definition 11 (SPECTRAL-TWO for k > 3 communities):
An algorithm A(G,y1,92, (a;)%_,T) in this class takes
as input a censored graph G, two encoding parameters
y1,¥2 € Ry with y1 # o and (a;)%, < R2?*. The
algorithm considers two signed adjacency matrices
Ay = A(G,y1) and Ay = A(G, y2), and computes their top k
eigenvectors (uf);eqx], (u?);ex)- Then the algorithm outputs
CLASSIFY-MULTIPLE((} );e(4],r=1,2, (a:)¥_). As before,
we denote the output of algorithm A from this class
as 4.

Theorem 12: (Success of SPECTRAL-TWO for k > 3
Communities): Let G ~ CSBMF (p, P,t) where p € (0,1)% is

such that >°, p; = 1, and P € (0,1)**¥ is a symmetric matrix.

Further, suppose that P-diag(p) has exactly k distinct non-zero
eigenvalues. Then there exists a finite set )V C Ry such that
for any y; # yo and y1,y> ¢ V), the following holds: there
exist explicit vectors (a;)¥_; € R?* such that the algorithm
A(G,y1,y2, (a;)¥_,) from the class SPECTRAL-TWO satisfies

nlLH;o P(6 4 achieves exact recovery) = 1,
for any ¢ > ¢.. In particular, Algorithm 7 produces such an
estimator.

Remark 13: The fact that the encoding parameters y;, yo lie
outside a finite set in Theorems 10 and 12 is required to ensure
that E[A(G,y1)], E[A(G,y2)] have k distinct and non-zero
eigenvalues. The requirement of having k& non-zero eigenvalues
is intuitive as we seek to recover an underlying rank k&
structure. Moreover, the eigenvectors of A(G,y) can only be
approximated up to an unknown orthogonal transformation.
This causes an ambiguity for defining the final estimator. When
the eigenvalues are distinct, this ambiguity can be resolved
by going over all possible sign flips s and choosing the
best among them, as in Algorithm 1 Step 2, or Algorithm 2
Step 2.

Remark 14: The condition in Theorem 12 that P - diag(p)
has distinct and non-zero values can be relaxed. In fact, if P
is the matrix such that P;]?’) = p;(Pi; — y(1 — P;;)), then
by Lemma 43, the same conclusions as Theorem 12 hold
as long as there exists a y such that P® has k distinct
and non-zero eigenvalues. In fact, we can simply choose
y ~ Uniform((0, 1)).

D. Proof Ideas

We now give a brief outline of the proofs. For a vertex v,
we call d(v) = (dyj,d—;)je) € Z3* the degree profile of
the vertex, where d;; = d4;(v),d_; = d_;(v) respectively
denote the number of present and absent edges from v to
community j for j € [k]. Let us re-scale d(v) = d(v)/tlogn.
The proof consists mainly of two steps:

Step 1: Characterization of spectral algorithms using
degree profiles. Given any signed adjacency matrix A =
A(G,y), the starting point of our analysis is to find a good
{-approximation for the eigenvectors. Using a recent general
framework by Abbe et al. [8], we can show that the top &
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Optimally separating hyperplane

DRs(1) |\

Visualizing dissonance ranges of two communities near t..

DRs(2)

Fig. 1.

eigenvalues (u;);efr) of A satisfy (see Corollary 35):

Au} 1
Y :o(), for i € [k],
X T\ m
with probability 1 — o(1), where (Af,u}) is the i-th largest

eigenvalue/eigenvector pair of E[A]. Note that E[A] is a
rank-two matrix with u}’s taking the same constant value
corresponding to all vertices in the same community. The
low rank of E[A] allows us to express Au} as a linear
combination of the degree profiles and thus drastically reduce
the dimension of the problem. Using this representation, any
linear combination of the w}s is also an expressible linear
combination of degree profiles. Hence, we show that spectral
algorithms essentially are asymptotically equivalent to classify-
ing vertices depending on whether (ws,..,d(v)) > (T 4 o(1))
or (Wspee, d(v)) < (T — o(1)) for some ws,.. € R?*, T € R.

Step 2: Geometry of degree profiles. At this point, the
problem reduces to understanding whether, for a given vector
w, a hyperplane orthogonal to w can separate re-scaled degree
profiles. To this end, for each community ¢, we define a measure
of dissonance n; for rescaled degree profiles, and define the
§-dissonance range as DRs(i) := {d : n;(d) < 6}. We show
that the DR (4)’s are closed and convex sets. Moreover, (1) if
1/t < 0, then all the re-scaled degree profiles from community
i lie in DRs(7) and (2) if § < 1/t, then the re-scaled degree
profiles from community ¢ are asymptotically dense in DR ()
(see Lemma 22). In a sense, one can think of DR; /t(i) as the
cloud of re-scaled degree profiles arising from community <.

Next, consider the “hardest” scenario when ¢ = ¢.. In that
case, we show that the clouds DR,/ (i) and DRy, (j)
corresponding to communities ¢ and j intersect only at a single
point 2* (see Lemma 25), and as ¢ increases away from ¢, the
two clouds gradually separate. Due to convexity, DR, ;¢ (i) and
DRy ¢, () lie on two opposite sides of the tangent hyperplane
at z*. Let w* be such that this tangent hyperplane is given by
H* = {z: (w*,x—x*) = 0}. Then H* is the only hyperplane
that separates the clouds of degree profiles near ¢.; see Figure 1.
Thus, as long as we are trying to separate clouds of degree
profiles using this H*, we will succeed for any ¢ > t.. However,
if we try to separate the clouds with a different hyperplane
{z : (w,x — 2*) = 0} for some w ¢ Span(w*), then we will
fail sufficiently close to ..

Combining this with the asymptotic characterization of
spectral algorithms, it thus remains to be seen whether we

min
se{£1}

SUu; —
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can choose the parameters of the spectral algorithm in such a
way that wg,.. € Span(w*). For SPECTRAL-ONE algorithms
in the two community case, we show that wsg,.. takes values
in a restricted set {w € R* : W = 4& = y}, no matter
the choice of the parameters. For SPECTRAL ONE algorithms,
generally wg,.. ¢ Span(w*) except for the specific cases in
Theorem 7 (1). However, for SPECTRAL-TWO algorithms,
there always exists a way to choose the linear combinations
in such a way that wg,.. € Span(w*), which ensures their
optimality.

Information Theoretic Threshold. There is an alternate
way of characterizing the information theoretic boundary by
observing that even the “best” estimator will separate commu-
nities using the hyperplane H* above. Consider the problem
of classifying a single vertex v given G' and (00(u))ue[n]\{v}-
The MAP estimator for the community assignment of v is
called the genie-based estimator. This is an optimal estimator
(even though it is not computable given G). Now, a direct
computation shows that the genie-based estimator classifies
a vertex in one of the two communities based on whether
(w*,d(v)) > 0 or (w*,d(v)) <0, with the same w* as above
(see [9, Proposition 6.1]). Thus, in a sense, separating degree
profiles based on hyperplanes orthogonal to w* is the optimal
decision rule. When ¢t < t., the degree profile clouds of the
two communities overlap significantly, and therefore even the
optimal estimator misclassifies a growing number of vertices.
This gives rise to the information theoretic impossibility region
for exact recovery when ¢ < t..

E. Discussion

Theorems 10 and 12 prove optimality of spectral algorithms
using two matrices. The use of two matrices hinges on the
fact that there are three types of edge information: present,
absent, and censored, and the information about a vertex’s
community coming from present and absent edges are of
the same order. We believe that our results generalize in
a straightforward manner to the scenario of labeled edges,
where the possible edge statuses {present,absent} are replaced
by L different types. Indeed, this is the setting considered
by [12], [13], and [14]. In particular, [14] determined the
information-theoretic threshold for exact recovery and proposed
an efficient, iterative spectral method. We believe that optimal
(vanilla) spectral algorithms in the general L-labeled edge
scenario must use L different encoding matrices.

We also believe that the framework of this paper can be
extended beyond graphs to other important machine learning
problems with censoring on top of an underlying low-rank
structure. This may include non-square matrices (e.g. items vs
features matrix in recommender systems). We leave these as
interesting future research questions.

F. Notation

Let [n] = {1,,2,...,n}. We often use the Bachmann—
Landau asymptotic notation o(1), O(1) etc. For two sequences
(an)n>1 and (by)p>1, we write a,, < b, as a shorthand for

limy, 00 Z—: = 1. Given a sequence of probability measures

3603

(Pp)n>1. a sequence of events (€,),>1 is said to hold with
high probability if lim,,_,, P, (&,) =1
For a vector z € R%, we define |z[]» = (3, 22)'/2 and
|z]|oo = max; |z;|. For # € R? and r > 0, we denote the
open {5-ball of radius r around z by Ba(x,r). Similarly, for
X c R? and r > 0, we denote the open /5-ball of radius r
around X by By (X, 7). For a collection of vectors (z;); C RY,
we denote their linear span by Span((z;);). Also, given a
subspace Z C R?, the projection of  onto Z will be denoted
by Proj.(z).
For a matrix M € R"*¢ we use M, to refer to
its i-th row, represented as a row vector. Given a matrix
[Mll2 = max),=1 ||[Mz|2 is the spectral norm,
|M||2— 0o = max; || M;.||2 is the matrix 2 — oo norm, and
IM||p = (3, ; M%)"/? is the Frobenius norm. Whenever we

apply a real-value function to a vector, it should be interpreted
as a coordinatewise operation.

Throughout, we condition on the event that the random
community assignments given by o are close to their expected
sizes. Specifically, note that, since n; := {v : gg(v) = j} are
marginally distributed as Bin (n, p;), and therefore, for all

€ (0,1),

Inj —np;| <en (L4)

with probability at least 1 — 2exp(—¢2n/2) by applying
the McDiarmid inequality. Throughout, the notation P(-), E[-]

conditions on a fixed value of o( satisfying (I.4) with
e=n"1/3,

G. Organization

We start analyzing the geometric properties of the degree
profile clouds in Section II, which lies in the heart of all the
proofs. Subsequently, in Section III, we prove the impossibility
result and also prove that the Maximum a Posteriori (MAP)
Estimator always succeeds up to the information theoretic
threshold. The entrywise bounds for the top eigenvectors are
provided in Section IV. Finally, we complete the proofs of
Theorems 7, 10 in Section V.

II. GEOMETRY OF DEGREE PROFILES

In this section, we develop the technical tools for Step 2 in
Section I[-D. We will develop these tools for general
k-community CSBMs. Throughout, we fix p € (0,1)* such
that % p; = 1 and let P € (0,1)*** be a symmetric matrix.
Let us define degree profiles, which will be the main object of
analysis in this section.

Definition 15 (Degree Profile): Suppose that G ~ CSBM]fL
(P, p,t). For a vertex v, we define d(v) = (dyr,d_)rep) €
Z* to be the degree profile of v, where dy, = d4,(v) and
d_, = d_,(v) respectively denote the number of present and
absent edges from v to community r for r € [k].

As discussed in Section I-D, the /., approximation guarantee
for the eigenvectors gives us an alternative characterization
of spectral algorithms in terms of separating degree profiles
of different communities using certain hyperplanes. The
next proposition allows us to determine when separation
using hyperplanes is impossible. Before the statement we
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need a couple of definitions. Let V; denote the vertices in
community 4.

Definition 16 (Separates Communities): We  say  that
w € R?* separates communities (i, j) with margin 3 > 0 if

in w?d(v) > Ta(w) < —p/2.
min d(v) > /2 and géav)fw d(v) < —8/2

or vice versa.

If w separates communities (¢, j) with margin 8 > 0, then
computing the weighted degree profile w? d(v) for each v €
Vi U'V; allows us to distinguish these two communities. Note
that if w separates communities (7, ) with margin (3, then
—w also separates communities (4, ) with margin 3. Next
we define the scenario where a finite number of hyperplanes
cannot separate the two communities.

Definition 17 (Confuses Communities): Let (w,)72, C
R?* and let ()™, C R. We say that [(w,)™, (7)™ ]
confuses communities (i,7) at level [ if there exist u € Vj,
v €V, and s € {—1,1}™ such that s,.(w!d(u) — ) > 3
and s,.(wld(v) —7,) > B forall 1 <r < m.

In other words, there are representatives from communities
1 and j, such that both of their degree profiles appear on the
same sides of all the hyperplanes {z : wl'x = v,.}. A larger
value of (3 means that the pair of degree profiles is farther from
the hyperplanes. Note that the notion of confusion also rules
out the possibility of separation with multiple hyperplanes.
We claim that there is a unique best vector for separating
community ¢ and community j in the following sense.

