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The Power of Two Matrices in Spectral
Algorithms for Community Recovery

Souvik Dhara , Julia Gaudio , Elchanan Mossel, and Colin Sandon

AbstractÐ Spectral algorithms are some of the main tools in
optimization and inference problems on graphs. Typically, the
graph is encoded as a matrix and eigenvectors and eigenvalues of
the matrix are then used to solve the given graph problem. Spectral
algorithms have been successfully used for graph partitioning,
hidden clique recovery and graph coloring. In this paper, we study
the power of spectral algorithms using two matrices in a graph
partitioning problem. We use two different matrices resulting
from two different encodings of the same graph and then
combine the spectral information coming from these two matrices.
We analyze a two-matrix spectral algorithm for the problem of
identifying latent community structure in large random graphs.
In particular, we consider the problem of recovering community
assignments exactly in the censored stochastic block model,
where each edge status is revealed independently with some
probability. We show that spectral algorithms based on two
matrices are optimal and succeed in recovering communities
up to the information theoretic threshold. Further, we show
that for most choices of the parameters, any spectral algorithm
based on one matrix is suboptimal. The latter observation is in
contrast to our prior works (2022a, 2022b) which showed that
for the symmetric Stochastic Block Model and the Planted Dense
Subgraph problem, a spectral algorithm based on one matrix
achieves the information theoretic threshold. We additionally
provide more general geometric conditions for the (sub)-optimality
of spectral algorithms.

Index TermsÐ Stochastic block model, spectral algorithms,
information-theoretic boundary.
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I. INTRODUCTION

S
PECTRAL algorithms are some of the main tools in graph
algorithms and combinatorial optimization. Some famous

and classical examples include spectral algorithms for the
hidden clique problem [1], graph bisection [2], and graph
coloring [3], [4]. These algorithms encode the graph into a
matrix by recording the status of each present/absent edge
of the graph as an entry of the matrix. The most natural
encoding is the adjacency matrix representation, where edges
are encoded by the value 1 and non-edges are encoded by
the value 0. Given the encoding matrix, a small number of
eigenvectors for this matrix are used to solve the given graph
problem.

Our interest in this work lies in graph problems for
which using multiple matrix representations gives an
advantage over using a single matrix.

In particular, we are interested in the power of spectral
algorithms in such a scenario in the context of finding clusters
in a planted partition model called the Censored Stochastic

Block Model (CSBM). In this model, there are two clusters
of approximate sizes nρ and n(1 − ρ), and the edges inside
each of the clusters appear independently with probabilities
p1, p2 respectively, while edges between the two clusters appear
with probability q. Moreover, each edge status is revealed
with probability t log n/n for some fixed t > 0. Thus the
statuses of most edges are unknown. The censored model was
introduced to model the fact that in many social networks,
not all of the connections between individual nodes are
known.

Given an instance of a censored graph with no vertex labels,
the problem is to recover the partitions exactly with high
probability. This is often referred to as the exact recovery

problem. We note that some applications of spectral algorithms
to the exact recovery problem use an additional combinatorial
clean-up stage (see e.g. [5], [6], [7]), but we follow [8], [9],
and [10] in studying spectral algorithms that do not look at
the graph after the top eigenvectors have been found. This is
partially motivated by the fact that most real applications of
spectral algorithms do not include a combinatorial clean-up
stage.

The classical case in the literature considers exact recovery
in the Stochastic Block Model where there is no censoring and
p1, p2, q = Θ(logn/n). In order to achieve exact recovery up
to the information theoretic boundary, prior works used some
trimming and post-processing steps together with the spectral

0018-9448 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Northwestern University. Downloaded on August 31,2024 at 19:47:30 UTC from IEEE Xplore.  Restrictions apply. 



3600 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 5, MAY 2024

algorithm [5], [6], [7]. However, the question of whether a
direct spectral algorithm based on the top two eigenvectors
of the of the adjacency matrix would be optimal remained
open until the recent resolution by Abbe et al. [8] for p1 = p2.
In the censored SBM, there are three possible observations
(present, absent, or censored), so spectral recovery using a
binary-valued adjacency matrix is suboptimal. Instead, one
can use a ternary-valued encoding matrix. It was recently
shown in [9] and [10] that, for some special cases of the
planted partition model such as the planted dense subgraph
problem (p2 = q) and the symmetric stochastic block model
(p1 = p2, ρ = 1/2), a spectral algorithm based on the top
two eigenvectors of a signed adjacency matrix is optimal. This
raises the question:

Are spectral algorithms based on the top eigenvectors

of a signed adjacency matrix optimal for all censored

stochastic block models?

The main contributions of this article are as follows:

1) In contrast with the success stories in [9] and [10],
whenever p1, p2, q are distinct, a spectral algorithm based
on the top two eigenvectors of a signed adjacency matrix
is always suboptimal (Theorem 7 Part (2)).

2) We propose spectral algorithms with two encoding matri-
ces, where we take an appropriate linear combination
of the corresponding top eigenvectors. We show that
these algorithms are always optimal (Theorem 10). The
optimality of spectral algorithms with two matrices is also
shown in the more general setting with k ≥ 2 communities
(Theorem 12).

Thus, these results exhibit a strict separation between spectral
algorithm classes with one versus multiple encoding matrices,
and this separation can be realized for even elementary planted
partition models. To our knowledge, this general phenomenon
was not observed in the substantial prior literature for recovery
problems in the planted partition problems.

A. Model and Objective

We start by defining the Censored Stochastic Block Model.
Definition 1 (Censored Stochastic Block Model (CSBM)):

Let ρ ∈ (0, 1)k be such that
∑k

i=1 ρi = 1 and let
P ∈ (0, 1)k×k be a symmetric matrix. Suppose we have n
vertices and each vertex v ∈ [n] is assigned a community
assignment σ0(v) ∈ [k] according to the distribution ρ
independently, i.e., P(σ0(v) = i) = ρi for i ∈ [k].

▷ For u, v ∈ [n] and u ̸= v, the edge {u, v} exists
independently with probability Pσ0(u)σ0(v). Self-loops do
not occur.

▷ For every pair of vertices {u, v}, its connectivity status
is revealed independently with probability t log n

n , and is
censored otherwise for some fixed t > 0.

The output is a random graph with edge statuses given by
{present,absent,censored}. The distribution of this
random graph is called the Censored Stochastic Block Model.
We write G ∼ CSBMk

n(ρ, P, t) to denote a graph generated
from the above model, with vertex labels removed (i.e., σ0 is
unknown).

Definition 2 (Exact Recovery): Consider the n × k mem-
bership matrix S0, where (S0)ui = 1{σ0(u) = i}, i.e., the
u-th row indicates the community membership of u. Given
an estimator σ̂, construct Ŝ similarly as Ŝui = 1{σ̂(u) = i}.
We say that an estimator achieves exact recovery if there exists
a k × k permutation matrix J such that ŜJ = S0.

B. Information Theoretic Boundary

We start by discussing the information theoretic threshold.
The result will be stated in terms of a Chernoff±Hellinger
divergence, introduced by Abbe and Sandon [11].

Definition 3 (Chernoff±Hellinger Divergence): Given two
vectors µ, ν ∈ (R+ \ {0})l, define

CHξ(µ, ν) =
∑

i∈[l]

[

ξµi + (1 − ξ)νi − µξ
i ν

1−ξ
i

]

for ξ ∈ [0, 1]. The Chernoff±Hellinger divergence of µ and ν
is defined as

∆+(µ, ν) = max
ξ∈[0,1]

CHξ(µ, ν). (I.1)

Define

tc :=
(

min
i ̸=j

∆+(θi, θj)
)−1

where θi = (ρrPri, ρr(1 − Pri))r∈[k] ∈ R
2k. (I.2)

Theorem 4 (Information Theoretic Threshold): Let G ∼
CSBMk

n(ρ, P, t). If t < tc, then for any estimator σ̂,

lim
n→∞

P(σ̂ achieves exact recovery) = 0.

C. Spectral Algorithms

For comparing the performance of spectral algorithms with
one matrix versus spectral algorithms with more than one
matrix, we first specialize to the case of two communities.

To define spectral algorithms formally, we first define the
threshold procedures we allow to apply on vectors. These are
the procedures that will be applied to the leading eigenvectors
of the encoding matrices.

Algorithm 1 CLASSIFY

Input: Censored graph G on n vertices, vectors (ui)
m
i=1 ⊂ R

n,
and scalars, a1, . . . , am, T ∈ R.

Output: Community classification.

1: Compute possible score vectors

U =

{

m
∑

i=1

siaiui for all s1, . . . , sm ∈ {±1}
}

.

2: Compute possible assignments Ŝ(U) = {σ̂ = sign(u −
T ) : u ∈ U} and output a community assignment 1 + (1 +
σ̂)/2 that maximizes the posterior probability P(G | σ̂)
over σ̂ ∈ Ŝ(U).

Since eigenvectors are determined up to a sign flip,
Step 2 above is required in order to resolve this sign ambiguity.
This will be explained in more detail in Remark 13.
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Definition 5 (Signed Adjacency Matrix): Given y > 0 and
a graph G with edge statuses {present, absent,
censored}, define the signed adjacency matrix A(G, y) as
the n× n matrix with

Aij =











1 if {i, j} is present

−y if {i, j} is absent

0 if {i, j} is censored.

Let us define the class of algorithms SPECTRAL-ONE that
use a single encoding matrix.

Definition 6 (SPECTRAL-ONE): An algorithm A(G, y, a1,
a2, T ) in the SPECTRAL-ONE class takes a censored graph
G as input, an encoding parameter y ∈ R+, and scalars
a1, a2, T ∈ R. The algorithm then computes the top two
eigenvectors u1, u2 of A = A(G, y), and gives the output
of CLASSIFY((ui)

2
i=1, (ai)

2
i=1, T ). We denote the output of

algorithm A in this class as σ̂A.
For the two community case, we will always consider the

parameters:

P =

(

p1 q
q p2

)

, ρ̄=(ρ, 1−ρ), and ρ, p1, p2, q ∈ (0, 1). (I.3)

Theorem 7 (Failure of SPECTRAL-ONE in Most Cases):

Let G ∼ CSBM2
n(ρ̄, P, t) with ρ̄, P given by (I.3).

(1) Suppose that p1, p2, q are not distinct. If p1 = p2 = p,
then assume p+q ̸= 1.1 There exist explicitly computable
constants y ∈ R+ and γ1, γ2 ∈ R such that the algorithm
A = A(G, y, γ1, γ2, 0) from the class SPECTRAL-ONE

satisfies

lim
n→∞

P(σ̂A achieves exact recovery) = 1,

for any t > tc. In particular, Algorithm 3 produces such
an estimator.

(2) Suppose that p1, p2, q are distinct. There exists
δ0 > 0 such that, if t < tc + δ0, then for any A ∈
SPECTRAL-ONE,

lim
n→∞

P(σ̂A achieves exact recovery) = 0.

For the case p1 = p2, Theorem 7 Part (1) generalizes the
result of [9, Theorem 2.2] to the case ρ ̸= 1/2. Part (2) of
the result is in sharp contrast with the results in [9] and [10];
together, these results essentially say that the censored planted
dense subgraph problem (p2 = q) and the symmetric censored
stochastic block models (p1 = p2) are remarkably the only
cases where an algorithm from SPECTRAL-ONE is successful2.
The possible limitation of SPECTRAL-ONE was shown
in [10, Theorem 2.6] for the special case of q = 1/2,
p1 = 1 − p2 and ρ = 1/2.

Remark 8: It is worthwhile to note that the choice of
encoding parameters {1,−y, 0} is completely general and
one does not get a more powerful class of algorithms by
allowing an arbitrary ternary encoding. In fact, as our proof

1The case p1 = p2 = p, ρ = 1

2
is covered in [9] without the assumption

p + q ̸= 1. In this case, spectral algorithms succeed for t > tc.
2For the edge-case p1 = p2 = p and p + q = 1, the rank of E[A] is 1 for

the value of y that we would want to use. This is why it is ruled out in
Theorem 7 Part (1).

shows, if p1, p2, q are distinct, then even if one allows arbitrary
encodings, the SPECTRAL-ONE algorithms still fail sufficiently
near the threshold (see Remark 42).

Next, we will show that spectral algorithms with two matrices
are always optimal for the recovery of two communities. Let
us define the class of algorithms SPECTRAL-TWO that uses
two encoding matrices instead of one.

Definition 9 (SPECTRAL-TWO): An algorithm A(G, y1, y2,
(ai)

4
i=1, T ) in the SPECTRAL-TWO class takes as input a

censored graph G, two encoding parameter y1, y2 ∈ R+ with
y1 ̸= y2 and (ai)

4
i=1 ⊂ R, T ∈ R. The algorithm considers two

signed adjacency matrices A1 = A(G, y1) and A2 = A(G, y2),
and computes their top two eigenvectors ur

1, u
r
2, for r = 1, 2.

Then the algorithm outputs CLASSIFY((ur
i )i,r=1,2, (ai)

4
i=1, T ).

As before, we denote the output of algorithm A from this class
as σ̂A.

Theorem 10: (SPECTRAL-TWO Always Succeeds in Recov-

ering Two Communities): Let G ∼ CSBM2
n(ρ̄, P, t) with ρ̄, P

given by (I.3). There exists a set Y ⊂ R+ with |Y| ≤ 3 such
that for any y1 ̸= y2 and y1, y2 /∈ Y , there exist explicit
(ai)

4
i=1 ⊂ R

4 such that the algorithm A(G, y1, y2, (ai)
4
i=1, 0)

from the class SPECTRAL-TWO satisfies

lim
n→∞

P(σ̂A achieves exact recovery) = 1,

for any t > tc. In particular, Algorithm 5 produces such an
estimator.

Theorem 10 not only shows that SPECTRAL-TWO algorithms
are always successful, but also shows that the choice of the
encoding parameters y1, y2 does not matter too much as long
as y1 ̸= y2 and they both lie outside a finite exception set. For
example, we can choose y1, y2 ∼ Uniform[0, 1] independently.
Avoiding the finite exception set helps us ensure that A1 and
A2 both have two eigenvectors with large, distinct eigenvalues.
In contrast, the choice of the encoding is quite important for
SPECTRAL-ONE algorithms in Theorem 7 (1). In fact, for p1 =
p2 = p or p1 = p and p2 = q, the only choice of y that yields
an optimal algorithm is log( 1−q

1−p )/ log p
q . Thus, SPECTRAL-

TWO algorithms leads to a much broader and flexible class of
algorithms as compared to SPECTRAL-ONE.

Finally, we show that SPECTRAL-TWO succeeds for the
recovery of k ≥ 3 communities, as long as the parameters P, ρ
satisfy certain conditions. To this end, let us define SPECTRAL-
TWO for general k.

Algorithm 2 CLASSIFY-MULTIPLE

Input: Censored graph G on n vertices, vectors (ui)
m
i=1 ⊂ R

n,
and weight vectors (ai)

k
i=1 ⊂ R

m.
Output: Community classification.

1: Let U be the n×m matrix whose i-th column is ui.
2: For s ∈ {±1}m, let D(s) := diag(s). Compute the set

of possible assignments Ŝ consisting of σ̂(·; s) with s ∈
{±1}m such that

σ̂(v; s) = argmax
i∈[k]

{

(

UD(s)ai

)

v

}

for each v ∈ [n].

3: Output σ̂(·; s) that maximizes the posterior probability
over P(G | σ̂) over σ̂ ∈ Ŝ.
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We will use this algorithm with m = 2k, and the top k
eigenvectors from each of two signed adjacency matrices.

Definition 11 (SPECTRAL-TWO for k ≥ 3 communities):

An algorithm A(G, y1, y2, (ai)
k
i=1, T ) in this class takes

as input a censored graph G, two encoding parameters
y1, y2 ∈ R+ with y1 ̸= y2 and (ai)

k
i=1 ⊂ R

2k. The
algorithm considers two signed adjacency matrices
A1 = A(G, y1) and A2 = A(G, y2), and computes their top k
eigenvectors (u1

i )i∈[k], (u
2
i )i∈[k]. Then the algorithm outputs

CLASSIFY-MULTIPLE((ur
i )i∈[k],r=1,2, (ai)

k
i=1). As before,

we denote the output of algorithm A from this class
as σ̂A.

Theorem 12: (Success of SPECTRAL-TWO for k ≥ 3
Communities): Let G ∼ CSBMk

n(ρ, P, t) where ρ ∈ (0, 1)k is
such that

∑

i ρi = 1, and P ∈ (0, 1)k×k is a symmetric matrix.
Further, suppose that P ·diag(ρ) has exactly k distinct non-zero
eigenvalues. Then there exists a finite set Y ⊂ R+ such that
for any y1 ̸= y2 and y1, y2 /∈ Y , the following holds: there
exist explicit vectors (ai)

k
i=1 ⊂ R

2k such that the algorithm
A(G, y1, y2, (ai)

k
i=1) from the class SPECTRAL-TWO satisfies

lim
n→∞

P(σ̂A achieves exact recovery) = 1,

for any t > tc. In particular, Algorithm 7 produces such an
estimator.

