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Abstract

We propose a self-supervised method for learning repre-
sentations based on spatial audio-visual correspondences in
egocentric videos. Our method uses a masked auto-encoding
framework to synthesize masked binaural (multi-channel)
audio through the synergy of audio and vision, thereby learn-
ing useful spatial relationships between the two modalities.
We use our pretrained features to tackle two downstream
video tasks requiring spatial understanding in social scenar-
ios: active speaker detection and spatial audio denoising.
Through extensive experiments, we show that our features
are generic enough to improve over multiple state-of-the-
art baselines on both tasks on two challenging egocentric
video datasets that offer binaural audio, EgoCom and Easy-
Com. Project: http://vision.cs.utexas.edu/
projects/ego_av_corr.

1. Introduction

Egocentric videos provide a first-person view of how we
perceive and interact with our surroundings in daily life,
and they are pushing a new frontier in multi-modal learn-
ing [10, 27, 35, 70]. A key aspect of ego-video is that it can
provide a rich stream of first-person spatial audio1 alongside
visual frames when the audio is captured with multiple mi-
crophones [12, 56]. The coupling of such audio and vision
provides strong spatial information about the sound sources
(e.g. where the sound sources are, if they are in motion or
not) in the context of the surrounding physical space (e.g.
how big or small the room is, if there is a large wall nearby),
as well as the camera wearer’s attention in the scene revealed
by how they move their head.

Such spatial cues are especially important for social set-
tings of multiple people talking to each other, where it is
valuable to be able to 1) focus on the voice(s) of interest
from among various competing sounds and 2) understand

1Throughout we use the term spatial audio to refer to binaural audio,
including the special case of two-channel binaural audio as perceived by
two human ears. In contrast, single-channel monaural audio lacks spatial
information.
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Figure 1. Given an egocentric video and binaural audio, we aim to
learn spatial correspondences between vision and audio by solving
the pretext task of inpainting segments of the binaural audio. The
features benefit downstream social tasks where spatial localization
is important: active speaker detection and audio denoising.

where people are directing their speech activity, for better
comprehension and communication. In this way, future AR
applications in conversational settings could allow a hearing-
impaired person to determine who is speaking in order to
redirect their attention, or enhance the received audio to
make it more intelligible for any listener.

We argue that this creates the need for human-centric
spatially-grounded understanding of audio-visual events.
Can we learn representations from video that capture audio-
visual events in the context of the persistent physical space
of the environment and the human speakers in it? Such rep-
resentations would be useful for answering questions like
“who is speaking right now?" and “what would the voices
sound like without the audio noise (distractor sounds)?"
While the former requires inferring the source location for
a voice in the scene, the latter requires understanding how
the perceived audio is a function of the source locations, the
listener, and the surrounding environment.

Despite the significance of these problems, today’s mod-
els for audio-visual learning are not human-centric and
they lack spatial grounding. On the one hand, current
audio-visual representation learning methods exclusively
tackle exocentric (third-person) video with monaural audio
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[2, 24, 26, 33, 40, 57, 59]. That domain sidesteps challenges
inherent to ego-video arising from the camera wearer’s head
motion and relatively limited field of view. On the other
hand, the limited prior work exploring self-supervised objec-
tives using multi-channel audio and video [19, 23, 51, 78]
are also outside of the egocentric and social contexts (e.g.,
for sounds in empty homes [23], musical instruments [19],
or single human speakers [78]), where the need for spatial
understanding of multiple sound sources is limited.

We propose to learn audio-visual representations via spa-
tial correspondence between an egocentric video and its
binaural audio, for analyzing social (conversational) settings.
In particular, we design a novel pretext task where the goal
is to inpaint binaural (two-channel) audio using both video
and audio. Given a social egocentric video clip with binau-
ral audio, we mask segments of it and train a model based
on masked autoencoding (MAE) [6, 16, 29, 34, 74] to pre-
dict the missing segments on the basis of the video and
the unmasked segments in the audio. See Figure 1 (top).
Additionally, we introduce a novel spatial audio masking
strategy that facilitates learning strong audio-visual spatial
correspondences while maintaining learning stability when
vision alone is insufficient for the binauralization task. Once
trained, our model’s encoder provides spatial audio-visual
features that can be used to address multiple downstream
tasks, as we demonstrate using multiple different backbones
and social egocentric video datasets.

In particular, motivated by the AR applications discussed
above, we validate our feature learning method on two down-
stream social egocentric tasks that require strong audio-
visual spatial reasoning: 1) active speaker detection: pre-
dicting which person in the field of view of an egocentric
video is speaking, and 2) spatial audio denoising: separat-
ing audio noise (any sounds from non-speakers) from the
input audio. See Figure 1 (bottom). We test the generality
of our method by evaluating on two social egocentric video
datasets, EgoCom [56] and EasyCom [12]—to our knowl-
edge, the only two publicly available video datasets with
binaural sound and social settings. On both, our method sig-
nificantly outperforms multiple state-of-the-art task-specific
and audio-visual spatial feature learning models.

2. Related Work
Audio-visual self-supervised pretraining Past work [2,
4, 40, 51, 55, 57–59] extensively studies the synergy of vi-
sion and audio for learning representations through self-
supervision. They explore using both modalities to construct
pretext tasks based on synthesis [58, 59], alignment [2, 4, 23,
40, 57], and masked auto-encoding (MAE) [24, 26, 33], and
they focus on semantic downstream tasks like audio-visual
event classification and retrieval. However, none of these
methods are designed to extract spatial cues from video and
multi-channel audio, nor do they analyze the social egocen-

tric setting. On the contrary, we propose self-supervised
learning of spatial audio-visual features from egocentric
video. Further, different from existing MAE-style mod-
els [24, 26, 33], we propose a specialized masking strategy
that better learns spatial audio-visual cues. Our masking
idea promotes the encoding of spatial and semantic infor-
mation in the learned multimodal representation, thereby
improving its effectiveness for transfer learning in down-
stream tasks that require nuanced reasoning about both what
and where aspects, such as active speaker detection and
spatial audio-visual denoising. This differs from previous
methods [24, 26, 33], which mainly use a learning objective
that emphasizes the encoding of semantic cues and tailor to
tasks like multimodal event classification or retrieval.

Audio-visual spatial correspondence learning Learning
the spatial alignment between video and audio is important
for self-supervision [51, 68, 77, 78], audio generation [8,
19, 46, 50, 52, 64, 81], audio-visual embodied learning [7,
9, 44, 45] and 3D scene mapping [47, 63]. However, these
methods are either restricted to exocentric settings [8, 19,
50, 51, 64, 68, 78], or else tackle egocentric settings [9,
44, 46, 47] in simulated 3D environments that lack realism
and diversity, both in terms of the audio-visual content of
the videos (no people are visible, no objects are moving)
and their lack of continuous camera motion from a camera-
wearer’s physical movements. In contrast, we learn an audio-
visual representation from real-world egocentric video.