Proposition 18: Let G ~ CSBMF (p, P,t), 1 <i < j <k,
and let w* be the 2k-dimensional vector such that

w* = | lo Dri lo L= By
= logp a5 .

(1) If t > 1/A1(6;,0;), then there exists ¢ > 0 such that w*
separates communities ¢ and j with margin €log(n) with
probability 1 — o(1).

(2) Let Z C R?* be a linear subspace and w* ¢ Z. There
exists ¢ > 0 such that if tA;(6;,6;) < 1+ p, then
for every m > 0 there exists € > 0 such that the
following holds with probability 1 — o(1): For every
21,y 2m € Zand Y1, .., vm € Ry [(20)0q, ()74 ]
confuses communities ¢ and j at level €log(n).

aL1)

The above result yields the following corollary which
is useful in designing our classification algorithm for
k > 3 communities (Algorithm 7).

Corollary 19: If t > 1/A(6;,6;), then there exists
€ > 0 such that with probability 1 — o(1)

(IOg(Pri)v log(l - P”'))re[k] ' d(v)

> max (log(Pr;),log(1 — PTJ'))re[k] -d(v) + elog(n)

for all ¢ € [k] and v € V.
Proof:  Proposition 18 implies that with probability
1—0(1),

(log(Pri),log(1 = Pri)), - d(v)
> (log(P;),log(1 — Prj))re[k] -d(v) + elog(n)

for every i, j € [k],i # j and v € V. The claim follows. [
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The rest of this section is devoted to the proof of Proposi-
tion 18. In Section II-A, we define the dissonance range relative
to a community as the set of 2k-tuples that are sufficiently close
to the average normalized degree profile for that community,
and prove some of their analytic properties. In Section II-B,
we prove that, with high probability, the normalized degree
profile of every vertex is within o(1) of the dissonance range
corresponding to its community. Moreover, we also show that
the dissonance ranges are asymptotically dense in the sense
that for every point in a dissonance range there is a vertex
in the corresponding community whose normalized degree
profile is within o(1) of that point. Next, in Section II-C,
we prove that if the projections of two dissonance ranges
onto the space spanned by a set of vectors overlap, then any
set of hyperplanes perpendicular to those vectors confuses
the corresponding communities. We prove this by showing
that there are points in the interiors of the two dissonance
ranges that are on the same sides of all such hyperplanes.
In Section II-D, we show that for any two communities and
the appropriate choice of ¢, their dissonance ranges intersect
at a single point, the hyperplane perpendicular to w* through
that point separates the rest of the dissonance ranges, and
the boundaries are also smooth in the vicinity of that point.
Finally, in Section II-E, we prove Proposition 18 by observing
that the hyperplane through the origin perpendicular to w*
separates the dissonance ranges corresponding to the underlying
communities whenever ¢ is greater than the critical value, while
the projections of the dissonance ranges onto any subspace of
R* not containing w* will overlap for any value of ¢ sufficiently
close to the critical value.

A. Dissonance Range and Its Properties

Let us start by defining the dissonance range and obtaining
some basic analytic properties.

Definition 20 (Dissonance Range): Given i € [k] and = €
Rf_k, the dissonance of x relative to community ¢ is given by

k
T1,r
- = 1 _
) Z[”” . (eprPM)

r=1

+ 22, log (e o

_ 1 1.2
prupmv))}*’ -2

where we regard the terms in these expressions as
being 0 if the corresponding entry of z is 0. We also
define the §-dissonance range relative to community ¢ by
DRs (i) := {z : ni(z) < d}.

Lemma 21: Fix ¢ € [k] and § > 0. Then DR;(3) is a
bounded, closed and convex subset of Ri’“. In addition, for
any 0’ > ¢, there exists £ > 0 such that

By(DRs(i),e) NR3* € DRy (i).

Proof: We first show that DR () is bounded. Note that
zlog(z) — oo if and only if 2 — co. Thus, if DRs(i) were
unbounded, then we could find a subsequence ($k)k21 C
DRs(é) such that n;(xy) — oo. However, n;(xz;) < J by
definition of DR (7). This leads to a contradiction and hence
DRy (7) is bounded.
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Next, since 7; is continuous, we have that DR () is closed.
Further, 7; is a sum of convex function and hence it is convex.
Therefore, its sublevel set DRs(7) is convex.

To show the last claim, note that n; is uniformly continuous
on [0,b)%* for any b > 0. Thus, there exists ¢ > 0 such
that for any x,2’ € [0,b)%* with ||z — 2'||2 < &, we have
Ini(z) —ni(z')| < 8" — 6. This proves By (DRs(i),e) "R C
DRy (), and completes the proof of the lemma. O

B. Relating Dissonance Range With Degree Profiles of CSBMs

Our next goal will be to identify which degree profiles are
likely to occur in CSBMs.
Lemma 22: Fix 0 < 6 < §'. Lett € (1/6',1/9) and G ~
CSBMF (P, p, t). The following holds with probability 1—o(1):
1) There exists ¢ > 0 such that for every i € [k] and d € Z2*
satisfying d/(tlog(n)) € DRs(i), there are at least n®
vertices in community ¢ with degree profile d.

2) For each i € [k] and for every vertex v € G in community
1, the degree profile of v is of the form xt log(n) for some
x € DRg/(i).

In order to prove this lemma, we need the Poisson approx-
imation result stated below. The proof of this follows from
a straightforward application of Stirling’s approximation and
will therefore be provided in Appendix A.

Lemma 23: Let (S,)qcy be a partition of [n] such that
S| = np,(14+0(log™?n)) for all 7 € [k], where p € (0,1)".
Suppose that {W, }?_; is i.i.d. from a distribution taking values
in {a,b,c} and, 1fv€S,,IP’( W, =a) = ay.,, P(W, =b) =

a(l =), and P(W, = ¢) =1 — a. Fix i € [k]. Also, let
V C S; be such that |V| = O(n/log®n).

For z € {a,b}, let D, := #{v € S, : W, = x} for

€ [k]\ {i} and D, ; := #{v € S; NV : W, = z}. Let
D = (Da,ry Dy r)rep) and also let d = (dyr, do.v)repp) € Z2F

be such that ||d||; = o(log®/?n) and a = tlogn/n. Then
k
P(D=d) = HP (prioptlogn;dy )
r=1

P (py(1—y)tlogn;ds,),

where P(\;m) is the probability that a Poisson(\) random
variable takes value m.

Proof of Lemma 22: To prove the first part, fix ¢ € [k]
and let d € Z% be such that d/(tlog(n)) € DRs(i).
Recall that n; is the number of vertices in commumty J
for every j € [k]. By (I4), |n; —np;| < ns for all
j € [k], with probability 1 — o(1). In the subsequent proof,
we always condition on this event, even if it is not mentioned
explicitly.

In order to prove bounds on how many vertices have a
given degree profile, we will want a large set of vertices
whose degree profiles are independent. As such, let S; be a
random set of 2n/log?(n) vertices in community i, chosen
independently from G,oq. Next, let S, be the subset of .S;
consisting of all vertices v such that all the connections between
v and S; are censored. Note that the degree profiles of the
vertices in S are independent conditioned on the number of
vertices in each community. To lower-bound the size of S,
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let X be the number of revealed connections among vertices
in S. By a countlng argument, |S}| > |S | — 2X. Observe
that E[X] = (2"/ log” T “Og" = O(n/log®(n)). The Markov
inequality then implies that X = o(]:S;|) with high probability,
which implies |S}| > 1|S;| = ey

Let %' denote the sigma-algebra with respect to which S;
and (n;) e are measurable, and let

F =F'N {|nj —npj| <nfVje [k']}

QGCE 1ogg<n>}'

Fix v € [n]. Since DR;(i) is bounded, we have that ||d||; =
O(logn). Thus, by Lemma 23,

P(d(v) =d | Z n{v e S}
: dij d_;
_ o-tlogn ﬁ [P Pijtlog(n)] "™ [p;(1 — P ;)tlog(n)]
| d_!
(p; P jtlog(n ))dH (pi(1— Pi,j)f10%(”))(%7J

n—t
H D/ 2mdyj(dygfe)ti \/2nd_j(d_j/e)?

k
o] 1 <ep;Pz,gt10g( )) v
j=1 27 V d"rjd_J d+]

(epj(l - ?,Qtlog(n))dj

k

1
- (E 2my/dyjd—;

where in the final step, we have used the definition of 7;
from (IL.2). Next, since d/(tlog(n)) € DRs(i), we have that
n:(d/tlog(n)) < ¢, and thus (IL.3) yields, for all sufficiently
large n,

)n—tm(d/tlog?“b)7 (IL.3)

pn=Pd(v) =d | Zn{veS})
> ol e +o(n™1)
log n

> p—t(1+o(1))

for some C' > 0. Next, if d’(v) denotes the degree profile
of vertex v discarding all the present and absent edges in .S;,
then d(v) = d'(v) for all v € S. Moreover, conditionally on
F!, {d (v)}yes; are 1ndependent Thus, conditionally on %,
{v € S} : d(v) = d}| is distributed as a Bin(]S}], p,) random
variable. Note also that, conditionally on .%, |S!|p,, > 2n° for
some ¢ > (. Thus, using concentration of binomial random
variables, we conclude that

1
{ve 8l dw) =d} = 5 |8 pa 2 n°

with probability at least 1 — exp(—c'n®) for some ¢ > 0.
Observing that |[{d € Z? : d/(logn) € DRs(i)}|
O (polylog(n)) = o(exp(c'n®)), the claim follows by a union
bound.

In order to prove the second part, we again use (II.3). By the
union bound and [15, Corollary 2.4], there exists a sufficiently
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large constant C' > 0 such that

P(Jv € [n] : [|d(v)]s > Clogn) = o(n™"). (11.4)

Now, for any d such that d/(tlogn) ¢ DRy (4) and ||d|; <
C'log n, we can use (I1.3) to show that, for all sufficiently large
n, and fixed v € [n]

P(d(v) = d)
: 1
< (1+o0(1)) ( )n—tm(d/t log n)
jr:[l 2my/dyyd;
S ,nlft(sl.
Now,

P(Jv with og(v) =4 : d(v)/(tlogn) ¢ DRy (7))

< nP(d(v) = d for some d/(tlogn) ¢ DRs (7)
and ||d||; < C'logn) + o(1)

< n(Clogn)®*n="" + o(1) = o(1),

where in the last step we have used that 6’ > 1. Hence the
proof is complete. O

C. Separating Degree Profiles Using Hyperplanes

Now that we have connected the degree profiles that
occur in a community with dissonance ranges relative to that
community, we can start showing that the behavior of the
dissonance ranges implies results on our ability to separate
the communities with hyperplanes, starting with the following
proposition:

Proposition 24: Let G ~ CSBME (p, P,t), Z C R?* be a
linear subspace, and let 6 > 0 be such that ¢ty < 1. Suppose
further that there are communities ¢ and j such that the
projections of DR;(i) and DRs(j) onto Z overlap. Then,
for any m € N, there exists ¢ > 0 such that for any unit
vectors wi, ..., Wy, € Z and v1,...,vm € R, with probability
1—o0(1), [(wyr)q, (+logn)I™ ;] confuses communities ¢ and
j at level elog(n).

Proof: Let zyp € Projz(DRs(i)) N Projz(DRs(j)).
There must exist z; € DRs(¢) and z; € DR;(j) such that
Projz(z;) = Projz(z;) = zo. Now, let &' = 1 (6+ 1),
so that § < ¢’ < % By Lemma 21, there exists x> 0 such
that By(DRj(i), 1) N R%* C DRy (i) and Ba(DRs(j), 1) N
R2* C DRy (j). So, if we let yo = p/3k and 2z =
Zo + PI'OjZ(,LLo, Hos -y ,U'O) then

BQ(Zé,Mo) NZ= PI'OjZ(BQ(ZZ' =+ (/,1,0, .
C Projz (Ba(z;, 1) NRYY)
C Projz(DRs/ (7))

,uo)vuo))

By the same logic, Ba(z{,, o) N Z C Projz(DRe (5)).