Remark 13: The fact that the encoding parameters y1, y2 lie
outside a finite set in Theorems 10 and 12 is required to ensure
that E[A(G, y1)], E[A(G, y2)] have k distinct and non-zero
eigenvalues. The requirement of having k non-zero eigenvalues
is intuitive as we seek to recover an underlying rank k
structure. Moreover, the eigenvectors of A(G, y) can only be
approximated up to an unknown orthogonal transformation.
This causes an ambiguity for defining the final estimator. When
the eigenvalues are distinct, this ambiguity can be resolved
by going over all possible sign flips s and choosing the
best among them, as in Algorithm 1 Step 2, or Algorithm 2
Step 2.

Remark 14: The condition in Theorem 12 that P · diag(ρ)
has distinct and non-zero values can be relaxed. In fact, if P (y)

is the matrix such that P (y)

ij := ρj(Pij − y(1 − Pij)), then
by Lemma 43, the same conclusions as Theorem 12 hold
as long as there exists a y such that P (y) has k distinct
and non-zero eigenvalues. In fact, we can simply choose
y ∼ Uniform((0, 1)).

D. Proof Ideas

We now give a brief outline of the proofs. For a vertex v,
we call d(v) = (d+j , d−j)j∈[k] ∈ Z

2k
+ the degree profile of

the vertex, where d+j = d+j(v), d−j = d−j(v) respectively
denote the number of present and absent edges from v to
community j for j ∈ [k]. Let us re-scale d̄(v) = d(v)/t log n.
The proof consists mainly of two steps:

Step 1: Characterization of spectral algorithms using

degree profiles. Given any signed adjacency matrix A =
A(G, y), the starting point of our analysis is to find a good
ℓ∞-approximation for the eigenvectors. Using a recent general
framework by Abbe et al. [8], we can show that the top k

Fig. 1. Visualizing dissonance ranges of two communities near tc.

eigenvalues (ui)i∈[k] of A satisfy (see Corollary 35):

min
s∈{±1}

∥

∥

∥

∥

sui −
Au⋆

i

λ⋆
i

∥

∥

∥

∥

∞
= o

(

1√
n

)

, for i ∈ [k],

with probability 1 − o(1), where (λ⋆
i , u

⋆
i ) is the i-th largest

eigenvalue/eigenvector pair of E[A]. Note that E[A] is a
rank-two matrix with u⋆

i ’s taking the same constant value
corresponding to all vertices in the same community. The
low rank of E[A] allows us to express Au⋆

i as a linear
combination of the degree profiles and thus drastically reduce
the dimension of the problem. Using this representation, any
linear combination of the u′is is also an expressible linear
combination of degree profiles. Hence, we show that spectral
algorithms essentially are asymptotically equivalent to classify-
ing vertices depending on whether ⟨wSpec, d̄(v)⟩ > (T + o(1))
or ⟨wSpec, d̄(v)⟩ < (T − o(1)) for some wSpec ∈ R

2k, T ∈ R.
Step 2: Geometry of degree profiles. At this point, the

problem reduces to understanding whether, for a given vector
w, a hyperplane orthogonal to w can separate re-scaled degree
profiles. To this end, for each community i, we define a measure
of dissonance ηi for rescaled degree profiles, and define the
δ-dissonance range as DRδ(i) := {d̄ : ηi(d̄) ≤ δ}. We show
that the DRδ(i)’s are closed and convex sets. Moreover, (1) if
1/t < δ, then all the re-scaled degree profiles from community
i lie in DRδ(i) and (2) if δ < 1/t, then the re-scaled degree
profiles from community i are asymptotically dense in DRδ(i)
(see Lemma 22). In a sense, one can think of DR1/t(i) as the
cloud of re-scaled degree profiles arising from community i.

Next, consider the ªhardestº scenario when t = tc. In that
case, we show that the clouds DR1/tc

(i) and DR1/tc
(j)

corresponding to communities i and j intersect only at a single
point x⋆ (see Lemma 25), and as t increases away from tc, the
two clouds gradually separate. Due to convexity, DR1/tc

(i) and
DR1/tc

(j) lie on two opposite sides of the tangent hyperplane
at x⋆. Let w⋆ be such that this tangent hyperplane is given by
H⋆ = {x : ⟨w⋆, x−x⋆⟩ = 0}. Then H⋆ is the only hyperplane
that separates the clouds of degree profiles near tc; see Figure 1.
Thus, as long as we are trying to separate clouds of degree
profiles using this H⋆, we will succeed for any t > tc. However,
if we try to separate the clouds with a different hyperplane
{x : ⟨w, x− x⋆⟩ = 0} for some w /∈ Span(w⋆), then we will
fail sufficiently close to tc.

Combining this with the asymptotic characterization of
spectral algorithms, it thus remains to be seen whether we
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can choose the parameters of the spectral algorithm in such a
way that wSpec ∈ Span(w⋆). For SPECTRAL-ONE algorithms
in the two community case, we show that wSpec takes values
in a restricted set {w ∈ R

4 : w1

w2
= w3

w4
= y}, no matter

the choice of the parameters. For SPECTRAL-ONE algorithms,
generally wSpec /∈ Span(w⋆) except for the specific cases in
Theorem 7 (1). However, for SPECTRAL-TWO algorithms,
there always exists a way to choose the linear combinations
in such a way that wSpec ∈ Span(w⋆), which ensures their
optimality.

Information Theoretic Threshold. There is an alternate
way of characterizing the information theoretic boundary by
observing that even the ªbestº estimator will separate commu-
nities using the hyperplane H⋆ above. Consider the problem
of classifying a single vertex v given G and (σ0(u))u∈[n]\{v}.
The MAP estimator for the community assignment of v is
called the genie-based estimator. This is an optimal estimator
(even though it is not computable given G). Now, a direct
computation shows that the genie-based estimator classifies
a vertex in one of the two communities based on whether
⟨w⋆, d̄(v)⟩ > 0 or ⟨w⋆, d̄(v)⟩ < 0, with the same w⋆ as above
(see [9, Proposition 6.1]). Thus, in a sense, separating degree
profiles based on hyperplanes orthogonal to w⋆ is the optimal
decision rule. When t < tc, the degree profile clouds of the
two communities overlap significantly, and therefore even the
optimal estimator misclassifies a growing number of vertices.
This gives rise to the information theoretic impossibility region
for exact recovery when t < tc.

E. Discussion

Theorems 10 and 12 prove optimality of spectral algorithms
using two matrices. The use of two matrices hinges on the
fact that there are three types of edge information: present,
absent, and censored, and the information about a vertex’s
community coming from present and absent edges are of
the same order. We believe that our results generalize in
a straightforward manner to the scenario of labeled edges,
where the possible edge statuses {present,absent} are replaced
by L different types. Indeed, this is the setting considered
by [12], [13], and [14]. In particular, [14] determined the
information-theoretic threshold for exact recovery and proposed
an efficient, iterative spectral method. We believe that optimal
(vanilla) spectral algorithms in the general L-labeled edge
scenario must use L different encoding matrices.

We also believe that the framework of this paper can be
extended beyond graphs to other important machine learning
problems with censoring on top of an underlying low-rank
structure. This may include non-square matrices (e.g. items vs
features matrix in recommender systems). We leave these as
interesting future research questions.

F. Notation

Let [n] = {1, , 2, . . . , n}. We often use the Bachmann±
Landau asymptotic notation o(1), O(1) etc. For two sequences
(an)n≥1 and (bn)n≥1, we write an ≍ bn as a shorthand for
limn→∞

an

bn
= 1. Given a sequence of probability measures

(Pn)n≥1, a sequence of events (En)n≥1 is said to hold with

high probability if limn→∞ Pn(En) = 1
For a vector x ∈ R

d, we define ∥x∥2 = (
∑

i x
2
i )

1/2 and
∥x∥∞ = maxi |xi|. For x ∈ R

d and r > 0, we denote the
open ℓ2-ball of radius r around x by B2(x, r). Similarly, for
X ⊂ R

d and r > 0, we denote the open ℓ2-ball of radius r
around X by B2(X, r). For a collection of vectors (xi)i ⊂ R

d,
we denote their linear span by Span((xi)i). Also, given a
subspace Z ⊂ R

d, the projection of x onto Z will be denoted
by Proj

Z
(x).

For a matrix M ∈ R
n×d, we use Mi· to refer to

its i-th row, represented as a row vector. Given a matrix
M , ∥M∥2 = max∥x∥2=1 ∥Mx∥2 is the spectral norm,
∥M∥2→∞ = maxi ∥Mi·∥2 is the matrix 2 → ∞ norm, and
∥M∥F = (

∑

i,j M
2
ij)

1/2 is the Frobenius norm. Whenever we

apply a real-value function to a vector, it should be interpreted
as a coordinatewise operation.

Throughout, we condition on the event that the random
community assignments given by σ0 are close to their expected
sizes. Specifically, note that, since nj := {v : σ0(v) = j} are
marginally distributed as Bin (n, ρj), and therefore, for all
ε ∈ (0, 1),

|nj − nρj | ≤ εn (I.4)

with probability at least 1 − 2 exp(−ε2n/2) by applying
the McDiarmid inequality. Throughout, the notation P(·),E[·]
conditions on a fixed value of σ0 satisfying (I.4) with
ε = n−1/3.

G. Organization

We start analyzing the geometric properties of the degree
profile clouds in Section II, which lies in the heart of all the
proofs. Subsequently, in Section III, we prove the impossibility
result and also prove that the Maximum a Posteriori (MAP)
Estimator always succeeds up to the information theoretic
threshold. The entrywise bounds for the top eigenvectors are
provided in Section IV. Finally, we complete the proofs of
Theorems 7, 10 in Section V.

II. GEOMETRY OF DEGREE PROFILES

In this section, we develop the technical tools for Step 2 in
Section I-D. We will develop these tools for general
k-community CSBMs. Throughout, we fix ρ ∈ (0, 1)k such
that

∑k
i=1 ρi = 1 and let P ∈ (0, 1)k×k be a symmetric matrix.

Let us define degree profiles, which will be the main object of
analysis in this section.

Definition 15 (Degree Profile): Suppose that G ∼ CSBMk
n

(P, ρ, t). For a vertex v, we define d(v) = (d+r, d−r)r∈[k] ∈
Z

2k
+ to be the degree profile of v, where d+r = d+r(v) and

d−r = d−r(v) respectively denote the number of present and
absent edges from v to community r for r ∈ [k].

As discussed in Section I-D, the ℓ∞ approximation guarantee
for the eigenvectors gives us an alternative characterization
of spectral algorithms in terms of separating degree profiles
of different communities using certain hyperplanes. The
next proposition allows us to determine when separation
using hyperplanes is impossible. Before the statement we
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need a couple of definitions. Let Vi denote the vertices in
community i.

Definition 16 (Separates Communities): We say that
w ∈ R

2k separates communities (i, j) with margin β > 0 if

min
v∈Vi

wT d(v) ≥ β/2 and max
v∈Vj

wT d(v) ≤ −β/2.

or vice versa.
If w separates communities (i, j) with margin β > 0, then

computing the weighted degree profile wT d(v) for each v ∈
Vi ∪ Vj allows us to distinguish these two communities. Note
that if w separates communities (i, j) with margin β, then
−w also separates communities (i, j) with margin β. Next
we define the scenario where a finite number of hyperplanes
cannot separate the two communities.

Definition 17 (Confuses Communities): Let (wr)
m
r=1 ⊂

R
2k and let (γr)

m
r=1 ⊂ R. We say that [(wr)

m
r=1, (γr)

m
r=1]

confuses communities (i, j) at level β if there exist u ∈ Vi,
v ∈ Vj , and s ∈ {−1, 1}m such that sr(w

T
r d(u) − γr) > β

and sr(w
T
r d(v) − γr) > β for all 1 ≤ r ≤ m.

In other words, there are representatives from communities
i and j, such that both of their degree profiles appear on the
same sides of all the hyperplanes {x : wT

r x = γr}. A larger
value of β means that the pair of degree profiles is farther from
the hyperplanes. Note that the notion of confusion also rules
out the possibility of separation with multiple hyperplanes.
We claim that there is a unique best vector for separating
community i and community j in the following sense.

Proposition 18: Let G ∼ CSBMk
n(ρ, P, t), 1 ≤ i < j ≤ k,

and let w⋆ be the 2k-dimensional vector such that

w⋆ =

(

log
Pri

Prj
, log

1 − Pri

1 − Prj

)

r∈[k]

. (II.1)

(1) If t > 1/∆+(θi, θj), then there exists ε > 0 such that w⋆

separates communities i and j with margin ε log(n) with
probability 1 − o(1).

(2) Let Z ⊂ R
2k be a linear subspace and w⋆ /∈ Z . There

exists µ > 0 such that if t∆+(θi, θj) < 1 + µ, then
for every m > 0 there exists ε > 0 such that the
following holds with probability 1 − o(1): For every
z1, . . . , zm ∈ Z and γ1, . . . , γm ∈ R, [(zr)

m
r=1, (γr)

m
r=1]

confuses communities i and j at level ε log(n).

The above result yields the following corollary which
is useful in designing our classification algorithm for
k ≥ 3 communities (Algorithm 7).

Corollary 19: If t > 1/∆+(θi, θj), then there exists
ε > 0 such that with probability 1 − o(1)
(

log(Pri), log(1 − Pri)
)

r∈[k]
· d(v)

> max
j ̸=i

(

log(Prj), log(1 − Prj)
)

r∈[k]
· d(v) + ε log(n)

for all i ∈ [k] and v ∈ Vi.
Proof: Proposition 18 implies that with probability

1 − o(1),
(

log(Pri), log(1 − Pri)
)

r∈[k]
· d(v)

>
(

log(Prj), log(1 − Prj)
)

r∈[k]
· d(v) + ε log(n)

for every i, j ∈ [k], i ̸= j and v ∈ Vi. The claim follows. □

The rest of this section is devoted to the proof of Proposi-
tion 18. In Section II-A, we define the dissonance range relative
to a community as the set of 2k-tuples that are sufficiently close
to the average normalized degree profile for that community,
and prove some of their analytic properties. In Section II-B,
we prove that, with high probability, the normalized degree
profile of every vertex is within o(1) of the dissonance range
corresponding to its community. Moreover, we also show that
the dissonance ranges are asymptotically dense in the sense
that for every point in a dissonance range there is a vertex
in the corresponding community whose normalized degree
profile is within o(1) of that point. Next, in Section II-C,
we prove that if the projections of two dissonance ranges
onto the space spanned by a set of vectors overlap, then any
set of hyperplanes perpendicular to those vectors confuses
the corresponding communities. We prove this by showing
that there are points in the interiors of the two dissonance
ranges that are on the same sides of all such hyperplanes.
In Section II-D, we show that for any two communities and
the appropriate choice of t, their dissonance ranges intersect
at a single point, the hyperplane perpendicular to w⋆ through
that point separates the rest of the dissonance ranges, and
the boundaries are also smooth in the vicinity of that point.
Finally, in Section II-E, we prove Proposition 18 by observing
that the hyperplane through the origin perpendicular to w⋆

separates the dissonance ranges corresponding to the underlying
communities whenever t is greater than the critical value, while
the projections of the dissonance ranges onto any subspace of
R

k not containing w⋆ will overlap for any value of t sufficiently
close to the critical value.

A. Dissonance Range and Its Properties

Let us start by defining the dissonance range and obtaining
some basic analytic properties.

Definition 20 (Dissonance Range): Given i ∈ [k] and x ∈
R

2k
+ , the dissonance of x relative to community i is given by

ηi(x) =

k
∑

r=1

[

x1,r log

(

x1,r

eρrPri

)

+ x2,r log

(

x2,r

eρr(1 − Pri)

)]

+ 1, (II.2)

where we regard the terms in these expressions as
being 0 if the corresponding entry of x is 0. We also
define the δ-dissonance range relative to community i by
DRδ(i) := {x : ηi(x) ≤ δ}.

Lemma 21: Fix i ∈ [k] and δ > 0. Then DRδ(i) is a
bounded, closed and convex subset of R

2k
+ . In addition, for

any δ′ > δ, there exists ε > 0 such that

B2(DRδ(i), ε) ∩ R
2k
+ ⊂ DRδ′(i).

Proof: We first show that DRδ(i) is bounded. Note that
z log(z) → ∞ if and only if z → ∞. Thus, if DRδ(i) were
unbounded, then we could find a subsequence (xk)k≥1 ⊂
DRδ(i) such that ηi(xk) → ∞. However, ηi(xk) ≤ δ by
definition of DRδ(i). This leads to a contradiction and hence
DRδ(i) is bounded.
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Next, since ηi is continuous, we have that DRδ(i) is closed.
Further, ηi is a sum of convex function and hence it is convex.
Therefore, its sublevel set DRδ(i) is convex.

To show the last claim, note that ηi is uniformly continuous
on [0, b]2k for any b > 0. Thus, there exists ε > 0 such
that for any x, x′ ∈ [0, b]2k with ∥x − x′∥2 ≤ ε, we have
|ηi(x)− ηi(x

′)| ≤ δ′ − δ. This proves B2(DRδ(i), ε)∩R
2k
+ ⊂

DRδ′(i), and completes the proof of the lemma. □

B. Relating Dissonance Range With Degree Profiles of CSBMs

Our next goal will be to identify which degree profiles are
likely to occur in CSBMs.