More closely related to our work are Telling Left from
Right (TLR) [78], 2.5D Visual Sounds (2.5D-VS) [19], and
audio-visual stereo sound ranking (SSR) [68], all of which
learn spatial audio-visual features, albeit for exocentric data
only. TLR predicts whether the left and right binaural chan-
nels are swapped, and SSR ranks the similarity of video
to different stereo audio samples through self-supervision—
both of which provide only coarse spatial information about
the scene. 2.5D-VS learns to “lift" the mono input to bin-
aural audio, which can be underconstrained from the single-
channel audio and video alone. We design a novel pretext
task using audio-visual inpainting of binaural audio, which
is both fine-grained (requiring to capture subtleties about the
arrangement of speakers in the environment) and, through
our novel masking strategy, exposes better multi-modal con-
straints that improve learning stability and performance. Our
results in Sec. 4 show our model’s advantages over all three
prior methods [19, 68, 78].

Active speaker detection Active speaker detection (ASD)
entails predicting the active speaker(s) from among all de-
tected faces in a video, and is a special case of generic
2D sound localization [18, 31, 37, 49, 57, 79]. While
early ASD methods rely on lip motion and facial ges-
tures [15], recent methods employ ensemble networks [3]
or 3D CNNs [39, 69, 73], relation context modules [80],
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Figure 2. Our model learns the spatial correspondence between vision and binaural audio by inpainting masked tokens of the audio channels
through the use of an audio-visual encoder-decoder model. We combine random token masking (which requires solving a more local
binauralization task) with complete audio channel masking (which requires more global cues to synthesize unseen binaural segments). For
downstream evaluation, we fuse the features from the audio-visual encoder with the backbones for downstream tasks, and finetune them.

attention [3, 73], or graph neural networks [41, 48]. Multi-
channel audio improves ASD [37], but requires privileged
information of the speaker’s pose for training. Recent work
explores using supervised learning to infer not only who
is talking, but also to whom a camera-wearer is listen-
ing [67]. In contrast, our goal is to learn spatial audio-visual
features purely from in-the-wild egocentric video through
self-supervision—features generic enough to benefit mul-
tiple ASD models, as we show for both TalkNet [73] and
SPELL [48].

Spatial audio denoising Audio denoising, which requires
separating a target sound from noise, has traditionally been
studied with single-channel (non-spatial) audio, both in the
audio-only setting [32, 71, 72, 76] and audio-visual set-
tings [1, 14, 17, 20–22, 57, 60, 62]. Using spatial audio
captured with multiple microphones [13, 54, 82] naturally
makes the task simpler. Different from the above, we learn
task-agnostic audio-visual spatial features. That is, our con-
tribution is the feature learning idea (which benefits both
denoising and ASD), rather than a novel denoising approach.

3. Learning spatial features from egocentric
audio-visual correspondence

The spatial sound perceived in an egocentric setup is shaped
by the environment in which it is emitted and its source
location relative to the camera-wearer. Based on this knowl-
edge, we hypothesize that trying to solve the pretext task of
audio-visual inpainting of binaural audio—that is, synthesiz-
ing missing audio segments by extracting related visual cues
about the scene and the source location—can lead to learning
useful audio-visual spatial correspondences. To validate our
hypothesis, we propose a novel feature-learning task.

Formally, we consider an egocentric video clip C =(
V,A

)
, where V and A refer to the visual and binaural

audio streams, respectively. See Fig. 2 left. The visual
clip V comprises T frames, such that V =

{
V1, . . . , VT

}
.

We generate a set of visual tokens V̂ by splitting V into
P non-overlapping tubelets, such that V̂ =

{
V̂1, . . . , V̂P

}
,

where V̂k denotes the kth tubelet consisting of a contigu-
ous sequence of patches spanning all T frames. We rep-
resent the binaural audio A as two Mel-spectrograms [34],
A =

{
AL, AR

}
, where AL and AR are the spectrograms

for the left and right channels, respectively. We create a set
of audio tokens Â by splitting A into Q non-overlapping
patches, such that Â =

{
Â1, . . . , ÂQ

}
.

Next, we mask a portion of the audio tokens in Â and ob-
tain complementary subsets of masked and unmasked tokens,
ÂM and ÂU , respectively, where ÂM =

{
Ä1, . . . , ÄS

}
,

ÂU =
{
Ā1, . . . , ĀQ−S

}
, and S is the number of masked

tokens. Given
{
V̂ , ÂM , ÂU

}
, we aim to learn a self-

supervised model F comprising an encoder E and decoder
D, such that F = D ◦ E and F(V̂ , ÂU ) = ÃM , where
ÃM is an estimate of the masked audio tokens in ÂM . By
training on this pretext task, our encoder E can learn rich
audio-visual spatial correspondences that can be leveraged
for multiple downstream tasks that require the synergy of
vision and spatial audio, as we show in results.

In our method (see Fig. 2), E (Sec. 3.1) is an audio-visual
(AV) spatial correspondence encoder that learns an implicit
representation of the spatial relationships between the visual
and unmasked binaural audio tokens, while D (Sec. 3.2) is
an audio-visual decoder for binaural audio inpainting that
uses this implicit representation to synthesize the masked
audio tokens. We also devise a simple yet novel masking pro-
tocol (Sec. 3.3) for our inpainting task, which mixes masking
random audio tokens with masking a full audio channel, and
helps the model learn stronger audio-visual spatial associa-
tions that facilitate the downstream social tasks (Sec. 3.5).
We train F to minimize the prediction error in the masked
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audio tokens (Sec. 3.4). Next, we describe our model de-
sign, audio masking protocol, training objective and network
architecture, and downstream tasks.

3.1. Audio-visual spatial correspondence encoder

The audio-visual spatial correspondence encoder E (Fig. 2
center) extracts features from the visual and unmasked au-
dio tokens

{
V̂ , ÂU

}
. It begins by embedding the visual

and audio tokens using separate transformer encoders [16]
for individually capturing the spatio-temporal features in
the two modalities. Next, it uses a shared transformer en-
coder to jointly encode the audio and visual features, and
produces a multi-modal representation suitable for binaural
audio inpainting. Next, we describe the individual encoders
next.

Video and audio encoders. We first encode the visual
tokens V̂ using a linear layer to generate visual features v,
such that v =

{
v1, . . . , vP

}
. We encode the audio tokens

ÂU with another linear layer to produce audio features a,
such that a =

{
a1, . . . , aQ−S

}
, where S is the number of

masked tokens out of a total of Q audio tokens (cf. Sec. 3).
For each visual feature vj , we add a sinusoidal positional
embedding pVj [75] to it, where pVj captures cues about the
3D position of the jth tubelet in the visual clip V . For an
audio feature ai, we add a sinusoidal positional embedding
pAi and a learnable channel embedding c ∈

{
cL, cR

}
to

it to convey information about the 2D location of the ith

unmasked audio token in the spectrogram and also the audio
channel to which it belongs. Next, we feed the transformed
visual and audio features to separate transformer encoders,
EV and EA, respectively, and obtain visual features eV ={
eV1 , . . . , e

V
P

}
and audio features eA =

{
eA1 , . . . , e

A
Q−S

}
.