Now, let SE be the volume of a unit ball in d dimensions,
and d be the dimensionality of Z. Note that Ba(z{), i9) N 2
is a ball of radius pg in dimension d, and therefore it has
volume Syud. For any hyperplane and any gy > 0, the
region of Ba(z(, 1) N Z that is within £¢ of the hyperplane
has a volume strictly less than 2EOSd,1ug*1. Fix m € N
and set g = poSq/(2mSg—1). It follows that for any unit
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vectors wi,...,w,, € Z, and any ¥i,...,7vm € R, the
region of Ba(z(, tt0) N Z that is within gy of any hyper-
plane of the form {z : w}z = 2} has volume that is
strictly less than m - 269Sq_1u3 " = Vol (Ba(z), o) N Z).
Therefore, there exists a point xg € Ba(z{, uo) N Z such
that

‘wzﬂl‘o—%‘ > €o

for all 1 < r < m. So, there exists an open ball B C
B (2f, t0) N Z, and s € {—1,1}™ such that for all z € B,

oo (o= L) >
t 2

for all 1 < r < m. In other words, the open ball B is separated

from all hyperplanes defined by (w,, 17)/Z;.

Now, observe that for all sufficiently large n there exist x; €
DR (i) NProjz'(B) and z; € DR (j) NProjz' (B) such that
z;tlog(n), ztlog(n) C Z2*. Since t§’ < 1, by Lemma 22,
with probability 1 —o(1), there exist vertices v € V; and v € V}
such that d(u)/(tlog(n)) = z; and d(v)/(tlog(n)) = z;.
By the above, we have

. (er du) %) s (w
tlogn t

for all 1 < r < m. Multiplying through by ¢logn and taking

r d(v) _%) . €0

"tlogn @t 2

e = 2, we conclude that [(w,)"™ ,, (v, logn)™,] confuses
communities ¢ and j at level ¢logn. (]

D. When Dissonance Ranges Barely Overlap

At this point, the key question is what hyperplanes can
separate the rescaled degree profiles from different communities.
In order to answer that, we consider the “hardest” case where
t =ty =1/A(6;,0;), with 6; defined by (I.2). Recall that
w* is defined so that

w* = (log Pri log 1= P”)
Py P 1=Py /) e

Below, we show that the hyperplane orthogonal to w* almost
separates the dissonance ranges even for ¢t = ;. We also set up
additional properties that will help us to show that a hyperplane
orthogonal to w # w* cannot separate the dissonance ranges
just above tp, and also to establish the impossibility of exact
recovery (Theorem 4) below tg.

Lemma 25: Suppose that 1 < 4 < j < k and let {y =
1/A4(0;,0;), where 6; is defined by (1.2). Then DR, /4, (i) and
DRy /4, () intersect at a single point. Let z* be this intersection
point of DRy, (i) and DRy, (j). Let H := {z : (w*,z —
2*) > 0} be the half-space created by the hyperplane through
x* perpendicular to w*. Then DRy, (i) N H = DRy, (i)
and DRy /4, (j) " H = {z*}, i.e., the hyperplane {z : (w*, 2z —
x*) = 0} separates DRy 4, (i) \ {z*} and DRy 4, (j) \ {z*}.
Also, there exists 7 > 0 such that By(z* + rw*, r||w*|2) C
DRy, (4) and Bo(x* — rw*, r||w*[|2) C DRy, (j). For t <
to, the intersection DR, /¢(i) N DRy/¢(j) has a non-empty
interior.

Proof: Recall the definition of A, and CH¢ from
Definition 3. Let £ be the maximizer of (I.1). We claim

(L5)
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that 0 < &* < 1. Indeed, _ P\ ! 1- P\ !
= | log ,log
- ¢ pl—¢ Prj 1- Py relk]
A4(0:,0;) =1~ min > p (PSP
€€[0,1] ot = (& — 1w
+(1—Py) (1 - Prj)lfg) Similarly, we also have that
21— (oK
ggﬁl)nuf(f) Vi (z*)
Ty, x5,
Now, f(0) = f(1) =1, and f(1/2) < 1 by the inequality of = | log ﬁ +1,log ﬁ +1
arithmetic and geometric means. Therefore, the minimum of Pr . pr v relk]
f is not attained at {0, 1}, which proves 0 < &* < 1. _(, P.; ¢ 1 1-P,; ¢ s
Next, define the 2k-dimensional vector = {8 P 1108 1— P, relH] =&
3 1-¢*
( P P (1= P)S (1 - Py) )Te[k] : By convexity of 7; and 7, for any x € [0,00)?*, we have that
Setting £ CHe(6;,6;) |€ _¢. = 0 yields ni(x) > ni(z*) + (x — 2, Vi (z7))
1
P — ok * * ]
Z{}ﬁmﬁlfx @t (€ - D) (IL7)
r€[k] " and
+ (1= P (1 =P logl;P” « x x
Pr ri rj 1- P, n](x) zn](x )+<£L’—(E ,V’Oj(fE )>

= (w*,z*) = 0. (IL6) _ ti o -t e, (IL8)

Also recall n; from (I1.2). Then, 0 . .
In (II.7) and (IL.8), equality can hold only at x = z* since
ni(z*) —n;j(x™) n; and 7; are strictly convex. Now, for any z € DRy, (4),
k o5 we have n;(x) < 1/tg. Thus, (IL.7) implies that (£* — 1){z —
= Z {zfr log < > + x5, log <7)] x*,w*) < 0, in which case, we must have (z — 2*,w*) >
r=1 eprPn epr(1 = Pri) 0 for all # € DRy, (i), and therefore DRy, (i) C H.

¥, x5, Moreover, (IL.8) implies that £*(x — z*,w*) < 0, and since
[xir log (epP) + 3, log (ep(lP)ﬂ 0 < &* < 1, the equality holds if and only if z = z*. Therefore,
—n " " DRy, (j) N H = {z*}, which proves the first part of the

M-

r=1

E|

B . P, - 1— P, claim.
= Z1,r 108 D + x5, log 1- P, Next, observe that by continuity of the second derivatives of
T:i . 7; and 7n;, there must exist ro, ¢ > 0 such that for all z with
:<w,x>=O ||£L’—£U*H2§’F0,
Therefore,

() < (@) + (= 2%, Vip(at)) + elle — 273
1

= 4 (o= 2% (€~ D) + el — 273
0

k *
= x7 . lo = 1
2 { bt (epw5 PLE ) = o elle — o (€~ w2

.T2 _ * * 12
‘) - . (6" — 1w [13/4c
7208 (epr(l “PE (L= Py € )} ’ |

< =
=5

for [l — o™ + (€ — L™ /2cl|5 < (6" = Dw*[l2/2¢. and

ni(z*) = n;(2") = &mi(z") + (1 = £ )n; (")

[
™=

7 log(1/e) + x5 . log(1/e)] +1

I
—

r
k

S [, ] (@) < 1) + (@ = 0 Vi a)) +elle — B
T \r 1
= =+l - ot &) + e — 2|3
0
_ L pEplE _ 1 p & _ p yl-€ 1
; |:,0r PrP” PT] Pr(l Pm) (1 PTJ) :%+c|\x—x*+§*w*/2c\|§—|\§*w*||§/4c
= AL (6:,6)). 1

S 7 0
Therefore, z* € DRy, (i) N DRy 4, (j). Next, observe that to
U (* for || — x* 4+ &*w* /2¢||2 < ||E*w*||2/2¢. In order to ensure
ni(x") . . that n;(x),n;(z) < 1/to, set r = min(ro/||w*||2,£* /¢, (1 —

_ (log ( Z1 ) 41, log ( Z2r ) n 1) €*)/c)/2. The ball of radius r||w*||2 centered on x* — rw*
eper epr (1 — Pp;) reElk] is completely contained in DRy /4, (j) and the ball of radius
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r||w*||2 centered on z* 4+ rw* is completely contained in
DRy 4, (4), as desired.

Finally, for ¢ < to, observe that By(DR/,(i),&) C
DR, /(i) for some & > 0, and thus z* is in the interior
of DR, /¢(i). Similarly, 2* is in the interior of DRy ().
Therefore, the intersection DR, 4(i) N DRy /¢(j) has a non-
empty interior. |

E. A Necessary and Sufficient Condition for Optimal Recovery

Finally, we combine the results of the above sections to prove
Proposition 18. Recall the notions of separating communities
and confusing communities from Definitions 16 and 17.

Proof of Proposition 18: To prove the first part, define ¢y =
1/A1(6;,05), so that to < t. By Lemma 25, there exists *
such that DRy /¢, (i) N DRy 4, (j) = {2*}. Additionally, the
hyperplane {z : (w*,z — 2*) = 0} separates DR, (i) and
DRy 4, (j). Note that by (IL.6), the hyperplane is equivalently
written as {x : (w*,x) = 0}. Thus, for all z € DRy, (i),
we have (w*,z)>0, while for all € DRy 4, (j), we have
(w*, 2)<0.

Since DR, /4, (i) and DR /4, () are both closed, convex sets,
x* is neither in the interior of DRy 4, (¢) nor in the interior of
DR 4, (). Fix some 6 € (1, %) By Lemma 21, there exists
e’ > 0 such that By(DRs(i),e") C DRy, (i). Therefore,
we can conclude that 2* ¢ DR;(¢). Similarly 2* ¢ DRs(j).
Hence, DR; (i) NDRs(j) = @. Also, since DR 4, (i)\{z*} C
{z + (w*2z) > 0}, and DRy, (j)\{z*} C {=
(w*,z) < 0}, we can conclude that the hyperplane {z :
(w*,z) = 0} separates DRs(i) and DRs(j). Since disso-
nance ranges are closed by Lemma 21, there exists ¢ >
0 such that for any z® € DRgs(é) and 2 € DRs(j), we
have

* (1) € * () €
(w*,x >>2t and (w*,zV) < 57
By Lemma 22, d(u)/(tlog(n)) € DRs(i) for every u € V;
with probability 1 —o(1). Similarly, d(v)/(tlog(n)) € DRs(j)
for every v € V; with probability 1 — o(1). Therefore, with
probability 1 — o(1), we have that for all v € V; and
veV;,

(w*, d(u)) > glog(n) and  (w*,d(v)) <—%log(n).

We conclude that w* separates communities ¢ and j with
margin ¢ logn with high probability.

Next, suppose that w* ¢ Z. By Lemma 25, there exists r >
0 such that By(2* +rw*, r[|lw*||2) C DRy, (7) and Ba(2* —
rw*, rl|w*|l2) C DRy, (j). Next, let w’ be the projection of
w* onto Z. The fact that w* ¢ Z implies that w* —w’ # 0 and
[[w']]e < [Jw*]2. Let 29 = z* + r(w* — w’) and 2@ =
a* —r(w* —w’). We claim that there exists a sufficiently small
r’ > 0 such that

By (x™,7") € DRy 4, (i) and By (z, ") C DRy 4, (4)-
(IL.9)

Indeed, take y € By (2, r'). Then,

ly = (2" + rw)llz < r' + rflw]2.
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Since ||w'||2 < ||w*||2, we can pick r’ such that ||y — (x* +
rw*)||2 < rllw*||2, and therefore Bo(x™,7') C Ba(z* +
rw*, rl|w*||2) € DRy, (i). The second conclusion of (IL.9)
follows similarly.

By (I1.9), since 2*) and (%) lie in interiors of DR/, (¢) and
DR 4, (j) respectively, there exists ;> 0 such that, for any
t <to+p, ' and 29 also lie in interiors of DR, /;(i) and
DR, /4(j) respectively. Note that Projz(z”) = Projz(z),
therefore the projections DRy /(i) and DR,/ (j) onto Z
overlap. The desired conclusion follows by Proposition 24.[]

III. ACHIEVABILITY AND IMPOSSIBILITY

Let us define the Maximum A Posteriori (MAP) estimator,
which is the optimal estimator of 0. Given a realization G
of the censored graph, the MAP estimator outputs Gy.p €
argmax, P(cg = o | G), choosing uniformly at random from
the argmax set. In this section, we start by proving Theorem 4,
which is essentially equivalent to showing that &y, does not
succeed in exact recovery for ¢ < t.. Next we prove that, in the
two community case, the estimator 6y, always succeeds for
t > t.. This shows the statistical achievability for the exact
recovery problem.

Remark 26: Following the original posting of this paper

to arXiv, we came to know of an earlier work of Yun and
Proutiere [14], which establishes the information-theoretic
threshold for a general class of labeled stochastic block models.
Theorems 4 and 27 can be obtained by verifying the conditions
of [14, Theorem 3]. In more detail, the positive direction of [14,
Theorem 3] shows that an iterative spectral algorithm recovers
the communities with high probability above the threshold.
The negative direction rules out the existence of an algorithm
that succeeds with high probability, which is weaker than
Theorem 4. However, the negative result can be strengthened,
using some intermediate results found in the proof of [14,
Theorem 3], to say that below the threshold, any algorithm
fails to recover the communities with high probability. The
results of Yun and Proutiere are stated in terms of another
divergence quantity, which is asymptotically related to the CH
divergence as per [14, Claim 4].
We include our original proofs for completeness. Theorem 4
is a straightforward consequence of the machinery developed
in Section II, and the proof of Theorem 27 is non-algorithmic,
instead directly analyzing the MLE.