Lemma 22: Fix 0 < δ < δ′. Let t ∈ (1/δ′, 1/δ) and G ∼
CSBMk

n(P, ρ, t). The following holds with probability 1−o(1):

1) There exists c > 0 such that for every i ∈ [k] and d ∈ Z
2k
+

satisfying d/(t log(n)) ∈ DRδ(i), there are at least nc

vertices in community i with degree profile d.
2) For each i ∈ [k] and for every vertex v ∈ G in community

i, the degree profile of v is of the form xt log(n) for some
x ∈ DRδ′(i).

In order to prove this lemma, we need the Poisson approx-
imation result stated below. The proof of this follows from
a straightforward application of Stirling’s approximation and
will therefore be provided in Appendix A.

Lemma 23: Let (Sr)r∈[k] be a partition of [n] such that
|Sr| = nρr(1+O(log−2 n)) for all r ∈ [k], where ρ ∈ (0, 1)k.
Suppose that {Wv}n

v=1 is i.i.d. from a distribution taking values
in {a, b, c} and, if v ∈ Sr, P(Wv = a) = αψr, P(Wv = b) =
α(1 − ψr), and P(Wv = c) = 1 − α. Fix i ∈ [k]. Also, let
V ⊂ Si be such that |V | = O(n/ log2 n).

For x ∈ {a, b}, let Dx,r := #{v ∈ Sr : Wv = x} for
r ∈ [k] \ {i} and Dx,i := #{v ∈ Si ∩ V c : Wv = x}. Let
D = (Da,r, Db,r)r∈[k] and also let d = (d1,r, d2,r)r∈[k] ∈ Z

2k
+

be such that ∥d∥1 = o(log3/2 n) and α = t log n/n. Then

P (D = d) ≍
k
∏

r=1

P (ρrψrt log n; d1,r)

P (ρr(1 − ψr)t log n; d2,r) ,

where P (λ;m) is the probability that a Poisson(λ) random
variable takes value m.

Proof of Lemma 22: To prove the first part, fix i ∈ [k]
and let d ∈ Z

2k
+ be such that d/(t log(n)) ∈ DRδ(i).

Recall that nj is the number of vertices in community j
for every j ∈ [k]. By (I.4), |nj − nρj | ≤ n

2
3 for all

j ∈ [k], with probability 1 − o(1). In the subsequent proof,
we always condition on this event, even if it is not mentioned
explicitly.

In order to prove bounds on how many vertices have a
given degree profile, we will want a large set of vertices
whose degree profiles are independent. As such, let Si be a
random set of 2n/ log2(n) vertices in community i, chosen
independently from G, σ0. Next, let S′

i be the subset of Si

consisting of all vertices v such that all the connections between
v and Si are censored. Note that the degree profiles of the
vertices in S′

i are independent conditioned on the number of
vertices in each community. To lower-bound the size of S′

i,

let X be the number of revealed connections among vertices
in S. By a counting argument, |S′

i| ≥ |Si| − 2X . Observe
that E[X] =

(

2n/ log2 n
2

)

t log n
n = O(n/ log3(n)). The Markov

inequality then implies that X = o(|Si|) with high probability,
which implies |S′

i| ≥ 1
2 |Si| = n

log2(n)
.

Let F ′ denote the sigma-algebra with respect to which Si

and (nj)j∈[k] are measurable, and let

F :=F
′ ∩
{

|nj − nρj | ≤ n
2
3 ,∀j ∈ [k]

}

∩
{

|S′
i| ≥

n

log2(n)

}

.

Fix v ∈ [n]. Since DRδ(i) is bounded, we have that ∥d∥1 =
O(log n). Thus, by Lemma 23,

P(d(v) = d | F ∩ {v ∈ S′
i})

≍ e−t log n
k
∏

j=1

[

ρjPi,jt log(n)
]d+j

d+j !

[

ρj(1 − Pi,j)t log(n)
]d−j

d−j !

≍ n−t
k
∏

j=1

(ρjPi,jt log(n))d+j

√

2πd+j(d+j/e)d+j

(ρj(1 − Pi,j)t log(n))d−j

√

2πd−j(d−j/e)d−j

= n−t
k
∏

j=1

1

2π
√

d+jd−j

(

eρjPi,jt log(n)

d+j

)d+j

(

eρj(1 − Pi,j)t log(n)

d−j

)d−j

=

( k
∏

j=1

1

2π
√

d+jd−j

)

n−tηi(d/t log n), (II.3)

where in the final step, we have used the definition of ηi

from (II.2). Next, since d/(t log(n)) ∈ DRδ(i), we have that
ηi(d/t log(n)) ≤ δ, and thus (II.3) yields, for all sufficiently
large n,

pn := P(d(v) = d | F ∩ {v ∈ S′
i})

≥ C
n−tδ

logk n
+ o(n−1)

≥ n−tδ(1+o(1)),

for some C > 0. Next, if d′(v) denotes the degree profile
of vertex v discarding all the present and absent edges in Si,
then d(v) = d′(v) for all v ∈ S′

i. Moreover, conditionally on
F ′, {d′(v)}v∈S′

i
are independent. Thus, conditionally on F ,

|{v ∈ S′
i : d(v) = d}| is distributed as a Bin(|S′

i|, pn) random
variable. Note also that, conditionally on F , |S′

i|pn ≥ 2nc for
some c > 0. Thus, using concentration of binomial random
variables, we conclude that

|{v ∈ S′
i : d(v) = d}| ≥ 1

2
|S′

i| pn ≥ nc

with probability at least 1 − exp(−c′nc) for some c′ > 0.
Observing that |{d ∈ Z

2k
+ : d/(log n) ∈ DRδ(i)}| =

O (polylog(n)) = o(exp(c′nc)), the claim follows by a union
bound.

In order to prove the second part, we again use (II.3). By the
union bound and [15, Corollary 2.4], there exists a sufficiently
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large constant C > 0 such that

P(∃v ∈ [n] : ∥d(v)∥1 > C log n) = o(n−1). (II.4)

Now, for any d such that d/(t log n) /∈ DRδ′(i) and ∥d∥1 ≤
C log n, we can use (II.3) to show that, for all sufficiently large
n, and fixed v ∈ [n]

P(d(v) = d)

≤ (1 + o(1))

( k
∏

j=1

1

2π
√

d+,jd−,j

)

n−tηi(d/t log n)

≤ n−tδ′

.

Now,

P(∃v with σ0(v) = i : d(v)/(t log n) /∈ DRδ′(i))

≤ nP(d(v) = d for some d/(t log n) /∈ DRδ′(i)

and ∥d∥1 ≤ C log n) + o(1)

≤ n(C log n)2kn−tδ′

+ o(1) = o(1),

where in the last step we have used that tδ′ > 1. Hence the
proof is complete. □

C. Separating Degree Profiles Using Hyperplanes

Now that we have connected the degree profiles that
occur in a community with dissonance ranges relative to that
community, we can start showing that the behavior of the
dissonance ranges implies results on our ability to separate
the communities with hyperplanes, starting with the following
proposition:

Proposition 24: Let G ∼ CSBMk
n(ρ, P, t), Z ⊂ R

2k be a
linear subspace, and let δ > 0 be such that tδ < 1. Suppose
further that there are communities i and j such that the
projections of DRδ(i) and DRδ(j) onto Z overlap. Then,
for any m ∈ N, there exists ε > 0 such that for any unit
vectors w1, . . . , wm ∈ Z and γ1, . . . , γm ∈ R, with probability
1− o(1), [(wr)

m
r=1, (γr log n)m

r=1] confuses communities i and
j at level ε log(n).

Proof: Let z0 ∈ ProjZ(DRδ(i)) ∩ ProjZ(DRδ(j)).
There must exist zi ∈ DRδ(i) and zj ∈ DRδ(j) such that
ProjZ(zi) = ProjZ(zj) = z0. Now, let δ′ = 1

2

(

δ + 1
t

)

,
so that δ < δ′ < 1

t . By Lemma 21, there exists µ > 0 such
that B2(DRδ(i), µ) ∩ R

2k
+ ⊆ DRδ′(i) and B2(DRδ(j), µ) ∩

R
2k
+ ⊆ DRδ′(j). So, if we let µ0 = µ/3k and z′0 =

z0 + ProjZ(µ0, µ0, . . . , µ0) then

B2(z
′
0, µ0) ∩ Z = ProjZ(B2(zi + (µ0, . . . , µ0), µ0))

⊆ ProjZ(B2(zi, µ) ∩ R
2k
+ )

⊆ ProjZ(DRδ′(i))

By the same logic, B2(z
′
0, µ0) ∩ Z ⊆ ProjZ(DRδ′(j)).

Now, let Sd be the volume of a unit ball in d dimensions,
and d be the dimensionality of Z . Note that B2(z

′
0, µ0) ∩ Z

is a ball of radius µ0 in dimension d, and therefore it has
volume Sdµ

d
0. For any hyperplane and any ε0 > 0, the

region of B2(z
′
0, µ0) ∩ Z that is within ε0 of the hyperplane

has a volume strictly less than 2ε0Sd−1µ
d−1
0 . Fix m ∈ N

and set ε0 = µ0Sd/(2mSd−1). It follows that for any unit

vectors w1, . . . , wm ∈ Z , and any γ1, . . . , γm ∈ R, the
region of B2(z

′
0, µ0) ∩ Z that is within ε0 of any hyper-

plane of the form {x : wT
r x = γr

t } has volume that is
strictly less than m · 2ε0Sd−1µ

d−1
0 = Vol (B2(z

′
0, µ0) ∩ Z).

Therefore, there exists a point x0 ∈ B2(z
′
0, µ0) ∩ Z such

that
∣

∣

∣
wT

r x0 −
γr

t

∣

∣

∣
> ε0

for all 1 ≤ r ≤ m. So, there exists an open ball B ⊆
B2(z

′
0, µ0) ∩ Z , and s ∈ {−1, 1}m such that for all x ∈ B,

sr

(

wT
r x− γr

t

)

>
ε0
2

for all 1 ≤ r ≤ m. In other words, the open ball B is separated
from all hyperplanes defined by (wr,

γr

t )m
r=1.

Now, observe that for all sufficiently large n there exist xi ∈
DRδ′(i)∩Proj−1

Z (B) and xj ∈ DRδ′(j)∩Proj−1
Z (B) such that

xit log(n), xjt log(n) ⊆ Z2k
+ . Since tδ′ < 1, by Lemma 22,

with probability 1−o(1), there exist vertices u ∈ Vi and v ∈ Vj

such that d(u)/(t log(n)) = xi and d(v)/(t log(n)) = xj .
By the above, we have

sr

(

wT
r

d(u)

t log n
− γr

t

)

= sr

(

wT
r

d(v)

t log n
− γr

t

)

>
ε0
2

for all 1 ≤ r ≤ m. Multiplying through by t log n and taking
ε = tε0

2 , we conclude that [(wr)
m
r=1, (γr log n)m

r=1] confuses
communities i and j at level ε log n. □

D. When Dissonance Ranges Barely Overlap

At this point, the key question is what hyperplanes can
separate the rescaled degree profiles from different communities.
In order to answer that, we consider the ªhardestº case where
t = t0 = 1/∆+(θi, θj), with θi defined by (I.2). Recall that
w⋆ is defined so that

w⋆ =

(

log
Pri

Prj
, log

1 − Pri

1 − Prj

)

r∈[k]

. (II.5)

Below, we show that the hyperplane orthogonal to w⋆ almost
separates the dissonance ranges even for t = t0. We also set up
additional properties that will help us to show that a hyperplane
orthogonal to w ̸= w⋆ cannot separate the dissonance ranges
just above t0, and also to establish the impossibility of exact
recovery (Theorem 4) below t0.

Lemma 25: Suppose that 1 ≤ i < j ≤ k and let t0 =
1/∆+(θi, θj), where θi is defined by (I.2). Then DR1/t0(i) and
DR1/t0(j) intersect at a single point. Let x⋆ be this intersection
point of DR1/t0(i) and DR1/t0(j). Let H := {x : ⟨w⋆, x −
x∗⟩ ≥ 0} be the half-space created by the hyperplane through
x⋆ perpendicular to w⋆. Then DR1/t0(i) ∩ H = DR1/t0(i)
and DR1/t0(j)∩H = {x⋆}, i.e., the hyperplane {x : ⟨w⋆, x−
x∗⟩ = 0} separates DR1/t0(i) \ {x⋆} and DR1/t0(j) \ {x⋆}.
Also, there exists r > 0 such that B2(x

⋆ + rw⋆, r∥w⋆∥2) ⊂
DR1/t0(i) and B2(x

⋆ − rw⋆, r∥w⋆∥2) ⊂ DR1/t0(j). For t <
t0, the intersection DR1/t(i) ∩ DR1/t(j) has a non-empty
interior.

Proof: Recall the definition of ∆+ and CHξ from
Definition 3. Let ξ⋆ be the maximizer of (I.1). We claim
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that 0 < ξ⋆ < 1. Indeed,

∆+(θi, θj) = 1 − min
ξ∈[0,1]

∑

r∈[k]

ρr

(

P ξ
riP

1−ξ
rj

+ (1 − Pri)
ξ(1 − Prj)

1−ξ
)

=: 1 − min
ξ∈[0,1]

f(ξ).

Now, f(0) = f(1) = 1, and f(1/2) < 1 by the inequality of
arithmetic and geometric means. Therefore, the minimum of
f is not attained at {0, 1}, which proves 0 < ξ⋆ < 1.

Next, define the 2k-dimensional vector

x⋆ =
(

ρrP
ξ⋆

ri P
1−ξ⋆

rj , ρr(1 − Pri)
ξ⋆

(1 − Prj)
1−ξ⋆

)

r∈[k]
.

Setting d
dξ CHξ(θi, θj)

∣

∣

ξ=ξ⋆ = 0 yields

∑

r∈[k]

[

ρrP
ξ⋆

ri P
1−ξ⋆

rj log
Pri

Prj

+ ρr(1 − Pri)
ξ⋆

(1 − Prj)
1−ξ⋆

log
1 − Pri

1 − Prj

]

= ⟨w⋆, x⋆⟩ = 0. (II.6)

Also recall ηi from (II.2). Then,

ηi(x
⋆) − ηj(x

⋆)

=
k
∑

r=1

[

x⋆
1,r log

(

x⋆
1,r

eρrPri

)

+ x⋆
2,r log

(

x⋆
2,r

eρr(1 − Pri)

)]

−
k
∑

r=1

[

x⋆
1,r log

(

x⋆
1,r

eρrPrj

)

+ x⋆
2,r log

(

x⋆
2,r

eρr(1 − Prj)

)]

=
k
∑

r=1

[

x⋆
1,r log

(

Prj

Pri

)

+ x⋆
2,r log

(

1 − Pri

1 − Prj

)]

= ⟨w⋆, x⋆⟩ = 0.

Therefore,

ηi(x
⋆) = ηj(x

⋆) = ξ⋆ηi(x
⋆) + (1 − ξ⋆)ηj(x

⋆)

=

k
∑

r=1

[

x⋆
1,r log

(

x⋆
1,r

eρrP
ξ⋆

ri P
1−ξ⋆

rj

)

+ x⋆
2,r log

(

x⋆
2,r

eρr(1 − Pri)ξ⋆(1 − Prj)1−ξ⋆

)]

+ 1

=
k
∑

r=1

[

x⋆
1,r log(1/e) + x⋆

2,r log(1/e)
]

+ 1

= 1 −
k
∑

r=1

[

x⋆
1,r + x⋆

2,r

]

=

k
∑

r=1

[

ρr − ρrP
ξ⋆

ri P
1−ξ⋆

rj − ρr(1 − Pri)
ξ⋆

(1 − Prj)
1−ξ⋆

]

= ∆+(θi, θj).

Therefore, x⋆ ∈ DR1/t0(i) ∩ DR1/t0(j). Next, observe that

∇ηi(x
⋆)

=

(

log

(

x⋆
1,r

eρrPri

)

+ 1, log

(

x⋆
2,r

eρr(1 − Pri)

)

+ 1

)

r∈[k]

=

(

log

(

Pri

Prj

)ξ⋆−1

, log

(

1 − Pri

1 − Prj

)ξ⋆−1)

r∈[k]

= (ξ⋆ − 1)w⋆.

Similarly, we also have that

∇ηj(x
⋆)

=

(

log

(

x⋆
1,r

eρrPrj

)

+ 1, log

(

x⋆
2,r

eρr(1 − Prj)

)

+ 1

)

r∈[k]

=

(

log

(

Pri

Prj

)ξ⋆

, log

(

1 − Pri

1 − Prj

)ξ⋆
)

r∈[k]

= ξ⋆w⋆.