Shared audio-visual encoder. Given the visual features
eV and audio features eA, we concatenate them into eAV ,
such that eAV =

{
eV1 , . . . , e

V
P , e

A
1 , . . . , e

A
Q−S

}
, and re-add

the sinusoidal positional embeddings pV and pA to the fea-
tures of the respective modalities in eAV . Furthermore, un-
like existing audio-visual masked auto-encoders [24, 26, 33],
we add the channel embeddings c to the audio features, and
learnable modality embeddings m ∈

{
mA,mV

}
to all fea-

tures in eAV to help the model distinguish between the visual
and audio modalities. Next, a shared audio-visual trans-
former EAV encoder takes eAV as input and outputs audio-
visual features fAV , which implicitly hold spatio-temporal
information required for accurate inpainting of audio.

3.2. Audio-visual decoder for binaural audio in-
painting

Our audio-visual decoder D (Fig. 2 right) takes fAV as in-
put and attempts to synthesize the masked binaural audio
tokens by leveraging spatio-temporal cues in fAV . It first

projects fAV to a lower-dimensional feature set gAV . It
then appends a learnable embedding for the masked audio
tokens to gAV and passes it through a shared audio-visual
transformer decoder [29]. Next, it feeds the audio feature
outputs of the shared decoder to another transformer decoder
and uses its outputs to predict an estimate of the masked bin-
aural audio tokens. The decoders are lightweight compared
to the encoders, ensuring that the encoders are primarily re-
sponsible for driving the inpainting task and producing good
audio-visual features for strong downstream performance.
We next describe each component of D in detail.

Shared audio-visual decoder. We first create a lower-
dimensional projection gAV of the audio-visual encodings
fAV by passing it through a linear layer, and append a learn-
able embedding ϕ corresponding to each of the S masked
audio tokens to gAV . Next, we add the positional embed-
dings pV and pA, the audio channel embeddings c, and the
modality embeddings m to gAV , and feed it to a shallow
transformer decoder DAV that outputs an audio-visual fea-
ture set hAV . We then take the audio features hA from hAV

and pass them to the audio decoder for further processing.

Audio decoder. The audio decoder DA re-adds the po-
sitional embeddings pA and channel embeddings c to gA,
and feeds it to a transformer decoder, which outputs audio
features dA.

Prediction of masked audio tokens. Finally, we take the
subset of all audio features dA corresponding to the masked
audio tokens ÂM , upsample them by passing through a linear
layer, and reshape them to obtain an estimate ÃM of the
masked tokens ÂM , such that ÃM =

{
Ã1, . . . , ÃS

}
.

3.3. Audio masking

Different from other masked auto-encoding counterparts [24,
26, 33], we design an audio masking protocol that is cus-
tomized to help our model better extract spatial audio-visual
cues during self-supervised pretraining. In particular, we
mix the strategy of randomly masking a full audio channel
with that of randomly masking audio tokens using a hyperpa-
rameter r during training, where r represents the probability
with which we randomly drop a full audio channel and r is
sampled from a uniform distribution U(0, 1):

mask(Â) =

{
ÂM = AL or ÂM = AR if x ∼ U(0, 1) ≤ r

ÂM ⊆ {Â1, . . . , ÂQ} Otherwise

On the one hand, token masking could lead to tokens from
the same location in the two audio channels being present
among the unmasked tokens, providing additional spatial
cues to the model and resulting in a simpler, stabler optimiza-
tion objective for the inpainting task. In addition, since token
masking involves masking a short span in both frequency and
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Figure 3. Masked targets and predictions shown alongside the
unmasked inputs for (a) token masking and (b) channel masking.
Our predictions accurately capture the global patterns in the target
spectrograms, which depend on the scene’s spatial properties.

time domains, the model can rely more on local audio-visual
cues and tolerate the global noise in both the visual and au-
dio streams due to a camera-wearer’s motion. On the other
hand, channel masking forces the model to solve a more
challenging binauralization task solely on the basis of vision,
which could help it learn even stronger spatial features. This
encourages the model to reason about the camera motion
at a more global scale (over the entire clip span). Towards
achieving high performance on the downstream tasks, we
aim to strike a fine balance between these two strategies and
combine the benefits of reasoning at both temporal scales.

3.4. Training objective and network architecture

We train our model to minimize the error in predicting the
masked audio tokens. In particular, we compute the mean-
squared error L averaged over all masked audio tokens:

L =
1

S

∑
i=1...S

||Äi − ãi||22. (1)

We visualize our predicted audio tokens in Fig. 3 for the cases
of token (Fig. 3a) and channel (Fig 3b) masking. Our model
is able to accurately predict the masked targets and capture
the global patterns in the spectrograms, which are often
determined by the spatial audio-visual cues captured from
of the scene (visual input not shown in Fig 3 for brevity),
thereby further emphasizing our model’s ability to learn
useful spatial features.

Our uni-modal encoders, EA and EV , have 8 layers, while
the audio-visual encoder EAV has 6 layers. All encoders
have 12 attention heads and use 768-dimensional hidden

embeddings. The audio-visual decoder DAV and audio-
only decoder DA have 1 and 3 layers, respectively. Both
decoders have 6 attention heads and use 384-dimensional
hidden embeddings. To pretrain our model, we set the rela-
tive frequency of dropping an audio channel in our masking
protocol for training to r = 20% based on disjoint validation
data (see Supp.). We train our model for 200 epochs using
the AdamW [43] optimizer with a weight decay of 10−5, and
a learning rate scheduler that reaches a peak learning rate of
2×10−4 over 10 warmup epochs, and then decays it through
half-cycle cosine annealing [42]. For data agumentation, we
perform random flipping of audio channels and video clips
along the frame width. For downstream evaluation, we fuse
the features from the audio-visual encoder with the back-
bones for downstream tasks, and finetune them. See Supp.
for further details on architecture and training.

3.5. Downstream tasks

We explore two downstream tasks with our pretrained fea-
tures: active speaker detection and spatial audio denoising.
Active speaker detection (ASD) involves matching an audio
clip with an appropriate face track from the corresponding
video clip, i.e., answering “which person is speaking now?".
While current SOTA methods [48, 73] rely on semantic simi-
larities between monaural audio and vision to solve this task,
we hypothesize that leveraging spatial audio can additionally
reveal the sound source location in the video. In spatial au-
dio denoising, the goal is to separate the target audio from
distractors. In particular, we aim to remove the audio from
sources extraneous to the conversation—out-of-view sounds
from other parts of the scene. We detail the backbone models
for each in the next section.

4. Experiments
We validate our learned representations on two downstream
tasks and two datasets, and we compare with prior models
for spatial audio-visual feature learning [19, 24, 68, 78], as
well as various baselines and ablations.

Datasets. We train and evaluate our model on two chal-
lenging egocentric datasets containing video and binaural
audio of people having conversations: 1) EgoCom [56], and
2) EasyCom [12], detailed in Supp. To our knowledge, these
are the only two publicly available datasets offering binaural
audio with conversations in video, whether exocentric or
egocentric. In particular, Ego4D [27] and EPIC [10] do not
comprise social scenarios and are not applicable. Whereas
EasyCom primarily has participants sitting around a table
and talking, EgoCom has videos of participants moving
around a room, turning their face and body, standing up, etc.
They test our method’s robustness in diverse scenarios of
varying difficulty. See Supp. for more details.
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4.1. Active speaker detection

We first evaluate on active speaker detection (ASD).