A. Impossibility

Proof of Theorem 4: Recall that we have t < t. in
this case where ¢, is given by (I.2). Fix ¢ < j such that
t < to = 1/A,(6;,0;). Using the final conclusion of
Lemma 25, we have that DR, /(i) N DR, /(j) contains an
open ball. By Lemma 22 (1), there exists d € Zik such that
d/(tlogn) € DRy /(i) N DR /¢(j) and there are L, pairs of
vertices {(ug,v;) : | € [Ly]} with ;’s from community 1, v;’s
from community 2, and L,, — oo such that d(w;) = d(v;) = d
for all | € [L,]. Let ¥ := argmax, P(o¢p = o | G). The above
shows that |X| > L,, with probability 1 —o(1), since swapping
the labels of u; and v; leads to an equiprobable assignment

3Here, the MAP estimator is optimal because it minimizes the 0-1 loss; that
is, it minimizes P(& # o) over all estimators &.
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as they have the same degree profile. Now, &,,p makes a
uniform selection from X. Thus, conditionally on |X| > L,
Ouar fails to recover community labels of all the vertices in
{(ug,v) : 1 € [Ly,]} with probability at least 1 — 1/L,,. Since
L, — oo and |X| > L,, with probability 1 — o(1), we have
shown that &y, fails to achieve exact recovery with probability
1 — o(1). Since Gyap fails, any other estimator also fails in
exact recovery, completing the proof. (]

B. Statistical Achievability
Theorem 27: Let G ~ CSBMF (p, P,t). If t > t., then

lim P(6yap achieves exact recovery) = 1.

n—oo

In order to prove Theorem 27, we require two concentration
results. Given a graph G = (V, E) and W C V, let ¢(W) be
the number of edges with both endpoints in W.

Lemma 28 ( [16, Corollary 2.3]): Let 0 < p, < 0.99 and
let G be a sample from an Erd&s-Rényi random graph on vertex
set [n] and with edge probability p,,. Then, with probability
1 o(1),

(W) — ('V;')pn < O(ypm)W|

Lemma 29: Let X1, X5, ..., X, be a sequence of indepen-
dent discrete random variables, whose support is a finite set S.
Let X =" X, and Y = > " | |X;|. Let L = max{|x| :
x € S}. Then for any § € (0,1),

for all W C [n].

, (E[X)

P(IX — E[X]| > S|E[X]]) < exp <2 o )
where C' > 0 is a universal constant.

The proof of Lemma 29 follows directly from [17, Theorem
1.3]. See Appendix B for details. We will also need the
following definitions in the proof of Theorem 27.

Definition 30 (Permissible Relabeling): A permutation 7 :
[k] — [k] is called a permissible relabeling if p(i) = p(w(i))
for all i € [k] and Pjj = Pr() ;) for all 4,5 € [k]. Let
P(p, P) denote the set of permissible relabelings.

Definition 31 (Discrepancy): Given two assignments o, o’ :
[n] — [k], their discrepancy D1SC(o, o”) is defined as

{du((mo0),0")},

where dg (-, ) denotes the Hamming distance.

Note that, if an estimator & satisfies DISC(&, 0¢) = 0 with
high probability, then & achieves exact recovery. Next, let E
and E_ respectively denote the sets of present and absent edges
of G. For a community assignment o, communities %, j € [k]
and O € {+, —}, define

5(G,0) = {e = {w0} € By : {o(u),0(0)} = {i.5)
and s (G,0) =|S¥ (G, o).

min
TE€P(p,P)

For example, s''(G, o) is the number of absent edges with
both endpoints in community 1 according to o. Define

>

i,j€[k]:5>i

+59(G, o) log(1 — aj)].

2(G,0) =2 {s:_j(G,a) log P;;

(IIL1)
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Note that z(G, o) is twice the log-likelihood of G under o.
The idea is to show that the maximizer of z(G,o) yields a
configuration o with zero discrepancy. We state this in the
following two lemmas which deal with low and high values
of discrepancies separately.

Lemma 32: There exists ¢ € (0,1) such that with high
probability

2(G,0) < z(G, 09)

for all o such that 0 < DiSc(o,09) < cn. (I11.2)

For the high discrepancy case, we need to restrict the range
of o. To that end, for any 5 > 0, define

So(n) i={o: [n] = K] : [{v: o(v) = i}
€ ((ps =mn, (ps+mn), Vi € [K]}. (IL3)

Lemma 33: Fix any c € (0,1]. There exists an 1 > 0 such
that with high probability

2(G,0) < 2(G, 09)

for all o € ¥y(n) such that D1SC(o,0¢) > cn.  (11L.4)

Proof of Theorem 27: Fix ¢ such that both the conclusions
of Lemmas 32 and 33 hold. Let n be picked according to
Lemma 33. Rather than analyzing the MAP estimator, we will
analyze the estimator

o = argmax{z(G,0)}.
g€X0(n)

Lemmas 32 and 33 yield DI1Sc(7,00) = 0, and therefore &
succeeds in exact recovery, with high probability. Since the
MAP estimator is optimal, this also implies that the MAP
estimator succeeds in exact recovery with high probability. [

Proof of Lemma 32: Let D1SC(0, 0() = dn for some 6 > 0
(to be chosen later). Let m € P(p, P) be such that d, (o o
m,009) = 6n. However, since z(G,0) = z(G,o o ) for any
m € P(p, P), we can without loss of generality assume that
dy(0,00) = dn. Let us fix O € {+,—}. To prove (II1.2),
we start by analyzing si (G, o) — s{i (G, 00) with r,j € [k].
Fix r # j. We decompose

st (G,0) — st (G, 09)

- ¥

L{{o(u).o@))={r.j}.{oo(w).00(v)}={r.i} i#i}

{u,v}€EQ

+ Z L{fo(w).o(0)}={rj}{o0(w).o0(w)}={i.j}.izr}
{u,v}€EQ

+ Z L{fo(w).o(0)}={rj}{o(u),0()}N{o0(u).00(v)}=2}
{u,v}€EQ

- Z L{{o(u) o)} ={r i} ii{o0(u).00 (v)}={r,j}}
{u,v}€EQ

- Z L{fo(w).o(v)y={i.i} i#r{o0(w),00(v)}={rj}}
{u,v}€EQ

- Z L{fo0(u).00(v)}={r.j}.{o(w),0()}N{o0(u),00 (v)}=2}-

{u,v}€EQ
(I1L5)
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To analyze (IIL.5), denote the six terms above by (I), (II), ...,
(VD) respectively.

Let Hn(o) be the graph on {v : o(v) # o¢(v)} where
{u,v} is an edge of Hg(o) if and only if {u,v} € Eg. Let
e(Hp(o)) denote the number of edges in Hg(o). We will show
that

’(I) - do,(v)| <3k - e(Hp(0)).

> 2

i€[k\{j} vio(v)=j,00(v)=i

(I1L.6)

To compute (I), fix 4,7, j, 7 # j i # j, and consider two cases:
Case I: 4,j,r are distinct. Denote this contribution as
(Ta). There are two subcases. Suppose that the r-labeled
vertex under o,c0( is the same vertex. Think of u being
such that o(u) = oo(u) = r. The number of such
edges is >, ()= j.o0(v)=i dor(v) — Erry, where Err, is the
number of {u,v} € Eg such that o(u) # r,o0(u) =
r,o(v) = j,00(v) = i. To see this, note that the summation
vio(v)=j.o0(v)=i 4or(v) counts all edges (present or absent
depending on J =+ or O = —) from {v : 0(v) = j,00(v) =
i} to {u: og(u) = r}. However, this causes an over-counting
because these edges may be incident to u’s with o(u) # r,
resulting in the substraction of Err,,. Note that Err,, is at most
e(Hp(o)). Next, consider the second subcase, where the r-
labeled vertex under o, o are different. Since i, j, r are distinct,
such edges will have both endpoints in {v : o(v) # o¢(v)}.
Therefore,
(Ia) —

<2e(Hn(o)).  (IL7)

Z | dor (v)

vio(v)=j,00(v)=1

Case II: 7 = r. Denote this contribution as (Ib). Since r # 7,
we only need to consider the case where one of the endpoints
is labeled r by both o, 0g. An argument identical to the first
part of Case I shows

>

vio(v)=j,00(v)=1

Combining (III.7) and (II1.8), (II.6) follows immediately.
Bounds similar to (II1.6) also hold for Terms (II), (IV), and (V).
Term (III) is easily bounded by e(Hp(o)). Finally, we simply
drop Term (VI) for upper bounding (II1.6).

For r = j, we get a similar decomposition as (IIL.5), except
that the second and fifth terms would be omitted. For each of
the terms, we can also prove (II1.6). In particular,

m= > D

i€[k]\{j} vio(v)=j,00(v)=1
< (k—1)-e(Hn(o)) < 3k-e(Hn(o)).

(Ta) — doy(v)| < e(Hn(o)).  (ILS)

dnr(v)

Next, we need to bound e(Hg(o)). Note that the number
of vertices in Hn(o) is dy (0, 00), where d(+,-) denotes the
Hamming distance. Letting 7 = maxg pe[r) max{ Pap, 1 — Pup },
we see that there is a coupling such that, with probability 1,
Hp(o) is a subgraph of an ErdGs-Rényi random graph on
vertex set [n] and edge probability = log" . Applying Lemma 28,
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we obtain that with probability 1 — o(1)

e(Hg(o)) < )? + O(y/log n)dy (o, 00)
for all o € [k]". (I11.9)

Ttlogn

dy (o, 00

Combining (I1.6) and (IT1.9), we get an estimate for (I) in (IIL.5).
Similar estimates for (II), (IV), (V) can be deduced using an
identical argument. The term (III) can be directly bounded by
e(Hn(o)) as well and (VI) can be dropped. Therefore, (II1.5)
that with probability 1 — o(1)

st{ (G, o) — sti (G, 00)

<2 D

i:i#j vio(v)=j,00(v)=i

LD

i:1#r uio (u)=r,00 (u)=1

PO

1% ] vio(v)=i,00(v)=j

DI

i:1#r uio (u)=1i,00 (u)=r
8kTt1
+ 7-T()gndH(a, 00)? + O(\/logn)d (o, 00). (II1.10)

For » = j, a bound identical to (III.10) holds after omitting
the second and the fourth terms. Next, by Proposition 18 (1),
there exists € > 0 such that for all 4, j € [k] and ¢ > j, with
high probability,

dDr (’U)
dnj(u)
dgr (U)

drj(u)

1-P,;
z]’ Z dyr(v —r(v )10g1_7p:;
> el :
> clogn, Yo :og(v) =34 (IL11)
< —clogn, Yv:og(v)=1
Let L el Dorep |log 55| + [log =p|. Thus,
(IT1.10) yields
2(G,0) — z(G, 0p)
<4
> Z Z |:( Z d-i-r Z d-‘rr >1ng
z,le[‘k] relk] vio(v)=j, vio(v)=i,
1>] oo(v)=1 oo(v)=j
- PTi
( dooda )= Y do )logl_P}
vio(v)=j, vio(v)=t,
ao(v)=i ao(v)=3
8k3Lrtlogn
+ fg 2(0,00)% + O(\/Tog n)dy (0, 70)
—1 Y| X whdoi - Y wldw)]
i,jEk]: “vio(v)=4, vio(v)=t,
i>7 oo(v)=1 oo(v)=j
8k3L7t]
+ wdﬁ,(o, 00)* + O(\/logn)dy (o, 00)
S8k3LTt]
< _4dH(07 UO)E logn + +Ogn H(Ua 00)2
+ O(\/logn)dy (o, 00).
Thus, for any 6 < 55—, we can ensure that z(G,0) —
z2(G,o0) < 0 for all o with dy(o,00) = on
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with high probability. Thus the proof follows by taking

€= g O
Proof of Lemma 33: Fix ¢ € (0,1]. Define
1 . ..
UZEQMMM*mMm#mﬂJGW}
Amin{p; : i € [k]}) A e (11.12)

Throughout, we condition on the event that og € X¢(n),
where ¥y(n) is defined in (IIL.3). Due to (1.4), this condi-
tioning event holds with high probability. Fix an assignment
o € Xo(n) satisfying DI1SC(o,009) > cn. The idea is to
show that E [2(G, o) — 2(G,00)] < —Cnlogn, and use the
concentration bound in Lemma 29 to conclude that (III.2)
holds.