By convexity of ηi and ηj , for any x ∈ [0,∞)2k, we have that

ηi(x) ≥ ηi(x
⋆) + ⟨x− x⋆,∇ηi(x

⋆)⟩

=
1

t0
+ ⟨x− x⋆, (ξ⋆ − 1)w⋆⟩ (II.7)

and

ηj(x) ≥ ηj(x
⋆) + ⟨x− x⋆,∇ηj(x

⋆)⟩

=
1

t0
+ ⟨x− x⋆, ξ⋆w⋆⟩. (II.8)

In (II.7) and (II.8), equality can hold only at x = x⋆ since
ηi and ηj are strictly convex. Now, for any x ∈ DR1/t0(i),
we have ηi(x) ≤ 1/t0. Thus, (II.7) implies that (ξ⋆ − 1)⟨x−
x⋆, w⋆⟩ ≤ 0, in which case, we must have ⟨x − x⋆, w⋆⟩ ≥
0 for all x ∈ DR1/t0(i), and therefore DR1/t0(i) ⊂ H .
Moreover, (II.8) implies that ξ⋆⟨x − x⋆, w⋆⟩ ≤ 0, and since
0 < ξ⋆ < 1, the equality holds if and only if x = x⋆. Therefore,
DR1/t0(j) ∩ H = {x⋆}, which proves the first part of the
claim.

Next, observe that by continuity of the second derivatives of
ηi and ηj , there must exist r0, c > 0 such that for all x with
||x− x⋆||2 ≤ r0,

ηi(x) ≤ ηi(x
⋆) + ⟨x− x⋆,∇ηi(x

⋆)⟩ + c∥x− x⋆∥2
2

=
1

t0
+ ⟨x− x⋆, (ξ⋆ − 1)w⋆⟩ + c∥x− x⋆∥2

2

=
1

t0
+ c∥x− x⋆ + (ξ⋆ − 1)w⋆/2c∥2

2

− ∥(ξ⋆ − 1)w⋆∥2
2/4c

≤ 1

t0
,

for ∥x− x⋆ + (ξ⋆ − 1)w⋆/2c∥2 ≤ ∥(ξ⋆ − 1)w⋆∥2/2c, and

ηj(x) ≤ ηj(x
⋆) + ⟨x− x⋆,∇ηj(x

⋆)⟩ + c∥x− x⋆∥2
2

=
1

t0
+ ⟨x− x⋆, ξ⋆w⋆⟩ + c∥x− x⋆∥2

2

=
1

t0
+ c||x− x⋆ + ξ⋆w⋆/2c||22 − ||ξ⋆w⋆||22/4c

≤ 1

t0
,

for ∥x− x⋆ + ξ⋆w⋆/2c∥2 ≤ ∥ξ⋆w⋆∥2/2c. In order to ensure
that ηi(x), ηj(x) ≤ 1/t0, set r = min(r0/∥w⋆∥2, ξ

⋆/c, (1 −
ξ⋆)/c)/2. The ball of radius r||w⋆||2 centered on x⋆ − rw⋆

is completely contained in DR1/t0(j) and the ball of radius
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r||w⋆||2 centered on x⋆ + rw⋆ is completely contained in
DR1/t0(i), as desired.

Finally, for t < t0, observe that B2(DR1/t0(i), ε̃) ⊂
DR1/t(i) for some ε̃ > 0, and thus x⋆ is in the interior
of DR1/t(i). Similarly, x⋆ is in the interior of DR1/t(j).
Therefore, the intersection DR1/t(i) ∩ DR1/t(j) has a non-
empty interior. □

E. A Necessary and Sufficient Condition for Optimal Recovery

Finally, we combine the results of the above sections to prove
Proposition 18. Recall the notions of separating communities
and confusing communities from Definitions 16 and 17.

Proof of Proposition 18: To prove the first part, define t0 =
1/∆+(θi, θj), so that t0 < t. By Lemma 25, there exists x⋆

such that DR1/t0(i) ∩ DR1/t0(j) = {x⋆}. Additionally, the
hyperplane {x : ⟨w⋆, x − x⋆⟩ = 0} separates DR1/t0(i) and
DR1/t0(j). Note that by (II.6), the hyperplane is equivalently
written as {x : ⟨w⋆, x⟩ = 0}. Thus, for all x ∈ DR1/t0(i),
we have ⟨w⋆, x⟩≥0, while for all x ∈ DR1/t0(j), we have
⟨w⋆, x⟩≤0.

Since DR1/t0(i) and DR1/t0(j) are both closed, convex sets,
x⋆ is neither in the interior of DR1/t0(i) nor in the interior of
DR1/t0(j). Fix some δ ∈ ( 1

t ,
1
t0

). By Lemma 21, there exists
ε′ > 0 such that B2(DRδ(i), ε

′) ⊂ DR1/t0(i). Therefore,
we can conclude that x⋆ /∈ DRδ(i). Similarly x⋆ /∈ DRδ(j).
Hence, DRδ(i)∩DRδ(j) = ∅. Also, since DR1/t0(i)\{x⋆} ⊂
{x : ⟨w⋆, x⟩ > 0}, and DR1/t0(j)\{x⋆} ⊂ {x :
⟨w⋆, x⟩ < 0}, we can conclude that the hyperplane {x :
⟨w⋆, x⟩ = 0} separates DRδ(i) and DRδ(j). Since disso-
nance ranges are closed by Lemma 21, there exists ε >
0 such that for any x(i) ∈ DRδ(i) and x(j) ∈ DRδ(j), we
have

⟨w⋆, x(i)⟩ > ε

2t
and ⟨w⋆, x(j)⟩ < − ε

2t
.

By Lemma 22, d(u)/(t log(n)) ∈ DRδ(i) for every u ∈ Vi

with probability 1−o(1). Similarly, d(v)/(t log(n)) ∈ DRδ(j)
for every v ∈ Vj with probability 1 − o(1). Therefore, with
probability 1 − o(1), we have that for all u ∈ Vi and
v ∈ Vj ,

⟨w⋆, d(u)⟩ > ε

2
log(n) and ⟨w⋆, d(v)⟩ < −ε

2
log(n).

We conclude that w⋆ separates communities i and j with
margin ε log n with high probability.

Next, suppose that w⋆ ̸∈ Z . By Lemma 25, there exists r >
0 such that B2(x

⋆ + rw⋆, r∥w⋆∥2) ⊂ DR1/t0(i) and B2(x
⋆ −

rw⋆, r∥w⋆∥2) ⊂ DR1/t0(j). Next, let w′ be the projection of
w⋆ onto Z . The fact that w⋆ /∈ Z implies that w⋆−w′ ̸= 0 and
∥w′∥2 < ∥w⋆∥2. Let x(i) = x⋆ + r(w⋆ − w′) and x(j) =
x⋆−r(w⋆−w′). We claim that there exists a sufficiently small
r′ > 0 such that

B2(x
(i), r′) ⊂ DR1/t0(i) and B2(x

(j), r′) ⊂ DR1/t0(j).

(II.9)

Indeed, take y ∈ B2(x
(i), r′). Then,

∥y − (x⋆ + rw⋆)∥2 ≤ r′ + r∥w′∥2.

Since ∥w′∥2 < ∥w⋆∥2, we can pick r′ such that ∥y − (x⋆ +
rw⋆)∥2 ≤ r∥w⋆∥2, and therefore B2(x

(i), r′) ⊂ B2(x
⋆ +

rw⋆, r∥w⋆∥2) ⊂ DR1/t0(i). The second conclusion of (II.9)
follows similarly.

By (II.9), since x(i) and x(j) lie in interiors of DR1/t0(i) and
DR1/t0(j) respectively, there exists µ > 0 such that, for any
t < t0 + µ, x(i) and x(j) also lie in interiors of DR1/t(i) and
DR1/t(j) respectively. Note that ProjZ(x(i)) = ProjZ(x(j)),
therefore the projections DR1/t(i) and DR1/t(j) onto Z
overlap. The desired conclusion follows by Proposition 24.□

III. ACHIEVABILITY AND IMPOSSIBILITY

Let us define the Maximum A Posteriori (MAP) estimator,
which is the optimal estimator of σ0.3 Given a realization G
of the censored graph, the MAP estimator outputs σ̂MAP ∈
argmaxσ P(σ0 = σ | G), choosing uniformly at random from
the argmax set. In this section, we start by proving Theorem 4,
which is essentially equivalent to showing that σ̂MAP does not
succeed in exact recovery for t < tc. Next we prove that, in the
two community case, the estimator σ̂MAP always succeeds for
t > tc. This shows the statistical achievability for the exact
recovery problem.

Remark 26: Following the original posting of this paper
to arXiv, we came to know of an earlier work of Yun and
Proutiere [14], which establishes the information-theoretic
threshold for a general class of labeled stochastic block models.
Theorems 4 and 27 can be obtained by verifying the conditions
of [14, Theorem 3]. In more detail, the positive direction of [14,
Theorem 3] shows that an iterative spectral algorithm recovers
the communities with high probability above the threshold.
The negative direction rules out the existence of an algorithm
that succeeds with high probability, which is weaker than
Theorem 4. However, the negative result can be strengthened,
using some intermediate results found in the proof of [14,
Theorem 3], to say that below the threshold, any algorithm
fails to recover the communities with high probability. The
results of Yun and Proutiere are stated in terms of another
divergence quantity, which is asymptotically related to the CH
divergence as per [14, Claim 4].
We include our original proofs for completeness. Theorem 4
is a straightforward consequence of the machinery developed
in Section II, and the proof of Theorem 27 is non-algorithmic,
instead directly analyzing the MLE.

A. Impossibility

Proof of Theorem 4: Recall that we have t < tc in
this case where tc is given by (I.2). Fix i < j such that
t < t0 = 1/∆+(θi, θj). Using the final conclusion of
Lemma 25, we have that DR1/t(i) ∩ DR1/t(j) contains an
open ball. By Lemma 22 (1), there exists d ∈ Z

2k
+ such that

d/(t log n) ∈ DR1/t(i) ∩ DR1/t(j) and there are Ln pairs of
vertices {(ul, vl) : l ∈ [Ln]} with ul’s from community 1, vl’s
from community 2, and Ln → ∞ such that d(ul) = d(vl) = d
for all l ∈ [Ln]. Let Σ := argmaxσ P(σ0 = σ | G). The above
shows that |Σ| ≥ Ln with probability 1−o(1), since swapping
the labels of ul and vl leads to an equiprobable assignment

3Here, the MAP estimator is optimal because it minimizes the 0-1 loss; that
is, it minimizes P(σ̂ ̸= σ0) over all estimators σ̂.
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as they have the same degree profile. Now, σ̂MAP makes a
uniform selection from Σ. Thus, conditionally on |Σ| ≥ Ln,
σ̂MAP fails to recover community labels of all the vertices in
{(ul, vl) : l ∈ [Ln]} with probability at least 1 − 1/Ln. Since
Ln → ∞ and |Σ| ≥ Ln with probability 1 − o(1), we have
shown that σ̂MAP fails to achieve exact recovery with probability
1 − o(1). Since σ̂MAP fails, any other estimator also fails in
exact recovery, completing the proof. □

B. Statistical Achievability

Theorem 27: Let G ∼ CSBMk
n(ρ, P, t). If t > tc, then

lim
n→∞

P(σ̂MAP achieves exact recovery) = 1.

In order to prove Theorem 27, we require two concentration
results. Given a graph G = (V,E) and W ⊆ V , let e(W ) be
the number of edges with both endpoints in W .

Lemma 28 ( [16, Corollary 2.3]): Let 0 ≤ pn ≤ 0.99 and
let G be a sample from an Erdős-Rényi random graph on vertex
set [n] and with edge probability pn. Then, with probability
1 − o(1),
∣

∣

∣

∣

e(W ) −
(|W |

2

)

pn

∣

∣

∣

∣

≤ O(
√
npn)|W | for all W ⊆ [n].

Lemma 29: Let X1, X2, . . . , Xn be a sequence of indepen-
dent discrete random variables, whose support is a finite set S.
Let X =

∑n
i=1Xi and Y =

∑n
i=1 |Xi|. Let L = max{|x| :

x ∈ S}. Then for any δ ∈ (0, 1),

P (|X − E [X]| ≥ δ|E [X] |) ≤ exp

(

2 − Cδ2
(E[X])

2

LE[Y ]

)

,

where C > 0 is a universal constant.
The proof of Lemma 29 follows directly from [17, Theorem

1.3]. See Appendix B for details. We will also need the
following definitions in the proof of Theorem 27.

Definition 30 (Permissible Relabeling): A permutation π :
[k] → [k] is called a permissible relabeling if ρ(i) = ρ(π(i))
for all i ∈ [k] and Pij = Pπ(i),π(j) for all i, j ∈ [k]. Let
P(ρ, P ) denote the set of permissible relabelings.

Definition 31 (Discrepancy): Given two assignments σ, σ′ :
[n] → [k], their discrepancy DISC(σ, σ′) is defined as

min
π∈P(ρ,P )

{dH((π ◦ σ), σ′)} ,

where dH(·, ·) denotes the Hamming distance.
Note that, if an estimator σ̂ satisfies DISC(σ̂, σ0) = 0 with

high probability, then σ̂ achieves exact recovery. Next, let E+

and E− respectively denote the sets of present and absent edges
of G. For a community assignment σ, communities i, j ∈ [k]
and □ ∈ {+,−}, define

Sij
□

(G, σ) = {e = {u, v} ∈ E□ : {σ(u), σ(v)} = {i, j}
and sij

□
(G, σ) = |Sij

□
(G, σ)|.

For example, s11− (G, σ) is the number of absent edges with
both endpoints in community 1 according to σ. Define

z(G, σ) = 2
∑

i,j∈[k]:j≥i

[

sij
+(G, σ) logPij

+ sij
−(G, σ) log(1 − Pij)

]

. (III.1)

Note that z(G, σ) is twice the log-likelihood of G under σ.
The idea is to show that the maximizer of z(G, σ) yields a
configuration σ with zero discrepancy. We state this in the
following two lemmas which deal with low and high values
of discrepancies separately.

Lemma 32: There exists c ∈ (0, 1) such that with high
probability

z(G, σ) < z(G, σ0)

for all σ such that 0 < DISC(σ, σ0) ≤ cn. (III.2)

For the high discrepancy case, we need to restrict the range
of σ. To that end, for any η > 0, define

Σ0(η) :=
{

σ : [n] 7→ [k] : |{v : σ(v) = i}|

∈ ((ρi − η)n, (ρi + η)n), ∀i ∈ [k]
}

. (III.3)

Lemma 33: Fix any c ∈ (0, 1]. There exists an η > 0 such
that with high probability

z(G, σ) < z(G, σ0)

for all σ ∈ Σ0(η) such that DISC(σ, σ0) ≥ cn. (III.4)

Proof of Theorem 27: Fix c such that both the conclusions
of Lemmas 32 and 33 hold. Let η be picked according to
Lemma 33. Rather than analyzing the MAP estimator, we will
analyze the estimator

σ = argmax
σ∈Σ0(η)

{z(G, σ)}.

Lemmas 32 and 33 yield DISC(σ, σ0) = 0, and therefore σ
succeeds in exact recovery, with high probability. Since the
MAP estimator is optimal, this also implies that the MAP
estimator succeeds in exact recovery with high probability. □

Proof of Lemma 32: Let DISC(σ, σ0) = δn for some δ > 0
(to be chosen later). Let π ∈ P(ρ, P ) be such that dH(σ ◦
π, σ0) = δn. However, since z(G, σ) = z(G, σ ◦ π) for any
π ∈ P(ρ, P ), we can without loss of generality assume that
dH(σ, σ0) = δn. Let us fix □ ∈ {+,−}. To prove (III.2),
we start by analyzing srj

□
(G, σ) − srj

□
(G, σ0) with r, j ∈ [k].

Fix r ̸= j. We decompose

srj
□

(G, σ) − srj
□

(G, σ0)

=
∑

{u,v}∈E□

1{{σ(u),σ(v)}={r,j},{σ0(u),σ0(v)}={r,i},i ̸=j}

+
∑

{u,v}∈E□

1{{σ(u),σ(v)}={r,j},{σ0(u),σ0(v)}={i,j},i ̸=r}

+
∑

{u,v}∈E□

1{{σ(u),σ(v)}={r,j},{σ(u),σ(v)}∩{σ0(u),σ0(v)}=∅}

−
∑

{u,v}∈E□

1{{σ(u),σ(v)}={r,i},i ̸=j,{σ0(u),σ0(v)}={r,j}}

−
∑

{u,v}∈E□

1{{σ(u),σ(v)}={i,j},i ̸=r,{σ0(u),σ0(v)}={r,j}}

−
∑

{u,v}∈E□

1{{σ0(u),σ0(v)}={r,j},{σ(u),σ(v)}∩{σ0(u),σ0(v)}=∅}.

(III.5)
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To analyze (III.5), denote the six terms above by (I), (II), . . . ,
(VI) respectively.

Let H□(σ) be the graph on {v : σ(v) ̸= σ0(v)} where
{u, v} is an edge of H□(σ) if and only if {u, v} ∈ E□. Let
e(H□(σ)) denote the number of edges in H□(σ). We will show
that
∣

∣

∣

∣

(I) −
∑

i∈[k]\{j}

∑

v:σ(v)=j,σ0(v)=i

d□r(v)

∣

∣

∣

∣

≤ 3k · e(H□(σ)).