Backbone models. We consider two SOTA ASD models
as the backbones for leveraging our pretrained representa-
tions: 1) TalkNet [73], and 2) SPELL [48]. TalkNet encodes
a face track and an audio clip using attention for learning
intra- and inter-modal semantic and temporal features. Next,
it fuses these features and performs binary classification to
predict if the face in the track is active. SPELL extracts audio-
visual features for each face in a clip using ResNets [3], and
learns long and short-term semantic relations among them
using a graph neural network. Finally, it performs binary
classification of these features for predicting active speakers.

Pretrained feature fusion. To fuse our pretrained features
with the ASD backbones, we use a transformer decoder that
cross-attends to the feature outputs of the shared encoder
EAV using sinsuoidal embedding as queries, with each em-
bedding representing a clip frame index. Next, we append
the decoder outputs to the cross-attention outputs in TalkNet,
or the audio-visual encoder outputs in SPELL, frame by
frame. In essence, while the original audio-visual encoders
leverage semantic correlations between vision and audio, our
features provide strong complementary spatial cues.

Baselines. For both TalkNet and SPELL, we compare
against multiple baselines comprising both the unmodified
backbone and improved versions of it, in addition to some
naive methods:
• All-active: a naive model that predicts that all visible faces

are always active
• All-inactive: a naive model that predicts that all visible

faces are always inactive
• Random: a naive model that emits a random ASD confi-

dence score for every visible speaker
• Backbone w/o audio: a vision-only version of the back-

bone with no audio input
• Backbone: the originally-proposed backbone that pro-

cesses only faces and monaural audio
• Backbone-binaural: an improved backbone using binau-

ral audio instead of monaural, alongside positional encod-
ings for the faces, indicative of their relative position and
depth, for better matching the face to the audio

• Backbone-binaural w/ scene: a further improvement over
the backbone, where we also provide the scene images
(uncropped video frames) to backbone-binaural

• Backbone w/ TLR [78]: fuses features from the SOTA
Telling Left from Right (TLR) [78], which learns audio-
visual spatial correspondences by predicting the spatial
alignment between vision and binaural audio

• Backbone w/ 2.5D-VS [19]: fuses features from the SOTA
audio-visual binauralization model, 2.5D Visual Sounds
(2.5D-VS) [19]

TalkNet [73] SPELL [48]
Model EgoCom EasyCom EgoCom EasyCom

No pretraining
All-active 32.9 30.1 32.9 30.1
All-inactive 32.9 30.1 32.9 30.1
Random 30.8 28.0 30.8 28.0
B w/o audio 41.5 50.1 60.4 63.2
B 52.8 45.7 60.9 59.0
B-binaural 60.0 59.6 63.1 60.3
B-binaural w/ scene 60.8 66.9 61.2 61.4

Alternate pretraining methods
B w/ TLR [78] 47.9 59.3 61.3 61.7
B w/ 2.5D-VS [19] 57.7 63.7 61.2 59.7
B w/ 2.5D-VS [19]++ 63.4 68.3 65.1 64.5
B w/ SSR [68]++ 61.2 70.6 61.2 67.4
B w/ AV-MAE [24] 61.1 61.3 64.4 65.2

Ours 63.9 71.8 65.6 70.2

Ours w/o pretrain 62.7 62.9 __ __
Ours w/ pretrain monaural 61.0 69.4 63.9 69.0

Table 1. Mean average precision (%) for active speaker detection
with TalkNet [73] and SPELL [48] backbones on both datasets.
Higher is better. ‘B’ refers to backbone. Note that SPELL requires
storing pretrained features in the graph nodes; therefore it does not
allow training from scratch.

• Backbone w/ 2.5D-VS [19]++: fuses features from 2.5D-
VS with a transformer architecture

• Backbone w/ SSR [68]++: fuses features from the
SOTA self-supervised audio-visual stereo sound ranking
(SSR) [68] model with a transformer architecture

• Backbone w/ AV-MAE [24]: fuses features from the
SOTA modality-inpainting AV-MAE [24] model

For all alternate feature-learning methods [19, 24, 68, 78],
we pretrain them on our datasets and use our feature fu-
sion method. Thus, any advantages in performance of
our approach over these SOTA representations will be at-
tributable to our modeling ideas. Importantly, the 2.5D-
VS [19]++, SSR [68]++, and AV-MAE [24] features all rely
on transformers and have similar model capacity as ours (see
Supp. for a detailed analysis on model capacity). We use the
standard mean average precision (mAP) metric.

Results. Table 1 (top) reports our ASD results on both val
and test splits. The three naive baselines perform poorly
on both EgoCom [56] and EasyCom [12], emphasizing the
difficulty of the task. For both TalkNet [73] and SPELL [48],
the unchanged backbone model generally performs better
than the model without audio, showing that both vision and
audio are required. Upgrading from monaural to binaural
audio further boosts performance, as the model can now
leverage both spatial and semantic information. Additionally
using scene features lets the backbone explicitly match the
scene area around the inferred source location with the face,
and further improves ASD, especially for EgoCom, where
the background scene changes more often.
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Model SI-SDRi ↑ STFT ↓

No pretraining
B w/o vision 1.61 7.36
B 1.46 7.27
B w/ ImageNet features 1.48 6.95

Alternate pretraining methods
B w/ TLR [78] 1.41 7.79
B w/ 2.5D-VS [19] 1.67 7.34
B w/ 2.5D-VS [19]++ 2.11 6.60
B w/ SSR [68] ++ 2.04 6.70
B w/ AV-MAE [24] 2.07 6.62

Ours 2.20 6.51

B w/o pretrain 1.90 7.25
B w/ pretrain monaural audio 2.00 6.75

Table 2. Audio denoising with U-Net [78] backbone (referred to
as ‘B’ in table) for 0 dB noise (maximum). See Supp. for varying
noise levels. All STFT distance measures use base 10−3.

Among alternate feature learning methods, 2.5D-
VS [19]++, SSR [68]++ and AV-MAE [24] consistently out-
perform TLR [78] and 2.5D-VS [18], and also the basic and
enhanced backbones, showing that self-attention and higher
model capacity enhance feature quality. Besides, 2.5D-VS
outperforms TLR, and 2.5D-VS++ and AV-MAE generally
outperform SSR++, indicating that objectives that promote
reasoning directly at the spectrogram level improve results.

Our model substantially outperforms all baselines—
including the SOTA AV representation learning methods—
for both backbones (TalkNet and SPELL) on both datasets.
This shows that our method learns stronger spatial features
that are both backbone- and dataset-agnostic. In contrast,
methods developed for exocentric settings with more sta-
tionary cameras (such as TLR and 2.5D-VS) rely more on
the global visual context and seem to struggle in our setting,
where the camera moves frequently and the sound source
leaves the field of view. Finally, our improvement over 2.5D-
VS++, SSR++ and AV-MAE, which use similar encoders as
ours, disentangles the benefits of our masking strategy and
model design from those of the model capacity.

Model analysis. Table 1 (bottom) shows ablations of our
method. Upon training for ASD from scratch, we see sharp
drop in performance, showing that our advantage is not
solely due to our model design, but also our self-supervised
pretraining stage. Performance also declines upon pretrain-
ing with monaural audio instead of binaural, showing that
our model goes beyond learning semantic features and suc-
cessfully captures spatial features useful for ASD.