We first compute the expected difference E[z(G,0) —
z(G,00)]. Let Vi; == {v : oo(v) = i,0(v) = j} and
v;; = |Vij]- Fix 4, §,a, b such that @ > 4, j > b, and also, 7 # j
or a # b. Thus, V;; NV, = @. The expected number of present
edges between V;; and Vi is v;Vap X aPiq, Where v = “"%.
The contribution of these edges to E[z(G, o) — 2(G, 09)] is

- log(Pia))
Py
Pia .

2vjVap X aPjq X (log(Pjp)

= 2Vijyab X o X Pia log

Similarly, the contribution from absent edges is
— Py
2v;; 1— Py)log —2°.
VijVab X @ X ( ) ogl_Pm

Summing over all contributions, and noting that the contribution
for the terms with ¢ = j and a = b is zero due to the presence
of log terms, we obtain

E[2(G,0) — 2(G, 09)]
_ Pjy
=2« | Z VijVab (Pm log P.
i,J,a,bE[k]
a>i,b>j

Py

1—P)l 1= F
(1= P oz =2

=—20 Y vijvaDiw (Pia: Ppp) .
i,5,a,b€[K]
a>i,b>j
where Dy (-, -) denotes the Kullback-Leibler divergence. Our
goal is to upper-bound the expectation. Note that all terms
are nonpositive, so it suffices to bound a subset of the terms.
We treat two disjoint cases separately.

Case 1: For all i, there is at most one j € [k| such that
vij > . Fixing i, the pigeonhole principle then implies that
there is exactly one such j. But since >, vy > (pi — n)n,
we know that
—(k—1)——mm >

(k=12 — > (s
Next we claim that we cannot have v;; > (p; — 2n)n and
virj > (pi — 2n)n with 7 # 4. Supposing otherwise, we would
have

Vij 2> pin —2n) n.

2000 —2mn <Y wva < (p+n)n,
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which implies p; < 57. However, 7 < % by definition (II1.12),
and we have arrived at a contradiction. Hence, there exists
a unique permutation 7 : [k] — [k] such that v; ;) >
(pi — 2n)n for all i € [k].

Next, we argue that 7 is not permissible. Recall Definition 31.
Indeed, if m were permissible, then

Disc(o,00) < dg(moo,00)

=3 5 w=3 (S ueo)

i gim(G)#i
<k x 3nn < cn,

where the second-to-last step uses . v;; < (p; +n)n and

Vi) > (pi —2n)n and the last step follows from (II1.12).

This leads to a contradiction and thus 7 is not permissible.
Next, observe that

Z Vir(i)Var Dy, (Piaa Pﬂ'(i),ﬂ'(a))
>n’ Z Pr(iy — 20)(Pr(a) — 21) Dt (Pias Pr(i)n(a))

4
> §n2 Zﬂipa - Dt (Pr(i),n(a)s Pia) -

- 277 - 277)DKL (Pﬂ(i),ﬂ(a)a Pia)

Since 7(+) is not permissible, there must exist (i, a) for which
Pia # Pr(i),r(a)» and thus the above term is at least C" n? for
some constant C’ > 0. Hence, E[2(G,0) — 2(G,00)] <
_ 8aC’'n? .

Cagse 2: There exist i,j,j' with j # j' such that v;j,v;j >
2=, Let b € [k] be such that Pj, # Pj. If no such b exists,
then communities j and j’ are indistinguishable. In that case,
t. = oo and exact recovery will be impossible for any fixed
t. Let a € [k] be such that v, > 7, which is guaranteed to
exist by the pigeonhole principle. Then either

Pia # P,

Recall that o = tlogn/y is the censoring probability. Therefore,
—E[2(G,0) — 2(G, 00)]

> 200 Z VijVabDKL (Pw,a P )
i,5,a,b€[k]:a>1,b>j
mn n
>Oé% E(‘DKL (Piaanb)+DKL (Pia?Pj’b))

> aC'n?.

boera#P’b

Summarizing both cases, we have shown that there exists a
constant C”" > 0 such that

E[2(G,0) — 2(G,00)] < —aC"n?* = —tC"nlogn.

(IIL.13)

We next apply Lemma 29 to establish concentration of the
difference z(G, o) — z(G, 0p). Letting Z, .o/ denote the set
of present and absent edges respectively, note that

1

X = §E[Z(G,J) —2(G, 09)]
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Po(w),o(v)
P,

- ¥

1<u<v<n

{]1{{%”}69} log

0(u),00(v)

Ly log —— 7 |

’ 1 = Poy(w).00(v)
Denote each term in the summation by X,,. Then X =
> i<u<v<n Xuv is a sum of independent random variables con-
ditionally on oy, for any o € [k]™. Let Y =Y, _, <, [ Xuol-
Then for any § € (0, 1), -

P(2(G,0) — 2(G,00) > (1 = §)E [2(G, 0) — 2(G, 09)])
2 (B[X])”
< exp (2 - Cé LE[Y] ),

where C' is the universal constant from Lemma 29, and L >
0 is a constant depending on P, ¢. To upper-bound E[Y], note
that for any 1 < v < v < n, we have X,,, = 0 whenever

{o(w),0(v)} = {o0(u), 00(v)}, and

E [ Xuol]
- L P
‘E [qu] | oo (u),00(v)

P{T(u),a(v)

1
og P,

0(u),00(v)

1-— Pa(u) a(v)
+ ]._Po' u),00(v 10g—’
( o(u),00(v)) 1= Pyy(u),o0(v)
Pa(u).o(’u)
Pg w),00(v IOgi
( o(u),00(v) Poo(u),00(v)
1
1- Po’(u)ﬁ(’u)
+ (1= Pogoom) g -5 —||
( o(u),o0( )) 1— Pgo(u),go(’v)

whenever {o(u),o(v)} # {oo(u),00(v)}. Since 0 < P;; < 1,
taking a maximum on the right hand side of the above expres-
sion over o € [k]™ with {o(u),o(v)} # {o0(u),00(v)} yields
the following: There exists a constant C") > (0 depending on
P such that E[|X,,|] < CM|E[X,,]] for all u,v. It follows

that
>

1<u<v<n

E[Y] <c® IE[Xy.]| < CPnlogn,

for some constant C®?> > 0. Also, by (IIL.13), [E[X]| >
%nlog n. Therefore there exists a constant C' > 0 such
that
P(2(G,0) — 2(G,00) > (1 = §)E [2(G,0) — 2(G, 09)])
<exp(2- Cé%nlog n).

Taking § = 3 and using (II.13), we conclude that z(G,0) —

2(G,00) < 0 with probability at least 1 — exp(2 — $nlogn).
Finally, we take a union bound over the set {o : DISC(o, 0¢) >
cn}, whose cardinality is at most k™. Since exp(2 —
€nlogn)k™ = o(1), we conclude that (IIL.4) holds with high
probability. ]

IV. ENTRYWISE EIGENVECTOR BOUNDS

Our analysis of spectral algorithms relies on precise entry-
wise control of eigenvectors of adjacency matrices, which is
guaranteed by the following result. As before, we work with a
fixed value of oy satisfying (I.4) with e = n=1/3.
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Theorem 34: Fix k € N, p € (0,1)* such that Z?:l pi =
1. Fix a symmetric matrix P € (0,1)*** and let G ~
CSBMF (p, P,t). Define A = A(G,y) for some constant
y > 0, and let A* = E[A]. Let (\;, u;) and (A}, u}) denote the
i-th largest eigenpair of A and A* respectively for i € [k]. Let
r, s be integers satisfying 1 <r < kand 0 < s <k —r. Let
U = (tsy1,---,Uspr) € R U = (ufyq,...,u5,,) €
R™*", and A* = diag(\5,.q,...,A5,,.) € R"™". Suppose
that

A% = (A = AL ) A (N = Alg) A ?elm |Assi] >0,

aV.1)
where \j = oo and A; ; = —oo. Then, with probability at
least 1 — O(n™3),
- C
inf |[vo-avr | <
0O xr (A% 2—00 ~ loglog(n)y/n’
(IV.2)

for some C' = C(p, P,t,y) > 0, where O™*" denotes the set
of r x r orthogonal matrices.

Corollary 35: Recall the notation from Theorem 34. If all
eigenvalues of A* are distinct and nonzero, then with proba-
bility 1 — O(n™3), for all i € [k],

. Auf
min —
se{x1} A:

SU;

« _ loglog(n)y/n’

for some C = C(p, P,t,y) > 0.

The proof of Theorem 34 relies on an entrywise eigenvector
perturbation bound derived in [8]. We provide the statement
for a general random matrix A here for completeness, and
will verify these general conditions subsequently for G ~
CSBM¥ (p, P, t). Also, we reuse the notation from Theorem 34.
Let H = UTU*, with singular value decomposition given
by H = WEVT. Let sgn(H) = WVT € R™", which is
an orthonormal matrix, called the matrix sign function [18].
Given this setup, [8, Theorem 2.1 Part (2)] gives the following
result.

Theorem 36 (Theorem 2.1 Part (2), [8]): Let A be a ran-
dom matrix as described above. Suppose that the following
assumptions are satisfied, for some v > 0 and ¢(z)
Ry — R,.

1) (Properties of ¢) ¢(x) is continuous and non-decreasing

in Ry, ¢(0) =0, and @ is non-increasing in R .

2) (Incoherence) ||A*||o—oo < YA*, where A* is defined
in (IV.1).

3) (Row- and column-wise independence) For any m € [n],
the entries in the mth row and column are independent
with others, i.e. {A;; : i =m or j = m} are independent
of {A;j i #m,j#m}

4) (Spectral norm concentration) Define & =
r max;e[y) |AL,], and suppose 32k max{v, ()} < 1.
Then, for some g € (0, 1),

B(JA— A2 < 7A%) > 1— .
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5) (Row concentration) There exists ; € (0, 1) such that for
any m € [n] and W € R™*",

P( (A= A%)m, W,

N w
< AW oo (i) )
1% (1V.3)
n

Then, with probability at least 1 — dg — 247,
|Usgn(H)—AU*(A) [,
< Co (s + () + PODIT" 20
Y *
+ 4" 200 ).

where Cy > 0 is an absolute constant.

Remark 37: Theorem 36 can be applied to the recovery of
a single eigenvector u; by setting r = 1 and s = — 1. In that
case, the requirement (IV.3) simplifies to

w2
P (104 = 40l < Al L))
Villwlleo
>1- 6*1
n
for each w € R"™. The conclusion becomes

) Auy

min ||sug —

se{£1} AZ o

< Co (s + p()( + @) [kl oo + 25 147 1200 ).

In order to prove Theorem 34, we verify the five conditions
of Theorem 36. The following lemma states properties of the
eigenspace of A*.

Lemma 38: Let G ~ CSBMF (p, P, t) where p € (0,1)* is

such that >°, p; = 1, and P € (0,1)**¥ is a symmetric matrix.

For y € R, define A = A(G,y) as in Definition 5. Denote
A* = E[A] and let (A}, u} )iy be the top k eigenpairs. Then
there exist constants (1;);c[x) depending on P, p, ¢, and y such
that

Al = (1+0(1))y log(n)

Moreover, if the v;’s are distinct, then there exist constants
(Cij)1,je[r) depending on P, p, t, and y such that
Gy
* =(1 1))=>L
Upay ( + 0( )) \/ﬁ
Proof: Let B* be a block matrix, where the ¢th block has
size equal to either [|p;n| or [p;n], and the (i, j) block takes
value a(P;; —y(1— P;;)). Then B* is an approximation of A*
up to deviations in community sizes, permutation of community
labels, and a diagonal correction (since A* is a zero-diagonal
matrix). Let (\;,;);c(x)) be the top k eigenpairs of B*. Since
B =06 1ngL %) for all 4, 7, a straightforward adaptation of
the proof of [10, Lemma 3.2] implies the existence of constants
(1)1e[k) depending on P, p, t, and y such that

X = (14 o(1))vlog(n) forall [ € [K].

for all [ € [k] (IV.4)

for all w € {v: o9(v) =35} AV.5)
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By Weyl’s theorem,
N =N < [lA* = B2 < |A* = B*|Ir

for all I € [k]. Recall that o is assumed to satisfy (I.4) with
e =n"Y3. It follows that

|A* — B*||r = O(Vn-n?/3-a2) =o(logn),

which establishes (IV.4).