(III.6)

To compute (I), fix i, r, j, r ̸= j i ̸= j, and consider two cases:
Case I: i, j, r are distinct. Denote this contribution as

(Ia). There are two subcases. Suppose that the r-labeled
vertex under σ, σ0 is the same vertex. Think of u being
such that σ(u) = σ0(u) = r. The number of such
edges is

∑

v:σ(v)=j,σ0(v)=i d□r(v) − Err(I), where Err(I) is the
number of {u, v} ∈ E□ such that σ(u) ̸= r, σ0(u) =
r, σ(v) = j, σ0(v) = i. To see this, note that the summation
∑

v:σ(v)=j,σ0(v)=i d□r(v) counts all edges (present or absent
depending on □ = + or □ = −) from {v : σ(v) = j, σ0(v) =
i} to {u : σ0(u) = r}. However, this causes an over-counting
because these edges may be incident to u’s with σ(u) ̸= r,
resulting in the substraction of Err(I). Note that Err(I) is at most
e(H□(σ)). Next, consider the second subcase, where the r-
labeled vertex under σ, σ0 are different. Since i, j, r are distinct,
such edges will have both endpoints in {v : σ(v) ̸= σ0(v)}.
Therefore,

∣

∣

∣

∣

(Ia) −
∑

v:σ(v)=j,σ0(v)=i

d□r(v)

∣

∣

∣

∣

≤ 2 e(H□(σ)). (III.7)

Case II: i = r. Denote this contribution as (Ib). Since r ̸= j,
we only need to consider the case where one of the endpoints
is labeled r by both σ, σ0. An argument identical to the first
part of Case I shows

∣

∣

∣

∣

(Ia) −
∑

v:σ(v)=j,σ0(v)=i

d□r(v)

∣

∣

∣

∣

≤ e(H□(σ)). (III.8)

Combining (III.7) and (III.8), (III.6) follows immediately.
Bounds similar to (III.6) also hold for Terms (II), (IV), and (V).
Term (III) is easily bounded by e(H□(σ)). Finally, we simply
drop Term (VI) for upper bounding (III.6).

For r = j, we get a similar decomposition as (III.5), except
that the second and fifth terms would be omitted. For each of
the terms, we can also prove (III.6). In particular,

∣

∣

∣

∣

∣

∣

(I) −
∑

i∈[k]\{j}

∑

v:σ(v)=j,σ0(v)=i

d□r(v)

∣

∣

∣

∣

∣

∣

≤ (k − 1) · e(H□(σ)) ≤ 3k · e(H□(σ)).

Next, we need to bound e(H□(σ)). Note that the number
of vertices in H□(σ) is dH(σ, σ0), where dH(·, ·) denotes the
Hamming distance. Letting τ = maxa,b∈[k] max{Pab, 1−Pab},
we see that there is a coupling such that, with probability 1,
H□(σ) is a subgraph of an Erdős-Rényi random graph on
vertex set [n] and edge probability τt log n

n . Applying Lemma 28,

we obtain that with probability 1 − o(1)

e(H□(σ)) ≤ τt log n

2n
dH(σ, σ0)

2 +O(
√

log n)dH(σ, σ0)

for all σ ∈ [k]n. (III.9)

Combining (III.6) and (III.9), we get an estimate for (I) in (III.5).
Similar estimates for (II), (IV), (V) can be deduced using an
identical argument. The term (III) can be directly bounded by
e(H□(σ)) as well and (VI) can be dropped. Therefore, (III.5)
that with probability 1 − o(1)

srj
□

(G, σ) − srj
□

(G, σ0)

≤
∑

i:i ̸=j

∑

v:σ(v)=j,σ0(v)=i

d□r(v)

+
∑

i:i ̸=r

∑

u:σ(u)=r,σ0(u)=i

d□j(u)

−
∑

i:i ̸=j

∑

v:σ(v)=i,σ0(v)=j

d□r(v)

−
∑

i:i ̸=r

∑

u:σ(u)=i,σ0(u)=r

d□j(u)

+
8kτt log n

n
dH(σ, σ0)

2 +O(
√

log n)dH(σ, σ0). (III.10)

For r = j, a bound identical to (III.10) holds after omitting
the second and the fourth terms. Next, by Proposition 18 (1),
there exists ε > 0 such that for all i, j ∈ [k] and i > j, with
high probability,

⟨w⋆
ij , d(v)⟩ =

∑

r∈[k]

d+r(v) log
Pri

Prj
+ d−r(v) log

1 − Pri

1 − Prj

{

≥ ε log n, ∀v : σ0(v) = j

≤ −ε log n, ∀v : σ0(v) = i
(III.11)

Let L =
∑

i,j∈[k]

∑

r∈[k]

∣

∣ log Pri

Prj

∣

∣ +
∣

∣ log 1−Pri

1−Prj

∣

∣. Thus,
(III.10) yields

z(G, σ) − z(G, σ0)

≤4
∑

i,j∈[k]
i>j

∑

r∈[k]

[(

∑

v:σ(v)=j,
σ0(v)=i

d+r(v)−
∑

v:σ(v)=i,
σ0(v)=j

d+r(v)

)

log
Pri

Prj

+

(

∑

v:σ(v)=j,
σ0(v)=i

d−r(v) −
∑

v:σ(v)=i,
σ0(v)=j

d−r(v)

)

log
1 − Pri

1 − Prj

]

+
8k3Lτt log n

n
dH(σ, σ0)

2 +O(
√

log n)dH(σ, σ0)

= 4
∑

i,j∈[k]:
i>j

[

∑

v:σ(v)=j,
σ0(v)=i

⟨w⋆
ij , d(v)⟩ −

∑

v:σ(v)=i,
σ0(v)=j

⟨w⋆
ij , d(v)⟩

]

+
8k3Lτt log n

n
dH(σ, σ0)

2 +O(
√

log n)dH(σ, σ0)

≤ −4dH(σ, σ0)ε log n+
8k3Lτt log n

n
dH(σ, σ0)

2

+O(
√

log n)dH(σ, σ0).

Thus, for any δ ≤ ε
3k3Lτt , we can ensure that z(G, σ) −

z(G, σ0) < 0 for all σ with dH(σ, σ0) = δn

Authorized licensed use limited to: Northwestern University. Downloaded on August 31,2024 at 19:47:30 UTC from IEEE Xplore.  Restrictions apply. 



DHARA et al.: POWER OF TWO MATRICES IN SPECTRAL ALGORITHMS FOR COMMUNITY RECOVERY 3611

with high probability. Thus the proof follows by taking
c = ε

2k3Lτt . □

Proof of Lemma 33: Fix c ∈ (0, 1]. Define

η =
1

6

(

min{|ρi − ρj | : ρi ̸= ρj , i, j ∈ [k]}

∧ min{ρi : i ∈ [k]}
)

∧ c

4k
. (III.12)

Throughout, we condition on the event that σ0 ∈ Σ0(η),
where Σ0(η) is defined in (III.3). Due to (I.4), this condi-
tioning event holds with high probability. Fix an assignment
σ ∈ Σ0(η) satisfying DISC(σ, σ0) ≥ cn. The idea is to
show that E [z(G, σ) − z(G, σ0)] ≤ −Cn log n, and use the
concentration bound in Lemma 29 to conclude that (III.2)
holds.

We first compute the expected difference E[z(G, σ) −
z(G, σ0)]. Let Vij := {v : σ0(v) = i, σ(v) = j} and
νij = |Vij |. Fix i, j, a, b such that a ≥ i, j ≥ b, and also, i ̸= j
or a ̸= b. Thus, Vij∩Vab = ∅. The expected number of present
edges between Vij and Vab is νijνab×αPia, where α = t log n

n .
The contribution of these edges to E[z(G, σ) − z(G, σ0)] is

2νijνab × αPia × (log(Pjb) − log(Pia))

= 2νijνab × α× Pia log
Pjb

Pia
.

Similarly, the contribution from absent edges is

2νijνab × α× (1 − Pia) log
1 − Pjb

1 − Pia
.

Summing over all contributions, and noting that the contribution
for the terms with i = j and a = b is zero due to the presence
of log terms, we obtain

E [z(G, σ) − z(G, σ0)]

= 2α
∑

i,j,a,b∈[k]
a≥i,b≥j

νijνab

(

Pia log
Pjb

Pia

+ (1 − Pia) log
1 − Pjb

1 − Pia

)

= −2α
∑

i,j,a,b∈[k]
a≥i,b≥j

νijνabDKL (Pia, Pjb) ,

where DKL(·, ·) denotes the Kullback±Leibler divergence. Our
goal is to upper-bound the expectation. Note that all terms
are nonpositive, so it suffices to bound a subset of the terms.
We treat two disjoint cases separately.

Case 1: For all i, there is at most one j ∈ [k] such that

νij ≥ ηn
k . Fixing i, the pigeonhole principle then implies that

there is exactly one such j. But since
∑

l νil ≥ (ρi − η)n,
we know that

νij ≥ ρin− (k − 1)
ηn

k
− ηn > (ρi − 2η)n.

Next we claim that we cannot have νij > (ρi − 2η)n and
νi′j > (ρi − 2η)n with i ̸= i′. Supposing otherwise, we would
have

2(ρl − 2η)n ≤
∑

i

νil ≤ (ρl + η)n,

which implies ρl ≤ 5η. However, η ≤ ρl

6 by definition (III.12),
and we have arrived at a contradiction. Hence, there exists
a unique permutation π : [k] → [k] such that νi,π(i) >
(ρi − 2η)n for all i ∈ [k].

Next, we argue that π is not permissible. Recall Definition 31.
Indeed, if π were permissible, then

DISC(σ, σ0) ≤ dH(π ◦ σ, σ0)

=
∑

i

∑

j:π(j) ̸=i

νij =
∑

i

(

∑

j

νij − νi,π(i)

)

≤ k × 3ηn < cn,

where the second-to-last step uses
∑

j νij ≤ (ρi + η)n and
νi,π(i) > (ρi − 2η)n and the last step follows from (III.12).
This leads to a contradiction and thus π is not permissible.

Next, observe that
∑

i,a

νiπ(i)νaπ(a)DKL

(

Pia, Pπ(i),π(a)

)

≥ n2
∑

i,a

(ρπ(i) − 2η)(ρπ(a) − 2η)DKL

(

Pia, Pπ(i),π(a)

)

= n2
∑

i,a

(ρi − 2η)(ρa − 2η)DKL

(

Pπ(i),π(a), Pia

)

≥ 4

9
n2
∑

i,a

ρiρa ·DKL

(

Pπ(i),π(a), Pia

)

.

Since π(·) is not permissible, there must exist (i, a) for which
Pia ̸= Pπ(i),π(a), and thus the above term is at least C ′n2 for
some constant C ′ > 0. Hence, E [z(G, σ) − z(G, σ0)] ≤
− 8αC′n2

9 .
Case 2: There exist i, j, j′ with j ̸= j′ such that νij , νij′ ≥

ηn
k . Let b ∈ [k] be such that Pjb ̸= Pj′b. If no such b exists,

then communities j and j′ are indistinguishable. In that case,
tc = ∞ and exact recovery will be impossible for any fixed
t. Let a ∈ [k] be such that νab ≥ n

k , which is guaranteed to
exist by the pigeonhole principle. Then either

Pia ̸= Pjb or Pia ̸= Pj′b.

Recall that α = t log n/n is the censoring probability. Therefore,

− E [z(G, σ) − z(G, σ0)]

≥ 2α
∑

i,j,a,b∈[k]:a≥i,b≥j

νijνabDKL (Pia, Pjb)

≥ α
ηn

k
· n
k

(DKL (Pia, Pjb) +DKL (Pia, Pj′b))

≥ αC ′n2.

Summarizing both cases, we have shown that there exists a
constant C ′′ > 0 such that

E [z(G, σ) − z(G, σ0)] ≤ −αC ′′n2 = −tC ′′n log n.

(III.13)

We next apply Lemma 29 to establish concentration of the
difference z(G, σ) − z(G, σ0). Letting P,A denote the set
of present and absent edges respectively, note that

X :=
1

2
E[z(G, σ) − z(G, σ0)]
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=
∑

1≤u<v≤n

[

1{{u,v}∈P} log
Pσ(u),σ(v)

Pσ0(u),σ0(v)

+ 1{{u,v}∈A } log
1 − Pσ(u),σ(v)

1 − Pσ0(u),σ0(v)

]

.

Denote each term in the summation by Xuv. Then X =
∑

1≤u<v≤nXuv is a sum of independent random variables con-
ditionally on σ0, for any σ ∈ [k]n. Let Y =

∑

1≤u<v≤n |Xuv|.
Then for any δ ∈ (0, 1),

P (z(G, σ) − z(G, σ0) ≥ (1 − δ)E [z(G, σ) − z(G, σ0)])

≤ exp

(

2 − Cδ2
(E[X])

2

LE[Y ]

)

,

where C is the universal constant from Lemma 29, and L >
0 is a constant depending on P, t. To upper-bound E[Y ], note
that for any 1 ≤ u < v ≤ n, we have Xuv = 0 whenever
{σ(u), σ(v)} = {σ0(u), σ0(v)}, and

E [|Xuv|]
|E [Xuv] | =

(

Pσ0(u),σ0(v)

∣

∣

∣

∣

log
Pσ(u),σ(v)

Pσ0(u),σ0(v)

∣

∣

∣

∣

+
(

1 − Pσ0(u),σ0(v)

)

∣

∣

∣

∣

log
1 − Pσ(u),σ(v)

1 − Pσ0(u),σ0(v)

∣

∣

∣

∣

)

(

∣

∣

∣
Pσ0(u),σ0(v) log

Pσ(u),σ(v)

Pσ0(u),σ0(v)

+
(

1 − Pσ0(u),σ0(v)

)

log
1 − Pσ(u),σ(v)

1 − Pσ0(u),σ0(v)

∣

∣

∣

)−1

,

whenever {σ(u), σ(v)} ≠ {σ0(u), σ0(v)}. Since 0 < Pij < 1,
taking a maximum on the right hand side of the above expres-
sion over σ ∈ [k]n with {σ(u), σ(v)} ≠ {σ0(u), σ0(v)} yields
the following: There exists a constant C(1) > 0 depending on
P such that E [|Xuv|] ≤ C(1)|E [Xuv] | for all u, v. It follows
that

E[Y ] ≤ C(1)
∑

1≤u<v≤n

|E[Xuv]| ≤ C(2)n log n,

for some constant C(2) > 0. Also, by (III.13), |E[X]| ≥
tC′′

2 n log n. Therefore there exists a constant C̃ > 0 such
that

P (z(G, σ) − z(G, σ0) ≥ (1 − δ)E [z(G, σ) − z(G, σ0)])

≤ exp
(

2 − C̃δ2n log n
)

.

Taking δ = 1
2 and using (III.13), we conclude that z(G, σ) −

z(G, σ0) < 0 with probability at least 1 − exp(2 − C̃
4 n log n).

Finally, we take a union bound over the set {σ : DISC(σ, σ0) ≥
cn}, whose cardinality is at most kn. Since exp(2 −
C̃
4 n log n)kn = o(1), we conclude that (III.4) holds with high
probability. □

IV. ENTRYWISE EIGENVECTOR BOUNDS

Our analysis of spectral algorithms relies on precise entry-
wise control of eigenvectors of adjacency matrices, which is
guaranteed by the following result. As before, we work with a
fixed value of σ0 satisfying (I.4) with ε = n−1/3.

Theorem 34: Fix k ∈ N, ρ ∈ (0, 1)k such that
∑k

i=1 ρi =
1. Fix a symmetric matrix P ∈ (0, 1)k×k, and let G ∼
CSBMk

n(ρ, P, t). Define A = A(G, y) for some constant
y > 0, and let A⋆ = E[A]. Let (λi, ui) and (λ⋆

i , u
⋆
i ) denote the

i-th largest eigenpair of A and A⋆ respectively for i ∈ [k]. Let
r, s be integers satisfying 1 ≤ r ≤ k and 0 ≤ s ≤ k − r. Let
U = (us+1, . . . , us+r) ∈ R

n×r, U⋆ = (u⋆
s+1, . . . , u

⋆
s+r) ∈

R
n×r, and Λ⋆ = diag(λ⋆

s+1, . . . , λ
⋆
s+r) ∈ R

r×r. Suppose
that

∆⋆ := (λ⋆
s − λ⋆

s+1) ∧ (λ⋆
s+r − λ⋆

s+r+1) ∧ min
i∈[r]

∣

∣λ⋆
s+i

∣

∣ > 0,

(IV.1)

where λ⋆
0 = ∞ and λ⋆

k+1 = −∞. Then, with probability at
least 1 −O(n−3),

inf
O∈Or×r

∥

∥

∥
UO−AU⋆ (Λ⋆)

−1
∥

∥

∥

2→∞
≤ C

log log(n)
√
n
,

(IV.2)

for some C = C(ρ, P, t, y) > 0, where Or×r denotes the set
of r × r orthogonal matrices.