4.2. Spatial audio denoising

Next we evaluate spatial audio denoising on EgoCom.2 To
instantiate this task, we add the binaural audio of a target clip
with the downscaled binaural audio from another randomly
chosen clip, where the downscaling factor depends on the
desired noise level. The goal is to extract the target sound
from the mixture. We evaluate three noise levels, expressed
using the signal-to-noise (SNR) ratio: 1) 0 dB, 2) 2.5 dB,
and 3) 5 dB. The different noise levels test our model’s
robustness to varying levels of task difficulty—the lower the
SNR value, the higher the noise and difficulty.

Backbone model. We adopt the commonly used U-
Net [65] for audio-visual source separation [19, 78] as the
backbone, which produces a binaural ratio mask for the tar-
get audio (see Supp. for details). We multiply the predicted
ratio mask with the mixed magnitude spectrogram to get
the predicted magnitude spectrogram, then convert it to a
waveform using inverse short-time Fourier transform with
the mixed audio phase.

Pretrained feature fusion. To use our features for denois-
ing, we reshape the visual features and unmasked audio
features produced by our audio-visual encoder EAV to form
multi-channel 2D maps, where the features align with their
corresponding tokens vis-a-vis the raster order. Next, we
pass the feature maps to separate convolutional layers, con-
catenate the outputs channel-wise, and use them to replace
the visual features at the U-Net [78] bottleneck.

Baselines. We compare against the following baselines
and existing methods:
• U-Net w/o vision: an audio-only blind denoising model
• U-Net: the original backbone without any alterations
• U-Net w/ ImageNet: pretrains the visual encoder on Ima-

geNet [11]
• U-Net w/ TLR [78]: fuses features from TLR [78]
• U-Net w/ 2.5D-VS [19]: fuses pretrained features from

2.5D-VS [19]
• U-Net w/ 2.5D-VS [19]++: fuses features from the

transformer-based version of 2.5D-VS
• U-Net w/ SSR [68]++: fuses features from the

transformer-based version of SSR [68]
• U-Net w/ AV-MAE [68]: fuses features from the modality

inpainting AV-MAE [24] model

Evaluation metric. For evaluating our denoising quality,
we use standard metrics: 1) STFT distance (the L2 error

2For EasyCom, the task setup is ill-posed for all models because mixing
audio from a different EasyCom clip as noise leads to spatially overlapping
sound sources, since all clips in the dataset are recorded at the same physical
location (people sitting around the same table in the same room).
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Figure 4. Heat maps showing the image areas our model’s AV
encoder attends to, placed alongside the images. Brighter yellow
means higher attention score. Our model attends to image regions
(e.g. faces of speakers, sound-reflecting flat regions like floor and
table, etc.) that strongly determine the spatial properties of the
audio, including direct sources of sound (marked in red).

between the predicted and ground-truth spectrograms) ex-
pressed using base 10−3 and 2) SI-SDRi: the improvement
in SI-SDR [66], a scale-invariant estimate of the level distor-
tion in the audio, over using the mixed audio as the predic-
tion.

Results. Table 2 (top) shows spatial audio denoising results
on the challenging EgoCom dataset with 0 dB, the most
difficult noise level. See Supp. for similar results with the
other noise levels. The unchanged U-Net backbone lowers
the STFT distance compared to the version that lacks vision,
showing that like ASD, vision is crucial for better denoising.
Using pretrained features of 2.5D-VS [19] (++), SSR [68]++
or AV-MAE [24] further improves the performance, showing
that learning spatial audio-visual features aids denoising.

Our method outperforms all baselines (p ≤ 0.05) across
both metrics. While the improvement over the baselines
that do not use self-supervised pretraining emphasizes the
utility of learning spatial audio-visual relationships through
self-supervision, the gain over other pretraining methods un-
derlines the strengths of our self-supervised method design—
which are consistently realized for both ASD and denoising.
Further, our performance margins are larger for higher noise
levels (0 and 2.5 dB), indicating that our features play a
bigger role in the more difficult denoising settings.

Model analysis. In Table 2 (bottom), we ablate our pre-
training method. Similar to ASD, training from scratch on
the denoising task hurts performance. This disentangles the
impact of our pretext task design from the model architec-
ture and shows that our pretraining stage helps the backbone
with learning better audio-visual features, leading to superior
denoising quality. Furthermore, pretraining with monaural
audio also degrades performance, re-emphasizing that our
method is not restricted to learning semantic features—in
contrast to prior work [24, 26, 33].

Active

Inactive

Active Active

(a) Our model succeeds on ASD even with fast camera motion (left; note image
blur), multiple active speakers (right) and partially visible faces (left and right)

Mixed Target Prediction

p1 p2 p1 p2 p1 p2

(b) Our model denoises accurately—note the noise patches in mixed audio
above points p1 and p2, which are successfully removed in our prediction.

Figure 5. Success cases for ASD (a) and denoising (b)

See Supp. for additional analysis of the effect of alter-
nate masking choices, multi-level positional embeddings,
tasks-specific backbones, and our finetuning strategy on per-
formance.

4.3. Qualitative analysis

In Fig. 4, we analyze the visual attention maps of our shared
encoder EAV . Note that the regions of high attention are not
only limited to the direct sound sources (e.g., regions in and
around faces of active speakers across examples), but also
include large sound-reflecting objects (e.g., the flat surface
of the table on the left; the walls on the left and in the mid-
dle; the floor on the right, etc.) that determine how sound
spatializes through early reflections, late reverberations, etc.
Interestingly, our model also attends to multiple people if
they are speaking at the same time (see left), thereby facilitat-
ing the detection of multiple active speakers. See Supp. for
additional visualizations showing how, depending on the
scene’s spatial layout, our model uses one audio channel
more than the other to attend to important image locations.

In Fig. 5, we qualitatively show our model’s success cases.
On ASD (Fig. 5a), our model can tackle drastic camera
movements, multiple active speakers, and partially visible
faces. On denoising (Fig. 5b), our model is able to remove
interferences from distractor sources, and make predictions
that closely match the ground truth in spectrogram structure.

We also observe some limitations. Our model’s perfor-
mance on ASD declines when there are drastic movements
of the camera wearer, or there is a high overlap in speech
from different conversation participants. On denoising, our
model struggles when the noisy audio is semantically and
acoustically similar to the target, or when it cannot extract
spatial cues due to occlusions or out-of-view speakers. Refer
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to our Supp. video for both success and failure cases.

5. Conclusion
We introduce a novel self-supervised approach for learn-
ing audio-visual representations in social egocentric videos
via spatial correspondence between the video and its binau-
ral audio. Through extensive evaluation, we show that our
learned features are strong and generic enough to improve
over multiple backbone methods on multiple downstream
tasks. In future work, we will explore how the learned spatial
audio-visual cues may reveal the social attention between
speakers.
Acknowledgements: UT Austin is supported in part by NSF CCRI
and the IFML NSF AI Institute. KG is paid as a research scientist
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6. Supplementary Material
In this supplementary material, we provide additional details about:
• Video (with audio) for qualitative illustration of our pretext task

and qualitative evaluation of our model on the downstream tasks
(Sec. 6.1), as noted in Sec. 4.3 in main.