Regarding the eigenvectors, observe that due to the block
nature of B*, the eigenvectors of B* take on the form given
by (IV.5). Since n; = (1 + o(1))np; and A\ = (1 + o(1))Af
for all [ € [k], it follows that the eigenvectors of A* also take
on the form given by (IV.5) (see [9, Lemma 5.3]). O

Among the conditions in Theorem 36, only the fourth and
the fifth are substantial. We verify them in the two lemmas
below.

Lemma 39: Let A be a symmetric and zero-diagonal random
matrix. Suppose that the entries {A;; : ¢ < j} are independent,
A;j € [a,b] for two constants a < b, and E[|A4;;]] < p for all
1,7, where c‘ﬂ% < p < 1—¢; for constants cg, c; > 0. Then,
for any ¢ > 0, there exists ¢’ > 0 such that

P(|A—E[A]|l2s < '/np) >1—2n"°.

Proof: Let A= AT — A~, where A}, = max{A4;;,0}
and A;; = —min{A;;,0} for all 4, j. Then

1A —E[A]]]2 < [AT - E[AT]2 + A7 — E[A_]|l2. (V.6)

Note that AT and A~ are symmetric and zero-diagonal
matrices with independent upper-triangular entries. Also, note
that for all 4 # 7,

max {E[A7], E[A7]} < E[|Ai]] < p.

If b <0, then ||[AT —E[AT]||2 = 0. Otherwise, suppose b > 0.
By [19, Theorem 5], for any ¢ > 0, there exists ¢y > 0 such
that

P (14" ~ BTl > e v D)

> ey ”p> <n=c.  (IV.7)
, Vo

Similarly, if @ > 0, then ||A~ — E[A7]|]2 = 0. Otherwise,
suppose a < 0. By [19, Theorem 5], for any ¢ > 0, there exists
c— > 0 such that

P (A~ —E[A7]l2 > c-v/[al/ip)

1 1

T

Stated above in terms of upper bound on probabilities. Take
' = cy/max{b,0} + c_y/| min{a,0}|. Combining (IV.6),
(IV.7), and (IV.8) along with a union bound, the proof is
complete. O

Lemma 40: Let r € N be a constant, and W € R™*" be a
fixed matrix. Let {Z;}?_; be independent random variables
where P(Z; = 1) = p;, P(Z; = —y) = ¢;, and P(Z; = 0) =

1 1
=P(||-AT — ZE[At
(54 -3

>c. 7?) <n=° (IVS8)

2 lal
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1 — p; — g;. Finally, let Z € R", where Z; = Z; — E[Z;] for
i € [n]. Then for any 8 > 0,

—T
p( 127w, >

max{1,y}(2+ G)n
r [W1l2— 00 max{p; + ¢}
1 \/log (\/EHW”2~>OO) 7

Wl
- Bn m?X{Pi +4¢;}).

Proof: Let w; = W.; denote the jth column of W, for
j € [r]. We will show that

< 2rexp (

T

Pl |2 00 [[w; lloo
=9 . (IV.9)
VlWll2 oo Vrllw;lleo
1V log (W) j=11Vlog (%)

Given (IV.9), we then obtain

p(1Z"w],
. max{1,y}(2+ B)n

Vil[Wla oo
1V s ()

9 (s + )

T n
gP(Z > Wi;Zi| > max{1,y}2+ B)n
j=1"!4=1
[[w]o
maX{Pﬁ%}Z 1V log (Ylell=)
Wj|l2

(Iv.10)

<>

> Wi Zi
=1

s O Bl )
Lviog (=)
(IV.11)
< 2rexp(—fn mzax{pl- +¢i})- (IV.12)

Here (IV.10) follows from (IV.9) and the fact that ||z|2 <
lz||1 for any finite dimensional vector. Next, (IV.11) fol-
lows by the union bound, and (IV.12) is an application
of [9, Lemma 5.2].

It remains to prove (IV.9). Since ||w;|2 < |W]|p for all
J € [r], we obtain

T T

;I ;I

> > -
Vollwillee ) — nllw;lloo
j=1 1Vlog (W) j=11Vlog (%)

Let g(c,x) := TVioe(ery for ¢ > 0. Then

Zg(c,x) = 1forz <
e/c, and Zg(c,z) = % > 0 for z > e/c. Therefore,
g(c,-) is increasing for any ¢ > 0. Since ||w;o < [|[W|2—00

for all j, we obtain
Tl
F

-2

Jj=1

T

Z [wj [l oo

= 1V log (Ll
r[Wilz—o

WlF
‘\/7
< rg( W o) = ,
IWllr 1V log (%)

which completes the proof of (IV.9). (I
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Proof of Theorem 34: We now verify the conditions of
Theorem 36 for the signed adjacency matrix A = A(G,y)
when G ~ CSBME (p, P, ). Set

2log(n) max{1,y}(t +2) (1 Vlog (:lc>>

pla) =r—3,
Note that lim, ¢+ ©(0) = 0 and ‘ng)
R . Thus the first condition holds.

To verify the second condition, we find that ||A* || =
@(l‘zfl‘) Applying Lemma 39 with ¢ = 3, and using the fact

-1

is non-increasing on

that [A%;| < %maxme[k] P;;, there exists ¢ > 0 such
that

P (||A —E[All2<¢ log(n)) >1-n"%  (IV.13)

By (IV.1), we have A* > 0. Moreover, by Lemma 38,
we have A* = O(log(n)). Let v = ¢/y/log(n)/A*. Therefore,
[|A* |2 00 < YA* is satisfied for n large enough.

The third condition is immediate.

The second part of the fourth condition holds with o = n~
due to (IV.13). To verify the first part, note that K = ©(1) by
Lemma 38 and v = o(1). Then 32k max{~, ¢(y)} < 1 for all
sufficiently large n.

To verify the fifth condition, fix W € R™*" and m € [n].
By Lemma 40 W1th p; € {“Og"Pab ta,b ek} pit g =
ﬂog” and 8 = %, we obtain

IP’<||(<A ) W

max{1,y}(2+4/t)n ||W|2—>oct10gn>

T
= W 2o
1v log( Wie

4
an tlogn ’
t n

3

<2 rexp (—
which can be re-written as
P([I((4 = A7) )W

> A*HWQW(

< 2rn =4

Wlir
\/ﬁHWHZ—@o))

Therefore, the fifth condition is satisfied with §; = 2rn—2
Applying Theorem 36, we conclude that with probability at
least 1 — (1 +4r)n=3 > 1 —5rn=3,

inf ||vo—av* (a%)” H
OeQOrxr 2—00
< Co (ks + 9(0)(r + (D)l + 35 114" 1200
O(P) p? t? y)
~ loglog(n)y/n’
O
V. PERFORMANCE OF SPECTRAL ALGORITHMS
Throughout this section, we use the notation
log 1=
yp,q) = 5 forp#q (V.1)
og =
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This will be the choice of y value for which SPECTRAL-
ONE algorithms are optimal in the cases stated in Theorem 7 (1).
Also, as before, we condition on a fixed value of o satisfy-
ing (I.4) with ¢ = n~1/3,

Recall that our spectral algorithms use the top two eigenvec-
tors of the signed adjacency matrix/matrices. In general, the
signed adjacency matrix should have two main eigenvectors
which correspond (up to a potential sign flip) to the main
eigenvectors of the expected adjacency matrix. However, this
could run into complications if both eigenvalues are the same
or one of the eigenvalues is 0. In order to address this, we have
the following eigenvalue characterization. The proof is provided
in Appendix C.

Lemma 41: Let 0 < p1,p2,q < 1 be not all the same,
p € (0,1) and define

A= Al(y)
_(rm—y(=p1) q—y(d—-q) \(p O
'_(;—y(l—q; pz—y(l—p2)> <0 1—P> V2

for each y > 0. Then all of the following hold.

1) For any fixed p1,pe,q,p € (0,1), there exists a set )
with | Y| < 3 such that the eigenvalues of A’ are distinct
and nonzero for all y ¢ ).

2)If p1 =p, p2 = ¢ p # ¢ and y = y(p,q) then the
eigenvalues of A’ are distinct and nonzero.

3) If pp = p2 = p, p # q and y = y(p,q) then the
eigenvalues of A’ are distinct and nonzero if and only if

ptq#L

A. One Matrix

In order to prove Theorem 7 (1), we provide an algorithm
which is an instance of SPECTRAL-ONE, that will succeed up
to the information theoretic threshold when

either py =po =p,p#qandp+qg#1

or p;=pandpy =q#p. (V.3)

To design the algorithm, we crucialy use the entrywise
eigenvector bounds. Remark 37 tells us that for any pair of
constants aq,as, we have

* *
a;\"fl + aii‘z) 7
1 2
where the approximation is in /., and we have ignored the
sign ambiguity in u; and uy for clarity of exposition. Observe
that the vector a; % + CLQ% is a block vector; that is, it is of
the form

aiu] + asug ~ A ( (V.4)

/nlog(n) (01% + ag%)_ =a; oo(i)=1

R . (V.5)
\/ﬁlog(n) (alﬁ + agﬁ) =2 00(2) = 27

where a1, s depend on ai,as. We see that the v entry
of (V.4) is equal to

alu’{ CLQUE
Av,~ : < +
A A

= a1d4+1(v) — yard_1(v) + aad42(v) — yasd_2(v). (V.6)

Since we will ultimately threshold (V.4) at 0, we set a1, ais SO
that (V.6) is proportional to w*?d(v), where w* is defined
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in (IL.1). In this way, the spectral algorithm would give rise
to the optimal hyperplane for separating the two communities.
It remains to find a1, ay to satisfy (V.5) with the desired values
of ay, as. Since we do not have access to (A}, ut), (A5, u3),
we form an auxiliary matrix B, which is essentially equivalent
to E[A | o¢], up to a permutation of the rows and columns.
Letting (71, v1), (72, v2) be the eigenpairs of B, we solve (V.5)
with (71, v1), (72, v2) in place of (A}, u}), (A5, u3), thereby
obtaining aj, as. This strategy of solving for the weights is
captured in Algorithm 4, with the classification algorithm given
in Algorithm 3 below.

Algorithm 3 One-matrix community detection

Input: Parameters ¢t > 0, p € (0,1), p1,p2,9 € (0,1)
satisfying (V.3) and G ~ CSBM?2 (p, P, t).
Output: Community classification & € {1,2}".

1: Construct an n x n matrix A = A(G,y) as defined in
Definition 5.

2: Find the top two eigenpairs (A1, u;) and (A2, us) of A.
3: Compute (ay, az), the weights produced by Algorithm 4.
4: Let U = {s1a1u1 + s2a2us : 1,82 € {£1}}. For each

ueU,letd(;u) =14 (14 sign(u))/2.
5. Return 6 = argmax,c; P(G | 6(-;u)).

Algorithm 4 Find weights (one matrix)

Input: Parameters ¢ > 0, p € (0,1), p1,p2,9 € (0,1)
satisfying (V.3).
Output: Weights (ay,asz)

1: LetV; :={i:i < pn} and define B to be the symmetric
block matrix where B;; is Y% [p; — y(p1, q)(1 — p1)] if
i,j € Vi, B2 (py — y(pa,q)(1 — p2)] if 4,5 ¢ Vi, and
Hosn g —y(pr,q)(1—q)]if i € Vi, j g Viori ¢ Vy,j €
V. Let the eigenpairs of B be denoted (1, v1), (V2,v2).

2: Set a; = log 17;. If p1 = p2 = p, set ap = —ay. Otherwise
(p2 = q), set as = 0. Let z be a block vector with z; =
a1 ifi € Vy and z; = ag if 4 ng

3: Return (ay,aq) satisfying

Vnlogn (alvl + agvg) =z
71 V2

~V.7)

It is worthwhile to note that finding weights in Algorithm 4
does not require any information about oy.

Proof of Theorem 7: Let n; be the number of vertices in
community ¢ for ¢ = 1,2. Throughout the proof, we will
condition on oy satisfying |n; — p;n| < n?/3. This event has
probability 1 — o(1) as shown earlier in (L.4).

First, suppose that (V.3) holds. We will first prove The-
orem 7 (1) by showing Algorithm 3 succeeds up to the
information theoretic limit. Let A = A(G,y) with y = y(p1, q),
and define A* = E[A]. Let (\;,u;) and (Af,u}) denote the

i-th largest eigenpair of A and A* respectively. We claim that

AT = (1+0(1))v logn,
with vy # vo, 1y, 15 # 0.