Corollary 35: Recall the notation from Theorem 34. If all
eigenvalues of A⋆ are distinct and nonzero, then with proba-
bility 1 −O(n−3), for all i ∈ [k],

min
s∈{±1}

∥

∥

∥

∥

sui −
Au⋆

i

λ⋆
i

∥

∥

∥

∥

∞
≤ C

log log(n)
√
n
,

for some C = C(ρ, P, t, y) > 0.
The proof of Theorem 34 relies on an entrywise eigenvector

perturbation bound derived in [8]. We provide the statement
for a general random matrix A here for completeness, and
will verify these general conditions subsequently for G ∼
CSBMk

n(ρ, P, t). Also, we reuse the notation from Theorem 34.
Let H = UTU⋆, with singular value decomposition given
by H = W̄ Σ̄V̄ T . Let sgn(H) = W̄ V̄ T ∈ R

r×r, which is
an orthonormal matrix, called the matrix sign function [18].
Given this setup, [8, Theorem 2.1 Part (2)] gives the following
result.

Theorem 36 (Theorem 2.1 Part (2), [8]): Let A be a ran-
dom matrix as described above. Suppose that the following
assumptions are satisfied, for some γ > 0 and φ(x) :
R+ → R+.

1) (Properties of φ) φ(x) is continuous and non-decreasing
in R+, φ(0) = 0, and φ(x)

x is non-increasing in R+.
2) (Incoherence) ∥A⋆∥2→∞ ≤ γ∆⋆, where ∆⋆ is defined

in (IV.1).
3) (Row- and column-wise independence) For any m ∈ [n],

the entries in the mth row and column are independent
with others, i.e. {Aij : i = m or j = m} are independent
of {Aij : i ̸= m, j ̸= m}.

4) (Spectral norm concentration) Define κ =
1

∆⋆ maxi∈[r] |λ⋆
s+i|, and suppose 32κmax{γ, φ(γ)} ≤ 1.

Then, for some δ0 ∈ (0, 1),

P (∥A−A⋆∥2 ≤ γ∆⋆) ≥ 1 − δ0.
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5) (Row concentration) There exists δ1 ∈ (0, 1) such that for
any m ∈ [n] and W ∈ R

n×r,

P

(

∥(A−A⋆)m,·W∥2

≤ ∆⋆∥W∥2→∞φ

( ∥W∥F√
n∥W∥2→∞

)

)

≥ 1 − δ1
n
. (IV.3)

Then, with probability at least 1 − δ0 − 2δ1,
∥

∥Usgn(H)−AU⋆(Λ⋆)−1
∥

∥

2→∞

≤ C0

(

κ(κ+ φ(1))(γ + φ(γ))∥U⋆∥2→∞

+
γ

∆⋆
∥A⋆∥2→∞

)

,

where C0 > 0 is an absolute constant.
Remark 37: Theorem 36 can be applied to the recovery of

a single eigenvector ul by setting r = 1 and s = l− 1. In that
case, the requirement (IV.3) simplifies to

P

(

|(A−A⋆)m,· · w| ≤ ∆⋆∥w∥∞φ
( ∥w∥2√

n∥w∥∞

))

≥ 1 − δ1
n

for each w ∈ R
n. The conclusion becomes

min
s∈{±1}

∥

∥

∥

∥

suk − Au⋆
k

λ⋆
k

∥

∥

∥

∥

∞

≤ C0

(

κ(κ+ φ(1))(γ + φ(γ))∥u⋆
k∥∞ +

γ

∆⋆
∥A⋆∥2→∞

)

.

In order to prove Theorem 34, we verify the five conditions
of Theorem 36. The following lemma states properties of the
eigenspace of A⋆.

Lemma 38: Let G ∼ CSBMk
n(ρ, P, t) where ρ ∈ (0, 1)k is

such that
∑

i ρi = 1, and P ∈ (0, 1)k×k is a symmetric matrix.
For y ∈ R, define A = A(G, y) as in Definition 5. Denote
A⋆ = E[A] and let (λ⋆

l , u
⋆
l )l∈[k] be the top k eigenpairs. Then

there exist constants (νl)l∈[k] depending on P , ρ, t, and y such
that

λ⋆
l = (1 + o(1))νl log(n) for all l ∈ [k] (IV.4)

Moreover, if the νl’s are distinct, then there exist constants
(ζlj)l,j∈[k] depending on P , ρ, t, and y such that

u⋆
lw = (1 + o(1))

ζlj√
n

for all w ∈ {v : σ0(v) = j} (IV.5)

Proof: Let B⋆ be a block matrix, where the ith block has
size equal to either [⌊ρin⌋ or ⌈ρin⌉, and the (i, j) block takes
value α(Pij −y(1−Pij)). Then B⋆ is an approximation of A⋆

up to deviations in community sizes, permutation of community
labels, and a diagonal correction (since A⋆ is a zero-diagonal
matrix). Let (λl, ul)l∈[k]) be the top k eigenpairs of B⋆. Since

B⋆
ij = Θ

(

log n
n

)

for all i, j, a straightforward adaptation of
the proof of [10, Lemma 3.2] implies the existence of constants
(νl)l∈[k] depending on P , ρ, t, and y such that

λ
⋆

l = (1 + o(1))νl log(n) for all l ∈ [k].

By Weyl’s theorem,
∣

∣λl − λl

∣

∣ ≤ ∥A⋆ −B⋆∥2 ≤ ∥A⋆ −B⋆∥F

for all l ∈ [k]. Recall that σ0 is assumed to satisfy (I.4) with
ε = n−1/3. It follows that

∥A⋆ −B⋆∥F = O(
√

n · n2/3 · α2) = o(log n),

which establishes (IV.4).
Regarding the eigenvectors, observe that due to the block

nature of B⋆, the eigenvectors of B⋆ take on the form given
by (IV.5). Since nl = (1 + o(1))nρl and λl = (1 + o(1))λ⋆

l

for all l ∈ [k], it follows that the eigenvectors of A⋆ also take
on the form given by (IV.5) (see [9, Lemma 5.3]). □

Among the conditions in Theorem 36, only the fourth and
the fifth are substantial. We verify them in the two lemmas
below.

Lemma 39: Let A be a symmetric and zero-diagonal random
matrix. Suppose that the entries {Aij : i < j} are independent,
Aij ∈ [a, b] for two constants a < b, and E[|Aij |] ≤ p for all
i, j, where c0 log n

n ≤ p ≤ 1−c1 for constants c0, c1 > 0. Then,
for any c > 0, there exists c′ > 0 such that

P (∥A− E[A]∥2 ≤ c′
√
np) ≥ 1 − 2n−c.

Proof: Let A = A+ − A−, where A+
ij = max{Aij , 0}

and A−
ij = −min{Aij , 0} for all i, j. Then

∥A− E[A]∥2 ≤ ∥A+ − E[A+]∥2 + ∥A− − E[A−]∥2. (IV.6)

Note that A+ and A− are symmetric and zero-diagonal
matrices with independent upper-triangular entries. Also, note
that for all i ̸= j,

max
{

E[A+
ij ],E[A−

ij ]
}

≤ E[|Aij |] ≤ p.

If b ≤ 0, then ∥A+ −E[A+]∥2 = 0. Otherwise, suppose b > 0.
By [19, Theorem 5], for any c > 0, there exists c+ > 0 such
that

P

(

∥A+ − E[A+]∥2 > c+
√
b · √np

)

= P

(∥

∥

∥

∥

1

b
A+ − 1

b
E[A+]

∥

∥

∥

∥

2

> c+

√

np

b

)

≤ n−c. (IV.7)

Similarly, if a ≥ 0, then ∥A− − E[A−]∥2 = 0. Otherwise,
suppose a < 0. By [19, Theorem 5], for any c > 0, there exists
c− > 0 such that

P

(

∥A− − E[A−]∥2 > c−
√

|a|√np
)

= P

(
∥

∥

∥

∥

1

|a|A
− − 1

|a|E[A−]

∥

∥

∥

∥

2

> c−

√

np

|a|

)

≤ n−c. (IV.8)

Stated above in terms of upper bound on probabilities. Take
c′ = c+

√

max{b, 0} + c−
√

|min{a, 0}|. Combining (IV.6),
(IV.7), and (IV.8) along with a union bound, the proof is
complete. □

Lemma 40: Let r ∈ N be a constant, and W ∈ R
n×r be a

fixed matrix. Let {Zi}n
i=1 be independent random variables

where P(Zi = 1) = pi, P(Zi = −y) = qi, and P(Zi = 0) =
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1 − pi − qi. Finally, let Z ∈ R
n, where Zi = Zi − E[Zi] for

i ∈ [n]. Then for any β ≥ 0,

P

(

∥

∥Z
T
W
∥

∥

2
≥

r
max{1, y}(2 + β)n

1 ∨ log
(

√
n∥W∥2→∞

∥W∥F

)

∥W∥2→∞ max
i

{pi + qi}
)

≤ 2r exp
(

− βnmax
i

{pi + qi}
)

.

Proof: Let wj = W·j denote the jth column of W , for
j ∈ [r]. We will show that

r∥W∥2→∞

1 ∨ log
(

√
n∥W∥2→∞

∥W∥F

)

≥
r
∑

j=1

∥wj∥∞
1 ∨ log

(

√
n∥wj∥∞

∥wj∥2

)

. (IV.9)

Given (IV.9), we then obtain

P

(

∥

∥Z
T
W
∥

∥

2

≥ r
max{1, y}(2 + β)n

1 ∨ log
(

√
n∥W∥2→∞

∥W∥F

)

∥W∥2→∞ max
i

{pi + qi}
)

≤ P

( r
∑

j=1

∣

∣

∣

∣

n
∑

i=1

WijZi

∣

∣

∣

∣

≥ max{1, y}(2 + β)n

· max
i

{pi + qi}
r
∑

j=1

∥wj∥∞
1 ∨ log

(

√
n∥wj∥∞

∥wj∥2

)

)

(IV.10)

≤
r
∑

i=1

P

(∣

∣

∣

∣

n
∑

i=1

WijZi

∣

∣

∣

∣

≥ max{1, y}(2 + β)n∥wj∥∞
1 ∨ log

(

√
n∥wj∥∞

∥wj∥2

)

max
i

{pi + qi}
)

(IV.11)

≤ 2r exp
(

− βnmax
i

{pi + qi}
)

. (IV.12)

Here (IV.10) follows from (IV.9) and the fact that ∥x∥2 ≤
∥x∥1 for any finite dimensional vector. Next, (IV.11) fol-
lows by the union bound, and (IV.12) is an application
of [9, Lemma 5.2].

It remains to prove (IV.9). Since ∥wj∥2 ≤ ∥W∥F for all
j ∈ [r], we obtain

r
∑

j=1

∥wj∥∞
1 ∨ log

(

√
n∥wj∥∞

∥wj∥2

)

≤
r
∑

j=1

∥wj∥∞
1 ∨ log

(√
n∥wj∥∞

∥W∥F

) .

Let g(c, x) := x
1∨log(cx) for c > 0. Then ∂

∂xg(c, x) = 1 for x <

e/c, and ∂
∂xg(c, x) = log(cx)−1

log2(cx)
> 0 for x > e/c. Therefore,

g(c, ·) is increasing for any c > 0. Since ∥wj∥∞ ≤ ∥W∥2→∞
for all j, we obtain

r
∑

j=1

∥wj∥∞
1 ∨ log

(

√
n∥wj∥∞

∥W∥F

)

=

r
∑

j=1

g

( √
n

∥W∥F
, ∥wj∥∞

)

≤ rg

( √
n

∥W∥F
, ∥W∥2→∞

)

=
r∥W∥2→∞

1 ∨ log
(√

n∥W∥2→∞

∥W∥F

) ,

which completes the proof of (IV.9). □

Proof of Theorem 34: We now verify the conditions of
Theorem 36 for the signed adjacency matrix A = A(G, y)
when G ∼ CSBMk

n(ρ, P, t). Set

φ(x) = r
2 log(n)

∆⋆
max{1, y}(t+ 2)

(

1 ∨ log
( 1

x

)

)−1

.

Note that limx→0+ φ(0) = 0 and φ(x)
x is non-increasing on

R+. Thus the first condition holds.
To verify the second condition, we find that ∥A⋆∥2→∞ =

Θ
(

log n√
n

)

. Applying Lemma 39 with c = 3, and using the fact

that |A⋆
ij | ≤ t log(n)

n maxi,j∈[k] Pij , there exists c′ > 0 such
that

P

(

∥A− E[A]∥2 ≤ c′
√

log(n)
)

≥ 1 − n−3. (IV.13)

By (IV.1), we have ∆⋆ > 0. Moreover, by Lemma 38,
we have ∆⋆ = Θ(log(n)). Let γ = c′

√

log(n)/∆⋆. Therefore,
∥A⋆∥2→∞ ≤ γ∆⋆ is satisfied for n large enough.

The third condition is immediate.
The second part of the fourth condition holds with δ0 = n−3

due to (IV.13). To verify the first part, note that κ = Θ(1) by
Lemma 38 and γ = o(1). Then 32κmax{γ, φ(γ)} ≤ 1 for all
sufficiently large n.

To verify the fifth condition, fix W ∈ R
n×r and m ∈ [n].

By Lemma 40 with pi ∈ { t log n
n Pab : a, b ∈ [k]}, pi + qi =

t log n
n and β = 4

t , we obtain

P

(

∥

∥

(

(A−A⋆)m,·
)

·W
∥

∥

2

≥ r
max{1, y}(2 + 4/t)n

1 ∨ log
(√

n∥W∥2→∞

∥W∥F

)∥W∥2→∞
t log n

n

)

≤ 2 r exp

(

−4n

t
× t log n

n

)

,

which can be re-written as

P

(

∥

∥

(

(A−A⋆)m,·
)

W
∥

∥

2

≥ ∆⋆∥W∥2→∞φ

( ∥W∥F√
n∥W∥2→∞

)

)

≤ 2rn−4.

Therefore, the fifth condition is satisfied with δ1 = 2rn−3.
Applying Theorem 36, we conclude that with probability at

least 1 − (1 + 4r)n−3 ≥ 1 − 5rn−3,

inf
O∈Or×r

∥

∥

∥
UO−AU⋆ (Λ⋆)

−1
∥

∥

∥

2→∞

≤ C0

(

κ(κ+ φ(1))(γ + φ(γ))∥u⋆
k∥∞ +

γ

∆⋆
∥A⋆∥2→∞

)

≤ C(P, ρ, t, y)

log log(n)
√
n
.

□

V. PERFORMANCE OF SPECTRAL ALGORITHMS

Throughout this section, we use the notation

y(p, q) =
log 1−q

1−p

log p
q

for p ̸= q. (V.1)
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This will be the choice of y value for which SPECTRAL-
ONE algorithms are optimal in the cases stated in Theorem 7 (1).
Also, as before, we condition on a fixed value of σ0 satisfy-
ing (I.4) with ε = n−1/3.

Recall that our spectral algorithms use the top two eigenvec-
tors of the signed adjacency matrix/matrices. In general, the
signed adjacency matrix should have two main eigenvectors
which correspond (up to a potential sign flip) to the main
eigenvectors of the expected adjacency matrix. However, this
could run into complications if both eigenvalues are the same
or one of the eigenvalues is 0. In order to address this, we have
the following eigenvalue characterization. The proof is provided
in Appendix C.

Lemma 41: Let 0 < p1, p2, q < 1 be not all the same,
ρ ∈ (0, 1) and define

A′ = A′(y)

:=

(

p1 − y(1 − p1) q − y(1 − q)
q − y(1 − q) p2 − y(1 − p2)

)(

ρ 0
0 1 − ρ

)

(V.2)

for each y > 0. Then all of the following hold.

1) For any fixed p1, p2, q, ρ ∈ (0, 1), there exists a set Y
with |Y| ≤ 3 such that the eigenvalues of A′ are distinct
and nonzero for all y /∈ Y .

2) If p1 = p, p2 = q, p ̸= q, and y = y(p, q) then the
eigenvalues of A′ are distinct and nonzero.

3) If p1 = p2 = p, p ̸= q, and y = y(p, q) then the
eigenvalues of A′ are distinct and nonzero if and only if
p+ q ̸= 1.