• Spatial audio denoising results with varying noise levels
(Sec. 6.2), as mentioned in Sec. ?? in main

• Evaluation of the impact of the channel masking probability r
(from Sec. 3.3 and 3.4 in main) in our audio masking protocol
(Sec. 6.3)

• Analysis of the effect of alternate audio masking choices
(Sec. 6.4), as referenced in Sec. 4.2 in main

• Study of the effect of multi-level positional embeddings (Sec. 7),
as noted in Sec. 4.2 in main

• Analysis of the effect of task-specific backbones (Sec. 8), as
mentioned in Sec. 4.2 in main

• Comparison of model capacity and computational cost among
different pretraining methods (Sec. 8.1), as noted in Sec. 4.2 in
main

• Qualitative analysis of the visual attention maps for left and right
audio channels separately (Sec. 8.2), as referenced in Sec. 4.3 in
main

• Analysis of the impact of our finetuning strategy (Sec. 8.3), as
noted after Sec. 4.2 in main

• Evaluation of the impact of our model parameter initialization
on the downstream performance (Sec. 8.4)

• Additional dataset details (Sec. 8.5), as mentioned in Sec. 4 in
main

• Additional model architecture and hyperparameter details
for both self-supervised pretraining and downstream training
(Sec. 8.6), as referenced in Sec. 3.4 in main

6.1. Supplementary video
The supplementary video provides a qualitative illustration of our
pretraining task for learning spatial features from audio-visual
correspondence in egocentric videos, and our proposed approach.
Moreover, we provide video samples from the both EgoCom [56]
and EasyCom [12] datasets to illustrate the unique challenges posed
by the egocentric videos. Additionally, we demonstrate our model’s
prediction quality for both active speaker detection and spatial audio
denoising, and analyze common failure models for our model on
both tasks. The video is available on http://vision.cs.
utexas.edu/projects/ego_av_corr.

6.2. Denoising with varying noise levels
In table 2 in main, we evaluated denoising with 0 dB noise. Here,
we analyze the effect of varying the noise level. Table 3 reports the
results with 2.5 dB and 5 dB noise. We observe general similarity
in performance trends across all noise levels. Whereas our model
outperforms the baselines in the high-noise settings (0 and 2.5 dB),
using 2.5D-VS [19]++ improves the separation quality for 5 dB,
underlining that our features are especially important for tackling
the more challenging high-noise settings.

6.3. Channel masking probability r

Here, we analyze the effect of the channel masking probability r in
our audio masking protocol (Sec. 3.3 in main) on the downstream

task performance. Table 4 reports the active speaker detection
(ASD) results on the more challenging EgoCom [56] dataset, and
table 5 reports the denoising results for different noise levels. We
notice that the performance on both ASD and denoising, especially
at the higher noise levels, declines upon increasing or decreasing
the value of r from our choice of 20 % based on the downstream
validation performance (Sec. 3.4 in main), which helps our model
achieve a fine balance between the two complementary strategies of
masking a complete channel and randomly masking audio tokens.
Whereas randomly masking a channel of the binaural audio entails
solving the more under-constrained and consequently complex bin-
auralization task, thereby helping our model learn stronger spatial
associations between vision and audio, randomly masking audio
tokens helps with improving training stability.

6.4. Alternate audio masking choices
Here, we evaluate alternate masking choices, namely time, fre-
quency, and time-frequency masking, in place of randomly masking
audio patches as part of our proposed masking strategy, in table 6
and 7. Our model outperforms the versions with these alternatives,
showing that random patch masking when combined with channel
dropping enables learning more useful features in our setup. This
happens possibly because in random patch masking, dropping a full
frequency band or time segment is highly improbable thereby al-
lowing our model to extract useful information from the unmasked
regions of all frequency bands and time segments of the audio
spectrograms.

7. Multi-level positional embeddings
Here, we evaluate the impact of our multi-level positional embed-
dings by comparing our model with the ablation where positional
embeddings are used only at the input level. See table 8 for results
on ASD and table 9 for results on denoising with 0 dB noise. Our
model improves over the ablation on both tasks, showing that using
multi-level positional embeddings is crucial for remembering the
spatial layout of the tokens at different stages in the model.

8. Task-specific backbones
Here, we study the impact of using task-specific backbones on our
model performance by evaluating two baselines, with the same
architecture but without task-specific backbones (Ours w/o B)—
one is learned from scratch and another is pretrained. See table 10
for results on ASD and table 11 for results on denoising with 0 dB
noise.Our pretraining scheme leads to better performance than a
from-scratch model even w/o B (table 10 and table 11 top), and we
get the best results when we combine our features with task-specific
backbones. This shows that while our audio-visual features provide
important spatial cues to downstream models, they are not intended
to replace the face-specific features used in ASD or the mixed audio
features used in denoising.

8.1. Pretraining model capacity and computational
cost

Here, we report the model capacity (parameter count) and GFLOPs
of all pretraining methods in Table 12. Note that both the param-
eter count and GFLOPs of all transformer [75]-based methods
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2.5 dB 5 dB
Model SI-SDRi ↑ STFT ↓ SI-SDRi ↑ STFT ↓

No pretraining
U-Net w/o vision 1.91 5.32 2.02 3.04
U-Net 2.04 4.72 2.05 2.85
U-Net w/ ImageNet features 2.04 4.66 2.24 2.74

Alternate pretraining methods
U-Net w/ TLR [78] features 1.70 5.40 2.00 2.77
U-Net w/ 2.5D-VS [19] features 1.81 4.81 2.22 2.62
U-Net w/ 2.5D-VS [19]++ features 2.65 4.31 2.79 2.48
U-Net w/ SSR [68]++ features 2.25 4.63 2.21 2.80
U-Net w/ AV-MAE [24] features 2.46 4.60 2.14 2.93

Ours 2.72 4.22 2.46 2.70

Ours w/o pretraining 2.30 4.54 2.15 2.83
Ours w/ pretraining using monaural audio 2.58 4.38 2.31 2.81

Table 3. Audio denoising with U-Net [78] backbone for varying noise levels. All STFT distance measures use base 10−3.

TalkNet [73] SPELL [48]
r(%) Val Test Val Test

0 67.9 62.9 67.6 65.3
20 (Ours) 68.7 63.9 68.4 65.6
50 64.5 63.1 67.5 65.2
80 64.4 61.8 64.7 60.1
100 67.9 63.4 66.1 65.1

Table 4. Effect of r on the mean average precision (%) of our
model for active speaker detection with two different backbones
(TalkNet and SPELL).

(2.5DVS [19]++, AV-MAE [24] and SSR [68]++) are comparable
to those of our model3, re-emphasizing that our improvements in
performance on the downstream tasks are solely attributable to our
better model design.

8.2. Visual attention maps per audio channel

In Fig. 6, we show the attention maps of our model (similar to
Fig. 4 in main) separately for the left and right channels, on the
more challenging EgoCom [56] dataset. We notice that our model
uses the left channel to focus more on areas to the left of scene
image and vice-versa, indicating that our model can reason about
the spatial properties of the scene using both audio and vision.