A5 = (1+o0(1))ralogn
(V.8)
Indeed, consider the matrix B defined in Step 1 of Algorithm 4,

whose eigenvalues are ¢ logn times the corresponding eigen-
values the matrix A’ defined in (V.2). Under the conditions
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of Theorem 7 (1), Lemma 41 (Parts 2 and 3) shows that
the non-zero eigenvalues of B are v logn and v5 logn with
vy # vo. Next, suppose O is the permutation matrix such that,
in OA*O7, the rows and columns corresponding to vertices in
community 1 appear before those in community 2. By Weyl’s
theorem, the top two eigenvalues of O A*O7 are within 1+0(1)
multiplicative factor of those of B. Since O is an orthogonal
matrix, (V.8) follows immediately.

Using (V.8), we can apply Corollary 35 and conclude that,
with probability 1 — O(n=3),

uy C
1 A |l ~ V/nloglogn

and Soly — Aug ¢
N5l — Vnloglogn’

for some s1,s2 € {—1,1} and some constant C > 0.
Consequently, for any a1, as € R, with probability 1 — o(1),

ay
s1a1u1 + S2a0ug — A ()\* uy + )\*U§> H

_ Cllar| +1aal)
vnloglogn

In Step 3 of Algorithm 3, we pick (ai,as) according to
Algorithm 4. Let V] := {i : i < ny(0¢)} and define B’, v}, v}
similarly as B, vy, v in Algorithm 4 by replacing V; by V.
For [ = 1, 2, note that v; takes some value % on V; and %
on Vy for constants (;1, (2. Using identical steps as [9, Lemma

5.3], we can argue that v; also takes value (1 4 o(1)) f/’i on

(V.9)

Vi and (1 + 0(1))\(/13 on (Vi)°. Therefore,
/
\/ﬁlogn (alv +CL2,02) = 27
m V2

where Z is a block vector taking values (1 + o(1))a; on Vj
and (14 o(1))as on (V])¢. Next, note that the matrix A* can
be obtained from B’ by jointly permuting the row and column
labels and then setting the diagonal entries to be zero. Also,
noting that \¥ = (1 + o(1))~;, we can ensure that

Vnlog(n) (alu + az ;) = 2%,

where z* is a block vector taking value (1+o(1))a; on V; :=
{v:o0(v) =41} and (1 + o(1))as on Vo := {v : gg(v) =

u2
< )\ )\ ) '

Then, v/nlog(n)r = (14+0(1))Az*. By (V.10), with probability
1 —o(1), for each v € [n],

Vnlog(n)r, = ardiy(v)—yaid_
+ azd2(v)

(V.10)

1(v)

2(v) + o(logn),
(V.11)

where (di1(v),d—1(v),dy2(v),d_2(v)) denotes the degree

profile of v. Also, in this case, note that w* in (I.1) simplifies
to

— yaod_

1— 1-—
w* = (logpl,log p1 ,log i,log 4 ) (V.12)
q l—¢q P2 1—p2
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In order to apply Proposition 18, we need to ensure that the
coefficients of (V.11) coincide with w* up to a scalar factor.
There are two cases to consider. First, suppose p; = p2 = p,
and p # g (where we rule out the case {p+¢q=1,p # 1/2}).
Recalling that y = y(p, ), we obtain

w* = (13 —-Y, 7132—/) log (p> .
q

Comparing (V.11) and (V.13), we see that the choice a; =
log% and oy = —a equates the coefficients of the leading
terms of (V.11) with the entries of (V.13). These are the values
of (a1, az) chosen in Algorithm 4 Step 2. (Note that any choice
of the form (a1, as) = ¢(1,—1) would lead to v/nlog(n)7, —
o(log(n)) o< (w*, d(v)).)

Next, suppose p. = g and recall that p; # ¢. By our choice
of y = y(p1, ¢), we have that

w* = (1,—-y,0,0)log (2) )

In this case, we need o = log pl and as = 0, which is also
the case by our choice in Algorlthm 4 Step 2.

Thus, in both cases, our choices of (a1, 2) yield that, with
probability 1 —o(1), v/nlog(n)r, = (w*,d(v)) + o(logn) for
each v € [n]. By Proposition 18, we conclude that for some
e >0,

(V.13)

1
Vvnlog(n )mln Ty > 2z—:logn
1
d Vil < el
an ﬁog(n)iréa%/)gT < —5elogn

with probability 1 — o(1), and consequently

€ €

min 7, > —— and maxr, .

S N ) veVa U T 24/n
c

Finally, since —=-&——" = o(ﬁ), we conclude with

probability 1 — o(1),

. €
min ($1a1uU1 + Soa2U > —
’UEVl(l 1+ s2azu2), 3vn
and max (sjaju; + saauz), < c
X ——.
ve, TR 3vn

Therefore, thresholding the vector sjaju; + Seasus at zero
correctly identifies the communities with high probability.
In other words, sign(sjaju; + S2asus) coincides with the
MAP estimator. While s;, so are unknown, the final step of
Algorithm 1 chooses the best one among the four candidate
community partitions arising from the four possible sign
combinations. By Theorem 27, we know that the MAP
estimator is the unique maximizer of the posterior probability.
Therefore, the spectral algorithm will identify the correct
candidate. This completes the proof of Theorem 7 (1).

To prove Theorem 7 (2), let p1,ps2,q be distinct. Notice
that (V.11) would hold for any a;, a2 and the corresponding
choices of ai,as. The particular choice of aq, s was only
needed after (V.11) to compare it with w*. By Proposition 18
and (V.11), in order for SPECTRAL-ONE algorithms to be suc-
cessful, we must have w* = (aq, —yas, ae, —yas). Suppose
for the sake of contradiction that w* = (ay, —ya, as, —yas)
for some a7, as. Since all the entries of w* are nonzero,
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we know that o, aig # 0. By taking coordinate ratios, we have
that

log 11:q
y= vpjl =y(p1,9)
q
1—¢q
and — h = y( ) (V.14)
Yy = log@ =Yy\p2,4q)- .

q

Now, we claim that for any fixed ¢ € (0, 1), the function y(p, q)
is strictly increasing. Indeed,

Py 1 _Joplza 1
éy(p = log i X = —log 1= x 5
op”

log? %

- L ).
plogZ\1—p ’

Using the fact that 1 — % <logz <z —1 for any z > 0,

(V.15)

1—q

bogi= -1 _ p
forany p>q: y(p,q) = —5 < —— =
(V.16)
logL;q logi%p
forany p<q: y(p,a) = 5" = .7
gq gp
1— 1=q
>__1»_ P (V.17)

T =T
pl 1—p

Therefore, a%y(p, q) > 0 for any p € (0, 1), which proves that
y(p, q) is strictly increasing. However, p; # ps and therefore

y(p1,q9) # y(p2,q). Thus, (V.14) leads to a contradiction.

In other words, it is not possible to choose «,as so that
w* = (a1,—yay,as, —yas). The proof then follows by
applying Proposition 18 (2). ]

Remark 42: Instead of using the encoding {1, —y,0} for
present, absent and censored edges, we could have instead used
a more general encoding of the form {c;1, —yca, c3}. In that
case, the entrywise approximation would still hold. One could
go though the same steps to show that the decision rule for
the spectral algorithm would again be asymptotically based
on determining whether some linear expression such as (V.11)
is above or below a certain threshold 7'. Thus, for pi,p2,q
which are distinct, an identical argument shows that spectral
algorithms with more general encoding also do not succeed
sufficiently close to ..

B. Two Matrices

In this section, we will prove Theorem 10. Let us start
by describing the algorithm that always succeeds up to the

information theoretic threshold in the two community case.

The design of the algorithm is analogous to the design of
Algorithm 3.

Algorithm 5 Two-matrix community detection for two
communities

Input: Parameters ¢ > 0, p,p1,p2,9 € (0,1) such that
{p1,p2,q}| > 2, and G ~ CSBMZ(p, P, 1).
Output: Community classification & € {1,2}".
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1. Fix y,§ ¢ YV where ) is given by Lemma 41 Part (1).
Construct two 7 x n matrices A = A(G,y), A = A(G,7)
as defined in Definition 5.

2. Find the top two eigenpairs of A and A and respectively
denote them ((A, w;))i=1,2 and ((A;, 4r))i=1,2.

P g ~

t, p, q pz) ,y,y) to
compute the weights (¢, ¢, é1, C2).

4: Let U = {slclul 4+ SocoUus + S51C1U1 + S2C2ls
81,82, 81,82 € {x1}}. For each u € U, let 6(;;u) =
1+ (1 +sign(u))/2.

5: Return ¢ = argmax,c;; P(G | 6(-;u)).

3: Use Algorithm 6 on input

Algorithm 6 Find weights (two matrices, two communities)

Input: Parameters ¢ > 0, p,p1,p2,9 € (0,1) such that
{p1,p2,4}| > 2, and y,§ ¢ Y, y # § where ) is given
by Lemma 41 Part (1).

Output: Weights (cy, ¢o, ¢1,é2)

1: Let V; :={i:4i < pn} and define B to be the symmetric
block matrix where B;; is tk’%[pl —y(p1,9)(1 — p1)]
if i, € Vi, Y% py — y(p2,q)(1 — p2)] if 4,5 & Vi,
and Y5 g — y(py,q)(1 — q)] if i € Vi,j ¢ Vi ori ¢
V1,J € V1. Define B similarly by replacing y by y. Let the
eigenpairs of B and B be ((vi;v1))i=1,1 and (57, 01))1=1,2.
respectively.

2: Solve the following system for oy, ag, &1, Qa:

1-—p
1—¢

11—
Qg + ag = log 4 Yyag — Yoo = log d . (V.18)
D2 1—p2

i

a1+ &1 = log %7 —yai — yay = log

Let z be a block vector with z; = oy for 4 € V; and
zi = ag for i ¢ V. Define Z similarly by replacing
(O[l,ag) by (dl,dz).

3: Return (cy, ¢, ¢1,¢2) satisfying

Vnlogn (011)1 +02U2> =2z
Y

1 72
L U1 U2 .
and +/nlogn <01~ + cz~> =z (V.19)
a! 72

Proof of Theorem 10: As in the proof of Theorem 7,
we condition on oy satisfying |n; — pin| < n?/3. Fix y,9 ¢ Y,
y # ¢ where ) is given by Lemma 41 Part (1). Recall all the
notation in Algorithms 5, 6. Let A* := E[A] and A* := E[4],
and let (A}, u}))i=1.1, and (A}, @}))1=1.2 be the top eigenpairs
of the corresponding matrices. Applying Corollary 35, we have
that with probability 1 — o(1)

s1c1U1 + S2C2Ug + 51C1U1 + 8262l

< Clal + lea| +er| +[éa])
- vnloglogn ’
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for some s1, $2, 51, 52 € {£1}. Let

uy uj i~ 07 L ub
T = A<01Xf +62)\§) JrA(clj\I +02:\§).
Using (V.19), we can repeat the arguments above (V.11),
to show that /nlog(n)r = (1 + o(1))z*, where z} is
ag +a; on Vi := {u : oo(u) = +1} and as + Go on
Vo := {u : oo(u) = —1}. Consequently, with probability
1 —o(1), for each v € [n],

Vnlog(n)r, = dy1(v) (a1 + 1) — d-1(v) (you + gau)
+ d2(v) (a2 + a2) — d_2(v) (yoo + §az)
+ o(logn).

The choice of constants in (V.18) is such that \/nlog(n)r, =
(w*,d(v)) + o(logn), where w* is given by (IL.1). Thus, by
Proposition 18 Part 1, there exists some € > 0 such that with
probability 1 — o(1)

1
1 i > —¢l
v/nlog(n) min 7, > selogn

1
d 1 » < —=¢l
and /n og(n)géava < —5elogn
with probability 1 — o(1). The rest of the proof is identical to
the final part of the argument in the proof of Theorem 7 (1).0J

VI. MORE THAN TwWO COMMUNITIES

In this section, we will prove Theorem 12. Similar to
Lemma 41, we need the following, whose proof is provided
in Appendix C.

Lemma 43: Let p € (0,1)%, and P € (0,1)*** be a
symmetric matrix. For any y > 0, let P be the matrix
such that P’ = p;(P;; —y(1 — P;;)) for all 4, j. Then, either
(1) P has a zero eigenvalue for all i or (2) P has repeated
eigenvalues for all y or (3) there is a finite set ) such that
P® has distinct nonzero eigenvalues for all y &€ ).