A. One Matrix

In order to prove Theorem 7 (1), we provide an algorithm
which is an instance of SPECTRAL-ONE, that will succeed up
to the information theoretic threshold when

either p1 = p2 = p, p ̸= q and p+ q ̸= 1

or p1 = p and p2 = q ̸= p. (V.3)

To design the algorithm, we crucialy use the entrywise
eigenvector bounds. Remark 37 tells us that for any pair of
constants a1, a2, we have

a1u1 + a2u2 ≈ A

(

a1u
⋆
1

λ⋆
1

+
a2u

⋆
2

λ⋆
2

)

, (V.4)

where the approximation is in ℓ∞, and we have ignored the
sign ambiguity in u1 and u2 for clarity of exposition. Observe
that the vector a1

u⋆
1

λ⋆
1

+ a2
u⋆

2

λ⋆
2

is a block vector; that is, it is of
the form







√
n log(n)

(

a1
u⋆

1

λ⋆
1

+ a2
u⋆

2

λ⋆
2

)

i
= α1 σ0(i) = 1

√
n log(n)

(

a1
u⋆

1

λ⋆
1

+ a2
u⋆

2

λ⋆
2

)

i
= α2 σ0(i) = 2,

(V.5)

where α1, α2 depend on a1, a2. We see that the vth entry
of (V.4) is equal to

Av,· ·
(

a1u
⋆
1

λ⋆
1

+
a2u

⋆
2

λ⋆
2

)

= α1d+1(v) − yα1d−1(v) + α2d+2(v) − yα2d−2(v). (V.6)

Since we will ultimately threshold (V.4) at 0, we set α1, α2 so
that (V.6) is proportional to w⋆T d(v), where w⋆ is defined

in (II.1). In this way, the spectral algorithm would give rise
to the optimal hyperplane for separating the two communities.
It remains to find a1, a2 to satisfy (V.5) with the desired values
of α1, α2. Since we do not have access to (λ⋆

1, u
⋆
1), (λ

⋆
2, u

⋆
2),

we form an auxiliary matrix B, which is essentially equivalent
to E[A | σ0], up to a permutation of the rows and columns.
Letting (γ1, v1), (γ2, v2) be the eigenpairs of B, we solve (V.5)
with (γ1, v1), (γ2, v2) in place of (λ⋆

1, u
⋆
1), (λ

⋆
2, u

⋆
2), thereby

obtaining a1, a2. This strategy of solving for the weights is
captured in Algorithm 4, with the classification algorithm given
in Algorithm 3 below.

Algorithm 3 One-matrix community detection

Input: Parameters t > 0, ρ ∈ (0, 1), p1, p2, q ∈ (0, 1)
satisfying (V.3) and G ∼ CSBM2

n(ρ̄, P, t).
Output: Community classification σ̂ ∈ {1, 2}n.

1: Construct an n × n matrix A = A(G, y) as defined in
Definition 5.

2: Find the top two eigenpairs (λ1, u1) and (λ2, u2) of A.
3: Compute (a1, a2), the weights produced by Algorithm 4.
4: Let U = {s1a1u1 + s2a2u2 : s1, s2 ∈ {±1}}. For each
u ∈ U , let σ̂(·;u) = 1 + (1 + sign(u))/2.

5: Return σ̂ = argmaxu∈U P(G | σ̂(·;u)).

Algorithm 4 Find weights (one matrix)

Input: Parameters t > 0, ρ ∈ (0, 1), p1, p2, q ∈ (0, 1)
satisfying (V.3).

Output: Weights (a1, a2)

1: Let V1 := {i : i ≤ ρn} and define B to be the symmetric
block matrix where Bij is t log n

n [p1 − y(p1, q)(1− p1)] if
i, j ∈ V1, t log n

n [p2 − y(p2, q)(1 − p2)] if i, j /∈ V1, and
t log n

n [q− y(p1, q)(1− q)] if i ∈ V1, j /∈ V1 or i /∈ V1, j ∈
V1. Let the eigenpairs of B be denoted (γ1, v1), (γ2, v2).

2: Set α1 = log p
q . If p1 = p2 = p, set α2 = −α1. Otherwise

(p2 = q), set α2 = 0. Let z be a block vector with zi =
α1 if i ∈ V1 and zi = α2 if i ̸∈ V1.

3: Return (a1, a2) satisfying

√
n log n

(

a1
v1
γ1

+ a2
v2
γ2

)

= z. (V.7)

It is worthwhile to note that finding weights in Algorithm 4
does not require any information about σ0.

Proof of Theorem 7: Let ni be the number of vertices in
community i for i = 1, 2. Throughout the proof, we will
condition on σ0 satisfying |ni − ρin| ≤ n2/3. This event has
probability 1 − o(1) as shown earlier in (I.4).

First, suppose that (V.3) holds. We will first prove The-
orem 7 (1) by showing Algorithm 3 succeeds up to the
information theoretic limit. Let A = A(G, y) with y = y(p1, q),
and define A⋆ = E[A]. Let (λi, ui) and (λ⋆

i , u
⋆
i ) denote the

i-th largest eigenpair of A and A⋆ respectively. We claim that

λ⋆
1 = (1 + o(1))ν1 log n, λ⋆

2 = (1 + o(1))ν2 log n

with ν1 ̸= ν2, ν1, ν2 ̸= 0. (V.8)

Indeed, consider the matrix B defined in Step 1 of Algorithm 4,
whose eigenvalues are t log n times the corresponding eigen-
values the matrix A′ defined in (V.2). Under the conditions
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of Theorem 7 (1), Lemma 41 (Parts 2 and 3) shows that
the non-zero eigenvalues of B are ν1 log n and ν2 log n with
ν1 ̸= ν2. Next, suppose O is the permutation matrix such that,
in OA⋆OT , the rows and columns corresponding to vertices in
community 1 appear before those in community 2. By Weyl’s
theorem, the top two eigenvalues of OA⋆OT are within 1+o(1)
multiplicative factor of those of B. Since O is an orthogonal
matrix, (V.8) follows immediately.

Using (V.8), we can apply Corollary 35 and conclude that,
with probability 1 −O(n−3),

∥

∥

∥

∥

s1u1 −
Au⋆

1

λ⋆
1

∥

∥

∥

∥

∞
≤ C√

n log logn

and

∥

∥

∥

∥

s2u2 −
Au⋆

2

λ⋆
2

∥

∥

∥

∥

∞
≤ C√

n log logn
,

for some s1, s2 ∈ {−1, 1} and some constant C > 0.
Consequently, for any a1, a2 ∈ R, with probability 1 − o(1),

∥

∥

∥

∥

s1a1u1 + s2a2u2 −A

(

a1

λ⋆
1

u⋆
1 +

a2

λ⋆
2

u⋆
2

)
∥

∥

∥

∥

∞

≤ C(|a1| + |a2|)√
n log logn

. (V.9)

In Step 3 of Algorithm 3, we pick (a1, a2) according to
Algorithm 4. Let V ′

1 := {i : i ≤ n1(σ0)} and define B′, v′1, v
′
2

similarly as B, v1, v2 in Algorithm 4 by replacing V1 by V ′
1.

For l = 1, 2, note that vl takes some value ζl1√
n

on V1 and ζl2√
n

on Vc
1 for constants ζl1, ζl2. Using identical steps as [9, Lemma

5.3], we can argue that v′l also takes value (1 + o(1)) ζl1√
n

on

V ′
1 and (1 + o(1)) ζl2√

n
on (V ′

1)
c. Therefore,

√
n log n

(

a1
v′1
γ1

+ a2
v′2
γ2

)

= z̃,

where z̃ is a block vector taking values (1 + o(1))α1 on V ′
1

and (1 + o(1))α2 on (V ′
1)

c. Next, note that the matrix A⋆ can
be obtained from B′ by jointly permuting the row and column
labels and then setting the diagonal entries to be zero. Also,
noting that λ⋆

l = (1 + o(1))γl, we can ensure that

√
n log(n)

(

a1
u⋆

1

λ⋆
1

+ a2
u⋆

2

λ⋆
2

)

= z⋆, (V.10)

where z⋆ is a block vector taking value (1+o(1))α1 on V1 :=
{v : σ0(v) = +1} and (1 + o(1))α2 on V2 := {v : σ0(v) =
−1}. Let

τ = A

(

a1
u⋆

1

λ⋆
1

+ a2
u⋆

2

λ⋆
2

)

.

Then,
√
n log(n)τ = (1+o(1))Az⋆. By (V.10), with probability

1 − o(1), for each v ∈ [n],
√
n log(n)τv = α1d+1(v)−yα1d−1(v)

+ α2d+2(v) − yα2d−2(v) + o(log n),

(V.11)

where (d+1(v), d−1(v), d+2(v), d−2(v)) denotes the degree
profile of v. Also, in this case, note that w⋆ in (II.1) simplifies
to

w⋆ =

(

log
p1

q
, log

1 − p1

1 − q
, log

q

p2
, log

1 − q

1 − p2

)

. (V.12)

In order to apply Proposition 18, we need to ensure that the
coefficients of (V.11) coincide with w⋆ up to a scalar factor.
There are two cases to consider. First, suppose p1 = p2 = p,
and p ̸= q (where we rule out the case {p+ q = 1, ρ ̸= 1/2}).
Recalling that y = y(p, q), we obtain

w⋆ = (1,−y,−1, y) log

(

p

q

)

. (V.13)

Comparing (V.11) and (V.13), we see that the choice α1 =
log p

q and α2 = −α1 equates the coefficients of the leading
terms of (V.11) with the entries of (V.13). These are the values
of (α1, α2) chosen in Algorithm 4 Step 2. (Note that any choice
of the form (α1, α2) = c(1,−1) would lead to

√
n log(n)τv −

o(log(n)) ∝ ⟨w⋆, d(v)⟩.)
Next, suppose p2 = q and recall that p1 ̸= q. By our choice

of y = y(p1, q), we have that

w⋆ = (1,−y, 0, 0) log

(

p

q

)

.

In this case, we need α1 = log p1

q and α2 = 0, which is also
the case by our choice in Algorithm 4 Step 2.

Thus, in both cases, our choices of (α1, α2) yield that, with
probability 1− o(1),

√
n log(n)τv = ⟨w⋆, d(v)⟩+ o(log n) for

each v ∈ [n]. By Proposition 18, we conclude that for some
ε > 0,

√
n log(n) min

v∈V1

τv ≥ 1

2
ε log n

and
√
n log(n) max

v∈V2

τv ≤ −1

2
ε log n

with probability 1 − o(1), and consequently

min
v∈V1

τv ≥ ε

2
√
n

and max
v∈V2

τv ≤ − ε

2
√
n
.

Finally, since C√
n log log(n)

= o
(

1√
n

)

, we conclude with
probability 1 − o(1),

min
v∈V1

(s1a1u1 + s2a2u2)v >
ε

3
√
n

and max
v∈V2

(s1a1u1 + s2a2u2)v < − ε

3
√
n
.

Therefore, thresholding the vector s1a1u1 + s2a2u2 at zero
correctly identifies the communities with high probability.
In other words, sign(s1a1u1 + s2a2u2) coincides with the
MAP estimator. While s1, s2 are unknown, the final step of
Algorithm 1 chooses the best one among the four candidate
community partitions arising from the four possible sign
combinations. By Theorem 27, we know that the MAP
estimator is the unique maximizer of the posterior probability.
Therefore, the spectral algorithm will identify the correct
candidate. This completes the proof of Theorem 7 (1).

To prove Theorem 7 (2), let p1, p2, q be distinct. Notice
that (V.11) would hold for any α1, α2 and the corresponding
choices of a1, a2. The particular choice of α1, α2 was only
needed after (V.11) to compare it with w⋆. By Proposition 18
and (V.11), in order for SPECTRAL-ONE algorithms to be suc-
cessful, we must have w⋆ = (α1,−yα1, α2,−yα2). Suppose
for the sake of contradiction that w⋆ = (α1,−yα1, α2,−yα2)
for some α1, α2. Since all the entries of w⋆ are nonzero,
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we know that α1, α2 ̸= 0. By taking coordinate ratios, we have
that

y =
log 1−q

1−p1

log p1

q

= y(p1, q)

and y =
log 1−q

1−p2

log p2

q

= y(p2, q). (V.14)

Now, we claim that for any fixed q ∈ (0, 1), the function y(p, q)
is strictly increasing. Indeed,

∂

∂p
y(p, q) =

log p
q × 1

1−p − log 1−q
1−p × 1

p

log2 p
q

=
1

p log p
q

(

p

1 − p
− y(p, q)

)

. (V.15)

Using the fact that 1 − 1
x < log x < x− 1 for any x > 0,

for any p > q : y(p, q) =
log 1−q

1−p

log p
q

<

1−q
1−p − 1

1 − q
p

=
p

1 − p

(V.16)

for any p < q : y(p, q) =
log 1−q

1−p

log p
q

=
log 1−p

1−q

log q
p

>
1 − 1−q

1−p
q
p − 1

=
p

1 − p
. (V.17)

Therefore, ∂
∂py(p, q) > 0 for any p ∈ (0, 1), which proves that

y(p, q) is strictly increasing. However, p1 ̸= p2 and therefore
y(p1, q) ̸= y(p2, q). Thus, (V.14) leads to a contradiction.
In other words, it is not possible to choose α1, α2 so that
w⋆ = (α1,−yα1, α2,−yα2). The proof then follows by
applying Proposition 18 (2). □

Remark 42: Instead of using the encoding {1,−y, 0} for
present, absent and censored edges, we could have instead used
a more general encoding of the form {c1,−yc2, c3}. In that
case, the entrywise approximation would still hold. One could
go though the same steps to show that the decision rule for
the spectral algorithm would again be asymptotically based
on determining whether some linear expression such as (V.11)
is above or below a certain threshold T . Thus, for p1, p2, q
which are distinct, an identical argument shows that spectral
algorithms with more general encoding also do not succeed
sufficiently close to tc.

B. Two Matrices

In this section, we will prove Theorem 10. Let us start
by describing the algorithm that always succeeds up to the
information theoretic threshold in the two community case.
The design of the algorithm is analogous to the design of
Algorithm 3.

Algorithm 5 Two-matrix community detection for two
communities

Input: Parameters t > 0, ρ, p1, p2, q ∈ (0, 1) such that
|{p1, p2, q}| ≥ 2, and G ∼ CSBM2

n(ρ̄, P, t).
Output: Community classification σ̂ ∈ {1, 2}n.

1: Fix y, ỹ /∈ Y where Y is given by Lemma 41 Part (1).
Construct two n× n matrices A = A(G, y), Ã = A(G, ỹ)
as defined in Definition 5.

2: Find the top two eigenpairs of A and Ã and respectively
denote them ((λl, ul))l=1,2 and ((λ̃l, ũl))l=1,2.

3: Use Algorithm 6 on input

(

t, ρ,

(

p1 q
q p2

)

, y, ỹ

)

to

compute the weights (c1, c2, c̃1, c̃2).
4: Let U = {s1c1u1 + s2c2u2 + s̃1c̃1ũ1 + s̃2c̃2ũ2 :
s1, s2, s̃1, s̃2 ∈ {±1}}. For each u ∈ U , let σ̂(·;u) =
1 + (1 + sign(u))/2.

5: Return σ̂ = argmaxu∈U P(G | σ̂(·;u)).

Algorithm 6 Find weights (two matrices, two communities)

Input: Parameters t > 0, ρ, p1, p2, q ∈ (0, 1) such that
|{p1, p2, q}| ≥ 2, and y, ỹ /∈ Y , y ̸= ỹ where Y is given
by Lemma 41 Part (1).

Output: Weights (c1, c2, c̃1, c̃2)

1: Let V1 := {i : i ≤ ρn} and define B to be the symmetric
block matrix where Bij is t log n

n [p1 − y(p1, q)(1 − p1)]

if i, j ∈ V1, t log n
n [p2 − y(p2, q)(1 − p2)] if i, j /∈ V1,

and t log n
n [q − y(p1, q)(1 − q)] if i ∈ V1, j /∈ V1 or i /∈

V1, j ∈ V1. Define B̃ similarly by replacing y by ỹ. Let the
eigenpairs of B and B̃ be ((γl, vl))l=1,1 and ((γ̃l, ṽl))l=1,2,
respectively.

2: Solve the following system for α1, α2, α̃1, α̃2:

α1 + α̃1 = log
p1

q
, −yα1 − ỹα̃1 = log

1 − p1

1 − q
,

α2 + α̃2 = log
q

p2
− yα2 − ỹα̃2 = log

1 − q

1 − p2
. (V.18)

Let z be a block vector with zi = α1 for i ∈ V1 and
zi = α2 for i ̸∈ V1. Define z̃ similarly by replacing
(α1, α2) by (α̃1, α̃2).

3: Return (c1, c2, c̃1, c̃2) satisfying

√
n log n

(

c1
v1
γ1

+ c2
v2
γ2

)

= z

and
√
n log n

(

c̃1
ṽ1
γ̃1

+ c̃2
ṽ2
γ̃2

)

= z̃. (V.19)

Proof of Theorem 10: As in the proof of Theorem 7,
we condition on σ0 satisfying |ni − ρin| ≤ n2/3. Fix y, ỹ /∈ Y ,
y ̸= ỹ where Y is given by Lemma 41 Part (1). Recall all the
notation in Algorithms 5, 6. Let A⋆ := E[A] and Ã⋆ := E[Ã],
and let ((λ⋆

l , u
⋆
l ))l=1,1, and (λ̃⋆

l , ũ
⋆
l ))l=1,2 be the top eigenpairs

of the corresponding matrices. Applying Corollary 35, we have
that with probability 1 − o(1)

∥

∥

∥

∥

∥

s1c1u1 + s2c2u2 + s̃1c̃1ũ1 + s̃2c̃2ũ2

−A
(

c1
u⋆

1

λ⋆
1

+ c2
u⋆

2

λ⋆
2

)

− Ã

(

c̃1
ũ⋆

1

λ̃⋆
1

+ c̃2
ũ⋆

2

λ̃⋆
2

)

∥

∥

∥

∥

∥

∞

≤ C (|c1| + |c2| + |c̃1| + |c̃2|)√
n log logn

,
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for some s1, s2, s̃1, s̃2 ∈ {±1}. Let

τ = A

(

c1
u⋆

1

λ⋆
1

+ c2
u⋆

2

λ⋆
2

)

+ Ã

(

c̃1
ũ⋆

1

λ̃⋆
1

+ c̃2
ũ⋆

2

λ̃⋆
2

)

.