Further, to better portray the larger trend, we measure the per-
centage of cases in our test set where the left audio channel attends
more towards patches on the left side of the scene image, and the
right channel attends more towards patches on the right. This mea-
sure comes out to be 62.4% for the left channel, and 57.2% for the
right channel, showing that our model uses the left channel to focus
more on areas to the left of the scene image and vice-versa, across
the whole test set.

3The parameter count and GFLOPs of AV-MAE are a bit lower owing
to its modality-inpainting architecture design, where the modality being
inpainted is dropped from the input, leading to a slightly smaller model.

Scene image Attention map produced by 
left audio channel

Attention map produced by 
right audio channel

Figure 6. Heat maps for left and right audio channels, similar to
Fig. 4 in main. Interestingly, our model uses the left channel to
focus more on areas to the left of scene image and vice-versa.

8.3. Finetuning strategy

We mask audio tokens during finetuning primarily to reduce the
computation overhead. Since our pretraining also involves token
masking, our model can learn strong audio-visual features even
when all audio tokens are not available during finetuning. However,
to quantatively evaluate the effect of our finetuning strategy, we
also finetune our model with all audio tokens and report the results
in table 13 for ASD and table 14 for denoising. We don’t see
a significant change in performance when using all the tokens
compared to masking when finetuning, but using all tokens is 1.7
times slower on average.

8.4. Model parameter initialization

To evaluate the effect of random parameter initialization on our
model, we train our model on both tasks and datasets with 3 dif-
ferent random seeds. Across all runs, our standard errors are less
than 0.01 on all metrics, showing that our model is robust to dif-
ferent random parameter initializations, and the improvements in
performance are significantly larger than these small variations
from randomness.
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0 dB 2.5 dB 5 dB
r(%) SI-SDRi ↑ STFT ↓ SI-SDRi ↑ STFT ↓ SI-SDRi ↑ STFT ↓

0 2.17 6.60 2.57 4.38 2.85 2.35
20 (Ours) 2.20 6.51 2.72 4.22 2.46 2.70
50 1.92 7.19 2.30 4.60 2.09 2.80
80 1.82 7.55 1.98 5.05 1.68 3.30
100 2.11 6.60 2.65 4.31 2.79 2.48

Table 5. Effect of r on our model performance for audio denoising.

TalkNet [73] SPELL [48]
EgoCom EasyCom EgoCom EasyCom

Model Val Test Val Test Val Test Val Test

Ours w/ time masking 63.3 59.3 60.9 66.4 64.1 60.7 68.5 43.5
Ours w/ frequency masking 64.1 62.1 59.2 70.9 67.6 63.2 68.7 69.4
Ours w/ time-frequency masking 65.4 63.1 56.3 63.3 67.5 65.1 68.6 69.1
Ours 68.7 63.9 60.5 71.8 68.4 65.6 68.9 70.2

Table 6. ASD with our model when pretrained with other audio masking choices [34].

0 dB 2.5 dB 5 dB
Model SI-SDRi ↑ STFT ↓ SI-SDRi ↑ STFT ↓ SI-SDRi ↑ STFT ↓

Ours w/ time masking 1.82 7.41 1.98 4.88 2.07 2.80
Ours w/ frequency masking 2.05 7.04 2.33 4.85 2.25 2.79
Ours w/ time-frequency masking 1.91 7.12 2.14 5.15 1.81 3.13
Ours 2.20 6.51 2.72 4.22 2.46 2.70

Table 7. Denoising with our model when pretrained with other audio masking choices [34]. All STFT distance measures use base 10−3.

TalkNet SPELL
Model EgoCom EasyCom EgoCom EasyCom

Ours w/o multi-level PEs 59.2 70.2 60.4 65.6
Ours 63.9 71.8 65.6 70.2

Table 8. Effect of our multi-level positional embeddings on ASD.

Model SI-SDRi ↑ STFT (×10−3) ↓

Ours w/o multi-level PEs 1.30 7.88
Ours 2.20 6.51

Table 9. Effect of our multi-level positional embeddings on denois-
ing with 0dB noise.

8.5. Dataset details
As discussed in main (Sec. 4), we use two public datasets con-
taining egocentric videos with binaural audio, EgoCom [56] and
EasyCom [12], for our experiments. For EgoCom, we follow the
authors and split the data into train/val/test comprising 30.3/2.4/5.8
hours of data. For EasyCom, we randomly generate train/val/test
splits with 4.5/0.38/0.39 hours of data, such that there is no overlap
in conversation participants between any two splits. Next, we ex-

EgoCom EasyCom
Model TalkNet SPELL TalkNet SPELL

Ours w/o B (from-scratch) 61.1 62.0
Ours w/o B (pretrained) 63.1 65.7
Ours 63.9 65.6 71.8 70.2

Table 10. Effect of task-specific backbones (denoted using ‘B’) on
ASD.

Model SI-SDRi ↑ STFT (×10−3) ↓

Ours w/o B (from-scratch) 1.02 8.99
Ours w/o B (pretrained) 2.05 7.12
Ours 2.20 6.51

Table 11. Effect of task-specific backbones (denoted using ‘B’) on
denoising with 0dB noise.

tract 1 second long clips from both datasets, where the video and
binaural audio are sampled at 5 frames per second (fps) and 16 kHz,
respectively. The frame resolution is 240× 352 for EgoCom, and
198× 352 for EasyCom. Furthermore, we choose audio channel
5 and 6 (corresponding to the in-ear microphones) as our binaural
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Model parameter # GFLOPs
Model ASD Denoising ASD Denoising

2.5D-VS [19] 61.2 18.2 79.5 33.2
TLR [78] 57.5 18.1 75.9 33.7
2.5D-VS [19]++ 180.9 75.3 174.0 90.2
AV-MAE [24] 178.6 74.1 171.6 87.5
SSR [68]++ 180.9 75.3 174.0 90.2
Ours 180.9 75.3 174.0 90.2

Table 12. Model parameter count (in millions) and GFLOPs of
different pretraining methods.

audio channels for EasyCom.

8.6. Model architecture and training details
In addition to the provided details in Sec. 3.4, 4.1 and 4.2 in main,
we provide here extra model architecture and training details for
both pretraining and finetuning on downstream tasks, for repro-
ducibility. We perform all training using 8 NVIDIA Tesla V100
SXM2 GPUs. We will release all code and data.

8.6.1 Pretraining

We described our model architecture and pretraining details in
Sec. 3.4 in main. Here, we provide additional details about our
model’s input preparation, architecture, parameter initialization,
and training .

Input preparation. We sample the video clips at their original
resolution, normalize them using the per-color means and standard
deviations computed using ImageNet [28], and generate a total of
330 and 286 visual tokens for EgoCom and EasyCom, respectively,
by splitting the clips into non-overalapping tubelets containing a
sequence of 5 patches, where each patch is 16× 16 in size (L193-5
in main). We represent the binaural audio as two-channel Kaldi-
compliant [61] spectrograms with 98 temporal windows and 128
Mel-frequency bins, which we compute by using the binaural audio
normalized to [−1, 1], a window length of 25 ms and a hop length
of 10 ms. We normalize the spectrograms by computing the mean
and standard deviation of the Mel-spectrograms generated from all
audio clips in each dataset. We next generate 392 audio tokens per
spectrogram channel by splitting it into non-overlapping patches of
size 2× 16.