Consequently, if P := P -diag(p) has k distinct, non-zero
eigenvalues, then (3) holds.

Let us describe the algorithm that always succeeds up to
the information theoretic threshold in the k-community case.
Again, the design of the algorithm is analogous to the single
matrix case.

Algorithm 7 Two-matrix community detection for general
k > 3 communities

Input: Parameters ¢ > 0, p € (0,
1, a symmetric matrix P € (0
CSBMF (p, P, t).

Output: Community classification & € [k]™.

1)¥ such that Y, p; =
,1)F*Fand also G ~

1: Fix y,g ¢ Y where ) is given by Lemma 43. Construct
two n x n matrices A = A(G,y), A = A(G, §) as defined
in Definition 5.

2: Find the top k eigenpairs of A and A, respectively denoting
them ((Ar,u1))ieqx) and ((Ar, @r)) e Let U (respectively
U) be the nx k matrix whose i-th column is u; (respectively
Uy).

3. Use Algorithm 8 on input (¢, p, P,y, %) to compute the
weight vectors (¢;, G );ey-
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4 Fors € {£1}*,let D := diag(s). Forany s, 3 € {£1}*,
construct the estimator
6(v;s,8) = argmax{(UD(”ci)v + (ﬁD(E’Ei)U}
i€[k]

for each v € [n]. (VL1)

5: Return & = argmax ;e P(G | 6(5s,3)).

Algorithm 8 Find weights (Two matrices, k£ > 3 communities)

Input: Parameters ¢t > 0, p € (0,1)" such that >, p; = 1,
a symmetric matrix P € (0,1)*** and y,7 ¢ J where )
is given by Lemma 43.

Output: Weight vectors (c¢;, 61-)?:1 C R,

1. Fork>1,1letVy:={i: an;é p; <i< n2§:1 pit
with pg = 0. Define B to be the symmetric block matrix

where B,, = “‘;’g"[Pij —y(1l - Py)] if u € V; and
v € V;. Define B similarly by replacing y by y. Let
the top k eigenpairs of B and B be (i, v4))iepn)> and
(4, 04))icin)- Let V' (respectively V) be the n x k matrix
whose ith column is vi/y; (respectively /7).

2. Solve the following system for {cv.i}, ic[k]s {@ri}riclk]:

Qi+ dri = IOg (PM) 5

—yap; — §ap; =log (1 — Pry), Vri€[k]. (VL2)

For i € [k], let z; (respectively Z;) be the block vector
with z;, = a,; (respectively Z;, = &,;) when v € V,.
3: Return (¢;,¢;),_, solving

Vnlog(n)Ve; = z;

and /nlog(n)Vé =2 forallic[k].  (VL3)

Proof of Theorem 12: The argument is identical to the proof
of Theorem 10. We skip redoing all the details for general
k > 3 and instead give an overview of the steps.

Indeed, since P-diag(p) has k distinct, non-zero eigenvalues
by our assumption, Lemma 43 implies that the eigenvalues of
E[A(G,y)] are also distinct for sufficiently large n. Applying
the entrywise bounds for the eigenvectors in Corollary 35,
holds for general k. The parameters (VI.2) and (VI.3) are
chosen in such a way so that for some s, 5 € {+1}*, for each
community ¢ € [k], the associated approximating vector 70
satisfies

v/nlog(n) (UD(S)ci + UD(g)Ei) =: /nlog(n)r{?
- (log(P,.i),log(l — PTi))re[k] ~d(v) 4+ o(logn)

with probability 1 — o(1), for all v € [n]. The estimator
described by (VI.1) is constructed so that for some s,5 €
{£1}*, we have
&(v;s,8) = argmax 757,

1€ [k]
Corollary 19 implies that for this pair (s,§), we have
6(v;s,8) = op(v) for all v with high probability. Finally,
the correct pair s, S is chosen in Step 5, by again appealing to
statistical achievability (Theorem 27). (]
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Remark 44: We can simplify the algorithms by taking A
and A without any ternary encoding if both P - diag(p) and
(J — P)-diag(p) have k distinct, non-zero eigenvalues. Indeed,
define A4, A

1
Aij =
=4

~ 1
and Aij = {

if {4,} is present
if {4, 7} is absent or censored

if {4,;} is absent
0  if {4,7} is present or censored.

We can simply set «,; = log(P,;) and &,; = log(1— P,;), and
choose ¢;, ¢; according to (VI.3). With this choice, the estimator
in (VL.1) (optimized over the signs as in Algorithm 7 Step 5)
achieves exact recovery up to the information theoretic
threshold.

Of course, such a simplification might not be possible for
many possible choices of parameters. For example, in the two
community case, we can take p = 1/2, and p1, pa, ¢ such that
p1p2 — ¢ # 0 but (1 —p1)(1—p2) — (1 —¢)? = 0. One such
choice is py = 22, pp = 4T ¢ = 2.

APPENDIX A
PROOF OF POISSON APPROXIMATION

Proof: (Proof of Lemma 23): Observe that (D, ., Dy..)
are independent over r as they depend on disjoint sets of
independent random variables. Thus,

II

re[n]\{i}
X (agpr) o (1 = ghy) ) #20m (1 — )71 = drr=dar
) (15 - V]!
dildo i\ (|Si| = V| — dii — day)!
x (a1 (1 = apy)) %28 (1 — o) 1Sil =1V I=dnimdasi
(A1)

|5 |!
dl,'r'!dQ,r!(|S'r" - dl,r - d2,7')!

P(D =d) =

We use Stirling’s approximation and the fact that 1 —e ™" <z
as « — 0. Thus, using the assumptions on d, for each r # i,
we have
EA
(18] = dir —

dar)!

o-l501|5, |15+

Sy —dy, — d27r)\5r\7d1,ﬁdz,r+%

(|Sr| - dl,r — dZ,T)dl’rerz)T
(1 — Dader)iSiits
(1S:| - dy, — d27r)dl,r+d2’r

diFda o1
(=57

~

T oIS it (

_ e*dl,r*dz,r

-2 n)))dl,r+d2,r dl’,,.+d2,,,.’

= (npr (14 O(log = (np)

where in the last step we have used d; ,,ds, = 0(1og3/2 n).
Also,

(1 _ a)|Sr|—d1,r—d2,r - e_a(‘sr‘_dl,r—dzr) = e—tpy, log(n)/2.
Thus, the r-th product term in (A.1) is asymptotically equal to

o—tonlogn (Pribrtlogn) ™ (p, (1 = b,)t logm)®2r
dy lda ! ‘

3619

The identical approximation holds for » = ¢ as well using
the fact that |S; \ V| = np;(1 + O(log™ 2 n)). Thus the proof
follows from (A.1). O

APPENDIX B
PROOF OF LEMMA 29

We first state a special case of [17, Theorem 1.3].

Lemma 45: Let Xq,...,X, be independent random vari-
ables, and let X = E?:l X;. Let L > 0. Suppose that for
each i € [n] and k € N,

E[IXi|"] <k-L-E[|X;[F1]. (B.1)

Let o = > ., E[|X;[]. Then, for any A > 0,
P(X - E[X]| = })

< e?max{ ex —/\72 ex —L (B.2)
S p LR , €XP LR > .

where R is an absolute constant.
Proof of Lemma 29: We first verify (B.1), for L = max{|z| :
x € S}. For k € N,

E [1X:]*] = Z lz|"P(X; = x)
zES
<L) |2 'P(X; =)
z€eS
= LE [|X;|"]
< KLE[|X;[F71].

We apply Lemma 45, noting that ;1o = E[Y]. Set A = §|E[X]|.
Then A < pyg, so that the first bound in (B.2) applies, giving
the claim. O

APPENDIX C
PROOF OF EIGENVALUE PROPERTIES

Proof of Lemma 41: The only 2 X 2 matrices whose
eigenvalues are not distinct are the multiples of the identity
matrix. Indeed,

det <Z i) =0 = XN —(a+c)\+ac—b* =0,
which has same roots in X if and only if (a — ¢)? + b = 0.
Therefore, A’ in (V.2) has identical eigenvalues if and only if
y=q/(1-q).

Next, note that det(A’(y)) is a quadratic function in y, which
has at most two roots unless det(A’(y)) is the zero polynomial.
To rule out the latter possibility, note that

det (A’ (q))
l—gq
= p(1—p) (p1 - L(l —p1)) (pz - L(l —p2))7
l—q l—gq

which is nonzero if p; and po are both different from ¢q. When
p2 = ¢, then det(A’(0)) = p(1 — p)(p1q — ¢*), which cannot
be zero due to our assumption that 0 < p;.p2,q < 1 cannot
be all be the same. Hence, det(A’(y)) cannot be a zero

polynomial, and thus there are at most two values of y such
that det(A’(y)) = 0. Combined with the condition for having
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distinct roots, there is a set ) with |Y| < 3 such that, for
y ¢ Y, A'(y) has two distinct and nonzero eigenvalues. This
proves Lemma 41 Part (1).

To prove Lemma 41 Parts (2),(3), consider the
case where (V.3) holds. Also, take y = y(p,q) =
log (}_;g)/log(g). Due to symmetry of y(p,q), (V.16)
and (V.17) imply

q .
y(p.q) > g fr>a

and  y(p,q) < g qq if p<gq
Also, y(p,q) > 0 for all 0 < p,q < 1. Thus, if (V.3), then
y(p,q) # 1L Hence, the off diagonal entries of A’(y(p, q))
are nonzero and the eigenvalues of A’(y(p,q)) are distinct. If
p2 = q then det(A'(y(p,q))) = p(1 — p)(p — O)(1 + y)(q —
y(1—¢q)) # 0, so its eigenvalues are both nonzero. This proves
Part (2).

To prove Part (3), take p; = pa = p. Note that det(A’(y)) =
0 is 0 if and only if |p — y(1 — p)| = |¢ — y(1 — ¢)|. Since
p # q, the latter holds if and only if 3 = 23;3(1 orp+q=1.
Let 7 = (p+¢)/2 and € = (p — q)/2, and observe that

. = log (72 ) /10g (2)

~ log <l—x+e> Jlog <x+e>
1—2—¢€ T —e€

_log(1+¢€/(1—x)) —log(l —¢/(1 —x))
B log(1+¢/x) — log(l —¢/x)
Yo 2(e/(1—2))* /(20 + 1)
3 2(e/m) 2 /(20 + 1)

T Yimole/(L—2)*/(2i+1)
1—z Soooole/x)?/(2i+1)
The ratio of infinite sums is greater than 1 if 2 < 1/2 and less
than 1 if z > 1/2, s0 y = 25:11 <= 2x =p+q=1. This
proves Part (3). O

Proof of Lemma 43: First, observe that P has a zero
eigenvalue if and only if its determinant is zero. Since det(P®)
is a polynomial in y of degree at most k, either it is identically
zero (i.e., (1) holds) or there exists a subset ); C R with
|V1| < k such that det(P®) # 0 for all y ¢ V.

Next, observe that for any given y, the eigenvalues of
P® are the roots of the characteristic polynomial x®()) :=
det(P®) — \I). Let £ (\) be the polynomial with leading
coefficient 1 in \ that is the greatest common divisor of x® (\)
and (x)'(X) = L x@(X). Then x* ()) has repeated roots
in A if and only if f® () is not a constant function in . Now,
consider X (A) and & x()) as elements of R®[)], the ring
of polynomials in A with coefficients that are rational functions
of y. Then, there exist f*@, g{*’, g5’ h{"’ h$ € R[] such
that the leading coefficient of f*®) is 1, and

_ W ) ’
[ =g1"x" + 9" (x),
X(y) — h(ly)f*(y)7 (X(y))/ — h(zy)f*(y).
Thus, for any y, f*® will evaluate to f®, unless the
denominator of at least one coefficient of f*@, gi*’, g5,
h{”, or h$” evaluates to 0. Since the coefficients are rational
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functions in y, this can only happen for y € s, where )s is
a finite set. Therefore, if f*®) () is a constant in )\, then for
all y ¢ s, the eigenvalues of P are all distinct. Taking
Y = Y1 UYs, we have shown the (3) holds in this case.
Next, suppose that f*®)(\) is not constant in A. Then, P
must have a repeated eigenvalue for all y ¢ ). The eigenvalues
of P™ change continuously as functions of y. Thus, if there
was any y for which its eigenvalues were all distinct they
would have to be distinct for all values of y sufficiently close
to that one. Therefore, P> must have repeated eigenvalues
for all values of y and (2) holds in this case. This completes
the proof of Lemma 43. O
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