Using (V.19), we can repeat the arguments above (V.11),
to show that

√
n log(n)τ = (1 + o(1))z⋆, where z⋆

i is
α1 + α̃1 on V1 := {u : σ0(u) = +1} and α2 + α̃2 on
V2 := {u : σ0(u) = −1}. Consequently, with probability
1 − o(1), for each v ∈ [n],

√
n log(n)τv = d+1(v) (α1 + α̃1) − d−1(v) (yα1 + ỹα̃1)

+ d+2(v) (α2 + α̃2) − d−2(v) (yα2 + ỹα̃2)

+ o(log n).

The choice of constants in (V.18) is such that
√
n log(n)τv =

⟨w⋆, d(v)⟩ + o(log n), where w⋆ is given by (II.1). Thus, by
Proposition 18 Part 1, there exists some ε > 0 such that with
probability 1 − o(1)

√
n log(n) min

v∈V1

τv ≥ 1

2
ε log n

and
√
n log(n) max

v∈V2

τv ≤ −1

2
ε log n

with probability 1 − o(1). The rest of the proof is identical to
the final part of the argument in the proof of Theorem 7 (1).□

VI. MORE THAN TWO COMMUNITIES

In this section, we will prove Theorem 12. Similar to
Lemma 41, we need the following, whose proof is provided
in Appendix C.

Lemma 43: Let ρ ∈ (0, 1)k, and P ∈ (0, 1)k×k be a
symmetric matrix. For any y > 0, let P (y) be the matrix
such that P (y)

ij = ρj(Pij − y(1−Pij)) for all i, j. Then, either
(1) P (y) has a zero eigenvalue for all y or (2) P (y) has repeated
eigenvalues for all y or (3) there is a finite set Y such that
P (y) has distinct nonzero eigenvalues for all y ̸∈ Y .

Consequently, if P (0) := P ·diag(ρ) has k distinct, non-zero
eigenvalues, then (3) holds.

Let us describe the algorithm that always succeeds up to
the information theoretic threshold in the k-community case.
Again, the design of the algorithm is analogous to the single
matrix case.

Algorithm 7 Two-matrix community detection for general
k ≥ 3 communities

Input: Parameters t > 0, ρ ∈ (0, 1)k such that
∑

i ρi =
1, a symmetric matrix P ∈ (0, 1)k×k, and also G ∼
CSBMk

n(ρ, P, t).
Output: Community classification σ̂ ∈ [k]n.

1: Fix y, ỹ /∈ Y where Y is given by Lemma 43. Construct
two n×n matrices A = A(G, y), Ã = A(G, ỹ) as defined
in Definition 5.

2: Find the top k eigenpairs of A and Ã, respectively denoting
them ((λl, ul))l∈[k] and ((λ̃l, ũl))l∈[k]. Let U (respectively
Ũ ) be the n×k matrix whose i-th column is ui (respectively
ũi).

3: Use Algorithm 8 on input (t, ρ, P, y, ỹ) to compute the
weight vectors (ci, c̃i)i∈[k].

4: For s ∈ {±1}k, let D(s) := diag(s). For any s, s̃ ∈ {±1}k,
construct the estimator

σ̂(v; s, s̃) = argmax
i∈[k]

{

(

UD(s)ci
)

v
+
(

ŨD(s̃)c̃i
)

v

}

for each v ∈ [n]. (VI.1)

5: Return σ̂ = argmaxs,s̃∈{±1}k P(G | σ̂(·; s, s̃)).

Algorithm 8 Find weights (Two matrices, k ≥ 3 communities)

Input: Parameters t > 0, ρ ∈ (0, 1)k such that
∑

i ρi = 1,
a symmetric matrix P ∈ (0, 1)k×k, and y, ỹ /∈ Y where Y
is given by Lemma 43.

Output: Weight vectors (ci, c̃i)
k
i=1 ⊂ R

k.

1: For k ≥ 1, let Vk := {i : n
∑k−1

j=0 ρj ≤ i ≤ n
∑k

j=1 ρj}
with ρ0 = 0. Define B to be the symmetric block matrix
where Buv = t log n

n [Pij − y(1 − Pij)] if u ∈ Vi and
v ∈ Vj . Define B̃ similarly by replacing y by ỹ. Let
the top k eigenpairs of B and B̃ be ((γi, vi))i∈[k], and
((γ̃i, ṽi))i∈[k]. Let V (respectively Ṽ ) be the n× k matrix
whose ith column is vi/γi (respectively ṽi/γ̃i).

2: Solve the following system for {αri}r,i∈[k], {α̃ri}r,i∈[k]:

αri + α̃ri = log (Pri) ,

−yαri − ỹα̃ri = log (1 − Pri) , ∀r, i ∈ [k]. (VI.2)

For i ∈ [k], let zi (respectively z̃i) be the block vector
with ziv = αri (respectively z̃iv = α̃ri) when v ∈ Vr.

3: Return (ci, c̃i)
k
i=1 solving

√
n log(n)V ci = zi

and
√
n log(n)Ṽ c̃i = z̃i for all i ∈ [k]. (VI.3)

Proof of Theorem 12: The argument is identical to the proof
of Theorem 10. We skip redoing all the details for general
k ≥ 3 and instead give an overview of the steps.

Indeed, since P ·diag(ρ) has k distinct, non-zero eigenvalues
by our assumption, Lemma 43 implies that the eigenvalues of
E[A(G, y)] are also distinct for sufficiently large n. Applying
the entrywise bounds for the eigenvectors in Corollary 35,
holds for general k. The parameters (VI.2) and (VI.3) are
chosen in such a way so that for some s, s̃ ∈ {±1}k, for each
community i ∈ [k], the associated approximating vector τ (i)

satisfies
√
n log(n)

(

UD(s)ci + ŨD(s̃)c̃i

)

v
=:

√
n log(n)τ (i)

v

=
(

log(Pri), log(1 − Pri)
)

r∈[k]
· d(v) + o(log n)

with probability 1 − o(1), for all v ∈ [n]. The estimator
described by (VI.1) is constructed so that for some s, s̃ ∈
{±1}k, we have

σ̂(v; s, s̃) = argmax
i∈[k]

τ (i)

v .

Corollary 19 implies that for this pair (s, s̃), we have
σ̂(v; s, s̃) = σ0(v) for all v with high probability. Finally,
the correct pair s, s̃ is chosen in Step 5, by again appealing to
statistical achievability (Theorem 27). □
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Remark 44: We can simplify the algorithms by taking A
and Ã without any ternary encoding if both P · diag(ρ) and
(J −P ) ·diag(ρ) have k distinct, non-zero eigenvalues. Indeed,
define A, Ã

Aij =

{

1 if {i, j} is present

0 if {i, j} is absent or censored

and Ãij =

{

1 if {i, j} is absent

0 if {i, j} is present or censored.

We can simply set αri = log(Pri) and α̃ri = log(1−Pri), and
choose ci, c̃i according to (VI.3). With this choice, the estimator
in (VI.1) (optimized over the signs as in Algorithm 7 Step 5)
achieves exact recovery up to the information theoretic
threshold.

Of course, such a simplification might not be possible for
many possible choices of parameters. For example, in the two
community case, we can take ρ = 1/2, and p1, p2, q such that
p1p2 − q2 ̸= 0 but (1− p1)(1− p2)− (1− q)2 = 0. One such
choice is p1 = 23

25 , p2 = 17
25 , q = 3

5 .

APPENDIX A
PROOF OF POISSON APPROXIMATION

Proof: (Proof of Lemma 23): Observe that (Da,r, Db,r)
are independent over r as they depend on disjoint sets of
independent random variables. Thus,

P(D = d) =
∏

r∈[n]\{i}

|Sr|!
d1,r!d2,r!(|Sr| − d1,r − d2,r)!

× (αψr)
d1,r (α(1 − ψr))

d2,r (1 − α)|Sr|−d1,r−d2,r

× (|Si| − |V |)!
d1,i!d2,i!(|Si| − |V | − d1,i − d2,i)!

× (αψi)
d1,i(α(1 − ψi))

d2,i(1 − α)|Si|−|V |−d1,i−d2,i .
(A.1)

We use Stirling’s approximation and the fact that 1− e−x ≍ x
as x→ 0. Thus, using the assumptions on d, for each r ̸= i,
we have

|Sr|!
(|Sr| − d1,r − d2,r)!

≍ e−|Sr||Sr||Sr|+ 1
2

e−|Sr|+d1,r+d2,r (|Sr| − d1,r − d2,r)|Sr|−d1,r−d2,r+ 1
2

= e−d1,r−d2,r
(|Sr| − d1,r − d2,r)

d1,r+d2,r

(1 − d1,r+d2,r

|Sr| )|Sr|+ 1
2

≍ (|Sr| − d1,r − d2,r)
d1,r+d2,r

(1 − d1,r+d2,r

|Sr| )
1
2

≍
(

nρr

(

1 +O(log−2 n)
))d1,r+d2,r ≍ (nρr)

d1,r+d2,r ,

where in the last step we have used d1,r, d2,r = o(log3/2 n).
Also,

(1 − α)|Sr|−d1,r−d2,r ≍ e−α(|Sr|−d1,r−d2,r) ≍ e−tρr log(n)/2.

Thus, the r-th product term in (A.1) is asymptotically equal to

e−tρr log n (ρrψrt log n)d1,r (ρr(1 − ψr)t log n)d2,r

d1,r!d2,r!
.

The identical approximation holds for r = i as well using
the fact that |Si \ V | = nρi(1 +O(log−2 n)). Thus the proof
follows from (A.1). □

APPENDIX B
PROOF OF LEMMA 29

We first state a special case of [17, Theorem 1.3].
Lemma 45: Let X1, . . . , Xn be independent random vari-

ables, and let X =
∑n

i=1Xi. Let L > 0. Suppose that for
each i ∈ [n] and k ∈ N,

E
[

|Xi|k
]

≤ k · L · E
[

|Xi|k−1
]

. (B.1)

Let µ0 =
∑n

i=1 E[|Xi|]. Then, for any λ > 0,

P (|X − E[X]| ≥ λ)

≤ e2 max

{

exp

(

− λ2

µ0LR

)

, exp

(

− λ

LR

)}

, (B.2)

where R is an absolute constant.
Proof of Lemma 29: We first verify (B.1), for L = max{|x| :

x ∈ S}. For k ∈ N,

E
[

|Xi|k
]

=
∑

x∈S

|x|kP(Xi = x)

≤ L
∑

x∈S

|x|k−1
P(Xi = x)

= LE
[

|Xi|k−1
]

≤ kLE
[

|Xi|k−1
]

.

We apply Lemma 45, noting that µ0 = E[Y ]. Set λ = δ|E[X]|.
Then λ < µ0, so that the first bound in (B.2) applies, giving
the claim. □

APPENDIX C
PROOF OF EIGENVALUE PROPERTIES

Proof of Lemma 41: The only 2 × 2 matrices whose
eigenvalues are not distinct are the multiples of the identity
matrix. Indeed,

det

(

a b
b c

)

= 0 =⇒ λ2 − (a+ c)λ+ ac− b2 = 0,

which has same roots in λ if and only if (a − c)2 + b2 = 0.
Therefore, A′ in (V.2) has identical eigenvalues if and only if
y = q/(1 − q).

Next, note that det(A′(y)) is a quadratic function in y, which
has at most two roots unless det(A′(y)) is the zero polynomial.
To rule out the latter possibility, note that

det

(

A′
( q

1 − q

)

)

= ρ(1 − ρ)
(

p1 −
q

1 − q
(1 − p1)

)(

p2 −
q

1 − q
(1 − p2)

)

,

which is nonzero if p1 and p2 are both different from q. When
p2 = q, then det(A′(0)) = ρ(1 − ρ)(p1q − q2), which cannot
be zero due to our assumption that 0 < p1.p2, q < 1 cannot
be all be the same. Hence, det(A′(y)) cannot be a zero
polynomial, and thus there are at most two values of y such
that det(A′(y)) = 0. Combined with the condition for having
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distinct roots, there is a set Y with |Y| ≤ 3 such that, for
y /∈ Y , A′(y) has two distinct and nonzero eigenvalues. This
proves Lemma 41 Part (1).

To prove Lemma 41 Parts (2),(3), consider the
case where (V.3) holds. Also, take y = y(p, q) =
log
(

1−q
1−p

)

/ log
(

p
q

)

. Due to symmetry of y(p, q), (V.16)
and (V.17) imply

y(p, q) >
q

1 − q
if p > q

and y(p, q) <
q

1 − q
if p < q

Also, y(p, q) > 0 for all 0 < p, q < 1. Thus, if (V.3), then
y(p, q) ̸= q

1−q . Hence, the off diagonal entries of A′(y(p, q))
are nonzero and the eigenvalues of A′(y(p, q)) are distinct. If
p2 = q then det(A′(y(p, q))) = ρ(1 − ρ)(p − q)(1 + y)(q −
y(1−q)) ̸= 0, so its eigenvalues are both nonzero. This proves
Part (2).

To prove Part (3), take p1 = p2 = p. Note that det(A′(y)) =
0 is 0 if and only if |p − y(1 − p)| = |q − y(1 − q)|. Since
p ̸= q, the latter holds if and only if y = p+q

2−p−q or p+ q = 1.
Let x = (p+ q)/2 and ϵ = (p− q)/2, and observe that

y(p, q) = log
( 1 − q

1 − p1

)

/ log
(p

q

)

= log

(

1 − x+ ϵ

1 − x− ϵ

)

/ log

(

x+ ϵ

x− ϵ

)

=
log(1 + ϵ/(1 − x)) − log(1 − ϵ/(1 − x))

log(1 + ϵ/x) − log(1 − ϵ/x)

=

∑∞
i=0 2(ϵ/(1 − x))2i+1/(2i+ 1)
∑∞

i=0 2(ϵ/x)2i+1/(2i+ 1)

=
x

1 − x
·
∑∞

i=0(ϵ/(1 − x))2i/(2i+ 1)
∑∞

i=0(ϵ/x)
2i/(2i+ 1)

.

The ratio of infinite sums is greater than 1 if x < 1/2 and less
than 1 if x > 1/2, so y = p+q

2−p−q ⇐⇒ 2x = p+ q = 1. This
proves Part (3). □

Proof of Lemma 43: First, observe that P (y) has a zero
eigenvalue if and only if its determinant is zero. Since det(P (y))
is a polynomial in y of degree at most k, either it is identically
zero (i.e., (1) holds) or there exists a subset Y1 ⊂ R with
|Y1| ≤ k such that det(P (y)) ̸= 0 for all y /∈ Y1.

Next, observe that for any given y, the eigenvalues of
P (y) are the roots of the characteristic polynomial χ(y)(λ) :=
det(P (y) − λI). Let f (y)(λ) be the polynomial with leading
coefficient 1 in λ that is the greatest common divisor of χ(y)(λ)
and (χ(y))′(λ) = d

dλχ
(y)(λ). Then χ(y)(λ) has repeated roots

in λ if and only if f (y)(λ) is not a constant function in λ. Now,
consider χ(y)(λ) and d

dλχ
(y)(λ) as elements of R

(y)[λ], the ring
of polynomials in λ with coefficients that are rational functions
of y. Then, there exist f⋆(y), g(y)

1 , g(y)

2 , h(y)

1 , h(y)

2 ∈ R
(y)[λ] such

that the leading coefficient of f⋆(y) is 1, and

f⋆(y) = g(y)

1 χ(y) + g(y)

2 (χ(y))′,

χ(y) = h(y)

1 f⋆(y), (χ(y))′ = h(y)

2 f⋆(y).

Thus, for any y, f⋆(y) will evaluate to f (y), unless the
denominator of at least one coefficient of f⋆(y), g(y)

1 , g(y)

2 ,
h(y)

1 , or h(y)

2 evaluates to 0. Since the coefficients are rational

functions in y, this can only happen for y ∈ Y2, where Y2 is
a finite set. Therefore, if f⋆(y)(λ) is a constant in λ, then for
all y /∈ Y2, the eigenvalues of P (y) are all distinct. Taking
Y = Y1 ∪ Y2, we have shown the (3) holds in this case.

Next, suppose that f⋆(y)(λ) is not constant in λ. Then, P (y)

must have a repeated eigenvalue for all y /∈ Y2. The eigenvalues
of P (y) change continuously as functions of y. Thus, if there
was any y for which its eigenvalues were all distinct they
would have to be distinct for all values of y sufficiently close
to that one. Therefore, P (y) must have repeated eigenvalues
for all values of y and (2) holds in this case. This completes
the proof of Lemma 43. □
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