Architecture. All hidden layers in each transformer block [16]
emit features that are four times as long as the embedding size for
the block. We always use LayerNorm [5] after every output of a
transformer block unless it’s a direct input to another transformer
block.

Parameter initialization. We use Xavier [25] uniform initial-
ization for all network parameters. For the LayerNorm [5] layers,
we initialize their weights to 1 and biases to 0. We use a trun-
cated normal distribution with a standard deviation of 0.02 and a
sampling range of [−2, 2] to initialize the learnable modality and
channel embedding tokens, and initialize the mask tokens from a
normal distribution with a standard deviation of 0.02.

Training. We set the batch size to 104 and weight decay to 10−5

during pretraining.

8.6.2 Active speaker detection

In Sec. 4.1 in main, we outlined our feature fusion method for active
speaker detection (ASD). Here, we provide additional architectural
details for feature fusion, and also describe our finetuning process.

Pretrained feature fusion. Fig. 7 and 8 show our feature
fusion methods for TalkNet [73] and SPELL [48] ASD backbones,
respectively. The single-layer transformer decoder (Sec. 4.1 in
main), which we use for fusing our pretrained features with the
backbones (Sec. 4.1 in main), generates 128 and 512 dimensional
embeddings for TalkNet and SPELL, respectively. Since SPELL
doesn’t train any audio-visual features when training its graph
neural network (GNN), we first pretrain the the transformer decoder
for SPELL by using it with the TalkNet backbone. Towards that
goal, we feed the decoder features to a single linear layer that maps
the 512 dimensional features to 128 dimensional features, and is
followed by GELU [30] activations and LayerNorm [5], before
fusing the 128 dimensional features with the TalkNet backbone.
After pretraining, we append the 512 dimensional outputs of the
decoder with the outputs of the two-stream audio-visual encoder
(L405-8 in main) for training the GNN in SPELL.

Training. For TalkNet, we train using Adam [38] for 25 epochs
optimizer with an initial learning rate (LR) of 10−4 for the back-
bone and 10−5 for the pretrained components, both of which we
decay using a step LR scheduler by a factor of 0.95 after every
epoch. We set the batch size to 400.

For SPELL, we first train the two-stream audio-visual encoder
for feature extraction for 100 epochs using the cross entropy loss
and Adam [38] with an initial learning rate of 5× 10−4, which we
decay by 0.1 after every 40 epochs. We set the batch size to 320.
For training the GNN of SPELL, we train for 70 epochs by using a
batch size of 320 again and learning rate of 10−3, while setting all
other hyperparameters per the original paper.

8.6.3 Spatial audio denoising

Backbone architecture. Following [78], our U-Net backbone
for spatial audio denoising (Sec. 4.2 in main) is an audio-visual
model comprising an audio encoder, a visual encoder, and a decoder
for predicting an estimate of the target audio. The audio encoder
takes the log magnitude spectrogram of the mixed binaural audio as
input, and uses a stack of 5 convolutional (conv.) layers to produce
a multi-channel 2D audio feature map. Each conv. layer has a
kernel size of 4, padding of 1, and stride of 2, and is followed by
leaky ReLU [53] activations with a slope of 0.2 for negative inputs,
and batch normalization [36]. The conv. layers have 64, 128, 256,
512 and 512 output channels, respectively. The visual encoder
has a ResNet-18 [28] architecture that outputs a multi-channel 2D
visual feature map without feeding it to the average pooling or any
subsequent layers. We push the ResNet outputs through another
conv. layer to match its height and width with the audio features.
The conv layer has a kernel size of (1, 4), a padding of (0, 0) for
EgoCom [56] and (1, 0) for EasyCom [12], and 128 output channels.
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TalkNet [73] SPELL [48]
EgoCom EasyCom EgoCom EasyCom

Model Val Test Val Test Val Test Val Test

Ours w/ finetuning all audio tokens 65.3 64.1 58.9 71.8 68.4 65.5 68.7 70.1
Ours 68.7 63.9 60.5 71.8 68.4 65.6 68.9 70.2

Table 13. ASD with our model when all tokens are used in downstream training.

0 dB 2.5 dB 5 dB
Model SI-SDRi ↑ STFT ↓ SI-SDRi ↑ STFT ↓ SI-SDRi ↑ STFT ↓

Ours w/ finetuning all audio tokens 2.18 6.47 2.50 4.49 2.58 2.52
Ours 2.20 6.51 2.72 4.22 2.46 2.70

Table 14. Denoising with our model when all audio tokens are used in downstream training. All STFT distance measures use base 10−3.

Further, we remove the last feature column from the output of the
conv. layer for all channels for EasyCom. We concatenate the per-
frame features along the channel dimension and generate the visual
features. We then concatenate the visual features with the audio
features channel-wise, and feed the concatenated features to the
audio decoder, which predicts an estimate of the ratio mask [19, 78]
for the target audio magnitude spectrogram. The audio decoder
first uses a stack of 5 transpose convolutional (conv.) layers, which
are connected to the corresponding encoder layers through skip
connections. The transpose conv. layers have a kernel size of 4,
stride of 2, and a padding of (1, 1), except for the last layer, which
has a padding of (2, 1). The transpose conv. layers have 1152, 1024,
512, 256 and 128 output channels, respectively. Next, the audio
decoder feeds the output of the transpose conv. layers to a conv.
layer with 2 input and output channels, and a kernel size of (2, 1)
to emit the predicted ratio mask.

Input preparation. To transform the audio waveforms into
magnitude spectrograms, we first normalize them to [-1, 1] and then
compute the short-time Fourier transform with a window length of
128, hop length of 64, and 512 frequency bins.

Pretrained feature fusion. Fig. 9 shows our feature fusion
method for spatial audio denoising. We reshape the visual features
from the outputs of our audio-visual encoder EAV to form multi-
channel 2D visual feature maps (Sec. 4.2 in main), such that the
2D raster order of the features matches that of the tubelets in the
video clip, and feed the reshaped features to a convolutional (conv.)
layer with a kernel size of (3, 4), stride of (2, 3), padding of (1,
2) and (2, 2) for EgoCom [56] and EasyCom [12], respectively,
and 128 input and 784 output channels. We similary reshape the
audio features, and feed them to another conv. layer with a kernel
size of (1, 7), padding of 0, stride of (1, 6), and 128 input and 256
output channels. Both conv. layers are followed by leaky ReLU
activations with a slope of 0.2 for the negative values, and batch
normalization. Next, we concatenate the visual and audio features
along the channel dimension, and further concatenate them with
the audio encoder outputs channel-wise (Sec. 4.2 in main).

Training. We train using Adam [38] for 200 epochs optimizer
with an learning rate (LR) of 5 × 10−4. We set the batch size to
80.
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Figure 7. Method to fuse our pretrained features with TalkNet [73] for ASD.
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Figure 8. Method to fuse our pretrained features with SPELL [48] for ASD.
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Figure 9. Method to fuse our pretrained features with U-Net [78] for spatial audio denoising.
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